

SPEED7

OPL_SP7 | Operationsliste | Handbuch

HB00 | OPL_SP7 | Operationsliste | de | 24-02 SPEED7 Operationsliste

YASKAWA Europe GmbH Philipp-Reis-Str. 6 65795 Hattersheim Deutschland

Tel.: +49 6196 569-300 Fax: +49 6196 569-398 E-Mail: info@yaskawa.eu Internet: www.yaskawa.eu.com

Inhaltsverzeichnis

1	Allgei	mein	15
	1.1	Copyright © YASKAWA Europe GmbH	15
	1.2	Über dieses Handbuch	16
2	Wicht	ige Hinweise	17
	2.1	Allgemein	17
	2.2	Intern verwendete Bausteine	17
	2.3	Kein optimierter Bausteinzugriff	18
	2.4	Deklarationstypen	18
3	AWL-	Operationen	19
	3.1	Übersicht	19
	3.2	Abkürzungen	23
	3.3	Gegenüberstellung der Syntaxsprachen	25
	3.4	Unterschiede zwischen SPEED7 und 300V Programmierung	27
	3.5	Register	29
	3.6	Adressierungsbeispiele	30
	3.7	Arithmetische Operationen	32
	3.8	Baustein-Operationen	36
	3.9	Bildaufbau- und Null-Operationen	37
	3.10	Flanken-Operationen	38
	3.11	Lade-Operationen	39
	3.12	Schiebe-Operationen	42
	3.13	Setzen/Rücksetzen von Bitoperanden	44
	3.14	Sprung-Operationen	45
	3.15	Transfer-Operationen	47
	3.16	Umwandlungs-Operationen	51
	3.17	Vergleichs-Operationen	53
	3.18	Verknüpfungs-Operationen (Bit)	54
	3.19	Verknüpfungs-Operationen (Wort)	61
	3.20	Zeit-Operationen	62
	3.21	Zähl-Operationen	63
4	Baust	teinparameter	64
	4.1	HW-Kennung - HW_ID	64
	4.2	RET_VAL und BUSY bei asynchron arbeitenden Bausteinen	65
	4.3	Allgemeine und spezifische Fehlercodes RET_VAL	65
5	Contr	ols Library einbinden	68
	5.1	Einbinden in Siemens SIMATIC Manager	68
	5.2	Einbinden in Siemens TIA Portal	69

6	Organi	isationsbausteine - "Organization Blocks"	70
	6.1	Übersicht	70
	6.2	Hauptprogramm - "Main"	70
	6.2.1	OB 1 - Main - Zyklisches Programm	70
	6.3	Anlauf - "Startup"	71
	6.3.1	OB 100, OB 102 - Complete / Cold Restart - Anlauf	71
	6.4	Kommunikationsalarme - "Communication Interrupts"	73
	6.4.1	OB 55 - DP: Status Alarm - Statusalarm	73
	6.4.2	OB 56 - DP: Update Alarm - Update-Alarm	74
	6.4.3	OB 57 - DP: Manufacture Alarm - Herstellerspezifische Alarme	75
	6.5	Verzögerungsalarme - "Time delay Interrupts"	76
	6.5.1	OB 20, OB 21 - DEL_INTx - Verzögerungsalarm	76
	6.6	Uhrzeitalarme - "Time of day Interrupts"	77
	6.6.1	OB 10, OB 11 - TOD_INTx - Uhrzeitalarm	77
	6.7	Zyklusalarme - "Cyclic Interrupts"	79
	6.7.1	OB 28, 29, 32, 33, 34, 35 - CYC_INTx - Weckalarm	79
	6.8	Prozessalarme - "Hardware Interrupts"	81
	6.8.1	OB 40, OB 41 - HW_INTx - Prozessalarm	81
	6.9	Asynchrone Fehleralarme - "Asynchronous error Interrupts"	82
	6.9.1	OB 80 - CYCL_FLT - Zeitfehler	82
	6.9.2	OB 81 - PS_FLT - Stromversorgungsfehler	85
	6.9.3	OB 82 - I/O_FLT1 - Diagnosealarm	85
	6.9.4	OB 83 - I/O_FLT2 - Ziehen / Stecken	88
	6.9.5	OB 85 - OBNL_FLT - Programmablauffehler	91
	6.9.6	OB 86 - RACK_FLT - Slaveausfall / -wiederkehr	94
	6.10	Synchronalarme - "Synchronous Interrupts"	96
	6.10.1	OB 121 - PROG_ERR - Programmierfehler	96
	6.10.2	OB 122 - MOD_ERR - Peripheriezugriffsfehler	99
7	Gebäu	de-Automatisierung - "Building Control"	101
	7.1	Übersicht	101
	7.1.1	Aufruf-Beispiel - Instanz-DB	101
	7.1.2	Aufruf-Beispiel - Multiinstanzen-DB	101
	7.2	Raumsteuerung - "Room"	102
	7.2.1	FB 45 - LAMP - Leuchte / Steckdose steuern	102
	7.2.2	FB 46 - BLIND - Jalousie steuern	103
	7.2.3	FB 47 - DSTRIKE - Elektrischer Türöffner	105
	7.3	Zugangskontrolle - "Access Control"	106
	7.3.1	FB 48 - ACONTROL - Zutrittssteuerung	106
	7.3.2	UDT 3 - ACLREC - Datenstruktur für FB 48	107
	7.3.3	UDT 4 - ACL - Datenstruktur für FB 48	108

	7.3.4	FB 49 - KEYPAD - Tastatur	109
	7.3.5	FB 50 - KEYPAD2 - Tastatur	111
8	Netzwe	erkkommunikation - "Network Communication"	114
	8.1	Offene Kommunikation - "Open Communication"	114
	8.1.1	Verbindungsorientierte Protokolle	114
	8.1.2	Verbindungslose Protokolle	. 115
	8.1.3	FB 63 - TSEND - Daten senden - TCP native und ISO on TCP	115
	8.1.4	FB 64 - TRCV - Daten empfangen - TCP native und ISO on TCP	117
	8.1.5	FB 65 - TCON - Verbindung aufbauen	121
	8.1.6	UDT 65 - TCON_PAR - Datenstruktur für FB 65	123
	8.1.7	FB 66 - TDISCON - Verbindung abbauen	128
	8.1.8	FB 67 - TUSEND - Daten senden - UDP	130
	8.1.9	FB 68 - TURCV - Daten empfangen - UDP	132
	8.1.10	UDT 66 - TADDR_PAR - Datenstruktur	. 135
	8.2	Ethernet-Kommunikation - "Ethernet Communication"	136
	8.2.1	Kommunikation - FC 56 für CP 343	136
	8.2.2	FC 5 - AG_SEND - Senden an CP 343	137
	8.2.3	FC 6 - AG_RECV - Empfangen von CP 343	140
	8.2.4	FC 10 - AG_CNTRL - Control CP 343	143
	8.2.5	FC 62 - C_CNTR - Zustand einer Verbindung abfragen	150
	8.2.6	FB/SFB 8 - FB 55 - Übersicht	151
	8.2.7	FB/SFB 8 - USEND - Unkoordiniertes Senden	152
	8.2.8	FB/SFB 9 - URCV - Unkoordiniertes Empfangen	154
	8.2.9	FB/SFB 12 - BSEND - Blockorientiertes Senden	157
	8.2.10	FB/SFB 13 - BRCV - Blockorientiertes Empfangen	159
	8.2.11	FB/SFB 14 - GET - Remote CPU lesen	162
	8.2.12	FB/SFB 15 - PUT - Remote CPU schreiben	164
	8.2.13	FB 55 - IP_CONF - Progr. Kommunikationsverbindungen	166
9	Modbu	s-Kommunikation - "Modbus Communication"	181
	9.1	TCP	181
	9.1.1	FB 70 - TCP_MB_CLIENT - Modbus/TCP-Client	181
	9.1.2	FB 71 - TCP_MB_SERVER - Modbus/TCP-Server	184
	9.2	RTU	188
	9.2.1	FB 72 - RTU_MB_MASTER - Modbus-RTU-Master	188
	9.2.2	FB 73 - RTU_MB_SLAVE - Modbus-RTU-Slave	191
	9.3	Modbus Exception Codes - Exception Codes	197
	9.4	FKT Modbus-Funktionscodes - FKT Codes	198
10	Serielle	e Kommunikation - "Serial Communication"	202
	10.1	Serielle Kommunikation - "Serial Communication"	202
	10.1.1	SFC 207 - SER_CTRL - Modemfunktionalität PtP	202
	10.1.2	FC/SFC 216 - SER CFG - Parametrierung PtP	203

10.1.3 FC/SFC 217 - SER_SND - Senden an PtP	207
10.1.4 FC/SFC 218 - SER_RCV - Empfangen von PtP	212
10.1.5 FB 1 - RECEIVE_ASCII - Empfangen mit definierter Länge von PtP	214
10.1.6 FB 7 - P_RCV_RK - Empfangen von CP 341	215
10.1.7 FB 8 - P_SND_RK - Senden an CP 341	216
10.2 CP040	. 218
10.2.1 Übersicht	218
10.2.2 FB 60 - SEND - Senden an System SLIO CP 040	. 219
10.2.3 FB 61 - RECEIVE - Empfangen von System SLIO CP 040	. 221
10.2.4 FB 65 - CP040_COM - Kommunikation SLIO CP 040	. 224
10.3 CP240	. 229
10.3.1 FC 0 - SEND_ASCII_STX_3964 - Senden an CP 240	229
10.3.2 FC 1 - RECEIVE_ASCII_STX_3964 - Empfangen von CP 240	. 230
10.3.3 FC 8 - STEUERBIT - Modemfunktionalität CP 240	232
10.3.4 FC 9 - SYNCHRON_RESET - Synchronisation CPU und CP 240	233
10.3.5 FC 11 - ASCII_FRAGMENT - Fragment Datenempfang CP 240	. 235
EtherCAT-Kommunikation - "EtherCAT Communication"	. 237
11.1 SDO-Kommunikation - "SDO Communication"	. 237
11.1.1 FB 52 - SDO_READ - Lesezugriff auf Objektverzeichnis	. 237
11.1.2 FB 53 - SDO_WRITE - Schreibzugriff auf Objektverzeichnis	. 241
Modulspezifisch - "Device Specific"	245
12.1 Frequenzmessung - "Frequency Measurement"	. 245
12.1.1 FC 300 303 - Frequenzmessung SLIO konsistent	. 245
12.1.2 FC 300 - FM_SET_CONTROL - Control Frequenzmessung konsistent	245
12.1.3 FC 301 - FM_GET_PERIOD - Periodendauer berechnen konsistent	247
12.1.4 FC 302 - FM_GET_FREQUENCY - Frequenz berechnen konsistent	. 250
12.1.5 FC 303 - FM_GET_SPEED - Drehzahl berechnen konsistent	. 252
12.1.6 FC 310 313 - Frequenzmessung SLIO	255
12.1.7 FC 310 - FM_CONTROL - Control Frequenzmessung	255
12.1.8 FC 311 - FM_CALC_PERIOD - Periodendauer berechnen	. 257
12.1.9 FC 312 - FM_CALC_FREQUENCY - Frequenz berechnen	259
12.1.10 FC 313 - FM_CALC_SPEED - Drehzahl berechnen.	260
12.2 Energiemessung - "Energy Measurement"	. 262
12.2.1 Übersicht	262
12.2.2 FB 325 - EM_COM_R1 - Kommunikation mit 031-1PAxx	265
12.2.3 UDT 325 - EM_DATA_R1 - Datenstruktur für FB 325	266
12.3 Motion-Module - "Motion Modules"	. 270
12.3.1 Übersicht	270
12.3.2 FB 320 - ACYC_RW - Azyklischer Zugriff auf System SLIO Motion-Modul	. 271
12.3.3 FB 321 - ACYC_DS - Azyklische Parametrierung System SLIO Motion-Modul	. 274
12.3.4 UDT 321 - ACYC_OBJECT-DATA - Datenstruktur für FB 321	. 278
	10.1.4 FC/SFC 218 · SER_RCV · Empfangen von PtP. 10.1.5 FB 1 - RECEIVE_ASCII · Empfangen mit definierter Lange von PtP. 10.1.6 FB 7 - P_RCV_RK · Empfangen von CP 341. 10.1.7 FB 8 - P_SND_RK · Senden an CP 341. 10.2 CP040. 10.2.1 Übersicht. 10.2.2 FB 60 · SEND · Senden an System SLIO CP 040. 10.2.3 FB 61 · RECEIVE · Empfangen von System SLIO CP 040. 10.2.4 FB 65 · CP040_COM · Kommunikation SLIO CP 040. 10.3.1 FC 0 · SEND_ASCII_STX_3964 · Senden an CP 240. 10.3.2 FC 1 · RECEIVE ASCII_STX_3964 · Senden an CP 240. 10.3.3 FC 8 · STEUERBIT · Modernfunktionalität CP 240. 10.3.4 FC 9 · SYNCHRON_RESET · Synchronisation CPU und CP 240. 10.3.5 FC 11 · ASCII_FRAGMENT · Fragment Datenempfang CP 240. EtherCAT-Kommunikation · "EtherCAT Communication". 11.1 FB 52 · SDO_READ · Lesezugriff auf Objektverzeichnis. 11.1.1 FB 53 · SDO_WRITE · Schreibzugriff auf Objektverzeichnis. 11.1.1 FC 300 · FM_SET_CONTROL · Control Frequenzmessung konsistent. 12.1.1 FC 300 · SM_SET_FREQUENCY · Frequenz berechnen konsistent. 12.1.2 FC 301 · FM_GET_PERIOD · Periodendauer berechnen konsistent. 12.1.3 FC 301 · FM_GET_PERIOD · Periodendauer berechnen konsistent. 12.1.4 FC 302 · FM_GET_PERIOD · Periodendauer berechnen konsistent. 12.1.5 FC 310 · SM_GET_PERIOD · Periodendauer berechnen konsistent. 12.1.6 FC 310 · SM_GET_PERIOD · Periodendauer berechnen. 12.1.7 FC 310 · FM_CONTROL · Control Frequenzmessung. 12.1.8 FC 311 · FM_CALC_PERIOD · Periodendauer berechnen. 12.1.9 FC 312 · FM_CALC_FREQUENCY · Frequenz berechnen. 12.1.1 FC 313 · FM_CALC_PERIOD · Periodendauer berechnen. 12.1.2 FG 314 · FM_CALC_PERIOD · Periodendauer berechnen. 12.1.3 FC 315 · FM_CALC_SPEED · Drehzahl berechnen. 12.1.4 FC 316 · FM_CONTROL · Control Frequenzmessung. 12.1.5 FC 317 · FM_CALC_PERIOD · Periodendauer berechnen. 12.1.7 FC 310 · SM_SET_CON_RI · Kommunikation mit 031 · IPAxx. 12.2.1 Übersicht. 12.2.2 FB 325 · EM_COM_RI · Kommunikation mit 031 · IPAxx. 12.3.1 Übersicht. 12.3.3 Übersicht. 12.3.3 FB 321 · ACYC_DX - Azyklischer Zugriff auf

	12.4	RAM nach WLD - "WLD"	279
	12.4.1	FB 240 - RAM_to_s7prog.wld - RAM nach s7prog.wld	279
	12.4.2	FB 241 - RAM_to_autoload.wld - RAM nach autoload.wld	279
	12.5	System 100V interne E/As - "Onboard I/O System 100V"	280
	12.5.1	SFC 223 - PWM - Pulsweitenmodulation	280
	12.5.2	SFC 224 - HSC - High-speed-Counter	282
	12.5.3	SFC 225 - HF_PWM - HF Pulsweitenmodulation	283
13	Antriet	ssteuerung - Simple Motion Control Library	286
	13.1	Übersicht	286
	13.2	Einsatz Sigma-5/7 EtherCAT	288
	13.2.1	Einsatz <i>Sigma-5</i> EtherCAT	288
	13.2.2	Einsatz Sigma-7S EtherCAT	323
	13.2.3	Einsatz Sigma-7W EtherCAT	360
	13.3	Einsatz Sigma-5/7 PROFINET	400
	13.3.1	Einsatz Sigma-5 PROFINET	400
	13.3.2	Einsatz Sigma-7 PROFINET	456
	13.3.3	Antriebsspezifische Bausteine	510
	13.4	Einsatz Sigma-5/7 Pulse Train	518
	13.4.1	Übersicht	518
	13.4.2	Parameter am Antrieb einstellen	518
	13.4.3	Beschaltung	519
	13.4.4	Einsatz im SPEED7 Studio	521
	13.4.5	Einsatz im Siemens SIMATIC Manager	525
	13.4.6	Einsatz im Siemens TIA Portal	530
	13.4.7	Antriebsspezifischer Baustein	535
	13.5	Einsatz Frequenzumrichter über PWM	544
	13.5.1	Übersicht	544
	13.5.2	Parameter am Frequenzumrichter einstellen	545
	13.5.3	Beschaltung	546
	13.5.4	Einsatz im SPEED7 Studio	548
	13.5.5	Einsatz im Siemens SIMATIC Manager	552
	13.5.6	Einsatz im Siemens TIA Portal	557
	13.5.7	Antriebsspezifischer Baustein	562
	13.6	Einsatz Frequenzumrichter über Modbus RTU	566
	13.6.1	Übersicht	566
	13.6.2	Parameter am Frequenzumrichter einstellen	566
	13.6.3	Beschaltung	567
	13.6.4	Einsatz im SPEED7 Studio	570
	13.6.5	Einsatz im Siemens SIMATIC Manager	586
	13.6.6	Einsatz im Siemens TIA Portal	601
	13.6.7	Antriebsspezifische Bausteine	618

	13.7 Einsatz Frequenzumrichter über EtherCAT	626
	13.7.1 Übersicht	626
	13.7.2 Parameter am Frequenzumrichter einstellen	626
	13.7.3 Beschaltung	627
	13.7.4 Einsatz im SPEED7 Studio	627
	13.7.5 Einsatz im Siemens SIMATIC Manager	641
	13.7.6 Antriebsspezifische Bausteine	655
	13.8 Bausteine zur Achskontrolle	656
	13.8.1 Übersicht	656
	13.8.2 Einfache Bewegungsaufgaben	659
	13.8.3 Komplexe Bewegungsaufgaben - PLCopen-Bausteine	663
	13.9 Antrieb über HMI steuern	714
	13.9.1 Übersicht	714
	13.9.2 Neues Projekt erstellen	715
	13.9.3 Projekt in Movicon anpassen	719
	13.9.4 Inbetriebnahme	729
	13.10 Zustände und Verhalten der Ausgänge	734
	13.10.1 Zustände	734
	13.10.2 Ablöseverhalten von Bewegungsaufträgen	736
	13.10.3 Verhalten der Ein- und Ausgänge	738
	13.11 ErrorID - Zusätzliche Fehlerinformationen	739
14	Integrierte Standardfunktionen - "Integrated Standard"	748
	14.1 System-SFCs - "System Functions"	748
	14.1.1 SFC 0 - SET_CLK - Uhrzeit stellen	748
	14.1.2 SFC 1 - READ_CLK - Uhrzeit lesen	748
	14.1.3 SFC 2 4 - Betriebsstundenzähler	749
	14.1.4 SFC 2 - SET_RTM - Betriebsstundenzähler setzen	749
	14.1.5 SFC 3 - CTRL_RTM - Betriebsstundenzähler starten/stoppen	750
	14.1.6 SFC 4 - READ_RTM - Betriebsstundenzähler auslesen	750
	14.1.7 SFC 5 - GADR_LGC - Logische Adresse eines Kanals ermitteln	751
	14.1.8 SFC 6 - RD_SINFO - Startinformation auslesen	752
	14.1.9 SFC 7 - DP_PRAL - Prozessalarm beim DP-Master auslösen	754
	14.1.10 SFC 12 - D_ACT_DP - DP-Slave aktivieren und deaktivieren	756
	14.1.11 SFC 13 - DPNRM_DG - Slave-Diagnosedaten lesen	760
	14.1.12 SFC 14 - DPRD_DAT - Konsistente Nutzdaten lesen	762
	14.1.13 SFC 15 - DPWR_DAT - Konsistente Nutzdaten schreiben	763
	14.1.14 SFC 17 - ALARM_SQ und SFC 18 - ALARM_S	764
	14.1.15 SFC 19 - ALARM_SC - Quittierzustand der letzten Meldung	766
	14.1.16 SFC 20 - BLKMOV - Variable kopieren	767
	14.1.17 SFC 21 - FILL - Feld vorbesetzen.	768
	44.440 OFO.00 OPEAT DD D 4.4.4.4.	
	14.1.18 SFC 22 - CREAT_DB - Datenbaustein erzeugen	770

14.1.19	SFC 23 - DEL_DB - Datenbaustein löschen	771
14.1.20	SFC 24 - TEST_DB - Datenbaustein testen	772
14.1.21	FC/SFC 25 - COMPRESS - Komprimieren Anwenderspeicher	772
14.1.22	SFC 28 SFC 31 - Uhrzeitalarm	773
14.1.23	SFC 32 - SRT_DINT - Verzögerungsalarm starten	776
14.1.24	SFC 33 - CAN_DINT - Verzögerungsalarm stornieren	777
14.1.25	SFC 34 - QRY_DINT - Verzögerungsalarm Status abfragen	778
14.1.26	SFC 36 - MSK_FLT - Synchronfehlerereignisse maskieren	779
14.1.27	SFC 37 - DMSK_FLT - Synchronfehlerereignisse demaskieren	780
14.1.28	SFC 38 - READ_ERR - Ereignisstatusregister lesen	780
14.1.29	SFC 39 - DIS_IRT - Alarmereignisse sperren	781
14.1.30	SFC 40 - EN_IRT - Gesperrte Alarmereignisse freigeben	782
14.1.31	SFC 41 - DIS_AIRT - Alarmereignisse verzögern	783
14.1.32	SFC 42 - EN_AIRT - Verzögerte Alarmereignissen freigeben	784
14.1.33	SFC 43 - RE_TRIGR - Zykluszeitüberwachung neu starten	784
14.1.34	SFC 44 - REPL_VAL - Ersatzwert in AKKU1 übertragen	784
14.1.35	SFC 46 - STP - CPU in STOP überführen	785
14.1.36	SFC 47 - WAIT - Verzögern des Anwenderprogramms	785
14.1.37	SFC 49 - LGC_GADR - Steckplatz ermitteln	786
14.1.38	SFC 50 - RD_LGADR - Alle Adressen eines Moduls lesen	787
14.1.39	SFC 51 - RDSYSST - Auslesen der Informationen der SZL	788
14.1.40	SFC 52 - WR_USMSG - Eintrag in Diagnosepuffer schreiben	789
14.1.41	FC/SFC 54 - RD_DPARM - Vordefinierte Parameter lesen	791
14.1.42	SFC 55 - WR_PARM - Dynamische Parameter schreiben	793
14.1.43	SFC 56 - WR_DPARM - Vordefinierte Parameter schreiben	795
14.1.44	SFC 57 - PARM_MOD - Modul parametrieren	797
14.1.45	SFC 58 - WR_REC - Datensatz schreiben	799
14.1.46	SFC 59 - RD_REC - Datensatz lesen	801
14.1.47	SFC 64 - TIME_TCK - Systemzeit lesen	803
14.1.48	SFC 65 - X_SEND - Daten senden	804
14.1.49	SFC 66 - X_RCV - Daten empfangen	806
14.1.50	SFC 67 - X_GET - Daten lesen	809
14.1.51	SFC 68 - X_PUT - Daten schreiben	812
14.1.52	SFC 69 - X_ABORT - Verbindung abbrechen.	815
14.1.53	SFC 70 - GEO_LOG - Anfangsadresse einer Baugruppe ermitteln	816
14.1.54	SFC 71 - LOG_GEO - zu logischer Adresse gehörenden Slot ermitteln	818
14.1.55	SFC 81 - UBLKMOV - Variable ununterbrechbar kopieren	820
14.1.56	SFC 101 - RTM - Hantierung Betriebsstundenzähler	821
14.1.57	SFC 102 - RD_DPARA - Vordefinierte Parameter lesen	822
14.1.58	SFC 105 - READ_SI - Auslesen dyn. Systemressourcen	823

	14.1.59	SFC 106 - DEL_SI - Freigeben dyn. belegter Systemressourcen	825
	14.1.60	SFC 107 - ALARM_DQ und SFC 108 - ALARM_D	827
	14.2 S	System-SFBs - "System Function Blocks"	828
	14.2.1	SFB 0 - CTU - Vorwärtszählen	828
	14.2.2	SFB 1 - CTD - Rückwärtszählen	829
	14.2.3	SFB 2 - CTUD - Vorwärts-/Rückwärtszählen	831
	14.2.4	SFB 3 - TP - Impuls erzeugen	832
	14.2.5	SFB 4 - TON - Einschaltverzögerung	833
	14.2.6	SFB 5 - TOF - Ausschaltverzögerung	835
	14.2.7	FB/SFB 12 - BSEND - Blockorientiertes Senden.	836
	14.2.8	FB/SFB 13 - BRCV - Blockorientiertes Empfangen	838
	14.2.9	FB/SFB 14 - GET - Remote CPU lesen	841
	14.2.10	FB/SFB 15 - PUT - Remote CPU schreiben	843
	14.2.11	SFB 31 - NOTIFY_8P - Meldung ohne Quittierungsanzeige (8x)	845
	14.2.12	SFB 32 - DRUM - Schrittschaltwerk	847
	14.2.13	SFB 33 - ALARM - Meldungen mit Quittierungsanzeige	851
	14.2.14	SFB 34 - ALARM_8 - Meldungen ohne Begleitwerte (8x)	853
	14.2.15	SFB 35 - ALARM_8P - Meldungen mit Begleitwerten (8x)	855
	14.2.16	SFB 36 - NOTIFY - Meldungen ohne Quittierungsanzeige	857
	14.2.17	SFB 47 - COUNT - Zähler steuern	859
	14.2.18	SFB 48 - FREQUENC - Frequenzmessung steuern	864
	14.2.19	SFB 49 - PULSE - Pulsweitenmodulation	866
	14.2.20	SFB 52 - RDREC - Datensatz lesen	874
	14.2.21	SFB 53 - WRREC - Datensatz schreiben	875
	14.2.22	SFB 54 - RALRM - Alarm von einer Peripheriebaugruppe empfangen	876
15	Standard	d-Bausteine - <i>"Standard"</i>	892
	15.1 K	Convertierung - "Converting"	892
	15.1.1	FB 80 - LEAD_LAG - Lead/Lag Algorithmus	892
	15.1.2	FC 93 - SEG - Bitmuster für 7-Segment-Anzeige erzeugen	893
	15.1.3	FC 94 - ATH - ASCII-Zeichenkette in Hexadezimalzahl wandeln	894
	15.1.4	FC 95 - HTA - Hexadezimalzahl in ASCII-Zeichenkette wandeln	895
	15.1.5	FC 96 - ENCO - Bitnummer des niederwertigsten gesetzten Bits lesen	895
	15.1.6	FC 97 - DECO - Vorgegebenes Bit im Wort setzen	896
	15.1.7	FC 98 - BCDCPL - Zehnerkomplement erzeugen	896
	15.1.8	FC 99 - BITSUM - Anzahl der gesetzten Bits zählen	897
	15.1.9	FC 105 - SCALE - Werte skalieren	897
	15.1.10	FC 106 - UNSCALE - Werte deskalieren	899
	15.1.11	FC 108 - RLG_AA1 - Analogwert ausgeben	900
	15.1.12	FC 109 - RLG_AA2 - Write Analog Value 2	901
	15.1.13	FC 110 - PER_ET1 - Read/Write Ext. Per. 1	901
	15.1.14	FC 111 - PER_ET2 - Read/Write Ext. Per. 2	902

15.2	IEC-Funktionen - "IEC"	903
15.2.1	Datum und Uhrzeit als zusammengesetzte Datentypen	903
15.2.2	FC 1 - AD_DT_TM - Zeitdauer auf einen Zeitpunkt addieren	904
15.2.3	FC 2 - CONCAT - Zusammenfassen zweier STRING-Variablen	904
15.2.4	FC 3 - D_TOD_DT - Zusammenfassen DATE und TIME_OF_DAY	904
15.2.5	FC 4 - DELETE - Löschen in einer STRING-Variable	905
15.2.6	FC 5 - DI_STRNG - Formatwandlung DINT nach STRING	905
15.2.7	FC 6 - DT_DATE - Extrahieren DATE aus DT	905
15.2.8	FC 7 - DT_DAY - Extrahieren des Wochentags aus DT	906
15.2.9	FC 8 - DT_TOD - Extrahieren TIME_OF_DAY aus DT	906
15.2.10	FC 9 - EQ_DT - Vergleich DT auf gleich	906
15.2.11	FC 10 - EQ_STRNG - Vergleich STRING auf gleich	907
15.2.12	P. FC 11 - FIND - Suchen in einer STRING-Variable	907
15.2.13	FC 12 - GE_DT - Vergleich DT auf größer oder gleich	907
15.2.14	FC 13 - GE_STRNG - Vergleich STRING auf größer oder gleich	908
15.2.15	FC 14 - GT_DT - Vergleich DT auf größer	908
15.2.16	FC 15 - GT_STRNG - Vergleich STRING auf größer	909
15.2.17	FC 16 - I_STRNG - Formatwandlung INT nach STRING	909
15.2.18	FC 17 - INSERT - Einfügen in eine STRING-Variable	910
15.2.19	FC 18 - LE_DT - Vergleich DT auf kleiner oder gleich	910
15.2.20	FC 19 - LE_STRNG - Vergleich STRING auf kleiner oder gleich	911
15.2.21	FC 20 - LEFT - Linker Teil einer STRING-Variable	911
15.2.22	Proceedings of the Procedure of the Proc	912
15.2.23	FC 22 - LIMIT - Begrenzer	912
15.2.24	FC 23 - LT_DT - Vergleich DT auf kleiner	913
15.2.25	FC 24 - LT_STRNG - Vergleich STRING auf kleiner	913
15.2.26	FC 25 - MAX - Maximumauswahl	914
15.2.27	FC 26 - MID - Mittlerer Teil einer STRING-Variablen	915
15.2.28	FC 27 - MIN - Minimumauswahl	915
15.2.29	FC 28 - NE_DT - Vergleich DT auf ungleich	916
15.2.30	FC 29 - NE_STRNG - Vergleich STRING auf ungleich	916
15.2.31	FC 30 - R_STRNG - Formatwandlung REAL nach STRING	917
15.2.32	Programme Progra	917
15.2.33	FC 32 - RIGHT - Rechter Teil einer STRING-Variable	918
15.2.34	FC 33 - S5TI_TIM - Formatwandlung S5TIME nach TIME	918
15.2.35	FC 34 - SB_DT_DT - Zwei Zeitpunkte subtrahieren	918
15.2.36	'	
15.2.37	FC 36 - SEL - Binärauswahl	919
15.2.38	FC 37 - STRNG_DI - Formatwandlung STRING nach DINT	920
15.2.39	FC 38 - STRNG_I - Formatwandlung STRING nach INT	920

15.2.40	FC 39 - STRNG_R - Formatwandlung STRING nach REAL	921
15.2.41	FC 40 - TIM_S5TI - Formatwandlung TIME nach S5TIME	921
15.3 E	in-/Ausgabe - "IO"	922
15.3.1	FB 20 - GETIO - PROFIBUS/PROFINET alle Eingänge lesen	922
15.3.2	FB 21 - SETIO - PROFIBUS/PROFINET alle Ausgänge schreiben	923
15.3.3	FB 22 - GETIO_PART - PROFIBUS/PROFINET Teil-Eingänge lesen	924
15.3.4	FB 23 - SETIO_PART - PROFIBUS/PROFINET Teil-Ausgänge schreiben	926
15.4	S5-Konvertierung - "S5 Converting"	928
15.4.1	FC 112 - Sine(x) - Sinus	928
15.4.2	FC 113 - Cosine(x) - Cosinus	929
15.4.3	FC 114 - Tangent(x) - Tangens	930
15.4.4	FC 115 - Cotangent(x) - Cotangens	931
15.4.5	FC 116 - Arc Sine(x) - Arcussinus.	932
15.4.6	FC 117 - Arc Cosine(x) - Arcuscosinus.	933
15.4.7	FC 118 - Arc Tangent(x) - Arcustangens	933
15.4.8	FC 119 - Arc Cotangent(x) - Arcuscotangens	934
15.4.9	FC 120 - Naperian Logarithm In(x) - Natürlicher Logarithmus	935
15.4.10	FC 121 - Decimal Logarithm Ig(x) - Dezimaler Logarithmus	936
15.4.11	FC 122 - Gen. Logarithm to Base b - Allgemeiner Logarithmus log (x) zur Basis b	936
15.4.12	FC 123 - E to Power n - E hoch n	937
15.4.13	FC 124 - 10 to Power n - 10 hoch n	938
15.4.14	FC 125 - ACCU 2 to Power ACCU 1 - AKKU 2 hoch AKKU 1	938
15.5 F	PID-Steuerung - "PID Control"	939
15.5.1	FB 41 - CONT_C - Kontinuierliches Regeln	939
15.5.2	FB 42 - CONT_S - Schrittregeln	946
15.5.3	FB 43 - PULSGEN - Impulsformen	951
15.5.4	FB 58 - TCONT_CP - Kontinuierliches Temperaturregeln	959
15.5.5	FB 59 - TCONT_S - Temperatur-Schrittregeln	977
15.6 Z	Zeitfunktionen - "Time Functions"	985
15.6.1	UDT 60 - WS_RULES - Regel DB	985
15.6.2	FC 61 - BT_LT - Umrechnung Basiszeit in Lokalzeit	986
15.6.3	FC 62 - LT_BT - Umrechnung Lokalzeit in Basiszeit	986
15.6.4	FC 63 - S_LTINT - Einstellen Uhrzeitalarm in Lokalzeit	988
Systemb	pausteine - "System Blocks"	990
16.1 F	etch/Write - "Fetch/Write Communication"	990
16.1.1	SFC 228 - RW_KACHEL - Kacheldirektzugriff	990
16.1.2	SFC 230 238 - Kachelkommunikation	992
16.1.3	SFC 230 - SEND - Senden an Kachel.	1004
16.1.4	SFC 231 - RECEIVE - Empfangen von Kachel	1005
16.1.5	SFC 232 - FETCH - Anfordern von Kachel	1006
16.1.6	SFC 233 - CONTROL - Control Kachel.	1007

16

16.1.7	SFC 234 - RESET - Rücksetzen Kachel	1007
16.1.8	SFC 235 - SYNCHRON - Synchronisieren Kachel	1008
16.1.9	SFC 236 - SEND_ALL - Alles senden an Kachel	1009
16.1.10	SFC 237 - RECEIVE_ALL - Alles empfangen von Kachel	1010
16.1.11	SFC 238 - CTRL1 - Control1 Kachel	1011
16.2	Datei-Funktionen SPEED7-CPUs - "File Functions SPEED7 CPUs"	1011
16.2.1	FC/SFC 195 und FC/SFC 208215 - Speicherkarten-Zugriff	1011
16.2.2	FC/SFC 195 - FILE_ATT - Datei-Attribute ändern	1012
16.2.3	FC/SFC 208 - FILE_OPN - Datei öffnen	1014
16.2.4	FC/SFC 209 - FILE_CRE - Datei anlegen	1015
16.2.5	FC/SFC 210 - FILE_CLO - Datei schließen	1016
16.2.6	FC/SFC 211 - FILE_RD - Datei lesen	1017
16.2.7	FC/SFC 212 - FILE_WR - Datei schreiben	1018
16.2.8	FC/SFC 213 - FILE_SEK - Position Schreib-/Lesemarke	1019
16.2.9	FC/SFC 214 - FILE_REN - Datei umbenennen	1020
16.2.10	FC/SFC 215 - FILE_DEL - Datei löschen	1021
16.3	Datei-Funktionen Standard-CPUs - "File Functions Standard CPUs"	1023
16.3.1	SFC 220 222 - MMC-Zugriff	1023
16.3.2	SFC 220 - MMC_CR_F - MMC-Datei erstellen oder öffnen	1024
16.3.3	SFC 221 - MMC_RD_F - MMC-Datei lesen	1025
16.3.4	SFC 222 - MMC_WR_F - MMC-Datei schreiben	1026
16.4	Systemfunktions-Blöcke - "System Function Blocks"	1028
16.4.1	FB/SFB 7 - TIMEMESS - Zeitmessung	1028
16.5	Systemfunktionen - "System Functions"	1028
16.5.1	FC/SFC 25 - COMPRESS - Komprimieren Anwenderspeicher	1028
16.5.2	FC/SFC 53 - uS_Tick - Zeitmessung	1029
16.5.3	FC/SFC 54 - RD_DPARM - Vordefinierte Parameter lesen	1030
16.5.4	SFC 75 - SET_ADDR - PROFIBUS MAC-Adresse setzen	1031
16.5.5	FC/SFC 193 - AI_OSZI - Oszilloskop-/FIFO-Funktion	1032
16.5.6	FC/SFC 194 - DP_EXCH - Datenaustausch mit CP342S	1036
16.5.7	FC/SFC 219 - CAN_TLGR - CANopen-Kommunikation	1037
16.5.8	FC/SFC 254 - RW_SBUS - IBS-Kommunikation	1039
SZL Sy	ystemzustandslisten	1041
17.1	Übersicht - SZL	1041
17.2	SZL-Teillisten	1042
17.3	Baugruppen-Identifikation - SZL-ID: xy11h	1044
17.4	CPU-Merkmale - SZL-ID: xy12h	1047
17.5	Anwenderspeicherbereiche - SZL-ID: xy13h	1049
17.6	Systembereiche - SZL-ID: xy14h	1050
17.7	Bausteintypen - SZL-ID: xy15h	1052
17.8	Zustand aller LEDs - SZL-ID: xy19h	1054

17

17.9	Identifikation einer Komponente - SZL-ID: xy1Ch	1059
17.10	Alarmstatus - SZL-ID: xy22h	1061
17.11	Kommunikationszustandsdaten - SZL-ID: xy32h	1066
17.12	Ethernet-Details einer Baugruppe - SZL-ID xy37h	1072
17.13	TCON Verbindungen - SZL-ID: xy3Ah	1075
17.14	Diagnoseinformationen zur WebVisu - SZL-ID: xy3Eh	1078
17.15	Konfiguration von "Access settings" - SZL-ID: xy3Fh	1081
17.16	Zustand der LEDs - SZL-ID: xy74h	1084
17.17	Zustandsinfo CPU - SZL-ID: xy91h	1089
17.18	Stationszustandsinformation (DPM) - SZL-ID: xy92h	1092
17.19	Stationszustandsinformation (DPM, PROFINET-IO, EtherCAT) - SZL-ID: xy94h	1095
17.20	Zustandsinfo DPM-, PROFINET-IO-Systeme - SZL-ID: xy95h	1098
17.21	Zustandsinfo PROFINET/EtherCAT/PB-DP - SZL-ID: xy96h	1100
17.22	Diagnosepuffer der CPU/CP - SZL-ID: xyA0h	1102
17.23	Baugruppen-Diagnoseinfo - SZL-ID: 00B1h	1104
17.24	Diagnosedatensatz 1 - SZL-ID: 00B2h	1106
17.25	Diagnoseinfo - SZL-ID: 00B3h	1107
17.26	Diagnoseinfo DP-Slave - SZL-ID: 00B4h	1108
17.27	Information EtherCAT Master/Slave - SZL-ID: xyE0h	1109
17.28	EtherCAT Bussystem - SZL-ID: xyE1h	1111
17.29	Informationen SBUS-Module - SZL-ID: xyF4h	1112
17.30	Statistik Informationen zu OBs - SZL-ID: xyFAh	1113
17.31	VSC-Features - SZL-ID: xyFCh	1117

SPEED7 Allgemein

Copyright © YASKAWA Europe GmbH

1 Allgemein

1.1 Copyright © YASKAWA Europe GmbH

All Rights Reserved

Dieses Dokument enthält geschützte Informationen von Yaskawa und darf außer in Übereinstimmung mit anwendbaren Vereinbarungen weder offengelegt noch benutzt werden.

Dieses Material ist durch Urheberrechtsgesetze geschützt. Ohne schriftliches Einverständnis von Yaskawa und dem Besitzer dieses Materials darf dieses Material weder reproduziert, verteilt, noch in keiner Form von keiner Einheit (sowohl Yaskawa-intern als auch -extern) geändert werden, es sei denn in Übereinstimmung mit anwendbaren Vereinbarungen, Verträgen oder Lizenzen.

Zur Genehmigung von Vervielfältigung oder Verteilung wenden Sie sich bitte an: YASKAWA Europe GmbH, European Headquarters, Philipp-Reis-Str. 6, 65795 Hattersheim, Deutschland

Tel.: +49 6196 569 300 Fax.: +49 6196 569 398 E-Mail: info@yaskawa.eu Internet: www.yaskawa.eu.com

EG-Konformitätserklärung

Hiermit erklärt YASKAWA Europe GmbH, dass die Produkte und Systeme mit den grundlegenden Anforderungen und den anderen relevanten Vorschriften übereinstimmen. Die Übereinstimmung ist durch CE-Zeichen gekennzeichnet.

Informationen zur Konformitätserklärung

Für weitere Informationen zur CE-Kennzeichnung und Konformitätserklärung wenden Sie sich bitte an Ihre Landesvertretung der YASKAWA Europe GmbH.

Warenzeichen

SLIO, System 300S und SPEED7 sind eingetragene Warenzeichen der YASKAWA Europe GmbH.

EtherCAT ist ein eingetragenes Warenzeichen der Beckhoff Automation GmbH.

PROFINET und PROFIBUS sind eingetragene Warenzeichen der PROFIBUS and PROFINET International (PI).

SIMATIC, TIA Portal, S7-300 und S7-1500 sind eingetragene Warenzeichen der Siemens AG.

Alle genannten Microsoft Windows, Office und Server-Produkte sind eingetragene Warenzeichen von Microsoft Inc., USA.

Alle anderen erwähnten Firmennamen und Logos sowie Marken- oder Produktnamen sind Warenzeichen oder eingetragene Warenzeichen ihrer jeweiligen Eigentümer.

Allgemeine Nutzungsbedingungen

Es wurden alle Anstrengungen unternommen, um sicherzustellen, dass die in diesem Dokument enthaltenen Informationen zum Zeitpunkt der Veröffentlichung vollständig und richtig sind. Fehlerfreiheit kann nicht garantiert werden, das Recht auf Änderungen der Informationen bleibt jederzeit vorbehalten. Eine Informationspflicht gegenüber dem Kunden über etwaige Änderungen besteht nicht. Der Kunde ist aufgefordert, seine Dokumente aktiv aktuell zu halten. Der Einsatz der Produkte mit zugehöriger Dokumentation hat immer in Eigenverantwortung des Kunden unter Berücksichtigung der geltenden Richtlinien und Normen zu erfolgen.

Die vorliegende Dokumentation beschreibt alle heute bekannten Hard- und Software-Einheiten und Funktionen. Es ist möglich, dass Einheiten beschrieben sind, die beim Kunden nicht vorhanden sind. Der genaue Lieferumfang ist im jeweiligen Kaufvertrag beschrieben. Allgemein SPEED7

Über dieses Handbuch

Dokument-Support

Wenden Sie sich an Ihre Landesvertretung der YASKAWA Europe GmbH, wenn Sie Fehler anzeigen oder inhaltliche Fragen zu diesem Dokument stellen möchten. Sie können YASKAWA Europe GmbH über folgenden Kontakt erreichen:

E-Mail: Documentation.HER@yaskawa.eu

Technischer Support

Wenden Sie sich an Ihre Landesvertretung der YASKAWA Europe GmbH, wenn Sie Probleme mit dem Produkt haben oder Fragen zum Produkt stellen möchten. Ist eine solche Stelle nicht erreichbar, können Sie den Yaskawa Kundenservice über folgenden Kontakt erreichen:

YASKAWA Europe GmbH,

European Headquarters, Philipp-Reis-Str. 6, 65795 Hattersheim, Deutschland

Tel.: +49 6196 569 500 (Hotline) E-Mail: support@yaskawa.eu

1.2 Über dieses Handbuch

Zielsetzung und Inhalt

- Das Handbuch ist geschrieben für Anwender mit Grundkenntnissen in der Automatisierungstechnik.
- Das Handbuch ist in Kapitel gegliedert. Jedes Kapitel beschreibt eine abgeschlossene Thematik.
- Als Orientierungshilfe stehen im Handbuch zur Verfügung:
 - Gesamt-Inhaltsverzeichnis am Anfang des Handbuchs.
 - Verweise mit Seitenangabe.

Piktogramme Signalwörter

Wichtige Textteile sind mit folgenden Piktogrammen und Signalworten hervorgehoben:

GEFAHR

Unmittelbare oder drohende Gefahr. Personenschäden sind möglich.

VORSICHT

Bei Nichtbefolgen sind Sachschäden möglich.

Zusätzliche Informationen und nützliche Tipps.

SPEED7 Wichtige Hinweise

Intern verwendete Bausteine

2 Wichtige Hinweise

2.1 Allgemein

Nachfolgend finden Sie wichtige Hinweise, die grundsätzlich beim Einsatz der Bausteine zu beachten sind.

2.2 Intern verwendete Bausteine

VORSICHT

Folgende Bausteine werden intern verwendet und dürfen nicht überschrieben werden! Der direkte Aufruf eines internen Bausteins führt zu Fehler im entsprechenden Instanz-DB! Bitte verwenden Sie für den Aufruf immer die zugehörige Funktion.

FC/SFC	Bezeichnung	Beschreibung
FC/SFC 131	TSEND_	wird intern für FB 63 verwendet
FC/SFC 132	TRECV_	wird intern für FB 64 verwendet
FC/SFC 133	TCON_	wird intern für FB 65 verwendet
FC/SFC 134	TDISCON_	wird intern für FB 66 verwendet
FC/SFC 135	TUSEND_	wird intern für FB 67 verwendet
FC/SFC 136	TURECV_	wird intern für FB 68 verwendet
FC/SFC 192	CP_S_R	wird intern für FB 7 und FB 8 verwendet
FC/SFC 196	AG_CNTRL	wird intern für FC 10 verwendet
FC/SFC 198	USEND_	wird intern für FB 8 verwendet
FC/SFC 199	URCV_	wird intern für FB 9 verwendet
FC/SFC 200	AG_GET	wird intern für FB/SFB 14 verwendet
FC/SFC 201	AG_PUT	wird intern für FB/SFB 15 verwendet
FC/SFC 202	AG_BSEND	wird intern für FB/SFB 12 verwendet
FC/SFC 203	AG_BRCV	wird intern für FB/SFB 13 verwendet
FC/SFC 204	IP_CONF	wird intern für FB 55 IP_CONF verwendet
FC/SFC 205	AG_SEND	wird intern für FC 5 AG_SEND verwendet
FC/SFC 206	AG_RECV	wird intern für FC 6 AG_RECV verwendet
FC/SFC 253	IBS_ACCESS	wird intern für SPEED-Bus-INTERBUS-Master verwendet
SFB 238	EC_RWOD	wird intern für EtherCAT-Kommunikation verwendet
SFB 239	FUNC	wird intern für FB 240, FB 241 verwendet

Wichtige Hinweise SPEED7

Deklarationstypen

2.3 Kein optimierter Bausteinzugriff

Bitte beachten Sie, dass die Bausteine für den Einsatz in S7-1500 CPUs von Siemens keinen optimierten Bausteinzugriff unterstützen! Bei verwendeten Instanz- und Datenbausteinen ist der optimierte Bausteinzugriff zu deaktivieren!

Bausteinzugriff einstellen

- 1. Öffnen Sie im Siemens TIA Portal in der *Projektnavigation* die "*Programmbausteine*".
- **2.** Wählen Sie den Baustein an, für welchen Sie den Bausteinzugriff ändern möchten und wählen Sie "Kontextmenü → Eigenschaften".
 - → Der "Eigenschaften"-Dialog des Bausteins wird geöffnet.
- 3. Wählen Sie "Attribute" an.
- 4. Deaktivieren Sie den Parameter "Optimierter Bausteinzugriff".
- 5. Bestätigen Sie Ihre Eingabe mit [OK].

Näheres hierzu finden Sie im Handbuch zum Siemens TIA Portal.

2.4 Deklarationstypen

Bitte beachten Sie, dass die Schreibweisen der Deklarationstypen in Siemens STEP7 und TIA Portal sich unterscheiden. In dieser Dokumentation wird die Schreibweise für Siemens STEP7 verwendet. Eine Gegenüberstellung der Scheibweisen können Sie der nachfolgenden Tabelle entnehmen.

Siemens TIA Portal	Siemens STEP7
Input	IN
Output	OUT
InOut	IN_OUT
Static	STAT
Temp	TEMP

3 AWL-Operationen

3.1 Übersicht

Das folgende Kapitel beinhaltet die Befehlsliste für die SPEED7 CPUs. Die Befehlsliste soll Ihnen einen schnellen Überblick der Befehle und deren Syntax geben. Die Befehle sind in Themengruppen zusammengefasst, die in alphabetisch sortierter Reihenfolge aufgelistet sind. Da die Parameter in die Befehlsliste integriert sind, wurde auf eine gesonderte Parameterliste verzichtet.

Befehle	Beschreibung	Seite
)	Verknüpfungs-Operationen (Bit)	→ 54
+	Arithmetische Operationen	⇒ 32
+AR1	Arithmetische Operationen	⇒ 32
+AR2	Arithmetische Operationen	⇒ 32
+	Arithmetische Operationen	⇒ 32
+D	Arithmetische Operationen	⇒ 32
+R	Arithmetische Operationen	⇒ 32
-D	Arithmetische Operationen	⇒ 32
-I	Arithmetische Operationen	⇒ 32
-R	Arithmetische Operationen	⇒ 32
*D	Arithmetische Operationen	⇒ 32
*	Arithmetische Operationen	⇒ 32
*R	Arithmetische Operationen	⇒ 32
/D	Arithmetische Operationen	⇒ 32
/I	Arithmetische Operationen	⇒ 32
/R	Arithmetische Operationen	⇒ 32
==D	Vergleichs-Operationen	⇒ 53
==	Vergleichs-Operationen	⇒ 53
==R	Vergleichs-Operationen	⇒ 53
<=D	Vergleichs-Operationen	⇒ 53
<=	Vergleichs-Operationen	⇒ 53
<=R	Vergleichs-Operationen	⇒ 53
<d< td=""><td>Vergleichs-Operationen</td><td>⇒ 53</td></d<>	Vergleichs-Operationen	⇒ 53
<	Vergleichs-Operationen	⇒ 53
<r< td=""><td>Vergleichs-Operationen</td><td>⇒ 53</td></r<>	Vergleichs-Operationen	⇒ 53
<>D	Vergleichs-Operationen	⇒ 53
<>	Vergleichs-Operationen	⇒ 53
<>R	Vergleichs-Operationen	⇒ 53
>=D	Vergleichs-Operationen	⇒ 53
>=	Vergleichs-Operationen	⇒ 53
>=R	Vergleichs-Operationen	⇒ 53

Befehle	Beschreibung	Seite
>D	Vergleichs-Operationen	⇒ 53
>I	Vergleichs-Operationen	→ 53
>R	Vergleichs-Operationen	⇒ 53
ABS	Arithmetische Operationen	→ 32
ACOS	Arithmetische Operationen	→ 32
ASIN	Arithmetische Operationen	→ 32
ATAN	Arithmetische Operationen	→ 32
AUF	Baustein-Operationen	→ 36
BE	Baustein-Operationen	→ 36
BEA	Baustein-Operationen	→ 36
BEB	Baustein-Operationen	→ 36
BLD	Baustein-Operationen	→ 36
BTD	Umwandlungs-Operationen	→ 51
BTI	Umwandlungs-Operationen	→ 51
CALL	Baustein-Operationen	→ 36
CC	Baustein-Operationen	→ 36
CLR	Setzen/Rücksetzen von Bitoperanden	→ 44
cos	Arithmetische Operationen	→ 32
DEC	Transfer-Operationen	→ 47
DTB	Umwandlungs-Operationen	→ 51
DTR	Umwandlungs-Operationen	→ 51
EXP	Arithmetische Operationen	→ 32
FN	Flanken-Operationen	→ 38
FP	Flanken-Operationen	→ 38
FR	Zähl-Operationen	→ 63
	Zeit-Operationen	→ 62
INC	Transfer-Operationen	→ 47
INVD	Umwandlungs-Operationen	→ 51
INVI	Umwandlungs-Operationen	→ 51
ITB	Umwandlungs-Operationen	→ 51
ITD	Umwandlungs-Operationen	→ 51
L	Lade-Operationen	→ 39
LAR1	Transfer-Operationen	→ 47
LAR2	Transfer-Operationen	→ 47
LC	Lade-Operationen	→ 39
LN	Arithmetische Operationen	→ 32
LOOP	Sprung-Operationen	→ 45

Befehle	Beschreibung	Seite
MOD	Arithmetische Operationen	⇒ 32
NEGD	Umwandlungs-Operationen	⇒ 51
NEGI	Umwandlungs-Operationen	→ 51
NEGR	Arithmetische Operationen	→ 32
NOP	Baustein-Operationen	→ 36
NOT	Setzen/Rücksetzen von Bitoperanden	→ 44
0	Verknüpfungs-Operationen (Bit)	⇒ 54
O(Verknüpfungs-Operationen (Bit)	→ 54
OD	Verknüpfungs-Operationen (Wort)	→ 61
ON	Verknüpfungs-Operationen (Bit)	→ 54
ON(Verknüpfungs-Operationen (Bit)	→ 54
OW	Verknüpfungs-Operationen (Wort)	→ 61
POP	Transfer-Operationen	→ 47
PUSH	Transfer-Operationen	→ 47
R	Setzen/Rücksetzen von Bitoperanden	→ 44
RLD	Schiebe-Operationen	→ 42
RLDA	Schiebe-Operationen	→ 42
RND	Umwandlungs-Operationen	→ 51
RND+	Umwandlungs-Operationen	→ 51
RND-	Umwandlungs-Operationen	→ 51
RRD	Schiebe-Operationen	→ 42
RRDA	Schiebe-Operationen	→ 42
S	Setzen/Rücksetzen von Bitoperanden	→ 44
SA	Zeit-Operationen	→ 62
SAVE	Setzen/Rücksetzen von Bitoperanden	→ 44
SE	Zeit-Operationen	→ 62
SET	Setzen/Rücksetzen von Bitoperanden	<i>→</i> 44
SI	Zeit-Operationen	→ 62
SIN	Arithmetische Operationen	⇒ 32
SLD	Schiebe-Operationen	→ 42
SLW	Schiebe-Operationen	→ 42
SPA	Sprung-Operationen	<i>⇒</i> 45
SPB	Sprung-Operationen	<i>⇒</i> 45
SPBB	Sprung-Operationen	<i>→</i> 45
SPBI	Sprung-Operationen	→ 45
SPBIN	Sprung-Operationen	<i>⇒</i> 45
SPBN	Sprung-Operationen	→ 45

Befehle	Beschreibung	Seite
SPBNB	Sprung-Operationen	→ 45
SPL	Sprung-Operationen	→ 45
SPM	Sprung-Operationen	→ 45
SPMZ	Sprung-Operationen	→ 45
SPN	Sprung-Operationen	→ 45
SPO	Sprung-Operationen	→ 45
SPP	Sprung-Operationen	→ 45
SPPZ	Sprung-Operationen	→ 45
SPS	Sprung-Operationen	→ 45
SPU	Sprung-Operationen	→ 45
SPZ	Sprung-Operationen	→ 45
SQR	Arithmetische Operationen	⇒ 32
SQRT	Arithmetische Operationen	⇒ 32
SRD	Schiebe-Operationen	→ 42
SRW	Schiebe-Operationen	→ 42
SS	Zeit-Operationen	→ 62
SSD	Schiebe-Operationen	→ 42
SSI	Schiebe-Operationen	→ 42
SV	Zeit-Operationen	→ 62
Т	Transfer-Operationen	→ 47
TAD	Transfer-Operationen	→ 47
TAK	Transfer-Operationen	→ 47
TAN	Arithmetische Operationen	⇒ 32
TAR	Transfer-Operationen	→ 47
TAR1	Transfer-Operationen	→ 47
TAR2	Transfer-Operationen	→ 47
TAW	Transfer-Operationen	→ 47
TDB	Baustein-Operationen	→ 36
TRUNC	Umwandlungs-Operationen	→ 51
U	Verknüpfungs-Operationen (Bit)	→ 54
U(Verknüpfungs-Operationen (Bit)	⇒ 54
UC	Baustein-Operationen	→ 36
UD	Verknüpfungs-Operationen (Wort)	→ 61
UN	Verknüpfungs-Operationen (Bit)	⇒ 54
UN(Verknüpfungs-Operationen (Bit)	<i>⇒</i> 54
UW	Verknüpfungs-Operationen (Wort)	→ 61
X	Verknüpfungs-Operationen (Bit)	⇒ 54

SPEED7

Abkürzungen

Befehle	Beschreibung	Seite
X(Verknüpfungs-Operationen (Bit)	⇒ 54
XN	Verknüpfungs-Operationen (Bit)	⇒ 54
XN(Verknüpfungs-Operationen (Bit)	→ 54
XOD	Verknüpfungs-Operationen (Wort)	→ 61
XOW	Verknüpfungs-Operationen (Wort)	→ 61
ZR	Zähl-Operationen	→ 63
ZV	Zähl-Operationen	→ 63

3.2 Abkürzungen

Abkürzung	Erläuterung
2#	Binärkonstante
а	Byteadresse
Α	Ausgang (im PAA)
A0	Ergebnisanzeige
A1	Ergebnisanzeige
AB	Ausgangsbyte (im PAA)
AD	Ausgangsdoppelwort (im PAA)
AKKU	Register für die Verarbeitung von Bytes, Worten und Doppelworten.
AR	Adressregister, enthalten die bereichsinternen oder bereichsübergreifenden Adressen für die registerindirekt adressierten Operationen
AW	Ausgangswort (im PAA)
b	Bitadresse
В	bereichsübergreifend, registerindirekt adressiertes Byte
B (b1,b2)	Konstante, 2Byte
B (b1,b2,b3,b4)	Konstante, 4Byte
BIE	Binärergebnis
B#16#	Byte hexadezimal
С	Operandenbereich
C#	Zählerkonstante (BCD-codiert)
D	bereichsübergreifend, registerindirekt adressiertes Doppelwort
D#	IEC Datumskonstante
DB	Datenbaustein
DBB	Datenbyte im Datenbaustein
DBD	Datendoppelwort im Datenbaustein
DBW	Datenwort im Datenbaustein
DBX	Datenbit im Datenbaustein

Abkürzungen

Abkürzung	Erläuterung
DI	Instanz-Datenbaustein
DIB	Datenbyte im Instanz-DB
DID	Datendoppelwort im Instanz-DB
DIW	Datenwort im Instanz-DB
DIX	Datenbit im Instanz-DB
DW#16#	Doppelwort hexadezimal
E	Eingang (im PAE)
EB	Eingangsbyte (im PAE)
ED	Eingangsdoppelwort (im PAE)
/ER	Erstabfrage
EW	Eingangswort (im PAE)
f	Timer-/Zähler-Nr.
FB	Funktionsbaustein
FC	Funktionen
g	Operandenbereich
h	Operandenbereich
i	Operandenbereich
i8	Ganzzahl (8Bit)
i16	Ganzzahl (16Bit)
i32	Ganzzahl (32Bit)
k8	Konstante (8Bit)
k16	Konstante (16Bit)
k32	Konstante (32Bit)
L	Lokaldaten
L#	Ganzzahlkonstante (32Bit)
LB	Lokaldatenbyte
LD	Lokaldaten-Doppelwort
LW	Lokaldatenwort
m	Pointer-Konstante
M	Merker
MARKE	Symbolische Sprungadresse mit max. 4 Zeichen. Diese 4 Zeichen können sich aus Buchstaben, Zahlen und dem Unterstrich "_" zusammensetzen, wobei das 1. Zeichen ein Buchstabe sein muss. Groß- und Kleinschreibung werden unterschieden. Die Sprungmarke endet mit ":".
MB	Merkerbyte
MD	Merkerdoppelwort
MW	Merkerwort
n	Binärkonstante

AWL-Operationen

Gegenüberstellung der Syntaxsprachen

Abkürzung	Erläuterung
ОВ	Operationsbaustein
OR	Oder
os	Überlaufspeichernd
OV	Überlauf
р	Hexadezimalkonstante
P#	Pointerkonstante
PAA	Prozessabbild der Ausgänge
PAB	Peripherieausgangsbyte (direkter Peripheriezugriff)
PAD	Peripherieausgangsdoppelwort (direkter Peripheriezugriff)
PAE	Prozessabbild der Eingänge
PAW	Peripherieausgangswort (direkter Peripheriezugriff)
PEB	Peripherieeingangsbyte (direkter Peripheriezugriff)
PED	Peripherieeingangsdoppelwort (direkter Peripheriezugriff)
PEW	Peripherieeingangswort (direkter Peripheriezugriff)
q	Realzahl (32-Gleitpunktzahl)
r	Baustein-Nr.
S5T#	S5-Zeitkonstante (16Bit), dient zum Laden der S5-Timer
SFB	Systemfunktionsbausteine
SFC	Systemfunktionen
STA	Status
T	Timer (Zeiten)
T#	Zeitkonstante (16/32Bit)
TOD#	IEC-Zeitkonstante
VKE	Verknüpfungsergebnis
W	bereichsübergreifend, registerindirekt adressiertes Wort
W#16#	Wort hexadezimal
Z	Zähler

3.3 Gegenüberstellung der Syntaxsprachen

Gegenüberstellung

In der folgenden tabellarischen Übersicht werden die deutschen und internationalen Sprachelemente von AWL gegenübergestellt.

Bereich	deutsch	international
Eingang	E	I
Ausgang	A	Q
Zähler	Z	C
Peripherie-Eingangsbyte	PEB	PIB
Peripherie-Eingangswort	PEW	PIW

Gegenüberstellung der Syntaxsprachen

Bereich	deutsch	international
Peripherie-Eingangsdoppelwort	PED	PID
Peripherie-Ausgangsbyte	PAB	PQB
Peripherie-Ausgangswort	PAW	PQW
Peripherie-Ausgangsdoppelwort	PAD	PQD
Verknüpfungen	U	A
	UN	AN
	U(A(
	UN(AN(
	UW	AW
	UD	AD
Zeitfunktionen	SI	SP
	SV	SE
	SE	SD
	SA	SF
Zählerfunktionen	ZV	CU
	ZR	CD
Laden und Transferieren	TAW	CAW
	TAD	CAD
Programmsteuerung	AUF	OPN
	BEA	BEU
	BEB	BEC
	TDB	CDB
	UW	AW
	UD	AD
Sprungfunktionen	SPA	JU
	SPBB	JCB
	SPBIN	JNBI
	SPBNB	JNB
	SPBI	JBI
	SPBN	JCN
	SPB	JC
	SPO	JO
	SPS	JOS
	SPU	JUO
	SPZ	JZ
	SPN	JN
	SPMZ	JMZ

SPEED7 AWL-Operationen

Unterschiede zwischen SPEED7 und 300V Programmierung

Bereich	deutsch	international
	SPPZ	JPZ
	SPL	JL
	SPM	JM
	SPP	JP

3.4 Unterschiede zwischen SPEED7 und 300V Programmierung

Allgemeines

Die SPEED7-CPUs lehnen sich im Befehlsablauf an die Siemens S7-400 an und unter-

scheiden sich hierbei zur Siemens S7-300 (300V).

Die Unterschiede finden Sie nachfolgend aufgeführt.

Im Folgenden wird eine CPU 318 von Siemens der Siemens S7-400 Serie angerechnet.

Statusregister

Im Gegensatz zur Siemens S7-300 werden von SPEED7 CPUs und Siemens S7-400

(CPU 318) die Statusregister-Bits OR, STA, /ER benutzt.

Falls sich das Anwenderprogramm darauf stützt, dass im Statusregister die o.g. Bits immer Null sind (wie Siemens S7-300), so ist das Programm auf SPEED7 CPUs und

Siemens S7-400 (CPU 318) nicht lauffähig.

AKKU-Handling bei arithmetischen Operationen

Die CPUs der Siemens S7-300 besitzen 2 AKKUs. Bei einer arithmetischen Operation wird der Inhalt des 2. AKKUs nicht verändert.

Die SPEED7-CPUs hingegen besitzt 4 AKKUs. Nach einer arithmetischen Operation (+I, -I, *I, /I, +D, -D, *D, /D, MOD, +R, -R, *R, /R) wird der Inhalt des AKKUs 3 und 4 in die AKKUs 2 und 3 geladen.

Dies kann bei Programmen, die einen unveränderten AKKU2 voraussetzen, zu Konflikten führen.

VKE bei Sprüngen

Durch die fehlende Implementierung des Erstbefehlsbits /ER in der Siemens S7-300, kann es unter bestimmten Bedingungen zu Abweichungen bei der Befehlsausführung von Bit-Befehlen zwischen Siemens S7-300 und SPEED7 CPUs bzw. Siemens S7-400 kommen, insbesondere bei einem Sprung in eine Bit-Verknüpfungskette.

Unterschiede zwischen SPEED7 und 300V Programmierung

Beispiele VKE bei Sprüngen

Beispiel A:

```
U E0.0

U M1.1

= M2.0 // VKE =1 Befehlsende

SPA =SP001 // springt
.....

U M7.6

U M3.0

U M3.1

→SP001:

U A2.2 // nach dem Sprung ...

// Siemens S7-300 verknüpft weiter

// SPEED7 CPUs, Siemens S7-400 und CPU 318

// verwenden diesen Befehl als Erstabfrage
```

Beispiel B:

```
U E0.0

U M1.1

= M2.0 // VKE =1 Befehlsende

U A3.3 // Erstabfrage

SPA =SP001 // springt

.....

U M3.0

U M3.1

→SP001:

U M3.2 // nach Sprung ...

..... // verknüpfen alle CPUs weiter
```

BCD-Konsistenz

Beim Setzen eines Timers oder Zählers muss in AKKU1 ein gültiger BCD-Wert vorhanden sein. Die Überprüfung dieses BCD-Wertes erfolgt bei S7- 300 von Siemens nur, wenn der Timer oder Zähler übernommen wird (Flankenwechsel). In den SPEED7-CPUs erfolgt (wie bei S7-400 von Siemens) immer eine Überprüfung.

AWL-Operationen

Register

```
Beispiel:
.....
U E5.4
L MW20
S T30
// Siemens S7-300 prüft nur falls
// Timer aktiv abgearbeitet wird
// SPEED7, Siemens S7-400 und CPU 318
// prüfen hier immer (auch wenn
// die Kondition nicht gegeben ist)
```

3.5 Register

AKKU1 ... AKKU4 (32Bit)

Die AKKUs sind Register für die Verarbeitung von Bytes, Worten oder Doppelworten. Hierzu werden die Operanden in die AKKUs geladen und dort verknüpft. Das Ergebnis der Operation steht immer im AKKU1.

AKKU	Bit
AKKUx (x=1 4)	Bit 0 Bit 31
AKKUx-L	Bit 0 Bit 15
AKKUx-H	Bit 16 Bit 31
AKKUx-LL	Bit 0 Bit 7
AKKUx-LH	Bit 8 Bit 15
AKKUx-HL	Bit 16 Bit 23
AKKUx-HH	Bit 24 Bit 31

Adressregister AR1 und AR2 (32Bit)

Die Adressregister enthalten die bereichsinternen oder bereichsübergreifenden Adressen für die registerindirekt adressierenden Operationen. Die Adressregister sind 32Bit breit.

Die bereichsinternen bzw. bereichsübergreifenden Adressen haben folgenden Aufbau:

bereichsinterne Adresse:

0000000 00000bb bbbbbbb bbbbxxx

bereichsübergreifende Adresse:

10000yyy 00000bbb bbbbbbbb bbbbbxxx

Legende:	b	Byteadresse
	X	Bitnummer
	Υ	Bereichskennung
		→ "Adressierungsbeispiele"Seite 30

Adressierungsbeispiele

Statuswort (16Bit)

Die Anzeigen werden durch die Operationen ausgewertet oder gesetzt. Das Statuswort ist 16Bit breit.

Bit	Belegung	Bedeutung
0	/ER	Erstabfrage
1	VKE	Verknüpfungsergebnis
2	STA	Status
3	OR	Oder
4	os	Überlauf speichernd
5	OV	Überlauf
6	A0	Ergebnisanzeige
7	A1	Ergebnisanzeige
8	BIE	Binärergebnis
9 15	nicht belegt	

3.6 Adressierungsbeispiele

Adressierungsbeispiel	Beschreibung
Unmittelbare Adressierung	
L +27	Lade 16-Bit-Ganzzahlkonstante "27" in AKKU1
L L#-1	Lade 32-Bit-Ganzzahlkonstante "-1" in AKKU1
L 2#10101010101010	Lade Binärkonstante in AKKU1
L DW#16#A0F0_BCFD	Lade Hexadezimalkonstante in AKKU1
L "Ende"	Lade ASCII-Zeichen in AKKU1
L T#500ms	Lade Zeitwert in AKKU1
L C#100	Lade Zählerwert in AKKU1
L B#(100,12)	Lade Konstante als 2Byte
L B#(100,12,50,8)	Lade Konstante als 4Byte
L P#10.0	Lade bereichsinterne Pointer in AKKU1
L P#E20.6	Lade bereichsübergreifende Pointer in AKKU1
L -2.5	Lade Realzahl in AKKU1
L D#1995-01-20	Lade Datum
L TOD#13:20:33.125	Lade Uhrzeit
Direkte Adressierung	
U E 0.0	UND-Verknüpfung des Eingangsbits 0.0
L EB 1	Lade Eingangsbyte 1 in AKKU1
LEW 0	Lade Eingangswort 0 in AKKU1
L ED 0	Lade Eingangsdoppelwort 0 in AKKU1

Adressierungsbeispiele

Adressierungsbe	Adressierungsbeispiel Beschreibung					
Indirekte Adressi	erung Timer/Zähler					
SI T [LW 8]		Starte Timer; die Timer-Nr. steht im Lokal- datenwort 8				
ZV Z [LW 10]		Starte Zähler; die Zähler-Nr. steht im Loka datenwort 10				
Speicherindirekte	e, bereichsinterne Adressie	erung				
U E [LD 12] Bsp.: LP#22.2 T LD 12 U E [LD 12]		UND-Operation; die Adresse des Eingangs steht als Pointer im Lokaldaten-Doppelwort 12				
U E [DBD 1]		UND-Operation; die Adresse des Eingangs steht als Pointer im Datendoppelwort 1 des DB				
U A [DID 12]		UND-Operation; die Adresse des Ausgangs steht als Pointer im Datendoppelwort 12 des Instanz-DB				
U A [MD 12]		UND-Operation; die Adresse des Ausgangs steht als Pointer im Merkerdoppelwort 12				
Registerindirekte	, bereichsinterne Adressie	rung				
U E [AR1,P#12.2	2]	UND-Operation; die Adresse des Eingangs errechnet sich zu "Pointerwert im Adressregister 1 + Pointer P#12.2"				
Registerindirekte	, bereichsübergreifende A	dressierung				
	übergreifende, registerindir ereichskennung in den Bit					
Bereichsken- nung	Codierung binär	hex.	Bereich			
Р	1000 0 000	80	Peripheriebereich			
E	1000 0 001	81	Eingangsbereich			
Α	1000 0 010	82 Ausgangsbereich				

Bereichsken- nung	Codierung binär	hex.	Bereich	
P	1000 0 000	80	Peripheriebereich	
E	1000 0 001	81	Eingangsbereich	
Α	1000 0 010	82	Ausgangsbereich	
M	1000 0 011	83	Merkerbereich	
DB	1000 0 100	84	Datenbereich	
DI	1000 0 101	85	Instanz-Datenbereich	
L	1000 0 110	86	Lokaldatenbereich	
VL	1000 0111	87	Vorgänger-Lokaldaten- bereich (Zugriff auf Lokaldaten des aufruf- enden Bausteins)	
L B [AR1,P#8.0]		Lade Byte in AKKU1; die Adresse errechnet sich aus "Pointerwert im Adress register 1 + Pointer P#8.0"		

Arithmetische Operationen

Adressierungsbeispiel	Beschreibung
U [AR1,P#32.3]	UND-Operation; die Adresse des Operanden errechnet sich aus "Pointerwert im Adressregister 1 + Pointer P#32.3"
Adressierung über Parameter	
U Parameter	Der Operand wird über den Parameter adressiert.

Beispiel zur Pointerberechnung

Beispiel bei Summe der Bitadressen ≤ 7:

LAR1 P#8.2

U E [AR1, P#10.2]

Ergebnis: Adressiert wird Eingang 18.4

(durch jeweilige Addition der Byte- und Bitadressen).

Beispiel bei Summe der Bitadressen > 7:

L MD 0 beliebig berechneter Pointer, z.B. P#10.5

LAR1

U E [AR1, P#10.7]

Ergebnis: Adressiert wird Eingang 21.4

(durch Addition der Byte und Bitadressen mit Übertrag).

3.7 Arithmetische Operationen

Festpunktarithmetik (16Bit)

Arithmetische Operationen zweier 16-Bit-Zahlen.

Das Ergebnis steht im AKKU1 bzw. AKKU1-L.

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
+1	-		Addiere zwei Ganzzahlen (16Bit)	1
			(AKKU1-L)=(AKKU1-L)+(AKKU2-L)	
-1	-		Subtrahiere zwei Ganzzahlen (16Bit)	1
			(AKKU1-L)=(AKKU2-L)-(AKKU1-L)	
*	-		Multipliziere zwei Ganzzahlen (16Bit)	1
			(AKKU1)=(AKKU2-L)*(AKKU1-L)	
/I	-		Dividiere zwei Ganzzahlen (16Bit)	1
			(AKKU1-L)=(AKKU2-L):(AKKU1-L)	
			Im AKKU1-H steht der Rest der Division	

Statuswort	BIE	A1	A0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	-	-	-	-	-	-	-	-	-
Operation beeinflusst	-	✓	✓	✓	✓	-	-	-	-

SPEED7

Arithmetische Operationen

Festpunktarithmetik (32Bit)

Arithmetische Operationen zweier 32-Bit-Zahlen.

Das Ergebnis steht im AKKU1.

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
+D	-		Addiere zwei Ganzzahlen (32Bit)	1
			(AKKU1)=(AKKU2)+(AKKU1)	
-D	-		Subtrahiere zwei Ganzzahlen (32Bit)	1
			(AKKU1)=(AKKU2)-(AKKU1)	
*D	-		Multipliziere zwei Ganzzahlen (32Bit)	1
			(AKKU1)=(AKKU2)*(AKKU1)	
/D	-		Dividiere zwei Ganzzahlen (32Bit)	1
			(AKKU1)=(AKKU2):(AKKU1)	
MOD	-		Dividiere zwei Ganzzahlen (32Bit) und lade den Rest der Division in AKKU1	1
			(AKKU1)=Rest von [(AKKU2):(AKKU1)]	

Statuswort	BIE	A1	A 0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	-	-	-	-	-	-	-	-	-
Operation beeinflusst	-	✓	✓	✓	✓	-	-	-	-

Gleitpunktarithmetik (32Bit)

Das Ergebnis der arithmetische Operationen steht im AKKU1. Die Ausführungszeit der Operation hängt vom Wert ab, der berechnet werden soll.

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
+R	-		Addiere zwei Realzahlen (32Bit)	1
			(AKKU1)=(AKKU2)+(AKKU1)	
-R	-		Subtrahiere zwei Realzahlen (32Bit)	1
			(AKKU1)=(AKKU2)-(AKKU1)	
*R	-		Multipliziere zwei Realzahlen (32Bit)	1
			(AKKU1)=(AKKU2)*(AKKU1)	
/R	-		Dividiere zwei Realzahlen (32Bit)	1
			(AKKU1)=(AKKU2):(AKKU1)	
NEGR	-		Negiere Realzahl im AKKU1	1
ABS	-		Bilde Betrag der Realzahl im AKKU1	1

Statuswort für: R	BIE	A1	A0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	-	-	-	-	-	-	-	-	-
Operation beeinflusst	-	✓	✓	✓	✓	-	-	-	-
Otation of film NEOD ADO	DIE	8.4	A O	0)/	00	00	OTA	\//C	/ED
Statuswort für: NEGR, ABS	BIE	A1	A 0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	-	-	-	-	-	-	-	-	-
Operation beeinflusst	-	-	-	-	-	-	-	-	-

Arithmetische Operationen

Quadratwurzel, Quadrat (32Bit)

Das Ergebnis der Operationen steht im AKKU1. Operationen sind durch Alarme unterbrechbar.

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
SQRT	-		Berechne die Quadratwurzel einer Realzahl in AKKU1	1
SQR	-		Quadriere die Restzahl in AKKU1	1

Statuswort	BIE	A1	A0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	-	-	-	-	-	-	-	-	-
Operation beeinflusst	-	✓	✓	✓	✓	-	-	-	-

Logarithmusfunktion (32Bit)

Das Ergebnis der Logarithmusfunktion steht im AKKU1.

Die Operationen sind durch Alarme unterbrechbar.

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
LN	-		Bilde den natürlichen Logarithmus einer Realzahl in AKKU1	1
EXP	-		Berechne den Exponentialwert einer Realzahl in AKKU1 zur Basis e (=2,71828)	1

Statuswort	BIE	A1	A 0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	-	-	-	-	-	-	-	-	-
Operation beeinflusst	-	✓	✓	✓	✓	-	-	-	-

Trigonometrische Funktionen (32Bit)

Das Ergebnis der Operationen steht im AKKU1.

Operationen sind durch Alarme unterbrechbar.

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
SIN ¹	-		Berechne den Sinus der Realzahl	1
ASIN ²	-		Berechne den Arcussinus der Realzahl	1
COS ¹	-		Berechne den Cosinus der Realzahl	1
ACOS ²	-		Berechne den Arcuscosinus der Realzahl	1
TAN ¹	-		Berechne den Tangens der Realzahl	1
ATAN ²	-		Berechne den Arcustangens der Realzahl	1
4) 0 - 1 0:	\A/:11 : D 0 -	D Wi-lI I - OI - it I-t	The blancount in AIZIM and a substitution of the substitution of t	

¹⁾ Geben Sie den Winkel im Bogenmaß an. Der Winkel muss als Gleitpunktzahlenwert in AKKU1 angegeben werden.

²⁾ Das Ergebnis ist ein Winkel im Bogenmaß.

Statuswort	BIE	A 1	A0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	-	-	-	-	-	-	-	-	-
Operation beeinflusst	-	✓	\checkmark	✓	✓	-	-	-	-

SPEED7 AWL-Operationen

Arithmetische Operationen

Addition von Konstanten Addition von Ganzzahl-Konstanten zum AKKU1.

Die Anzeigen werden nicht beeinflusst.

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
+	i8		Addiere eine 8-Bit Integer-Konstante	1
+	i16		Addiere eine 16-Bit Integer-Konstante	2
+	i32		Addiere eine 32-Bit Integer-Konstante	3

Addition über Adressregister Addition einer Ganzzahl (16Bit) zum Inhalt des Adressregisters.

Der Wert steht in der Operation oder im AKKU 1-L.

Die Anzeigen werden nicht beeinflusst.

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
+AR1	-		Addiere Inhalt von AKKU1-L zum AR1	1
+AR1	m		Addiere Pointer-Konstante zum AR1	2
+AR2	-		Addiere Inhalt von AKKU1-L zum AR2	1
+AR2	m		Addiere Pointer-Konstante zum AR2	2

Baustein-Operationen

3.8 Baustein-Operationen

Baustein-Aufrufoperationen

Befehl	Operand	Parameter		Funktions	bezeichr	nung					Länge in Worten			
CALL	FB p	0 8191		Unbeding	ter Aufru	f eines F	B, mit P	aramete	rüberga	be				
	DB r	0 8191												
CALL	SFB p	0 8191		Unbeding	ter Aufru	f eines S	SFB, mit	Parame	terüberg	abe				
	DB r	0 8191												
CALL	FC p				Unbedingter Aufruf einer Funktion, mit Parameterübergabe									
CALL	SFC p			Unbeding	ter Aufru	f einer S	FC, mit	Paramet	terüberg	abe				
UC	FB q	0 8191		Unbeding	ter Aufru	f von Ba	usteiner	n, ohne F	Paramete	erü-	1/2			
	FC q			bergabe	.ee	. D	.4							
	Parameter			FB/FC-Au	itrut uber	Parame	eter							
CC	FB q	0 8191		Bedingter	Aufruf v	on Baus	teinen, c	hne Par	ameterü	ber-	1/2			
	FC q			gabe	6 6 21		4							
	Parameter			FB/FC-Au	ifruf ubei	Parame	eter							
AUF	DB p	0 8191		Aufschlag	en eines	Datenb	austeins				1/2			
	DI p			Aufschlag	2									
	Parameter			Aufschlagen eines Datenbausteins über Parameter										
Statuewor	t für: CALL. UC		BIE	A1	Α0	OV	os	OR	STA	VKE	/ER			

Statuswort für: CALL, UC	BIE	A1	A0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	-	-	-	-	-	-	-	-	-
Operation beeinflusst	-	-	-	-	0	0	1	-	0
Statuswort für: CC	BIE	A1	A0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	-	-	-	-	-	-	-	✓	-
Operation beeinflusst	-	-	-	-	0	0	1	-	0
Statuswort für: AUF	BIE	A1	A 0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	-	-	-	-	-	-	-	-	-
Operation beeinflusst	-	-	-	-	-	-	-	-	-

SPEED7 AWL-Operationen

Bildaufbau- und Null-Operationen

Baustein-Endeoperationen

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
BE			Beende Baustein	1
BEA			Beende Baustein absolut	1
BEB			Beende Baustein bei VKE="1"	1

Statuswort für BE, BEA:	BIE	A1	A0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	-	-	-	-	-	-	-	-	-
Operation beeinflusst	-	-	-	-	0	0	1	-	0
Statuswort für BEB	BIE	A1	A0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	-	-	-	-	-	-	-	✓	-
Operation beeinflusst	_	_	_	_	✓	0	1	1	0

Tausche Datenbausteine

Tauschen der beiden aktuellen Datenbausteine. Der aktuelle Datenbaustein wird zum aktuellen Instanz-Datenbaustein und umgekehrt.

Die Anzeigen werden nicht beeinflusst.

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
TDB			Tausche Datenbausteine	1

3.9 Bildaufbau- und Null-Operationen

Das Statuswort wird nicht beeinflusst.

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
BLD	0 255		Bildaufbau-Operation; wird von der CPU wie eine Null-Operation behandelt	1
NOP	0		Nulloperation	1

Flanken-Operationen

3.10 Flanken-Operationen

Flanken-Operationen

Erkennen eines Flankenwechsels. Der aktuelle Signalzustand im VKE wird verglichen mit dem Signalzustand im Operanden, dem "Flankenmerker".

FP erkennt einen Flankenwechsel von "0" nach "1".

FN erkennt einen Flankenwechsel von "1" nach "0".

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
FP	E/A a.b	0.0 2047.7	Anzeigen der steigenden Flanke im VKE, Flankenhilfs-	2
	M a.b	0.0 8191.7	merker ist das in der Operation adressierte Bit.	2
	L a.b	parametrierbar		2
	DBX a.b	0.0 65535.7		2
	DIX a.b	0.0 65535.7		2
	c [AR1,m]			2
	c [AR2,m]			2
[AR2,r	[AR1,m]			2
	[AR2,m]			2
	Parameter			2
FN	E/A a.b	0.0 2047.7	Anzeigen der fallenden Flanke im VKE, Flankenhilfs-	2
	M a.b	0.0 8191.7	merker ist das in der Operation adressierte Bit	2
	L a.b	parametrierbar		2
	DBX a.b	0.0 65535.7		2
	DIX a.b	0.0 65535.7		2
	c [AR1,m]			2
	c [AR2,m]			2
	[AR1,m]			2
	[AR2,m]			2
	Parameter			2

Statuswort für: FP, FN	BIE	A 1	A 0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	-	-	-	-	-	-	-	✓	-
Operation beeinflusst	-	-	-	-	-	0	✓	✓	1

Lade-Operationen

3.11 Lade-Operationen

Lade-Operationen

Laden der Operanden in AKKU1, zuvor wird der alte Inhalt von AKKU1 in AKKU2 gerettet.

Das Statuswort wird nicht beeinflusst.

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
L			Lade	
	EB a		Eingangsbyte	1/2
	AB a		Ausgangsbyte	1/2
	PEB a		Peripherie-Eingangsbyte	2
	MB a	0.0 8191	Merkerbyte	1/2
	LB a	parametrierbar	Lokaldatenbyte	2
	DBB a	0.0 65535	Datenbyte	2
	DIB a	0.0 65535	Instanz-Datenbyte	2
			in AKKU1	
	g [AR1,m]		registerindirekt, bereichsintern (AR1)	2
	g [AR2,m]		registerindirekt, bereichsintern (AR2)	2
	B [AR1,m]		bereichsübergreifend (AR1)	2
	B [AR2,m]		bereichsübergreifend (AR2)	2
	Parameter		über Parameter	2
L			Lade	
	EW a	0.0 2046	Eingangswort	1/2
	AW a	0.0 2046	Ausgangswort	1/2
	PEW a	0.0 8190	Peripherie-Eingangswort	2
	MW a	0.0 8190	Merkerwort	1/2
	LW a	parametrierbar	Lokaldatenwort	2
	DBW a	0.0 65534	Datenwort	1/2
	DIW a	0.0 65534	Instanz-Datenwort	1/2
			in AKKU1-L	
	h [AR1,m]		registerindirekt, bereichsintern (AR1)	2
	h [AR2,m]		registerindirekt, bereichsintern (AR2)	2
	W [AR1,m]		bereichsübergreifend (AR1)	2
	W [AR2,m]		bereichsübergreifend (AR2)	2
	Parameter		über Parameter	2
L			Lade	
	ED a	0.0 2044	Eingangsdoppelwort	1/2
	AD a	0.0 2044	Ausgangsdoppelwort	1/2
	PED a	0.0 8188	Peripherie-Eingangsdoppelwort	2

Lade-Operationen

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
	MD a	0.0 8188	Merkerdoppelwort	1/2
	LD a	parametrierbar	Lokaldatendoppelwort	2
	DBD a	0.0 65532	Datendoppelwort	2
	DID a	0.0 65532	Instanz-Datendoppelwort	2
			in AKKU1-L.	
	i [AR1,m]		registerindirekt, bereichsintern (AR1)	2
	i [AR2,m]		registerindirekt, bereichsintern (AR2)	2
	D [AR1,m]		bereichsübergreifend (AR1)	2
	D [AR2,m]		bereichsübergreifend (AR2)	2
	Parameter		über Parameter	2
L			Lade	
	k8		8-Bit-Konstante in AKKU1-LL	1
	k16		16-Bit-Konstante in AKKU1-L	2
	k32		32-Bit-Konstante in AKKU1	3
	Parameter		Lade Konstante in AKKU1	2
			(über Parameter adressiert)	
L	2#n		Lade 16-Bit-Binärkonstante in AKKU1-L	2
			Lade 32-Bit-Binärkonstante in AKKU1	3
L	B#8#p		Lade 8-Bit-Hexadezimalkonstante in AKKU1-LL	1
	W#16#p		Lade 16-Bit-Hexadezimalkonstante in AKKU1-L	2
	DW#16#p		Lade 32-Bit-Hexadezimalkonstante in AKKU1	3
L	x		Lade ein Zeichen	
L	xx		Lade zwei Zeichen	2
L	xxx		Lade drei Zeichen	
L	xxxx		Lade vier Zeichen	3
L	D# Datum		Lade IEC-Datum (BCD-codiert)	3
L	S5T#		Lade Zeitkonstante (16-Bit)	2
	Zeitwert			
L	TOD#		Lade 32-Bit-Zeitkonstante (IEC-Tageszeit)	3
	Zeitwert			
L	T#		Lade 16-Bit-Zeitkonstante	2
	Zeitwert		Lade 32-Bit-Zeitkonstante	3
L	C# Zählwert		Lade 16-Bit-Zählerkonstante	2
L	P# Bitpointer		Lade Bitpointer	3
L	L# Integer		Lade 32-Bit-Ganzzahlkonstante	3
L	Realzahl		Lade Realzahl	3

SPEED7 AWL-Operationen

Lade-Operationen

Lade-Operationen für Timer und Zähler

Laden eines Zeitwertes oder Zählwertes in AKKU1, zuvor wird der alte Inhalt von AKKU1 in AKKU2 gerettet.

Die Anzeigen werden nicht beeinflusst.

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
L	T f	0 511	Lade Zeitwert	1/2
	Timerpara.		Lade Zeitwert	2
			(über Parameter adressiert)	
L	Z f	0 511	Lade Zählwert	1/2
	Zählerpara.		Lade Zählwert	2
			(über Parameter adressiert)	
LC	T f	0 511	Lade Zeitwert BCD-codiert	1/2
	Timerpara.		Lade Zeitwert BCD-codiert	2
			(über Parameter adressiert)	
LC	Z f	0 511	Lade Zählwert BCD-codiert	1/2
	Zählerpara.		Lade Zählwert BCD-codiert	2
			(über Parameter adressiert)	

Schiebe-Operationen

3.12 Schiebe-Operationen

Schiebe-Operationen

Schiebe Inhalt von AKKU1 oder AKKU1-L um die angegebene Anzahl von Stellen nach links/rechts.

Ist kein Operand angegeben, schiebe Anzahl in AKKU2-LL. Freiwerdende Stellen werden mit Nullen bzw. mit dem Vorzeichen aufgefüllt.

Zuletzt geschobenes Bit steht im Anzeigenbit A1.

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
SLW SLW	- 0 15		Schiebe Inhalt von AKKU1-L nach links, freiwerdende Stellen werden mit Nullen aufgefüllt.	1
SLD SLD	- 0 32		Schiebe Inhalt von AKKU1 nach links, freiwerdende Stellen werden mit Nullen aufgefüllt.	1
SRW SRW	- 0 15		Schiebe Inhalt von AKKU1-L nach rechts, freiwerdende Stellen werden mit Nullen aufgefüllt.	1
SRD SRD	- 0 32		Schiebe Inhalt von AKKU1 nach rechts, freiwerdende Stellen werden mit Nullen aufgefüllt.	1
SSI SSI	- 0 15		Schiebe den Inhalt von AKKU1-L mit Vorzeichen nach rechts, freiwerdende Stellen werden mit den Vorzeichen (Bit 15) aufgefüllt.	1
SSD SSD	- 0 32		Schiebe den Inhalt von AKKU1 mit Vorzeichen nach rechts.	1

Statuswort	BIE	A 1	A0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	-	-	-	-	-	-	-	-	-
Operation beeinflusst	-	✓	✓	✓	-	-	-	-	-

SPEED7 AWL-Operationen

Schiebe-Operationen

Rotier-Operationen

Rotiere Inhalt von AKKU1 um die angegebene Anzahl von Stellen nach links/rechts. Ist kein Operand angegeben, rotiere Anzahl in AKKU2-LL.

Befehl	Operand	Parameter		Funktions		Länge in Worten					
RLD	-				halt von	AKKU1	nach link	(S			1
RLD	0 32										
RRD	-			Rotiere Ir	halt von	AKKU1	nach rec	hts			1
RRD	0 32										
RLDA -				Rotiere Inhalt von AKKU1 um eine Bitposition nach links über Anzeigebit A1							
RRDA	-			Rotiere Inhalt von AKKU1 um eine Bitposition nach rechts über Anzeigebit A1							
Statuswort	t für: RLD, RRD		BIE	A 1	A0	OV	os	OR	STA	VKE	/ER
Operation	hängt ab von		-	-	-	-	-	-	-	-	-
Operation	beeinflusst		-	✓	✓	✓	-	-	-	-	-
Statuswort für: RLDA, RRDA BIE			A 1	A0	OV	os	OR	STA	VKE	/ER	
Operation hängt ab von -		-	-	-	-	-	-	-	-		
Operation	beeinflusst		-	✓	0	0	-	-	-	-	-

Setzen/Rücksetzen von Bitoperanden

3.13 Setzen/Rücksetzen von Bitoperanden

Setzen/Rücksetzen von Bitoperanden

Zuweisen des Wertes "1" oder "0" bzw. des VKE an den adressierten Operanden.

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
S			Setze	
	E/A a.b	0.0 2047.7	Eingang/Ausgang auf "1"	1/2
	M a.b	0.0 8191.7	Merker auf "1"	1/2
	L a.b	parametrierbar	Lokaldatenbit auf "1"	2
	DBX a.b	0.0 65535.7	Datenbit auf "1"	2
	DIX a.b	0.0 65535.7	Instanz-Datenbit auf "1"	2
	c [AR1,m]		registerindirekt, bereichsintern (AR1)	2
	c [AR2,m]		registerindirekt, bereichsintern (AR2)	2
	[AR1,m]		bereichsübergreifend (AR1)	2
	[AR2,m]		bereichsübergreifend (AR2)	2
	Parameter		über Parameter	2
R			Rücksetze	
	E/A a.b	0.0 2047.7	Eingang/Ausgang auf "0"	1/2
	M a.b	0.0 8191.7	Merker auf "0"	1/2
	L a.b	parametrierbar	Lokaldatenbit auf "0"	2
	DBX a.b	0.0 65535.7	Datenbit auf "0"	2
	DIX a.b	0.0 65535.7	Instanz-Datenbit auf "0"	2
	c [AR1,m]		registerindirekt, bereichsintern (AR1)	2
	c [AR2,m]		registerindirekt, bereichsintern (AR2)	2
	[AR1,m]		bereichsübergreifend (AR1)	2
	[AR2,m]		bereichsübergreifend (AR2)	2
	Parameter		über Parameter	2
=			Zuweisen	
	E/A a.b	0.0 2047.7	des VKE an Eingang/Ausgang	1/2
	M a.b	0.0 8191.7	des VKE an Merker	1/2
	L a.b	parametrierbar	des VKE an Lokaldatenbit	2
	DBX a.b	0.0 65535.7	des VKE an Datenbit	2
	DIX a.b	0.0 65535.7	des VKE an Instanz-Datenbit	2
	c [AR1,m]		registerindirekt, bereichsintern (AR1)	2
	c [AR2,m]		registerindirekt, bereichsintern (AR2)	2
	[AR1,m]		bereichsübergreifend (AR1)	2
	[AR2,m]		bereichsübergreifend (AR2)	2
	Parameter		über Parameter	2

SPEED7 AWL-Operationen

Sprung-Operationen

Statuswort für: S, R, =	BIE	A 1	A0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	-	-	-	-	-	-	-	✓	-
Operation beeinflusst	-	-	-	-	-	0	✓	-	0

VKE direkt beeinflussende Operationen

Die folgenden Operationen bearbeiten direkt das VKE.

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
CLR			Setze VKE auf "0"	1
SET			Setze VKE auf "1"	1
NOT			Negiere das VKE	1
SAVE			Rette das VKE in das BIE-Bit	1

Statuswort für: CLR	BIE	A1	A0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	-	-	-	-	-	-	-	-	-
Operation beeinflusst	-	-	-	-	-	0	0	0	0
Statuswort für: SET	BIE	A1	A 0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	-	-	-	-	-	-	-	-	-
Operation beeinflusst	-	-	-	-	-	0	1	1	0
Statuswort für: NOT	BIE	A1	A0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	-	-	-	-	-	✓	-	✓	-
Operation beeinflusst	-	-	-	-	-	-	1	✓	-
Statuswort für: SAVE	BIE	A1	A 0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	-	-	-	-	-	-	-	✓	-
Operation beeinflusst	✓	-	-	-	-	-	-	-	-

3.14 Sprung-Operationen

Sprungmarke

Die Sprungmarke ist eine symbolische Sprungadresse mit max. 4 Zeichen. Diese 4 Zeichen können sich aus Buchstaben, Zahlen und dem Unterstrich "_" zusammensetzen, wobei das 1. Zeichen ein Buchstabe sein muss. Groß- und Kleinschreibung werden unterschieden. Der Doppelpunkt ":" hinter der Sprungmarke kennzeichnet die Sprungmarke und leitet den Anweisungsteil ein.

Sprung, abhängig von der Bedingung.

Bei 8-Bit-Operanden liegt die Sprungweite zwischen (-128 ... +127),

bei 16-Bit-Operanden zwischen (-32768 ... -129) oder (+128 ... +32767)

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
SPA	MARKE		Springe unbedingt	1/2

Sprung-Operationen

Befehl	Operand	Parameter		Funktion	sbezeic	hnung					Länge in Worten
SPB	MARKE			Springe l	pedingt	bei VKE=	:"1"				1/2
SPBN	MARKE			Springe bedingt bei VKE="0"							2
SPBB	MARKE			Springe l	pedingt	bei VKE=	:"1"				2
				Retten de	es VKE	in das Bl	E-Bit				
SPBNB	MARKE			Springe b	pedingt	bei VKE=	:"0"				2
				Retten de	es VKE	in das Bl	E-Bit				
SPBI	MARKE			Springe I	pedingt	bei BIE='	1"				2
SPBIN	MARKE			Springe b	pedingt	bei BIE='	0"				2
SPO	MARKE			Springe b	pedingt	bei Überl	auf (OV=	="1")			1/2
SPS	MARKE			Springe l	pedingt	bei Überl	auf speid	chernd (0	OS="1")		2
SPU	MARKE			Springe b	oei "Unz	zulässigei	Operati	on" (A1=	1 und A	0=1)	2
SPZ	MARKE			Spring be	edingt b	ei Ergebr	nis=0 (A1	1=0 und .	A0=0)		1/2
SPP	MARKE			Spring be	edingt b	ei Ergebr	nis> 0 (A	1=1 und	A0=0)		1/2
SPM	MARKE			Spring be	edingt b	ei Ergebr	nis < 0 (<i>P</i>	\1=0 unc	l A0=1)		1/2
SPN	MARKE			Spring be	edingt b	ei Ergebr	nis≠0				1/2
				(A1=1 un							
SPMZ	MARKE			Springe l		2					
				(A1=0 un							
SPPZ	MARKE			Springe l		2					
				(A1=1 un							
SPL	MARKE			Sprungve		2					
				Der Oper Der Oper folgender Sprungor	Э						
LOOP	MARKE			Dekreme	ntiere A	KKU1-L	und sprii	nge bei A	AKKU1-L	. ≠ O	2
				(Schleife	nprogra	mmierun	g)				
Statuswort	für: SPA, SPL, L	00P	BIE	A1	A 0	OV	os	OR	STA	VKE	/ER
Operation	hängt ab von		-	-	-	-	-	-	-	-	-
Operation	beeinflusst		-	-	-	-	-	-	-	-	-
Statuswort	für: SPB, SPBN		BIE	A1	A 0	OV	os	OR	STA	VKE	/ER
Operation	hängt ab von		-	-	-	-	-	-	-	✓	-
Operation	beeinflusst		-	-	-	-	-	0	1	1	0
Statuswort	Statuswort für: SPBB, SPBNB BIE					OV	os	OR	STA	VKE	/ER
Operation	hängt ab von		-	-	-	-	-	-	-	✓	-
Operation	beeinflusst		✓	-	-	-	-	0	1	1	0

SPEED7 AWL-Operationen

Transfer-Operationen

Statuswort für: SPBI, SPBIN	BIE	A1	A0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	✓	-	-	-	-	-	-	-	-
Operation beeinflusst	-	-	-	-	-	0	1	-	0
Statuswort für: SPO	BIE	A1	A0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	-	-	-	✓	-	-	-	-	-
Operation beeinflusst	-	-	-	-	-	-	-	-	-
Statuswort für: SPS	BIE	A1	A0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	-	-	-	-	✓	-	-	-	-
Operation beeinflusst	-	-	-	-	0	-	-	-	-
Statuswort für: SPU, SPZ, SPP, SPM, SPN, SPMZ, SPPZ	BIE	A1	A 0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	-	✓	✓	-	-	-	-	-	-
Operation beeinflusst	-	-	-	-	-	-	-	-	-

3.15 Transfer-Operationen

Transfer-Operationen

Transferieren des Inhalts von AKKU1 in den adressierten Operanden.

Das Statuswort wird nicht beeinflusst.

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
Т			Transferiere Inhalt von AKKU1-LL zum	
	EB a	0.0 2047	Eingangsbyte	1/2
	AB a	0.0 2047	Ausgangsbyte	1/2
	PAB a	0.0 8191	Peripherie-Ausgangsbyte	1/2
	MB a	0.0 8191	Merkerbyte	1/2
	LB a	parametrierbar	Lokaldatenbyte	2
	DBB a	0.0 65535	Datenbyte	2
	DIB a	0.0 65535	Instanz-Datenbyte	2
	g [AR1,m]		registerindirekt, bereichsintern (AR1)	2
	g [AR2,m]		registerindirekt, bereichsintern (AR2)	2
	B [AR1,m]		bereichsübergreifend (AR1)	2
	B [AR2,m]		bereichsübergreifend (AR2)	2
	Parameter		über Parameter	2
Т			Transferiere Inhalt von AKKU1-L zum	

Transfer-Operationen

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
	EW	0.0 2046	Eingangswort	1/2
	AW	0.0 2046	Ausgangswort	1/2
	PAW	0.0 8190	Peripherie-Ausgangswort	1/2
	MW	0.0 8190	Merkerwort	1/2
	LW	parametrierbar	Lokaldatenwort	2
	DBW	0.0 65534	Datenwort	2
	DIW	0.0 65534	Instanz-Datenwort	2
	h [AR1,m]		registerindirekt, bereichsintern (AR1)	2
	h [AR2,m]		registerindirekt, bereichsintern (AR2)	2
	W [AR1,m]		bereichsübergreifend (AR1)	2
	W [AR2,m]		bereichsübergreifend (AR2)	2
	Parameter		über Parameter	2
Т			Transferiere Inhalt von AKKU1 zum	
	ED	0.0 2044	Eingangsdoppelwort	1/2
	AD	0.0 2044	Ausgangsdoppelwort	1/2
	PAD	0.0 8188	Peripherie-Ausgangsdoppelwort	1/2
	MD	0.0 8188	Merkerdoppelwort	1/2
	LD	parametrierbar	Lokaldatendoppelwort	2
	DBD	0.0 65532	Datendoppelwort	2
	DID	0.0 65532	Instanz-Datendoppelwort	2
	i [AR1,m]		registerindirekt, bereichsintern (AR1)	2
	i [AR2,m]		registerindirekt, bereichsintern (AR2)	2
	D [AR1,m]		bereichsübergreifend (AR1)	2
	D [AR2,m]		bereichsübergreifend (AR2)	2
	Parameter		über Parameter	2

Transfer-Operationen

Lade- und Transfer-Operationen für Adressregister

Laden eines Doppelwortes aus einem Speicher oder einem Register in AR1 oder AR2. Das Statuswort wird nicht beeinflusst.

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
LAR1			Lade Inhalt aus	
	-		AKKU1	1
	AR2		Adressregister 2	1
	DBD a	0 65532	Datendoppelwort	2
	DID a	0 65532	Instanz-Datendoppelwort	2
	m		32-Bit-Konstante als Pointer	3
	LD a	parametrierbar	Lokaldatendoppelwort	2
	MD a	0 8188	Merkerdoppelwort	2
			in AR1	
LAR2			Lade Inhalt aus	
	-		AKKU1	1
	DBD a	0 65532	Datendoppelwort	2
	DID a	0 65532	Instanz-Datendoppelwort	2
	m		32-Bit-Konstante als Pointer	3
	LD a	parametrierbar	Lokaldatendoppelwort	2
	MD a	0 8188	Merkerdoppelwort.	2
			in AR2	
TAR1			Transferiere Inhalt aus AR1 in	
	-		AKKU1	1
	AR2		Adressregister 2	1
	DBD a	0 65532	Datendoppelwort	2
	DID a	0 65532	Instanz-Datendoppelwort	2
	LD a	parametrierbar	Lokaldatendoppelwort	2
	MD a	0 8188	Merkerdoppelwort	2
TAR2			Transferiere Inhalt aus AR2 in	
	-		AKKU1	1
	DBD a	0 65532	Datendoppelwort	2
	DID a	0 65532	Instanz-Datendoppelwort	2
	LD a	parametrierbar	Lokaldatendoppelwort	2
	MD a	0 8188	Merkerdoppelwort	2
TAR			Tausche die Inhalte von AR1 und AR2	1

Transfer-Operationen

Lade- und Transfer-Operationen für das Statuswort

Befehl	Operand	Parameter		Funktions		Länge in Worten					
L	STW			Lade Stat	uswort ir	n AKKU1					
				Wenn OR und /ER g							
Т	STW			Transferie	ere AKKl	J1 (Bits (0 8) in	das Sta	tuswort		
Statuswort	für: L STW		BIE	A1	A0	OV	os	OR	STA	VKE	/ER

Statuswort für: L STW	BIE	A1	A 0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	✓	✓	✓	✓	✓	✓	✓	✓	0
Operation beeinflusst	-	-	-	-	-	-	-	-	-
Statuswort für: T STW	BIE	A 1	A0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	-	-	-	-	-	-	-	-	-
Operation beeinflusst	✓	\checkmark	✓	✓	✓	-	-	✓	-

Lade-Operationen für DB-Nummer und DB-Länge Laden der Nummer/Länge eines Datenbausteins in AKKU1. Der alte Inhalt von AKKU1 wird in AKKU2 gerettet.

Die Anzeigen werden nicht beeinflusst.

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
L	DBNO		Lade Nummer des Datenbausteins	1
L	DINO		Lade Nummer des Instanz-Datenbausteins	1
L	DBLG		Lade Länge des Datenbausteins in Byte	1
L	DILG		Lade Länge des Instanz-Datenbausteins in Byte	1

Umwandlungs-Operationen

SPEED7 **AWL-Operationen**

AKKU-Transferoperationen, Inkrementieren, Dekrementieren

Das Statuswort wird nicht beeinflusst.

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
TAW	-		Umkehr der Reihenfolge der Bytes im AKKU1-L Aus LL, LH wird LH, LL	1
TAD	-		Umkehr der Reihenfolge der Bytes im AKKU1 Aus LL, LH, HL, HH wird HH, HL, LH, LL	1
TAK	-		Tausche Inhalte von AKKU1 und AKKU2	1
ENT	-		Der Inhalt von AKKU2 und AKKU3 wird in AKKU3 und AKKU4 übertragen	
LEAVE	-		Der Inhalt von AKKU3 und AKKU4 wird in AKKU2 und AKKU3 übertragen	
PUSH	-		Der Inhalt von AKKU1, AKKU2 und AKKU3 wird in AKKU2, AKKU3 und AKKU4 übertragen	1
POP	-		Der Inhalt von AKKU2, AKKU3 und AKKU4 wird in AKKU1, AKKU2 und AKKU3 übertragen	1
INC	0 255		Inkrementiere AKKU1-LL	1
DEC	0 255		Dekrementiere AKKU1-LL	1

3.16 **Umwandlungs-Operationen**

Datentyp-Umwandlungsoperationen

Die Ergebnisse der Wandlung stehen im AKKU1. Bei der Wandlung von Realzahlen ist die Ausführungszeit abhängig vom Wert.

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
BTI	-		Konvertiere AKKU1 von BCD nach Ganzzahl (16Bit) (BCD to Int.)	1
BTD	-		Konvertiere AKKU1 von BCD nach Ganzzahl (32Bit) (BCD to Doubleint.)	1
DTR	-		Konvertiere AKKU1 von Ganzzahl (32Bit) nach Realzahl (32Bit) (Doubleint. to Real)	1
ITD	-		Konvertiere AKKU1 von Ganzzahl (16Bit) nach Ganzzahl (32Bit) (Int. to Doubleint.)	1

Statuswort	BIE	A1	A0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	-	-	-	-	-	-	-	-	-
Operation beeinflusst	-	-	-	-	-	-	-	-	-

Umwandlungs-Operationen

Befehl	Operand	Parameter		Funktions	bezeichr	nung					Länge in Worten		
ITB	-			Konvertier	e AKKU	1 von G	anzzahl	(16Bit) n	ach BCI)	1		
				0 +/-999 (Int. To BCD)									
DTB	-			Konvertier	e AKKU	1 von G	anzzahl	(32Bit) n	ach BCI)	1		
				0 +/-9 9) +/-9 999 999 (Doubleint. To BCD)								
RND	-			Wandle R	ealzahl i	n 32-Bit-	Ganzzal	nl um			1		
RND-	-			Wandle R	1								
				Es wird ab	gerunde	et zur nä	chsten g	anzen Z	ahl				
RND+	-			Wandle R	ealzahl i	n 32-Bit-	Integerz	ahl um			1		
				Es wird au	ufgerund	et zur nä	ichsten (ganzen Z	Zahl				
TRUNC	-			Wandle R	ealzahl i	n 32-Bit-	Integerz	ahl um			1		
				Es werder	n die Na	chkomm	astellen	abgesch	nitten				
Statuswort			BIE A1 A0 OV OS OR STA VKE								/ER		
Statuswort			DIL AI AU OV OS ON SIA VNE								/EK		
Operation h	nängt ab von	-	-	-	-	-	-	-	-	-			
Operation b	peeinflusst		-	-	-	✓	✓	-	-	-	-		

Komplementbildung

Operation hängt ab von Operation beeinflusst

Operand

Parameter

Befehl

20.0	Орогана										Worten	
INVI	-			Bilde 1er-		1						
INVD	-			Bilde 1er-	-Kompler	ment vor	AKKU1				1	
NEGI	-			Bilde 2er-	-Kompler	ment vor	AKKU1	-L			1	
				(Integerza	ahl)							
NEGD	-			Bilde 2er-	-Kompler	ment vor	AKKU1				1	
				(Double-I	ntegerza	hl)						
Statuewort	t für: INVI, INVD		BIE	A1	A 0	OV	os	OR	STA	VKE	/ER	
Statuswort	i iui. iivvi, iivv		DIL	Λ1	ΛU	OV	03	OK	SIA	VIL	/LIX	L
Operation	hängt ab von		-	-	-	-	-	-	-	-	-	
Operation	beeinflusst		-	-	-	-	-	-	-	-	-	
Statuswort	t für: NEGI, NEGE)	BIE	A1	A0	OV	os	OR	STA	VKE	/ER	

Funktionsbezeichnung

Länge in

SPEED7 AWL-Operationen

Vergleichs-Operationen

3.17 Vergleichs-Operationen

Vergleichs-Operationen mit Ganzzahl (16Bit)

Vergleich der Ganzzahl (16Bit) in AKKU1-L und AKKU2-L.

VKE=1, wenn Bedingung erfüllt.

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
==	-		AKKU2-L = AKKU1-L	1
<>	-		AKKU2-L ungleich AKKU1-L	1
<	-		AKKU2-L < AKKU1-L	1
<=	-		AKKU2-L <= AKKU1-L	1
>	-		AKKU2-L > AKKU1-L	1
>=	-		AKKU2-L >= AKKU1-L	1

Statuswort	BIE	A1	A 0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	-	-	-	-	-	-	-	-	-
Operation beeinflusst	-	✓	✓	0	-	0	\checkmark	✓	1

Vergleichs-Operationen mit Ganzzahl (32Bit)

Vergleich der Ganzzahl (32Bit) in AKKU1 und AKKU2.

VKE=1, wenn Bedingung erfüllt.

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
==D	-		AKKU2 = AKKU1	1
<>D	-		AKKU2 ungleich AKKU1	1
<d< td=""><td>-</td><td></td><td>AKKU2 < AKKU1</td><td>1</td></d<>	-		AKKU2 < AKKU1	1
<=D	-		AKKU2 <= AKKU1	1
>D	-		AKKU2 > AKKU1	1
>=D	-		AKKU2 >= AKKU1	1

Statuswort	BIE	A1	A0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	-	-	-	-	-	-	-	-	-
Operation beeinflusst	-	✓	✓	0	-	0	✓	✓	1

Verknüpfungs-Operationen (Bit)

Vergleichs-Operationen mit (32-Bit-Realzahl)

Vergleich der 32-Bit-Realzahlen in AKKU1 und AKKU2.

VKE=1, wenn Bedingung erfüllt.

Die Ausführungszeit der Operation hängt vom Wert ab, der verglichen werden soll.

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
==R	-		AKKU2 = AKKU1	1
<>R	-		AKKU2 ungleich AKKU1	1
<r< td=""><td>-</td><td></td><td>AKKU2 < AKKU1</td><td>1</td></r<>	-		AKKU2 < AKKU1	1
<=R	-		AKKU2 <= AKKU1	1
>R	-		AKKU2 > AKKU1	1
>=R	-		AKKU2 >= AKKU1	1

Statuswort	BIE	A 1	A0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	-	-	-	-	-	-	-	-	-
Operation beeinflusst	-	✓	✓	✓	✓	0	✓	✓	1

3.18 Verknüpfungs-Operationen (Bit)

Verknüpfungs-Operationen mit Bitoperanden

Abfrage des adressierten Operanden auf seinen Signalzustand und Verknüpfung des Ergebnisses mit dem VKE nach der entsprechenden Funktion.

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
U			UND-Verknüpfung auf Signalzustand "1"	
	E/A a.b	0.0 2047.7	Eingang/Ausgang	1/2
	M a.b	0.0 8191.7	Merker	1/2
	L a.b	parametrierbar	Lokaldatenbit	2
	DBX a.b	0.0 65535.7	Datenbit	2
	DIX a.b	0.0 65535.7	Instanz-Datenbit	2
	c [AR1,m]		registerindirekt, bereichsintern (AR1)	2
	c [AR2,m]		registerindirekt, bereichsintern (AR2)	2
	[AR1,m]		bereichsübergreifend (AR1)	2
	[AR2,m]		bereichsübergreifend (AR2)	2
	Parameter		über Parameter	2
UN			UND-Verknüpfung auf Signalzustand "0"	
	E/A a.b	0.0 2047.7	Eingang/Ausgang	1/2
	M a.b	0.0 8191.7	Merker	1/2
	L a.b	parametrierbar	Lokaldatenbit	2
	DBX a.b	0.0 65535.7	Datenbit	2
	DIX a.b	0.0 65535.7	Instanz-Datenbit	2
	c [AR1,m]		registerindirekt, bereichsintern (AR1)	2

Verknüpfungs-Operationen (Bit)

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
	c [AR2,m]		registerindirekt, bereichsintern (AR2)	2
	[AR1,m]		bereichsübergreifend (AR1)	2
	[AR2,m]		bereichsübergreifend (AR2)	2
	Parameter		über Parameter	2

Statuswort für: U, UN	BIE	A1	A0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	-	-	-	-	-	✓	-	✓	✓
Operation beeinflusst	-	-	-	-	-	✓	✓	✓	1

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
0			ODER-Verknüpfung auf Signalzustand "1"	
	E/A a.b	0.0 2047.7	Eingang/Ausgang	1/2
	M a.b	0.0 8191.7	Merker	1/2
	L a.b	parametrierbar	Lokaldatenbit	2
	DBX a.b	0.0 65535.7	Datenbit	2
	DIX a.b	0.0 65535.7	Instanz-Datenbit	2
	c [AR1,m]		registerindirekt, bereichsintern (AR1)	2
	c [AR2,m]		registerindirekt, bereichsintern (AR2)	2
	[AR1,m]		bereichsübergreifend (AR1)	2
	[AR2,m]		bereichsübergreifend (AR2)	2
	Parameter		über Parameter	2
ON			ODER-Verknüpfung auf Signalzustand "0"	
	E/A a.b	0.0 2047.7	Eingang/Ausgang	1/2
	M a.b	0.0 8191.7	Merker	1/2
	L a.b	parametrierbar	Lokaldatenbit	2
	DBX a.b	0.0 65535.7	Datenbit	2
	DIX a.b	0.0 65535.7	Instanz-Datenbit	2
	c [AR1,m]		registerindirekt, bereichsintern (AR1)	2
	c [AR2,m]		registerindirekt, bereichsintern (AR2)	2
	[AR1,m]		bereichsübergreifend (AR1)	2
	[AR2,m]		bereichsübergreifend (AR2)	2
	Parameter		über Parameter	2

Statuswort für: O, ON	BIE	A1	A 0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	-	-	-	-	-	-	-	✓	✓
Operation beeinflusst	-	-	-	-	-	0	✓	✓	1

Verknüpfungs-Operationen (Bit)

EXKLUSIV-ODER-Verknüpfung auf Signalzustand "1" E/A a.b	
M a.b 0.0 8191.7 Merker L a.b parametrierbar Lokaldatenbit DBX a.b 0.0 65535.7 Datenbit DIX a.b 0.0 65535.7 Instanz-Datenbit c [AR1,m] registerindirekt, bereichsintern (AR1) c [AR2,m] registerindirekt, bereichsintern (AR2) [AR1,m] bereichsübergreifend (AR1)	
L a.b parametrierbar Lokaldatenbit DBX a.b 0.0 65535.7 Datenbit DIX a.b 0.0 65535.7 Instanz-Datenbit c [AR1,m] registerindirekt, bereichsintern (AR1) c [AR2,m] registerindirekt, bereichsintern (AR2) [AR1,m] bereichsübergreifend (AR1)	1/2
DBX a.b 0.0 65535.7 Datenbit DIX a.b 0.0 65535.7 Instanz-Datenbit c [AR1,m] registerindirekt, bereichsintern (AR1) c [AR2,m] registerindirekt, bereichsintern (AR2) [AR1,m] bereichsübergreifend (AR1)	1/2
DIX a.b 0.0 65535.7 Instanz-Datenbit c [AR1,m] registerindirekt, bereichsintern (AR1) c [AR2,m] registerindirekt, bereichsintern (AR2) [AR1,m] bereichsübergreifend (AR1)	2
c [AR1,m] registerindirekt, bereichsintern (AR1) c [AR2,m] registerindirekt, bereichsintern (AR2) [AR1,m] bereichsübergreifend (AR1)	2
c [AR2,m] registerindirekt, bereichsintern (AR2) [AR1,m] bereichsübergreifend (AR1)	2
[AR1,m] bereichsübergreifend (AR1)	2
	2
	2
[AR2,m] bereichsübergreifend (AR2)	2
Parameter über Parameter	2
XN EXKLUSIV-ODER-Verknüpfung auf Signalzustand "0"	
E/A a.b 0.0 2047.7 Eingang/Ausgang	1/2
M a.b 0.0 8191.7 Merker	1/2
L a.b parametrierbar Lokaldatenbit	2
DBX a.b 0.0 65535.7 Datenbit	2
DIX a.b 0.0 65535.7 Instanz-Datenbit	2
c [AR1,m] registerindirekt, bereichsintern (AR1)	2
c [AR2,m] registerindirekt, bereichsintern (AR2)	2
[AR1,m] bereichsübergreifend (AR1)	2
[AR2,m] bereichsübergreifend (AR2)	2
Parameter über Parameter	2
Statuswort für: X, XN BIE A1 A0 OV OS OR STA VKE	/ER

Statuswort für: X, XN	BIE	A1	A0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	-	-	-	-	-	-	-	✓	✓
Operation beeinflusst	-	-	-	-	-	0	✓	✓	1

SPEED7 **AWL-Operationen**

Verknüpfungs-Operationen (Bit)

Verknüpfungs-Operationen von Klammerausdrücken

Retten der Bits BIE, VKE, OR und einer Funktionskennung (U, UN, ...) auf den Klammerstack.

Pro Baustein sind 7 Klammerebenen möglich.

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
U(UND-Klammer auf	1
UN(UND-NICHT-Klammer auf	1
O(ODER-Klammer auf	1
ON(ODER-NICHT-Klammer auf	1
X(EXCLUSIV-ODER-Klammer auf	1
XN(EXKLUSIV-ODER-NICHT-Klammer auf	1
)			Klammer zu; entfernen eines Eintrags vom Klammerstack.	1
			Verknüpfen des VKE mit dem aktuellen VKE im Prozessor.	

Statuswort für: U(, UN(, O(, ON(BIE	A1	A0	OV	os	OR	STA	VKE	/ER
X(, XN(
Operation hängt ab von	✓	-	-	-	-	✓	-	✓	✓
Operation beeinflusst	-	-	-	-	-	0	1	-	0
Statuswort für:)	BIE	A1	Α0	OV	os	OR	STA	VKE	/ER
Statuswort fur. j	DIL	Λı	Αυ	OV	03	OIX	SIA	VIXL	/LIX
Operation hängt ab von	-	-	-	-	-	-	-	✓	-
Operation beeinflusst	✓	-	-	-	-	✓	1	✓	1

ODER-Verknüpfung von UND-Funktionen

Es erfolgt die ODER-Verknüpfung von UND-Funktionen nach der Regel: UND vor ODER.

Befehl	Operand	Parameter	eter Funktionsbezeichnung							Länge in Worten	
0			ODER-Verknüpfung von UND-Funktionen nach der Regel: UND vor ODER						1		
Statuswort	t		BIE	A1	A0	OV	os	OR	STA	VKE	/ER
Operation	hängt ab von		-	-	-	-	-	✓	-	✓	✓
Operation	beeinflusst		-	-	-	-	-	✓	1	-	✓

Verknüpfungs-Operationen (Bit)

Verknüpfungs-Operationen mit Timern und Zählern

Abfrage des adressierten Timer/Zähler auf seinen Signalzustand und Verknüpfen des Ergebnisses mit dem VKE nach der entspr. Funktion.

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
U			UND-Verknüpfung auf Signalzustand	
	T f	0 511	Timer	1/2
	Z f	0 511	Zähler	1/2
	Timerpara.		Timer über Parameter adressiert	2
	Zählerpara.		Zähler über Parameter adressiert	2
UN			UND-Verknüpfung auf Signalzustand	
	T f	0 511	Timer	1/2
	Z f	0 511	Zähler	1/2
	Timerpara.		Timer über Parameter adressiert	2
	Zählerpara.		Zähler über Parameter adressiert	2

Statuswort	BIE	A1	A0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	-	-	-	-	-	✓	-	✓	✓
Operation beeinflusst	-	-	-	-	-	✓	✓	✓	1

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
0			ODER-Verknüpfung auf Signalzustand	
	T f	0 511	Timer	1/2
	Z f	0 511	Zähler	1/2
	Timerpara.		Timer über Parameter adressiert	2
	Zählerpara.		Zähler über Parameter adressiert	2
ON			ODER-Verknüpfung auf Signalzustand	
	T f	0 511	Timer	1/2
	Z f	0 511	Zähler	1/2
	Timerpara.		Timer über Parameter adressiert	2
	Zählerpara.		Zähler über Parameter adressiert	2

Statuswort	BIE	A1	A0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	-	-	-	-	-	-	-	✓	✓
Operation beeinflusst	-	-	-	-	-	0	✓	✓	1

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
Χ			EXKLUSIV-ODER-Verknüpfung auf Signalzustand	
	T f	0 511	Timer	1/2

Verknüpfungs-Operationen (Bit)

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
	Z f	0 511	Zähler	1/2
	Timerpara.		Timer über Parameter adressiert	2
	Zählerpara.		Zähler über Parameter adressiert	2
XN			EXKLUSIV-ODER-Verknüpfung auf Signalzustand	
	T f	0 511	Timer	1/2
	Z f	0 511	Zähler	1/2
	Timerpara.		Timer über Parameter adressiert	2
	Zählerpara.		Zähler über Parameter adressiert	2

Statuswort	BIE	A1	A0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	-	-	-	-	-	-	-	✓	✓
Operation beeinflusst	-	-	-	-	-	0	✓	✓	1

Verknüpfungs-Operationen mit Anzeigenbits

Abfrage der angegebenen Bedingungen auf ihren Signalzustand und Verknüpfen des Ergebnisses mit dem VKE nach der entspr. Funktion.

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
U, O,			UND, ODER, EXCLUSIV ODER-Verknüpfung auf Signalzustand "1"	
X	==0		Ergebnis = 0 (A1=0) und (A0=0)	1
	>0		Ergebnis > 0 (A1=1) und (A0=0)	1
	<0		Ergebnis < 0 (A1=0) und (A0=1)	1
	<>0		Ergebnis ungleich 0 ((A1=0) und (A0=1)) oder ((A1=1) und (A0=0))	1
	≤0		Ergebnis < 0 ((A1=0) und (A0=1)) oder ((A1=0) und (A0=0))	1
	≥0		Ergebnis \geq 0 ((A1=1) und (A0=0)) oder ((A1=1) und (A0=0))	1
	UO		unordered (A1=1) und (A0=1)	1
	os		OS=1	1
	BIE		BIE=1	1
	OV		OV=1	1

Statuswort für: U	BIE	A1	A0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	✓	✓	✓	✓	✓	✓	-	✓	✓
Operation beeinflusst	-	-	-	-	-	✓	✓	✓	1
Statuswort für: O, X	BIE	A1	A0	OV	os	OR	STA	VKE	/ER
Statuswort für: O, X Operation hängt ab von	BIE ✓	A1 ✓	A 0 ✓	OV ✓	os ✓	OR -	STA -	VKE ✓	/ER ✓

Verknüpfungs-Operationen (Bit)

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
UN			UND NICHT/ODER NICHT/EXCLUSIV ODER NICHT	1
ON			Verknüpfung auf Signalzustand "0"	
XN	==0		Ergebnis = 0 (A1=0) und (A0=0)	1
	>0		Ergebnis > 0 (A1=1) und (A0=0)	1
	<0		Ergebnis < 0 (A1=0) und (A0=1)	1
	<>0		Ergebnis ungleich 0 ((A1=0) und (A0=1)) oder ((A1=1) und (A0=0))	1
	<=0		Ergebnis < 0 ((A1=0) und (A0=1)) oder ((A1=0) und (A0=0))	1
	>=0		Ergebnis >= 0 ((A1=1) und (A0=0)) oder ((A1=1) und (A0=0))	1
	UO		unordered (A1=1) und (A0=1)	1
	OS		OS=0	1
	BIE		BIE=0	1
	OV		OV=0	1

Statuswort für: UN	BIE	A1	A0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	✓	✓	✓	✓	✓	✓	-	✓	✓
Operation beeinflusst	-	-	-	-	-	✓	✓	✓	1
Statuswort für: ON, XN	BIE	A1	Α0	OV	os	OR	STA	VKE	/ER
Statuswort fur. Oin, Ain	DIC	Ai	AU	OV	US	UK	SIA	VIC	
0 " " " " "	,	/	/	/	1			✓	✓
Operation hängt ab von	✓	✓	\checkmark	\checkmark	\checkmark	-	-	V	•

SPEED7 AWL-Operationen

Verknüpfungs-Operationen (Wort)

3.19 Verknüpfungs-Operationen (Wort)

Verknüpfungs-Operationen mit dem Inhalt von AKKU1

Verknüpfung des Inhalts von AKKU1 bzw. AKKU1-L mit einem Wort bzw. Doppelwort nach der entsprechenden Funktion. Das Wort bzw. Doppelwort steht entweder als Konstante in der Operation oder im AKKU2. Das Ergebnis steht im AKKU1 bzw. AKKU1-L.

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
UW	k16		UND AKKU2-L	1
UW			UND 16-Bit-Konstante	2
OW	k16		ODER AKKU2-L	1
OW			ODER 16-Bit-Konstante	2
XOW	k16		EXKLUSIV ODER AKKU2-L	1
XOW			EXKLUSIV ODER 16-Bit-Konstante	2
UD	k32		UND AKKU2	1
UD			UND 32-Bit-Konstante	3
OD	k32		ODER AKKU2	1
OD			ODER 32-Bit-Konstante	3
XOD	k32		EXKLUSIV ODER AKKU2	1
XOD			EXKLUSIV ODER 32-Bit-Konstante	3

Statuswort	BIE	A1	A 0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	-	-	-	-	-	-	-	-	-
Operation beeinflusst	-	✓	0	0	-	-	-	-	-

Zeit-Operationen

3.20 Zeit-Operationen

Starten bzw. Rücksetzen eines Timers (direkt adressiert oder über Parameter adressiert). Die Zeitdauer muss in AKKU1-L stehen.

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
SI	T f	0 511	Starte Zeit als Impuls bei Flankenwechsel von "0" nach	1/2
	Timerpara.		"1"	2
SV	T f		Starte Zeit als verlängerten Impuls bei Flankenwechsel	1/2
	Timerpara.		von "0" nach "1"	2
SE	T f		Starte Zeit als Einschaltverzögerung bei Flanken-	1/2
	Timerpara.		wechsel von "0" nach "1"	2
	T f		Starte Zeit als speichernde Einschaltverzögerung bei	1/2
	Timerpara.		Flankenwechsel von "0" nach "1"	2
SA	T f	0 511	Starte Zeit als Ausschaltverzögerung bei Flanken-	1/2
	Timerpara.		wechsel "1" nach "0"	2
FR	T f	0 511	Freigabe eines Timers für das erneute Starten bei	1/2
	Timerpara.		Flankenwechsel (Löschen des Flankenmerkers für das Starten der Zeit)	2
R	Τf	0 511	Rücksetzen einer Zeit	1/2
	Timerpara.			2

Statuswort	BIE	A1	A0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	-	-	-	-	-	-	-	✓	-
Operation beeinflusst	-	-	-	-	-	0	-	-	0

AWL-Operationen

Zähl-Operationen

3.21 Zähl-Operationen

Der Zählwert steht im AKKU1-L bzw. in der als Parameter übergebenen Adresse.

Befehl	Operand	Parameter	Funktionsbezeichnung	Länge in Worten
S	Z f	0 511	Vorbelegen eines Zählers bei Flankenwechsel von "0"	1/2
	Zählerpara.		nach "1"	2
R	Z f	0 511	Rücksetzen des Zählers auf "0" bei Flankenwechsel	1/2
	Zählerpara.		von "0" nach "1"	2
ZV	Z f	0 511	Zähle um 1 vorwärts bei Flankenwechsel von "0" nach	1/2
	Zählerpara.		"1"	2
ZR	Z f	0 511	Zähle um 1 rückwärts bei Flankenwechsel von "0" nach	1/2
	Zählerpara.		1	2
FR	Z f	0 511	Freigabe eines Zählers bei Flankenwechsel "0" nach "1"	1/2
Zähle	Zählerpara.		(Löschen des Flankenmerkers für Vorwärts- und Rückwärtszählen eines Zählers)	2

Statuswort	BIE	A1	A 0	OV	os	OR	STA	VKE	/ER
Operation hängt ab von	-	-	-	-	-	-	-	✓	-
Operation beeinflusst	-	-	-	-	-	0	-	-	0

Bausteinparameter SPEED7

HW-Kennung - HW ID

4 Bausteinparameter

4.1 HW-Kennung - HW ID

HW-Kennung

- Den Parameter HW_ID zur Angabe der HW-Kennung gibt es nur bei Einsatz in S7-1500 CPUs von Siemens.
- Bei der Konfiguration einer Hardware-Komponente wird für jedes Objekt der Hardware-Konfiguration automatisch eine Hardware-Kennung als *HW-Kennung* vergeben.
- Die HW-Kennung umfasst Module, Ports, Schnittstellen und E/A-Bereiche von Bus-Systemen.
- Die *HW-Kennung* ist eine dezimale Ganzzahl-Konstante vom Datentyp HW_IO.
- Bei der *HW-Kennung* wird nicht zwischen Ein- und Ausgabebereich unterschieden.
- Mit Hilfe der HW-Kennung können Sie die entsprechenden Hardware-Komponenten adressieren.

HW-Kennung ermitteln

Die *HW-Kennung* für die jeweilige Komponente können Sie mit folgender Vorgehensweise ermitteln:

- 1. Döffnen Sie in der Projektnavigation die "Gerätekonfiguration".
- **2.** Selektieren Sie die gewünschte Hardware-Komponente, deren *HW-Kennung* Sie ermitteln möchten.
- 3. Klicken Sie im *Inspektor*-Fenster auf "Allgemein".
 - → Die "HW-Kennung" wird angezeigt. Diese können Sie bei der Beschaltung der Bausteine in den Parameter HW_ID übernehmen.

HW-Kennung und Systemkonstanten

Sie können auch die *HW-Kennung* über die "Systemkonstanten" ermitteln. Über "Systemkonstanten" im Inspektor-Fenster werden alle HW-Kennungen eines in der Gerätesicht markierten Objekts mit Name und Typ aufgelistet. Name und Typ werden bei der Zuordnung der HW-Kennung automatisch generiert. Hierbei besitzt Name einen hierarchischen Aufbau mit maximal 4 Hierarchieebenen, wobei jede Ebene durch ein "~" getrennt wird. Den Namen der Komponente der entsprechenden Hierarchieebene können Sie jederzeit über die Eigenschaften anpassen.

HW-Kennung im Anwender-programm

- Bei der Erstellung Ihres Anwenderprogramms können Sie über Doppelklick auf den entsprechenden Ein- bzw. Ausgabe-Parameter aus einer Liste aller möglichen Hardware-Komponenten die entsprechende Hardware-Komponente zuordnen.
- Bei einem Prozessalarm können sie über die Startinformationen die HW-Kennung als "ID" der alarmauslösenden Hardware-Komponente ermitteln.

SPEED7 Bausteinparameter

Allgemeine und spezifische Fehlercodes RET VAL

4.2 RET_VAL und BUSY bei asynchron arbeitenden Bausteinen

Ausgangsparameter RET_VAL und BUSY

Bei asynchron arbeitenden Bausteinen erstreckt sich die Funktionsausführung über mehrere Bausteinaufrufe. Hierbei wird über die Ausgangsparameter RET_VAL und BUSY der Zustand der Auftragsausführung angezeigt:

Erstaufruf mit REQ = 1

- Bei freien Systemressourcen und korrekten Eingangsparametern wird BUSY auf 1 gesetzt und in RET_VAL W#16#7001 eingetragen.
- Sind die Systemressourcen belegt oder die Eingangsparameter fehlerhaft, wird BUSY auf 0 gesetzt und in RET_VAL der entsprechende Fehlercode eingetragen.

Zwischenaufruf

 BUSY bleibt auf 1 gesetzt und in RET_VAL wird W#16#7002 eingetragen. Dies signalisiert, dass sich der Auftrag noch in Bearbeitung befindet.

Letzter Aufruf

- Nach fehlerfreier Ausführung wird BUSY auf 0 gesetzt und in RET_VAL 0 eingetragen. Bitte beachten Sie, dass manche Bausteine über RET_VAL die Anzahl der übertragenen Daten rückmelden. Nähere Informationen hierzu finden Sie in den entsprechenden Bausteinbeschreibungen.
- Im Fehlerfall wird BUSY auf 0 gesetzt und in RET_VAL der entsprechende Fehlercode eingetragen.

Eingangsparameter REQ

Der Eingangsparameter REQ dient ausschließlich dem Anstoß eines Auftrags:

- Durch REQ = 1 im entsprechenden Baustein wird ein noch nicht aktiver Auftrag ausgeführt.
- Bei jedem Folgeaufruf des Bausteins wird REQ nicht ausgewertet.

Zusammenhang der Parameter

Aufruf-Nr.	Aufrufart	REQ	RET_VAL	BUSY	
1	Erstaufruf	1	W#16#7001	1	
			Fehlercode im Fehlerfall	0	
2 n-1	Zwischenaufruf	nicht relevant	W#16#7002	1	
n	Letzer Aufruf	nicht relevant	W#16#0000 ¹	0	
			Fehlercode im Fehlerfall		
1) Bei manchen Bausteinen	1) Bei manchen Bausteinen die Anzahl der übertragenen Daten - siehe entsprechende Bausteinbeschreibung.				

4.3 Allgemeine und spezifische Fehlercodes RET VAL

Übersicht

Der Rückgabewert *RET_VAL* einer Systemfunktion stellt einen der beiden folgenden Fehlercodes zur Verfügung:

- Allgemeiner Fehlercode, der sich auf jeden beliebigen SFC beziehen kann.
- Spezifischer Fehlercode, der sich auf den jeweiligen SFC bezieht.

Es handelt sich beim Datentyp des Ausgangsparameters *RET_VAL* zwar um eine Ganzzahl (INT), doch die Fehlercodes der Systemfunktionen werden nach hexadezimalen Werten gegliedert.

Wenn Sie einen Rückgabewert auswerten und den Wert mit den Fehlercodes vergleichen, so lassen Sie sich den Fehlercode im Hexadezimalformat ausgeben.

Bausteinparameter SPEED7

Allgemeine und spezifische Fehlercodes RET VAL

RET_VAL (Rückgabewert)

Die folgende Tabelle zeigt den Aufbau eines Fehlercodes:

Bit	Bedeutung
7 0	Ereignisnummer bzw. Fehlerklasse und Einzelfehler
14 8	Bit 14 8 = "0": Spezifischer Fehlercode
	Den spezifischen Fehlercode finden Sie in der Beschreibung der einzelnen SFCs.
	Bit 14 8 > "0": Allgemeiner Fehlercode
	Die möglichen allgemeinen Fehlercodesfinden Sie auf der folgenden Seite.
15	Bit 15 = "1": zeigt an, dass ein Fehler aufgetreten ist.

Spezifischer Fehlercode

Dieser Fehlercode zeigt an, dass ein Fehler, der zu einer bestimmten Systemfunktion gehört, während der Bearbeitung aufgetreten ist.

Ein spezifischer Fehlercode besteht aus:

- Fehlerklasse zwischen 0 und 7
- Einzelfehler zwischen 0 und 15

Bit	Bedeutung
3 0	Einzelfehler
6 4	Fehlerklasse
7	Bit 7 = "1"
14 8	Bit 14 8 = "0"
15	Bit 15 = "1": zeigt an, dass ein Fehler aufgetreten ist.

Allgemeine Fehlercodes RET_VAL

Der Parameter *RET_VAL* verschiedener SFCs liefert keine spezifischen, sondern nur allgemeine Fehlerinformationen zurück.

Der allgemeine Fehlercode enthält Fehlerinformationen, die bei allen Systemfunktionen auftreten können. Ein allgemeiner Fehlercode besteht aus den beiden folgenden Nummern:

- Eine Parameternummer zwischen 1 und 111, wobei 1 den ersten Parameter, 2 den zweiten Parameter usw. des aufgerufenen SFC anzeigt.
- Eine Ereignisnummer zwischen 0 und 127. Die Ereignisnummer zeigt einen synchronen Fehler an.

Bit	Bedeutung
7 0	Ereignisnummer
14 8	Parameternummer
15	Bit 15 = "1": zeigt an, dass ein Fehler aufgetreten ist.

SPEED7 Bausteinparameter

Allgemeine und spezifische Fehlercodes RET_VAL

Allgemeine Fehlercodes

In der folgenden Tabelle werden die allgemeinen Fehlercodes eines Rückgabewerts erläutert. Die Darstellung erfolgt im Hexadezimalformat, wobei der Buchstabe x in jeder Codenummer nur als Platzhalter dient und die Nummer des Parameters der Systemfunktion darstellt, die den Fehler verursacht hat.

Fehlercode	Beschreibung
8x7Fh	Interner Fehler. Dieser Fehlercode zeigt einen internen Fehler am Parameter x an. Dieser Fehler wurde nicht vom Anwender verursacht und kann von ihm auch nicht behoben werden.
8x01h	Unzulässige Syntaxkennung bei einem ANY-Parameter.
8x22h	Bereichslängenfehler beim Lesen eines Parameters.
8x23h	Bereichslängenfehler beim Schreiben eines Parameters. Dieser Fehlercode zeigt an, dass sich der Parameter x vollständig oder teilweise außerhalb des Operandenbereichs befindet oder die Länge eines Bitfeldes bei einem ANY-Parameter nicht durch 8 teilbar ist.
8x24h	Bereichsfehler beim Lesen eines Parameters.
8x25h	Bereichsfehler beim Schreiben eines Parameters. Dieser Fehlercode zeigt an, dass sich der Parameter x in einem Bereich befindet, der für die Systemfunktion unzulässig ist. Die Beschreibung der jeweiligen Funktion gibt die Bereiche an, die für die Funktion unzulässig sind.
8x26h	Der Parameter enthält eine zu große Nummer einer Zeitzelle. Dieser Fehlercode zeigt an, dass die Zeitzelle, die in Parameter x angegeben wird, nicht vorhanden ist.
8x27h	Der Parameter enthält eine zu große Nummer einer Zählerzelle (Nummernfehler des Zählers). Dieser Fehlercode zeigt an, dass die Zählerzelle, die in Parameter x angegeben wird, nicht vorhanden ist.
8x28h	Ausrichtungsfehler beim Lesen eines Parameters.
8x29h	Ausrichtungsfehler beim Schreiben eines Parameters. Dieser Fehlercode zeigt an, dass der Verweis auf den Parameter x ein Operand ist, dessen Bitadresse ungleich 0 ist.
8x30h	Der Parameter befindet sich in dem schreibgeschützten Global-DB.
8x31h	Der Parameter befindet sich in dem schreibgeschützten Instanz-DB. Dieser Fehlercode zeigt an, dass der Parameter x sich in einem schreibgeschützten Datenbaustein befindet. Wenn der Datenbaustein von der Systemfunktion selbst geöffnet wurde, gibt die Systemfunktion immer den Wert 8x30h aus.
8x32h	Der Parameter enthält eine zu große DB-Nummer (Nummernfehler des DBs).
8x34h	Der Parameter enthält eine zu große FC-Nummer (Nummernfehler des FCs).
8x35h	Der Parameter enthält eine zu große FB-Nummer (Nummernfehler des FBs). Dieser Fehlercode zeigt an, dass der Parameter x eine Bausteinnummer enthält, die größer ist als die maximal zulässige Bausteinnummer.
8x3Ah	Der Parameter enthält die Nummer eines DBs, der nicht geladen ist.
8x3Ch	Der Parameter enthält die Nummer eines FCs, der nicht geladen ist.
8x3Eh	Der Parameter enthält die Nummer eines FBs, der nicht geladen ist.
8x42h	Es ist ein Zugriffsfehler aufgetreten, während das System einen Parameter aus dem Peripheriebereich der Eingänge auslesen wollte.
8x43h	Es ist ein Zugriffsfehler aufgetreten, während das System einen Parameter in den Peripheriebereich der Ausgänge schreiben wollte.
8x44h	Fehler beim n-ten (n > 1) Lesezugriff nach Auftreten eines Fehlers.
8x45h	Fehler beim n-ten (n > 1) Schreibzugriff nach Auftreten eines Fehlers. Dieser Fehlercode zeigt an, dass der Zugriff auf den gewünschten Parameter verweigert wird.

Einbinden in Siemens SIMATIC Manager

5 Controls Library einbinden

Bibliotheken

Die produktspezifischen Bausteine finden Sie im "Download Center" von www.yaskawa.eu.com unter "Conrols Library" als Bibliothek zum Download. Die Bibliotheken liegen als gepackte zip-Dateien vor. Sobald Sie produktspezifische Bausteine verwenden möchten, sind diese in Ihr Projekt zu importieren. Die produktspezifische Bausteine liegen für den entsprechenden Anwendungsbereich in den Bibliotheken ab:

- Allgemeine Funktionen
 - → "Gebäude-Automatisierung "Building Control""...Seite 101
 - → "Netzwerkkommunikation "Network Communication""... Seite 114
 - → "Serielle Kommunikation "Serial Communication""...Seite 202
 - → "EtherCAT-Kommunikation "EtherCAT Communication""...Seite 237
 - → "Standard-Bausteine "Standard""...Seite 892
 - → "Systembausteine "System Blocks""...Seite 990
- Einfache Antriebssteuerung
 - → "Antriebssteuerung Simple Motion Control Library"...Seite 286
- Modbus
 - → "Modbus-Kommunikation "Modbus Communication""...Seite 181
- Motion-, Energiemess- und Frequenzmessmodule
 Diese Bibliothek ist nur für den Siemens SIMATIC Manager verfügbar.
 - → "Modulspezifisch "Device Specific""...Seite 245

5.1 Einbinden in Siemens SIMATIC Manager

Übersicht

Die Einbindung in den Siemens SIMATIC Manager erfolgt nach folgenden Schritten:

- 1. ZIP-Datei laden
- 2. Bibliothek "dearchivieren"
- 3. Bibliothek öffnen und Bausteine in Projekt übertragen

ZIP-Datei laden

Navigieren Sie auf der Webseite zu der gewünschten ZIP-Datei, laden und speichern Sie diese in Ihrem Arbeitsverzeichnis.

Bibliothek dearchivieren

- 1. Starten Sie den Siemens SIMATIC Manager mit Ihrem Projekt.
- Offnen Sie mit "Datei → Dearchivieren" das Dialogfenster zur Auswahl der ZIP-Datei.
- 3. Wählen Sie die entsprechende ZIP-Datei an und klicken Sie auf [Öffnen].
- 4. Geben Sie ein Zielverzeichnis an, in dem die Bausteine abzulegen sind.
- 5. Starten Sie den Entpackvorgang mit [OK].

Bibliothek öffnen und Bausteine in Projekt übertragen

- 1. Diffnen Sie die Bibliothek nach dem Entpackvorgang.
- <u>2.</u> Öffnen Sie Ihr Projekt und kopieren Sie die erforderlichen Bausteine aus der Bibliothek in das Verzeichnis "Bausteine" Ihres Projekts.
 - ➡ Nun haben Sie in Ihrem Anwenderprogramm Zugriff auf die produktspezifischen Bausteine.

Werden anstelle der SFCs FCs verwendet, so werden diese von den CPUs ab Firmware 3.6.0 unterstützt.

Einbinden in Siemens TIA Portal

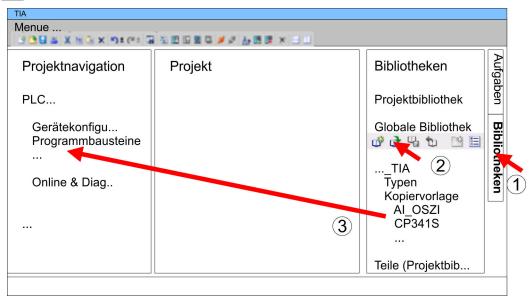
5.2 Einbinden in Siemens TIA Portal

Übersicht

Die Einbindung in das Siemens TIA Portal erfolgt nach folgenden Schritten:

- 1. | ZIP-Datei laden
- 2. JZIP-Datei entpacken
- 3. Bibliothek öffnen und Bausteine in Projekt übertragen

ZIP-Datei laden


- 1. Navigieren Sie auf der Webseite zu der ZIP-Datei, welche zu Ihrer Programmversion passt.
- 2. Laden und speichern Sie diese in Ihrem Arbeitsverzeichnis.

ZIP-Datei entpacken

Entpacken Sie die ZIP-Datei mit Ihrem Entpackprogramm in ein Arbeitsverzeichnis für das Siemens TIA Portal.

Bibliothek öffnen und Bausteine in Projekt übertragen

- 1. Starten Sie das Siemens TIA Portal mit Ihrem Projekt.
- 2. Wechseln sie in die *Projektansicht*.
- 3. Wählen Sie auf der rechten Seite die Task-Card "Bibliotheken".
- 4. Klicken Sie auf "Globale Bibliothek".
- 5. Klicken Sie auf "Globale Bibliothek öffnen".
- **6.** Navigieren Sie zu ihrem Arbeitsverzeichnis und laden Sie die Datei ..._TIA.al1x.

7. Kopieren Sie die erforderlichen Bausteine aus der Bibliothek in das Verzeichnis "Programmbausteine" in der *Projektnavigation* Ihres Projekts. Nun haben Sie in Ihrem Anwenderprogramm Zugriff auf die produktspezifischen Bausteine.

Hauptprogramm - "Main" > OB 1 - Main - Zyklisches Programm

6 Organisationsbausteine - "Organization Blocks"

6.1 Übersicht

OBs (Organisationsbausteine) bilden die Schnittstelle zwischen Betriebssystem und Anwenderprogramm. Das Hauptprogramm ist immer in OB 1 abzulegen. Die anderen OBs haben entsprechend den Aufrufereignissen festgelegte Nummern. OBs werden entsprechend ihrer zugeordneten Priorität bearbeitet. Das Betriebssystem der CPU ruft die OBs bei folgenden Ereignissen auf:

- Anlauf der CPU
- Zyklisch oder zeitlich getaktete Programmfolge
- Auftreten von Fehlern
- Auftreten von Prozessalarmen

6.2 Hauptprogramm - "Main"

6.2.1 OB 1 - Main - Zyklisches Programm

Beschreibung

Das Betriebssystem der CPU bearbeitet den OB 1 zyklisch. Nach dem Übergang von ANLAUF nach RUN startet die zyklische Bearbeitung des OB 1. Der OB 1 hat die niedrigste Priorität (Priorität 1) aller laufzeitüberwachten OBs. Innerhalb des OB 1 haben Sie die Möglichkeit Funktionsbausteine und Funktionen aufzurufen.

Funktionsweise

Wenn die Bearbeitung des OB 1 beendet ist, sendet das Betriebssystem Globaldaten. Bevor der OB 1 neu gestartet wird, schreibt das Betriebssystem das Prozessabbild der Ausgänge in die Ausgabe-Module, aktualisiert das Prozessabbild der Eingänge und empfängt Globaldaten für die CPU.

Zvkluszeit

Die Zeit, die für die gesamte Bearbeitung des OB 1 erforderlich ist, nennt man *Zykluszeit*. Hierin eingeschlossen sind beispielsweise die Bearbeitungszeiten für höhere Prioritätsklassen, die das Hauptprogramm unterbrechen bzw. Kommunikationsprozesse des Betriebssystems. Hierzu zählen auch Systemsteuerung der zyklischen Bearbeitung, Aktualisierung des Prozessabbilds und Aktualisierung der Zeitfunktionen.

Sofern Sie mit der CPU online sind, haben Sie die Möglichkeit die aktuelle Zykluszeit über den Siemens SIMATIC Manager zu ermitteln. Über "Zielsystem → Baugruppenzustand → Zykluszeit" können Sie die minimale, maximale und aktuelle Zykluszeit ausgeben lassen.

Zykluszeitüberwachung

Die CPU bietet eine Überwachung der *maximalen Zykluszeit*. Der Wert für die *maximale Zykluszeit* ist auf 150ms voreingestellt. Sie können diesen Wert umparametrieren oder aber mit dem SFC 43 (RE_TRIGR) an jeder Stelle Ihres Programms die Zeitüberwachung neu starten. Überschreitet Ihr Programm die *maximale Zykluszeit* für den OB 1, dann ruft das Betriebssystem den OB 80 (Zykluszeitüberschreitung) auf. Ist der OB 80 nicht programmiert, dann geht die CPU in den Betriebszustand STOP. Neben der Überwachung der *maximalen Zykluszeit* kann die Einhaltung einer *minimalen Zykluszeit* garantiert werden. Hierbei verzögert das Betriebssystem den Beginn eines neuen Zyklus (Schreiben des Prozessabbilds der Ausgänge), solange, bis die *minimale Zykluszeit* erreicht ist.

Zugriff auf die Lokaldaten

Das Betriebssystem der CPU übergibt dem OB 1, wie jedem OB, in den ersten 20Byte der temporären Lokaldaten eine Startinformation. Mit der Systemfunktion SFC 6 RD_SINFO können Sie auf diese Startinformation zugreifen. Bitte beachten Sie hierbei, dass Sie die Startinformationen eines OBs nur im OB selbst lesen können, da es sich hier um temporäre Daten handelt.

Anlauf - "Startup" > OB 100, OB 102 - Complete / Cold Restart - Anlauf

Lokaldaten

Die folgende Tabelle zeigt die Belegung der Startinformationen für den OB 1, die defaultmäßige symbolische Bezeichnung und die Datentypen:

Variable	Datentyp	Beschreibung
OB1_EV_CLASS	BYTE	Ereignisklasse und Kennung:
		11h: OB 1 ist aktiv
OB1_SCAN_1	BYTE	01h: Abschluss des Neustart
		03h: Abschluss des freien Zyklus
OB1_PRIORITY	BYTE	Prioritätsklasse: 1
OB1_OB_NUMBR	BYTE	OB-NR. (01)
OB1_RESERVED_1	BYTE	reserviert
OB1_RESERVED_2	BYTE	reserviert
OB1_PREV_CYCLE	INT	Laufzeit des vorherigen Zyklus (ms)
OB1_MIN_CYCLE	INT	Minimale Zykluszeit (ms) seit dem letzten Anlauf
OB1_MAX_CYCLE	INT	Maximale Zykluszeit (ms) seit dem letzten Anlauf
OB1_DATE_TIME	DATE_AND_TIME	Datum und Uhrzeit, zu denen der OB angefordert wurde

6.3 Anlauf - "Startup"

6.3.1 OB 100, OB 102 - Complete / Cold Restart - Anlauf

Beschreibung

Bei einem Neustart bzw. Anlauf versetzt die CPU sich selbst und die angebundenen Module in den projektierten Grundzustand, löscht die nicht remanenten Daten im Systemspeicher, ruft den Anlauf-OB auf und bearbeitet danach den OB 1 von Anfang an. Hierbei bleiben das aktuelle Programm und die aktuellen Daten im Arbeitsspeicher erhalten, ebenso die per SFC erzeugten Datenbausteine.

Bei der CPU unterscheidet man folgende Anlaufarten:

- OB 100: Complete Restart Neustart
- OB 102: Cold Restart Kaltstart

Startereignisse für den Anlauf:

- nach NetzEIN mit Betriebsartenschalter in RUN
- nach Umschalten des Betriebsartenschalters von STOP in RUN
- nach einer RUN/STOP-Anforderung durch eine Kommunikationsfunktion

Auch wenn kein Anlauf-OB in die CPU geladen ist, geht diese ohne Fehlermeldung in RUN.

Lokaldaten

Nachfolgend sehen Sie die Belegung der Startinformationen für den Anlauf-OB, die defaultmäßige symbolische Bezeichnung und die Datentypen:

Variable	Datentyp	Beschreibung
OB10x_EV_CLASS	BYTE	Ereignisklasse und Kennung:
		13h: aktiv

Anlauf - "Startup" > OB 100, OB 102 - Complete / Cold Restart - Anlauf

Variable	Datentyp	Beschreibung
OB10x_STRTUP	BYTE	Anlaufanforderung 81h: Manuelle Neustart-Anforderung
		 82h: Automatische Neustart-Anforderung
		85h: Manuelle Kaltstartanforderung86h: Automatische Kaltstartanforderung
		 8Ah: Master: Manuelle Neustart-Anforderung 8Bh: Master: Automatische Neustart-Anforderung
OB10x_PRIORITY	BYTE	Prioritätsklasse: 27
OB10x_OB_NUMBR	BYTE	OB-NR. (100 oder 102)
OB10x_RESERVED_1	BYTE	reserviert
OB10x_RESERVED_2	BYTE	reserviert
OB10x_STOP	WORD	Nummer des Ereignisses, das die CPU in STOP versetzt hat
OB10x_STRT_INFO	DWORD	Ergänzende Informationen zum aktuellen Anlauf
OB10x_DATE_TIME	DATE_AND_TIME	Datum und Uhrzeit, zu denen der OB angefordert wurde

Informationen, wie Sie auf die Lokaldaten zugreifen können finden Sie in der Beschreibung zum OB 1.

Belegung OB10x_STRT_INFO

Bit-Nr.	Bedeutung	mögliche Werte (binär)	Beschreibung
3124	124 Anlaufinforma- tion	xxxx xxxx0	keine Soll-Istausbau-Differenz vorhanden
		xxxx xxx1	Soll-Istausbau-Differenz vorhanden
		xxxx 0xxx	Uhr für Zeitstempel bei letztem NetzEIN nicht gepuffert
		xxxx 1xxx	Uhr für Zeitstempel bei letztem NetzEIN gepuffert
2316	Soeben durchge-	0000 0011	Neustart über Betriebsartenschalter
	führte Anlaufart	0000 0100	Neustart über MPI-Bedienung
		0000 0111	Kaltstart über Betriebsartenschalter
		0000 1000	Kaltstart über MPI-Bedienung
		0001 0000	Automatischer Neustart nach gepuffertem NetzEIN
		0001 0011	Neustart über Betriebsartenschalter; letzter NetzEIN gepuffert
		0001 0100	Neustart über MPI-Bedienung; letzter NetzEIN gepuffert
		0010 0000	Automatischer Neustart nach ungepuffertem NetzEIN (mit systemseitigem Urlöschen)
		0010 0011	Neustart über Betriebsartenschalter; letzter NetzEIN ungepuffert
		0010 0100	Neustart über MPI-Bedienung; letzter NetzEIN ungepuffert
1512	Zulässigkeit	0000	Automatischer Anlauf unzulässig, Urlöschen angefordert
	automatischer Anlaufarten	0001	Automatischer Anlauf unzulässig, Parameteränderung erforderlich
		0111	Automatischer Neustart zulässig

Kommunikationsalarme - "Communication Interrupts" > OB 55 - DP: Status Alarm - Statusalarm

Bit-Nr.	Bedeutung	mögliche Werte (binär)	Beschreibung
118	3	0000	Manueller Anlauf unzulässig, Urlöschen angefordert
	manueller Anlaufarten	0001	Manueller Anlauf unzulässig, Parameteränderung erforderlich
		0111	Manueller Neustart zulässig
70	Letzte gültige	0000 0000	Keine Anlaufart
	Bedienung oder Einstellung der automatischen Anlaufart bei	0000 0011	Neustart durch Betriebsartenschalter
		0000 0100	Neustart über MPI-Bedienung
	NetzEIN	0001 0000	Automatischer Neustart nach gepuffertem NetzEIN
		0001 0011	Neustart über Betriebsartenschalter, letzter NetzEIN gepuffert
		0001 0100	Neustart über MPI-Bedienung, letzter NetzEIN gepuffert
		0010 0000	Automatischer Neustart nach ungepuffertem NetzEIN (mit systemseitigem Urlöschen)
		0010 0011	Neustart über Betriebsartenschalter, letzter NetzEIN ungepuffert
		0010 0100	Neustart über MPI-Bedienung, letzter NetzEIN ungepuffert

6.4 Kommunikationsalarme - "Communication Interrupts"

6.4.1 OB 55 - DP: Status Alarm - Statusalarm

Beschreibung

Den Statusalarm-OB (OB 55) gibt es nur bei DP-V1-fähigen CPUs.

Das Betriebssystem der CPU ruft den OB 55 auf, wenn von einem Steckplatz eines DP-V1-Slaves ein Statusalarm ausgelöst wurde. Dies kann der Fall sein, wenn eine Komponente (Modul) eines DP-V1-Slaves ihren Betriebszustand wechselt, z.B. von RUN nach STOP. Die genauen Ereignisse, die einen Statusalarm auslösen, entnehmen Sie der Dokumentation des DP-V1-Slave-Herstellers.

Lokaldaten

Nachfolgend sehen Sie die Belegung der Startinformationen für den OB 55, die defaultmäßige symbolische Bezeichnung und die Datentypen:

Variable	Datentyp	Beschreibung
OB55_EV_CLASS	BYTE	Ereignisklasse und Kennung:
		11h: kommendes Ereignis
OB55_STRT_INF	BYTE	55h: Statusalarm bei DP
		58h: Statusalarm bei PROFINET IO
OB55_PRIORITY	BYTE	Parametrierte Prioritätsklasse:
		Defaultwert: 2
OB55_OB_NUMBR	BYTE	OB-NR. (55)
OB55_RESERVED_1	BYTE	reserviert

Kommunikationsalarme - "Communication Interrupts" > OB 56 - DP: Update Alarm - Update-Alarm

Variable	Datentyp	Beschreibung
OB55_IO_FLAG	BYTE	Eingabe-Module: 54h
		Ausgabe-Module: 55h
OB55_MDL_ADDR	WORD	Logische Basisadresse des Moduls, das den Alarm auslöst
OB55_LEN	BYTE	Länge des Datenblocks, den der Alarm liefert
OB55_TYPE	BYTE	Kennung für den Alarmtyp "Statusalarm"
OB55_SLOT	BYTE	Steckplatz-Nr. der Alarm auslösenden Komponente
OB55_SPEC	BYTE	Specifier:
		■ Bit 1, 0: Alarm-Specifier
		■ Bit 2: Add_Ack
		■ Bit 7 3: Seq-Nummer
OB55_DATE_TIME	DATE_AND_TIME	Datum und Uhrzeit, zu denen der OB angefordert wurde

Die vollständige Alarmzusatzinformation aus dem Telegramm erhalten Sie durch Aufruf des SFB 54 "RALRM" innerhalb des OB 55. → "SFB 54 -RALRM - Alarm von einer Peripheriebaugruppe empfangen"...Seite 876

6.4.2 OB 56 - DP: Update Alarm - Update-Alarm

Beschreibung

Den Update-Alarm-OB (OB 56) gibt es nur bei DP-V1-fähigen CPUs.

Das Betriebssystem der CPU ruft den OB 56 auf, wenn von einem Steckplatz eines DP-V1-Slaves ein Update-Alarm ausgelöst wurde. Dies kann der Fall sein, wenn Sie an einem Steckplatz eines DP-V1-Slaves eine Parameteränderung durchgeführt haben. Die genauen Ereignisse, die einen Update-Alarm auslösen, entnehmen Sie der Dokumentation des DP-V1-Slave-Herstellers.

Lokaldaten

Nachfolgend sehen Sie die Belegung der Startinformationen für den OB 56, die defaultmäßige symbolische Bezeichnung und die Datentypen:

Variable	Datentyp	Beschreibung
OB56_EV_CLASS	BYTE	Ereignisklasse und Kennung:
		11h: kommendes Ereignis
OB56_STRT_INF	BYTE	56h: Update-Alarm bei DP
		59h: Update-Alarm bei PROFINET IO
OB56_PRIORITY	BYTE	Parametrierte Prioritätsklasse:
		Defaultwert: 2
OB56_OB_NUMBR	BYTE	OB-NR. (56)
OB56_RESERVED_1	BYTE	reserviert

Kommunikationsalarme - "Communication Interrupts" > OB 57 - DP: Manufacture Alarm - Herstellerspezifische Alarme

Variable	Datentyp	Beschreibung
OB56_IO_FLAG	BYTE	Eingabe-Module: 54h
		Ausgabe-Module: 55h
OB56_MDL_ADDR	WORD	Logische Basisadresse des Moduls, das den Alarm auslöst
OB56_LEN	BYTE	Länge des Datenblocks, den der Alarm liefert
OB56_TYPE	BYTE	Kennung für den Alarmtyp "Update-Alarm"
OB56_SLOT	BYTE	Steckplatz-Nr. der Alarm auslösenden Komponente
OB56_SPEC	BYTE	Specifier:
		■ Bit 1, 0: Alarm-Specifier
		Bit 2: Add_Ack
		■ Bit 7 3: Seq-Nummer
OB56_DATE_TIME	DATE_AND_TIME	Datum und Uhrzeit, zu denen der OB angefordert wurde

Die vollständige Alarmzusatzinformation aus dem Telegramm erhalten Sie durch Aufruf des SFB 54 "RALRM" innerhalb des OB 56. → "SFB 54 -RALRM - Alarm von einer Peripheriebaugruppe empfangen"...Seite 876

6.4.3 OB 57 - DP: Manufacture Alarm - Herstellerspezifische Alarme

Beschreibung

Das Betriebssystem der CPU ruft den OB 57 auf, wenn von einem Steckplatz eines Slaves-Systems ein herstellerspezifischer Alarm ausgelöst wurde.

Verzögerungsalarme - "Time delay Interrupts" > OB 20, OB 21 - DEL INTx - Verzögerungsalarm

Lokaldaten

Nachfolgend sehen Sie die Belegung der Startinformationen für den OB 57, die defaultmäßige symbolische Bezeichnung und die Datentypen:

Variable	Datentyp	Beschreibung
OB57_EV_CLASS	BYTE	Ereignisklasse und Kennung:
		11h: kommendes Ereignis
OB57_STRT_INF	BYTE	57h: Startinformation für OB 57
OB57_PRIORITY	BYTE	Parametrierte Prioritätsklasse:
		Defaultwert: 2
OB57_OB_NUMBR	BYTE	OB-NR. (57)
OB57_RESERVED_1	BYTE	reserviert
OB57_IO_FLAG	BYTE	Eingabe-Module: 54h
		Ausgabe-Module: 55h
OB57_MDL_ADDR	WORD	Logische Basisadresse des Moduls, das den Alarm auslöst
OB57_LEN	BYTE	reserviert
OB57_TYPE	BYTE	reserviert
OB57_SLOT	BYTE	reserviert
OB57_SPEC	BYTE	reserviert
OB57_DATE_TIME	DATE_AND_TIME	Datum und Uhrzeit, zu denen der OB angefordert wurde

Die vollständige Alarmzusatzinformation aus dem Telegramm erhalten Sie durch Aufruf des SFB 54 "RALRM" innerhalb des OB 57.

6.5 Verzögerungsalarme - "Time delay Interrupts"

6.5.1 OB 20, OB 21 - DEL INTx - Verzögerungsalarm

Beschreibung

Mit einem Verzögerungsalarm haben Sie die Möglichkeit, unabhängig von den Zeitfunktionen eine Zeitverzögerung zu realisieren. Sie können die Verzögerungsalarme in der Hardware-Konfiguration projektieren bzw. mit Systemfunktionen vom Programm aus zur Laufzeit steuern.

Aktivierung

Für die Aktivierung ist keine Hardware-Konfiguration erforderlich. Sie starten den Verzögerungsalarm durch Aufruf des SFC 32 SRT_DINT und durch Laden des entsprechenden OBs in die CPU. Übergeben Sie hierbei der Funktion OB-Nr., Verzögerungszeit und eine Kennzeichnung. Nach der angegebenen Verzögerungszeit wird vom Betriebssystem der zugehörige OB aufgerufen. Sie haben die Möglichkeit mit dem SFC 33 CAN_DINT einen Verzögerungsalarm, der noch nicht aktiviert ist, zu stornieren bzw. mit dem SFC 34 QRY_DINT den Zustand des Verzögerungsalarms zu ermitteln. Mit den SFC 39 DIS_IRT können Sie Verzögerungsalarme sperren und mit dem SFC 40 EN_IRT wieder freigeben. Mittels einer Hardware-Konfiguration können Sie die Priorität der entsprechenden OBs verändern. Hierzu öffnen sie die CPU mit "Bearbeiten → Objekteigenschaften → Alarme". Hier können Sie die entsprechenden Prioritäten einstellen.

Uhrzeitalarme - "Time of day Interrupts" > OB 10, OB 11 - TOD INTx - Uhrzeitalarm

Fehlerverhalten

Fehlt zum Zeitpunkt seines Aufrufs der Verzögerungsalarm-OB im Anwenderprogramm, ruft das Betriebssystem den OB 85 auf. Ist dieser nicht vorhanden, geht die CPU in STOP.

Lokaldaten

Nachfolgend sehen Sie die Belegung der Startinformationen für OB 20 und OB 21, die defaultmäßige symbolische Bezeichnung und die Datentypen:

Variable	Datentyp	Beschreibung
OB20_EV_CLASS	BYTE	Ereignisklasse und Kennung:
		11h: Verzögerungsalarm ist aktiv
OB20_STRT_INF	BYTE	21h: Startanforderung für OB 20
		22h: Startanforderung für OB 21
OB20_PRIORITY	BYTE	Parametrierte Prioritätsklasse:
		Defaultwerte:
		3 (OB 20)
		4 (OB 21)
OB20_OB_NUMBR	BYTE	OB-NR. (20, 21)
OB20_RESERVED_1	BYTE	reserviert
OB20_RESERVED_2	BYTE	reserviert
OB20_SIGN	WORD	Anwenderkennung:
		Eingangsparameter SIGN aus dem Aufruf des SFC 32 (SRT_DINT)
OB20_DTIME	TIME	Abgelaufene Verzögerungszeit in ms
OB20_DATE_TIME	DATE_AND_TIME	Datum und Uhrzeit, zu denen der OB angefordert wurde

Informationen, wie Sie auf die Lokaldaten zugreifen können finden Sie in der Beschreibung zum OB 1.

6.6 Uhrzeitalarme - "Time of day Interrupts"

6.6.1 OB 10, OB 11 - TOD_INTx - Uhrzeitalarm

Beschreibung

Sie verwenden Uhrzeitalarme, wenn Sie ein Programm zu einer bestimmten Uhrzeit einmalig oder periodisch bearbeiten lassen möchten. Sie können die Uhrzeitalarme in der Hardware-Konfiguration projektieren oder mit Systemfunktionen vom Programm aus zur Laufzeit steuern. Voraussetzung für die ordnungsgemäße Bearbeitung der Uhrzeitalarme ist eine richtig eingestellte Echtzeituhr auf der CPU. Bei der Ausführung haben Sie folgende Auswahlmöglichkeiten:

- einmalig
- minütlich
- stündlich
- täglich
- wöchentlich
- monatlich
- jährlich
- am Monatsende

Uhrzeitalarme - "Time of day Interrupts" > OB 10, OB 11 - TOD INTx - Uhrzeitalarm

Bei monatlicher Bearbeitung eines Uhrzeitalarm-OBs sind beim Startdatum nur die Tage 1, 2, ... 28 möglich.

Aktivieruna

Um einen Uhrzeitalarm zu starten, müssen Sie den Alarm erst einstellen und dann aktivieren. Hierzu gibt es folgende Möglichkeiten:

- Die Aktivierung der Uhrzeitalarme geschieht über die Hardware- Konfiguration. Sie öffnen die CPU mit "Bearbeiten → Objekteigenschaften → Uhrzeitalarme". Hier können Sie die entsprechenden Uhrzeitalarm einstellen und aktivieren. Nach Übertragung in die CPU und dem Übergang von Anlauf in RUN wird die Uhrzeitalarmüberwachung automatisch gestartet.
- 2. Sie stellen den Uhrzeitalarm wie oben gezeigt über die Hardware- Konfiguration und aktivieren ihn durch Aufrufen des SFC 30 ACT_TINT aus Ihrem Anwenderprogramm heraus.
- 3. Sie stellen den Uhrzeitalarm durch Aufruf des SFC 28 SET_TINT und aktivieren ihn durch Aufruf des SFC 30 ACT_TINT.

Sie können den Uhrzeitalarm mit Hilfe des SFC 41 DIS_AIRT verzögern bzw. die Verzögerung mit dem SFC 42 EN_AIRT aufheben.

Fehlerverhalten

Fehlt zum Zeitpunkt seines Aufrufs der Uhrzeitalarm-OB im Anwenderprogramm, ruft das Betriebssystem den OB 85 auf. Ist dieser nicht vorhanden, geht die CPU in STOP. Kommt es zu einem Fehler bei der Uhrzeitalarmbearbeitung z.B. Startzeitpunkt liegt in der Vergangenheit, wird der Zeitfehler-OB OB 80 aufgerufen und danach der Uhrzeitalarm-OB einmalig bearbeitet.

Möglichkeiten bei der Aktivierung

Die folgende Tabelle zeigt die prinzipiellen Möglichkeiten beim Aktivieren eines Uhrzeitalarms:

Intervall	Beschreibung
Nicht aktiviert	Der Uhrzeitalarm-OB wird nicht bearbeitet. Sie können den Uhrzeitalarm aktivieren durch Aufruf des SFC 30.
Einmalig aktiviert	Der Uhrzeitalarm-OB wird automatisch storniert, nachdem er einmal wie angegeben bearbeitet wurde. Ihr Programm kann mit dem SFC 28 den Uhrzeitalarm erneut stellen und ihn mit dem SFC 30 wieder aktivieren.
Periodisch aktiviert	Die CPU ermittelt zum Zeitpunkt des Uhrzeitalarms aus der aktuellen Uhrzeit und der Periode den nächsten Startzeitpunkt des Uhrzeitalarms.

Lokaldaten des Uhrzeitalarm-OBs

Nachfolgend sehen Sie die Belegung der Startinformationen für OB 10 ... OB 11, die defaultmäßige symbolische Bezeichnung und die Datentypen. Als Variablennamen wurden die Defaultnamen des OB 10 gewählt.

Variable	Datentyp	Beschreibung
OB10_EV_CLASS	BYTE	Ereignisklasse und Kennung: 11h: Alarm ist aktiv
OB10_STRT_INFO	ВҮТЕ	11h: Startanforderung für OB 1012h: Startanforderung für OB 11
OB10_PRIORITY	BYTE	Parametrierte Prioritätsklasse: Defaultwert 2

Zyklusalarme - "Cyclic Interrupts" > OB 28, 29, 32, 33, 34, 35 - CYC INTx - Weckalarm

Variable	Datentyp	Beschreibung
OB10_OB_NUMBR	BYTE	OB-NR. (10 11)
OB10_RESERVED_1	BYTE	reserviert
OB10_RESERVED_2	BYTE	reserviert
OB10_PERIOD_EXE	WORD	Der OB wird zu dem angegebenen Intervall bearbeitet:
		0000h: einmalig
		0201h: minütlich
		0401h: stündlich
		1001h: täglich
		1201h: wöchentlich
		1401h: monatlich
		1801h: jährlich
		2001h: am Monatsende
OB10_RESERVED_3	INT	reserviert
OB10_RESERVED_4	INT	reserviert
OB10_DATE_TIME	DATE_AND_TIME	Datum und Uhrzeit, zu denen der OB angefordert wurde

Informationen, wie Sie auf die Lokaldaten zugreifen können finden Sie in der Beschreibung zum OB 1.

6.7 Zyklusalarme - "Cyclic Interrupts"

6.7.1 OB 28, 29, 32, 33, 34, 35 - CYC_INTx - Weckalarm

Beschreibung

Mit Hilfe eines Weckalarm OBs können Sie die zyklische Programmbearbeitung in äquidistanten Zeitabständen unterbrechen. Startzeitpunkt des Zeittakts ist der Betriebszustandwechsel von ANLAUF in RUN nach Abarbeitung des Anlauf-OB OB 100.

Weckalarm-OB	Defaultwert für Zeitraster	Defaultwert für die Prioritätsklasse	Möglichkeit zur Phasenver- schiebung
OB 28	250µs	24	nein ¹
OB 29	500µs	24	nein ¹
OB 32	1s	09	ja
OB 33	500ms	10	ja
OB 34	200ms	11	ja
OB 35	100ms	12	ja

¹⁾ Sind beide OBs aktiviert, wird zuerst OB 28 und direkt danach OB 29 abgearbeitet. Aufgrund der sehr kleinen Zeitraster und der hohen Prioritäten sollte auf den gleichzeitigen Einsatz von OB 28 und OB 29 verzichtet werden.

Aktivierung

Einen Weckalarm aktivieren Sie, indem Sie den entsprechenden OB in Ihrer CPU programmieren. Sie können den Weckalarm mit Hilfe des SFC 41 DIS_AIRT verzögern bzw. die Verzögerung mit dem SFC 42 EN_AIRT aufheben.

Zyklusalarme - "Cyclic Interrupts" > OB 28, 29, 32, 33, 34, 35 - CYC INTx - Weckalarm

Funktionsweise

Nach dem Übergang von ANLAUF in RUN werden unter Berücksichtigung der Phasenverschiebung die aktivierten Weckalarm-OBs in den vorgegebenen äquidistanten Intervallen aufgerufen. Die äquidistanten Startzeitpunkte der Weckalarm-OBs ergeben sich aus dem jeweiligen Zeitraster und der Phasenverschiebung. Durch Programmieren der entsprechenden OBs können Sie auf diese Weise zeitgesteuert ein Unter-Programm ausführen.

Phasenverschiebung

Die Phasenverschiebung dient zur zeitversetzten Bearbeitung von Weckalarmen mit einem gemeinsamen Vielfachen im Zeitintervall. Auf diese Weise erhalten Sie eine höhere Genauigkeit der Zeitintervalle. Der Startzeitpunkt der Zeitintervalle ist der Übergang des Betriebszustands ANLAUF nach RUN. Danach ist der Aufrufzeitpunkt für einen Weckalarm- OB das Zeitintervall plus die parametrierte Phasenverschiebung.

Parametrierung

Ausführzeit, Phasenverschiebung (nicht OB 28, 29) und Priorität können Sie über den Hardware-Konfigurator parametrieren.

Je nach OB haben Sie folgende Parametriermöglichkeiten:

OB 28, 29, 33, 34: Als produktspezifische Parameter parametrierbar über

Eigenschaften der CPU.

OB 32, 35: Parametrierbar über Siemens CPU 318-2DP.

ĭ

Achten Sie beim Vorgeben der Zeittakte darauf, dass zwischen den Startereignissen der einzelnen Weckalarme genügend Zeit für die Bearbeitung der Weckalarme bleibt. Der fehlerverursachende Weckalarm wird nachgeholt.

Lokaldaten

Nachfolgend sehen Sie die Belegung der Startinformationen, die defaultmäßige symbolische Bezeichnung und die Datentypen. Als Variablennamen wurden die Defaultnamen des OB 35 gewählt.

Variable	Datentyp	Beschreibung
OB35_EV_CLASS	BYTE	Ereignisklasse und Kennung:
		11h: Weckalarm ist aktiv
OB35_STRT_INF	BYTE	2Fh: Startanforderung für OB 28
		30h: Startanforderung für OB 29
		33h: Startanforderung für OB 32
		34h: Startanforderung für OB 33
		35h: Startanforderung für OB 34
		36h: Startanforderung für OB 35
OB35_PRIORITY	BYTE	Parametrierte Prioritätsklasse;
		Defaultwerte: 24 (OB 28, 29),
		9 (OB 32) 12 (OB 35)
OB35_OB_NUMBR	BYTE	OB-NR. (28, 29, 32 35)
OB35_RESERVED_1	BYTE	reserviert
OB35_RESERVED_2	BYTE	reserviert

Prozessalarme - "Hardware Interrupts" > OB 40, OB 41 - HW INTx - Prozessalarm

Variable	Datentyp	Beschreibung
OB35_PHASE_OFFSET	WORD	Phasenverschiebung in ms
OB35_RESERVED_3	INT	reserviert
OB35_EXC_FREQ	INT	Zeittakt in ms
OB35_DATE_TIME	DATE_AND_TIME	Datum und Uhrzeit der OB-Anforderung

Informationen, wie Sie auf die Lokaldaten zugreifen können finden Sie in der Beschreibung zum OB 1.

Da die Bausteine SFC58/59 bzw. SFB52/53 zum Schreiben und Lesen von Datensätzen nicht unterbrechbar sind, kann es in Verbindung mit OB 28 und OB 29 zu einem CPU-STOP kommen!

6.8 Prozessalarme - "Hardware Interrupts"

6.8.1 OB 40, OB 41 - HW INTx - Prozessalarm

Beschreibung

Sie verwenden Prozessalarme zur sofortigen Erfassung von Ereignisse aus dem gesteuerten Prozess in ihrem Anwenderprogramm. Hier können Sie dem entsprechenden Programm darauf reagieren. Hierzu stehen Ihnen die OB 40 und OB 41 zur Verfügung. Durch Parametrierung legen Sie für jedes Modul fest, welche Kanäle bei welcher Randbedingung einen Prozessalarm auslösen. Mit den SFC 55 WR_PARM, SFC 56 WR_DPARM und SFC 57 PARM_MOD können Sie die prozessalarmerfassenden Module auch während des laufenden Betriebs (um-)parametrieren. → "SFC 55 - WR_PARM - Dynamische Parameter schreiben"... Seite 793→ "SFC 56 - WR_DPARM - Vordefinierte Parameter schreiben"... Seite 795→ "SFC 57 - PARM_MOD - Modul parametrieren"... Seite 797

Aktivierung

Die Prozessalarmverwaltung der CPU ist immer aktiv. Damit ein Modul einen Prozessalarm auslösen kann, müssen Sie auf dem entsprechenden Modul über eine Hardware-Konfiguration die Auslösung eines Prozessalarms freigeben. Hierbei können Sie wählen, ob der Prozessalarm bei kommendem, gehenden oder bei beiden Ereignis ausgelöst werden soll.

Funktionsweise

Nach Auslösen eines Prozessalarms durch das Modul identifiziert das Betriebssystem den Steckplatz und ruft den Prozessalarm-OB auf. Hat dieser eine höhere Priorität als die momentan aktive Prioritätsklasse, wird dieser gestartet. Nach der Bearbeitung des zum Prozessalarm gehörenden OB wird der Prozessalarm auf dem Modul quittiert. Tritt in der Zeit zwischen der Identifikation und der Quittung eines Prozessalarms auf demselben Modul erneut ein Ereignis auf, das einen Prozessalarm auslösen soll, gilt:

- Tritt das Ereignis bei dem Kanal auf, der zuvor den Prozessalarm ausgelöst hat, so geht der zugehörige Alarm verloren.
- Tritt das Ereignis bei einem anderen Kanal desselben Moduls auf, so kann momentan kein Prozessalarm ausgelöst werden. Steht nach der Quittierung des vorhergehenden Ereignisses das "neue" Alarmereignis noch an, wird ein Prozessalarm ausgelöst. Ansonsten geht der Alarm verloren.
- Soll ein Prozessalarm ausgelöst werden, dessen OB aufgrund eines Prozessalarms eines anderen Moduls aktiv ist, so kann nur dann ein Prozessalarm ausgelöst werden, wenn nach der Quittierung das auslösende Ereignis noch ansteht.

Asynchrone Fehleralarme - "Asynchronous error Interrupts" > OB 80 - CYCL FLT - Zeitfehler

Im Anlauf erzeugt die Baugruppe keine Prozessalarme. Die Alarmbearbeitung beginnt beim Übergang in den Betriebszustand RUN. Beim Übergang anstehende Prozessalarme gehen verloren.

Fehlerverhalten

Fehlt zum Zeitpunkt seines Aufrufs der Prozessalarm-OB im Anwenderprogramm, ruft das Betriebssystem den OB 85 auf. Der Prozessalarm wird quittiert. Ist der OB 85 nicht vorhanden, geht die CPU in STOP.

Diagnosealarm

Während der Bearbeitung eines Prozessalarms kann ein Diagnosealarm ausgelöst werden. Tritt in der Zeit vom Auslösen des Prozessalarms bis zu dessen Quittierung auf demselben Kanal ein weiterer Prozessalarm auf, wird über einen Diagnosealarm der Prozessalarmverlust zur Systemdiagnose gemeldet.

Lokaldaten

Nachfolgend sehen Sie die Belegung der Startinformationen für OB 40 und OB 41, die defaultmäßige symbolische Bezeichnung und die Datentypen:

Variable	Datentyp	Beschreibung
OB40_EV_CLASS	BYTE	Ereignisklasse und Kennung:
		11h: Alarm ist aktiv
OB40_STRT_INF	BYTE	41h: Alarm über Interruptleitung 1
OB40_PRIORITY	BYTE	Parametrierte Prioritätsklasse:
		Defaultwert: 16 (OB 40)
		Defaultwert: 17 (OB 41)
OB40_OB_NUMBR	BYTE	OB-NR. (40, 41)
OB40_RESERVED_1	BYTE	reserviert
OB40_IO_FLAG	BYTE	Eingabe-Module 54h
		Ausgabe-Module 55h
OB40_MDL_ADDR	WORD	Logische Basisadresse des Moduls, das den Alarm auslöst
OB40_POINT_ADDR	DWORD	■ Bei Digital-Modulen
		 Bitfeld mit den Zuständen der Eingänge auf dem Modul (Bit 0 entspricht dem ersten Eintrag).
		■ Bei Analog-Modulen
		 Bitfeld mit Informationen welcher Kanal welche Grenzen erreicht hat.
		■ Bei CPs oder IMs
		 Informiert über den Alarmzustand des Moduls.
OB40_DATE_TIME	DATE_AND_TIME	Datum und Uhrzeit, zu denen der OB angefordert wurde

Informationen, wie Sie auf die Lokaldaten zugreifen können finden Sie in der Beschreibung zum OB 1.

6.9 Asynchrone Fehleralarme - "Asynchronous error Interrupts"

6.9.1 OB 80 - CYCL_FLT - Zeitfehler

Beschreibung

Das Betriebssystem der CPU ruft den OB 80 auf, wenn einer der folgenden Fehler auftritt:

Asynchrone Fehleralarme - "Asynchronous error Interrupts" > OB 80 - CYCL FLT - Zeitfehler

- Überschreiten der Zyklusüberwachungszeit
- Quittungsfehler bei der Bearbeitung eines OBs d.h. der abgeforderte OB ist noch in Bearbeitung bzw. ein OB wird innerhalb einer Prioritätsklasse zu oft angefordert.
- Uhrzeitfehleralarm, d.h. abgelaufener Uhrzeitalarm durch Vorstellen der Uhrzeit oder nach Übergang in RUN.

Sie können den Zeitfehler-OB mit Hilfe der SFC 39 ... 42 sperren bzw. verzögern und wieder freigeben.

 \int_{1}^{∞}

Haben Sie den OB 80 nicht programmiert, geht die CPU in den Betriebszustand STOP.

Wird der OB 80 in demselben Zyklus zweimal aufgrund der Zykluszeitüberschreitung aufgerufen, geht die CPU in STOP. Sie können dies durch Aufruf des SFC 43 RE_TRIGR an geeigneter Stelle verhindern.

Lokaldaten

Nachfolgend sehen Sie die Belegung der Startinformationen für den OB 80, die defaultmäßige symbolische Bezeichnung und die Datentypen:

Variable	Datentyp	Beschreibung
OB80_EV_CLASS	BYTE	Ereignisklasse und Kennung: 35h
OB80_FLT_ID	BYTE	Fehlercode (mögliche Werte:
		01h, 02h, 05h, 06h, 07h, 08h, 09h, 0Ah)
OB80_PRIORITY	BYTE	Prioritätsklasse: 26 (Betriebszustand RUN)
		28 (Überlauf des OB-Anforderungspuffers)
OB80_OB_NUMBR	BYTE	OB-NR. (80)
OB80_RESERVED_1	BYTE	reserviert
OB80_RESERVED_2	BYTE	reserviert
OB80_ERROR_INFO	WORD	Fehlerinformation: abhängig vom Fehlercode
OB80_ERR_EV_CLASS	BYTE	Klasse des Ereignisses, das den Fehler ausgelöst hat
OB80_ERR_EV_NUM	BYTE	Nummer des Ereignisses, das den Fehler ausgelöst hat
OB80_OB_PRIORITY	BYTE	Fehlerinformation: abhängig vom Fehlercode
OB80_OB_NUM	BYTE	Fehlerinformation: abhängig vom Fehlercode
OB80_DATE_TIME	DATE_AND_TIME	Datum und Uhrzeit, zu denen der OB angefordert wurde

Informationen, wie Sie auf die Lokaldaten zugreifen können finden Sie in der Beschreibung zum OB 1.

Belegung der Variablen nach Fehlercode

Die vom Fehlercode abhängigen Variablen haben folgende Bedeutung:

Fehlercode	Variable	Bit	Beschreibung
01h			Zykluszeit überschritten
	OB80_ERROR_INFO		Laufzeit des letzten Zyklus (ms)
	OB80_ERR_EV_CLASS		Klasse des Ereignisses, das den Alarm ausgelöst hat

Asynchrone Fehleralarme - "Asynchronous error Interrupts" > OB 80 - CYCL_FLT - Zeitfehler

Fehlercode	Variable	Bit	Beschreibung
	OB80_ERR_EV_NUM		Nummer des Ereignisses, das den Alarm ausgelöst hat
	OB80_OB_PRIORITY		Prioritätsklasse des OBs, der bearbeitet wurde, als der Fehler auftrat
	OB80_OB_NUM		Nummer des OBs, der bearbeitet wurde, als der Fehler auftrat
02h			Der angeforderte OB ist noch in Bearbeitung
	OB80_ERROR_INFO		Die zugehörige temporäre Variable des angeforderten OB. Diese ist bestimmt durch: OB80_ERR_EV_CLASS und
			OB80_ERR_EV_NUM
	OB80_ERR_EV_CLASS		Klasse des Ereignisses, das den Alarm aus- gelöst hat
	OB80_ERR_EV_NUM		Nummer des Ereignisses, das den Alarm ausgelöst hat
	OB80_OB_PRIORITY		Prioritätsklasse des fehlerverursachenden OBs
	OB80_OB_NUM		Nummer des fehlerverursachenden OBs
05h und 06h			Abgelaufener Uhrzeitalarm durch Uhrzeitsprung
			Abgelaufener Uhrzeitalarm bei Wiedereintritt in RUN nach HALT
	OB80_ERROR_INFO	Bit 0 = "1"	Für den Uhrzeitalarm 0 liegt der Startzeitpunkt in der Vergangenheit.
		Bit 7 = "1"	Für den Uhrzeitalarm 7 liegt der Startzeit- punkt in der Vergangenheit
		Bit 15 8	nicht verwendet
	OB80_ERR_EV_CLASS		nicht verwendet
	OB80_ERR_EV_NUM		nicht verwendet
	OB80_OB_PRIORITY		nicht verwendet
	OB80_OB_NUM		nicht verwendet
07h	Bedeutung der Parameter siehe Fehlercode 02h		Überlauf des OB-Anforderungspuffers für die aktuelle Prioritätsklasse
			(jede OB-Startanforderung für eine Prioritätsklasse wird in den zugehörigen OB-Anforderungspuffer eingetragen; nach Beendigung des OBs wird der Eintrag wieder gelöscht. Falls für eine Prioritätsklasse mehr Startanforderungen vorliegen als die maximal mögliche Anzahl der Einträge im zugehörigen OB-Anforderungspuffer, wird der OB 80 mit dem Fehlercode 07h aufgerufen.)
08h			Taktsynchronalarm-Zeitfehler
09h			Alarmverlust durch zu hohe Alarmlast

Asynchrone Fehleralarme - "Asynchronous error Interrupts" > OB 82 - I/O FLT1 - Diagnosealarm

Fehlercode	Variable	Bit	Beschreibung
OAh	OB80_ERROR_INFO		Wiedereintritt in RUN nach CiR (Configuration in RUN) CiR-Synchronisationszeit in ms

6.9.2 OB 81 - PS_FLT - Stromversorgungsfehler

Beschreibung

Das Betriebssystem der CPU ruft den OB 81 auf, wenn ein Ereignis auftritt, das durch einen Fehler in der Stromversorgung oder der Pufferung ausgelöst wird. Eine Überprüfung erfolgt ausschließlich nach Netz EIN.

Ist im Fehlerfall der OB 81 in der CPU nicht vorhanden, bleibt diese im RUN.

Sie können den Stromversorgungsfehler-OB mit Hilfe der SFCs 39 ... 42 sperren bzw. verzögern und wieder freigeben.

Lokaldaten

Nachfolgend sehen Sie die Belegung der Startinformationen für den OB 81, die defaultmäßige symbolische Bezeichnung und die Datentypen:

Variable	Datentyp	Beschreibung
OB81_EV_CLASS	BYTE	Ereignisklasse und Kennung:
		39h: kommendes Ereignis
OB81_FLT_ID	BYTE	Fehlercode:
		22h: Pufferspannung in CPU fehlt
OB81_PRIORITY	BYTE	Prioritätsklasse:
		28 (Betriebszustand ANLAUF)
OB81_OB_NUMBR	BYTE	OB-NR. (81)
OB81_RESERVED_1	BYTE	reserviert
OB81_RESERVED_2	BYTE	reserviert
OB81_RACK_CPU	WORD	Bit 2 0: 000 (Baugruppenträgernummer)
		Bit 3: 1 (Master-CPU)
		Bit 7 4: 1111 (fix)
OB81_RESERVED_3	BYTE	reserviert
OB81_RESERVED_4	BYTE	reserviert
OB81_RESERVED_5	BYTE	reserviert
OB81_RESERVED_6	BYTE	reserviert
OB81_DATE_TIME	DATE_AND_TIME	Datum und Uhrzeit, zu denen der OB angefordert wurde.

Informationen, wie Sie auf die Lokaldaten zugreifen können finden Sie in der Beschreibung zum OB 1.

6.9.3 OB 82 - I/O_FLT1 - Diagnosealarm

Beschreibung

- Die Systemdiagnose ist die Erkennung, Auswertung und die Meldung von Fehlern, die innerhalb Ihres Automatisierungssystems auftreten. Dies können Fehler im Anwenderprogramm oder Ausfälle auf Modulen aber auch Drahtbrüche bei Signal-Modulen sein.
- Wenn ein diagnosefähiges Modul, bei dem Sie den Diagnosealarm freigegeben haben, einen Fehler erkennt, stellt dies eine Diagnosealarmanforderung sowohl bei kommendem als auch bei gehendem Ereignis an die CPU. Daraufhin ruft das Betriebssystem den OB 82 auf.

Asynchrone Fehleralarme - "Asynchronous error Interrupts" > OB 82 - I/O FLT1 - Diagnosealarm

- Der OB 82 enthält in seinen lokalen Variablen die logische Basisadresse sowie eine vier Byte lange Diagnoseinformation des fehlerhaften Moduls.
- Haben Sie den OB 82 nicht programmiert, geht die CPU in den Betriebszustand STOP. Sie können den Diagnosealarm mit Hilfe des SFC 41 DIS_AIRT verzögern bzw. die Verzögerung mit dem SFC 42 EN_AIRT aufheben.

Diagnose in Ringpuffer

Alle an das Betriebssystem der CPU gemeldeten Diagnoseereignisse werden in einem Diagnosepuffer in der Reihenfolge ihres Auftretens mit Datum und Uhrzeit abgelegt. Dies ist ein gepufferter Speicherbereich der CPU, der seinen Inhalt auch nach Urlöschen behält.

- Dieser Diagnosepuffer ist als Ringpuffer aufgebaut und bietet bei den CPUs Platz für 100 Diagnoseeinträge.
- Ist der Diagnosepuffer voll, wird der jeweils älteste Eintrag vom aktuellen Diagnoseereignis überschrieben.
- Sofern Sie mit der CPU online sind, können Sie mittels der Zielsystemfunktionen des Siemens SIMATIC Manager den Diagnosepuffer auslesen. Neben den Standardeinträgen im Diagnosepuffer gibt es in den CPUs noch zusätzliche Einträge, die ausschließlich in Form einer Ereignis-ID angezeigt werden. Informationen hierzu finden Sie im Handbuch Ihrer CPU im Teil "Einsatz CPU ..." unter "Diagnoseeinträge".

Parametrierbare Diagnose

Bei den parametrierbaren Diagnoseereignissen erfolgt eine Meldung nur dann, wenn Sie mittels Parametrierung die Diagnose freigegeben haben. Die nicht parametrierbaren Diagnoseereignisse werden unabhängig von der Diagnosefreigabe immer gemeldet.

Diagnose mittels SFC eintragen

Mit der Systemfunktion SFC 52 WR_USMSG können Sie einen Eintrag in den Diagnosepuffer schreiben.

Diagnosedaten mittels SFC 59 auslesen

Innerhalb des OB 82 können Sie mittels SFC 59 RD_REC (Datensatz lesen) auf detaillierte Fehlerinformationen zugreifen. Die Diagnosedaten sind bis zum Verlassen des OB 82 konsistent. Mit dem Verlassen des OB 82 wird der Diagnosealarm quittiert. Die Diagnosedaten befinden sich in Datensatz 0 (DS 0) und Datensatz 1 (DS 1). DS 0 besteht aus 4 Byte, die den aktuellen Zustand des Moduls beschreiben. Die Belegung dieser Byte entspricht der Belegung der Byte 8 ... 11 der Startinformationen des OB 82. DS 1 setzt sich aus den 4Byte des DS 0 und den modulspezifischen Diagnosedaten zusammen. Näheres zu den modulspezifischen Diagnosedaten finden Sie bei der Beschreibung des entsprechenden Moduls.

Lokaldaten

Informationen, wie Sie auf die Lokaldaten zugreifen können finden Sie in der Beschreibung zum OB 1. Nachfolgend sehen Sie die Belegung der Startinformationen für den OB 82, die defaultmäßige symbolische Bezeichnung und die Datentypen:

Variable	Datentyp	Beschreibung
OB82_EV_CLASS	BYTE	Ereignisklasse und Kennung:
		38h: gehendes Ereignis
		39h: kommendes Ereignis
OB82_FLT_ID	BYTE	Fehlercode (42h)
OB82_PRIORITY	ВҮТЕ	Prioritätsklasse: parametrierbar über Hardware-Konfiguration
OB82_OB_NUMBR	BYTE	OB-NR. (82)
OB82_RESERVED_1	BYTE	reserviert

Asynchrone Fehleralarme - "Asynchronous error Interrupts" > OB 82 - I/O_FLT1 - Diagnosealarm

Variable	Datentyp	Beschreibung
OB82_IO_FLAG	BYTE	Eingabe-Module 54h
		Ausgabe-Module 55h
OB82_MDL_ADDR	INT	Logische Basisadresse des Moduls, in dem der Fehler aufgetreten ist
OB82_MDL_DEFECT	BOOL	Modulstörung
OB82_INT_FAULT	BOOL	Interner Fehler
OB82_EXT_FAULT	BOOL	Externer Fehler
OB82_PNT_INFO	BOOL	Kanalfehler vorhanden
OB82_EXT_VOLTAGE	BOOL	Externe Hilfsspannung fehlt
OB82_FLD_CONNCTR	BOOL	Frontstecker fehlt
OB82_NO_CONFIG	BOOL	Modul nicht parametriert
OB82_CONFIG_ERR	BOOL	Falsche Parameter im Modul
OB82_MDL_TYPE	BYTE	Bit 3 0: Modulklasse
		Bit 4: Kanalinformation vorhanden
		Bit 5: Anwenderinformation vorhanden
		Bit 6: Diagnosealarm von Stellvertreter
		Bit 7: reserviert
OB82_SUB_MDL_ERR	BOOL	Anwendermodul falsch/fehlt
OB82_COMM_FAULT	BOOL	Kommunikationsstörung
OB82_MDL_STOP	BOOL	Betriebszustand (0: RUN, 1:STOP)
OB82_WTCH_DOG_FLT	BOOL	Zeitüberwachung hat angesprochen
OB82_INT_PS_FLT	BOOL	Modulinterne Versorgungsspannung ausgefallen
OB82_PRIM_BATT_FLT	BOOL	Batterie leer
OB82_BCKUP_BATT_FLT	BOOL	Gesamte Pufferung ausgefallen
OB82_RESERVED_2	BOOL	Reserviert
OB82_RACK_FLT	BOOL	Erweiterungsgeräteausfall
OB82_PROC_FLT	BOOL	Prozessorausfall
OB82_EPROM_FLT	BOOL	EPROM-Fehler
OB82_RAM_FLT	BOOL	RAM-Fehler
OB82_ADU_FLT	BOOL	ADU/DAU-Fehler
OB82_FUSE_FLT	BOOL	Sicherungsausfall
OB82_HW_INTR_FLT	BOOL	Prozessalarm verloren
OB82_RESERVED_3	BOOL	reserviert
OB82_DATE_TIME	DATE_AND_TIME	Datum und Uhrzeit, zu denen der OB angefordert wurde

Asynchrone Fehleralarme - "Asynchronous error Interrupts" > OB 83 - I/O FLT2 - Ziehen / Stecken

6.9.4 OB 83 - I/O_FLT2 - Ziehen / Stecken

Beschreibung

Das Betriebssystem der CPU ruft den OB 83 in folgenden Fällen auf:

- nach dem Ziehen oder Stecken eines projektierten Moduls
- nachdem Sie im Rahmen einer Anlagenänderung im laufenden Betrieb (CiR-Vorgang)
 Parameteränderungen eines Moduls vorgenommen und diese im RUN in die CPU geladen haben

Wenn Sie den OB 83 nicht programmiert haben, geht die CPU in den Betriebszustand STOP. Sie können den OB 83 mit Hilfe der SFCs 39 bis 42 sperren bzw. verzögern und wieder freigeben.

Ziehen/Stecken von Modulen

Jedes Ziehen und Stecken eines projektierten Moduls (nicht erlaubt sind: Netzteile, CPUs und Bus-Koppler) in den Betriebszuständen RUN, STOP und ANLAUF führt zu einem Ziehen/Stecken-Alarm. Dieser Alarm führt bei der zugehörigen CPU zu je einem Eintrag in den Diagnosepuffer und die Systemzustandsliste. Darüber hinaus wird im Betriebszustand RUN der Ziehen/Stecken-OB gestartet. Haben Sie diesen OB nicht programmiert, geht die CPU in den Betriebszustand STOP. Das Ziehen und Stecken von Modulen wird innerhalb des Systems sekündlich überwacht. Damit das Ziehen und Stecken von der CPU erkannt wird, muss zwischen dem Ziehen und Stecken eines Moduls eine Mindestzeit von zwei Sekunden liegen. Beim Ziehen eines projektierten Moduls im Betriebszustand RUN wird der OB 83 gestartet. Zuvor kann ein Zugriffsfehler beim Direktzugriff oder der Prozessabbildaktualisierung erkannt werden. Beim Stecken eines Moduls in einen projektierten Steckplatz im Zustand RUN überprüft das Betriebssystem, ob der Modultyp des gesteckten Moduls mit der Projektierung übereinstimmt. Anschließend wird der OB 83 gestartet, und bei Übereinstimmung der Modultypen erfolgt die Parametrierung.

Umparametrieren

Im Rahmen einer Anlagenänderung im laufenden Betrieb können Sie vorhandene Module umparametrieren. Die Umparametrierung erfolgt durch Übertragung der Parameter-Datensätze an die gewünschten Module. Der Ablauf ist wie folgt:

- Nachdem Sie die Parameteränderungen eines Moduls vorgenommen und im RUN in die CPU geladen haben, wird der OB 83 gestartet (Startereignis: 3367h). Aus der OB-Startinformation relevant sind die logische Basisadresse (OB83_MDL_ADDR) und der Baugruppentyp (OB83_MDL_TYPE). Ab jetzt sind die Ein- bzw. Ausgangsdaten des Moduls evtl. nicht mehr korrekt, und es dürfen keine SFCs mehr aktiv sein, die Datensätze an dieses Modul senden.
- 2. Nach Beendigung des OB 83 erfolgt die Umparametrierung des Moduls.
- **3.** Nach Beendigung des Umparametriervorgangs wird der OB 83 erneut gestartet.
 - Startereignis: 3267h, falls die Parametrierung erfolgreich war, bzw.
 - 3968h, falls sie nicht erfolgreich war

Die Ein- bzw. Ausgangsdaten des Moduls verhalten sich wie nach einem Stecken-Alarm, d.h. sie sind zum jetzigen Zeitpunkt unter Umständen noch nicht korrekt. Sie dürfen ab sofort wieder SFCs aufrufen, die Datensätze an das Modul senden.

Lokaldaten

Nachfolgend sehen Sie die Belegung der Startinformationen für den OB 83, die defaultmäßige symbolische Bezeichnung und die Datentypen:

Asynchrone Fehleralarme - "Asynchronous error Interrupts" > OB 83 - I/O_FLT2 - Ziehen / Stecken

Variable	Datentyp	Beschreibung
OB83_EV_CLASS	BYTE	Ereignisklasse und Kennungen:
		32h: Ende Umparametrierung des Moduls
		33h: Beginn Umparametrierung des Moduls
		38h: Modul gesteckt
		39h: Modul gezogen bzw. nicht ansprechbar bzw. Ende Umparametrierung
OB83_FLT_ID	BYTE	Fehlercode:
		(mögliche Werte: 51h, 54h 56h, 58h, 61, 63h 68h)
OB83_PRIORITY	ВУТЕ	Prioritätsklasse: parametrierbar über Hardware-Konfiguration
OB83_OB_NUMBR	BYTE	OB-Nummer (83)
OB83_RESERVED_1	ВУТЕ	Kennung für Modul bzw. Submodul/Schnittstellen- modul
OB83_MDL_ID	BYTE	54h: Peripheriebereich der Eingänge (PE)
		55h: Peripheriebereich der Ausgänge (PA)
OB83_MDL_ADDR	WORD	zentral oder dezentral PROFIBUS-DP:
		 Logische Basisadresse des betroffenen Moduls, bei einem Mischmodul die kleinste verwendete logische Adresse des Moduls.
		 Sind die logischen E- und A-Adressen des Mischmoduls gleich, erhält die logische Basis- adresse die E-Kennung.
		dezentral PROFINET-IO:
		 Logische Basisadresse des Moduls/Submoduls
OB83_RACK_NUM	WORD	■ Falls OB83_RESERVED_1 = A0h:
		Nr. des Submoduls/Schnittstellenmoduls (low byte)
		Falls OB83_RESERVED_1 = C4h:
		- zentral: Nr. des Baugruppenträgers
		 dezentral PROFIBUS-DP: Nr. der DP-Station (low byte) und DP-Master-
		system-ID (high byte)
		- dezentral PROFINET-IO:
		physikalische Adresse: Kennungsbit (Bit 15, 1 = PROFINET-IO), IO-System-ID (Bit 11 14) und Stationsnummer (Bit 0 10)

Asynchrone Fehleralarme - "Asynchronous error Interrupts" > OB 83 - I/O_FLT2 - Ziehen / Stecken

Variable	Datentyp	Beschreibung
OB83_MDL_TYPE	WORD	 zentral oder dezentral PROFIBUS-DP: Modultyp des betroffenen Moduls (x: nicht anwenderrelevant)
OB83_DATE_TIME	DATE_AND_TIME	Datum und Uhrzeit, zu denen der OB angefordert wurde

OB83_EV_CLASS

Ereignis, das den Start des OB 83 verursacht hat.

OB83_EV_CLASS	OB83_FLT_ID	Beschreibung
39h	51h	PROFINET-IO Modul gezogen
	54h	PROFINET-IO Submodul gezogen
38h	54h	PROFINET-IO Submodul gesteckt und entspricht parametriertem Submodul
	55h	PROFINET-IO Submodul gesteckt, entspricht aber nicht dem parametrierten Submodul
	56h	PROFINET-IO Submodul gesteckt, jedoch Fehler bei Parametrierung
	58h	PROFINET-IO Submodul Zugriffsfehler beseitigt
39h	61h	Modul gezogen bzw. nicht ansprechbar OB83_MDL_TYPE: Istmodultyp
38h	61h	Modul gesteckt, Modultyp in Ordnung OB83_MDL_TYPE: Istmodultyp
	63h	Modul gesteckt, jedoch falscher Modultyp OB83_MDL_TYPE: Istmodultyp
	64h	Modul gesteckt, jedoch gestört (Modulkennung nicht lesbar)
		OB83_MDL_TYPE: Sollmodultyp
	65h	Modul gesteckt, jedoch Fehler bei Modulparametrierung
		OB83_MDL_TYPE: Istmodultyp
39h	66h	Modul nicht ansprechbar, Lastspannungsfehler
38h	66h	Modul wieder ansprechbar, Lastspannungsfehler beseitigt
33h	67h	Beginn Umparametrierung eines Moduls

Asynchrone Fehleralarme - "Asynchronous error Interrupts" > OB 85 - OBNL_FLT - Programmablauffehler

OB83_EV_CLASS	OB83_FLT_ID	Beschreibung
32h	67h	Ende Umparametrierung eines Moduls
39h	68h	Umparametrierung eines Moduls mit Fehler beendet

Falls Sie eine DP-V1- oder PROFINET-fähige CPU einsetzen, können Sie mit Hilfe des SFB 54 "RALRM" weitere Informationen über den Alarm erhalten, die über die Startinformation des OB hinausgehen.

6.9.5 OB 85 - OBNL_FLT - Programmablauffehler

Beschreibung

Das Betriebssystem der CPU ruft den OB 85 auf wenn:

- ein OB aufgerufen wird, der nicht in der CPU geladen wurde
- ein Fehler beim Zugriff des Betriebssystems auf einen Baustein auftritt
- ein Peripheriezugriffsfehler bei der systemseitigen Aktualisierung des Prozessabbilds auftritt

Sie können den OB 85 mit Hilfe des SFC 41 verzögern bzw. mit SFC 42 wieder freigeben.

Haben Sie den OB 85 nicht programmiert, geht die CPU in den Betriebszustand STOP.

Lokaldaten

Nachfolgend sehen Sie die Belegung der Startinformationen für den OB 85, die defaultmäßige symbolische Bezeichnung und die Datentypen:

Variable	Datentyp	Beschreibung
OB85_EV_CLASS	BYTE	Ereignisklasse und Kennung: 35h
		38h (nur bei Fehlercode B3h, B4h)
		39h (nur bei Fehlercode B1h, B2h, B3h, B4h)
OB85_FLT_ID	ВҮТЕ	Fehlercode (mögliche Werte: A1h, A2h, A3h, A4h, B1h, B2h, B3h, B4h)
OB85_PRIORITY	ВҮТЕ	Prioritätsklasse:
		26 (Defaultwert Betriebszustand RUN)
		28 (Betriebszustand ANLAUF)
OB85_OB_NUMBR	BYTE	OB-NR. (85)
OB85_RESERVED_1	BYTE	reserviert
OB85_RESERVED_2	BYTE	reserviert
OB85_RESERVED_3	INT	reserviert
OB85_ERR_EV_CLASS	BYTE	Klasse des Ereignisses, das den Fehler ausgelöst hat.
OB85_ERR_EV_NUM	BYTE	Nummer des Ereignisses, das den Fehler ausgelöst hat.

Asynchrone Fehleralarme - "Asynchronous error Interrupts" > OB 85 - OBNL FLT - Programmablauffehler

Variable	Datentyp	Beschreibung
OB85_OB_PRIOR	ВУТЕ	Prioritätsklasse des OBs, der bearbeitet wurde, als der Fehler auftrat.
OB85_OB_NUM	ВУТЕ	Nummer des OBs, der bearbeitet wurde, als der Fehler auftrat.
OB85_DATE_TIME	DATE_AND_TIME	Datum und Uhrzeit, zu denen der OB angefordert wurde.

Informationen, wie Sie auf die Lokaldaten zugreifen können finden Sie in der Beschreibung zum OB 1.

OB 85 in Abhängigkeit von Fehlercodes

Falls Sie den OB 85 in Abhängigkeit von den möglichen Fehlercodes programmieren wollen, wird empfohlen die lokalen Variablen wie folgt zu organisieren:

Variable	Datentyp
OB85_EV_CLASS	BYTE
OB85_FLT_ID	BYTE
OB85_PRIORITY	BYTE
OB85_OB_NUMBR	BYTE
OB85_DKZ23	ВҮТЕ
OB85_RESERVED_2	BYTE
OB85_Z1	WORD
OB85_Z23	DWORD
OB85_DATE_TIME	DATE_AND_TIME

Die nachfolgende Tabelle beinhaltet das Ereignis, das den OB 85 aufgerufen hat.

OB85_EV_CLASS	OB85_FLT_ID	Variable	Bedeutung
35h	A1h, A2h		Ihr Programm oder das Betriebssystem erzeugt ein Startereignis für einen OB, der nicht in der CPU geladen ist.
	A1h, A2h	OB85_Z1	Die zugehörige temporäre Variable des angeforderten OBs. Dieser ist bestimmt durch OB85_Z23.
	A1h, A2h	OB85_Z23	High-Word:
			Klasse und Nummer des verursachenden Ereignisses
			Low-Word, High-Byte:
			Zum Fehlerzeitpunkt aktive Programmebene Low-Word, Low-Byte:
			Aktiver OB
35h	A3h		Fehler beim Zugriff des Betriebssystems auf einen Baustein
		OB85_Z1	Fehlerkennung des Betriebssystems

Asynchrone Fehleralarme - "Asynchronous error Interrupts" > OB 85 - OBNL_FLT - Programmablauffehler

OB85_EV_CLASS	OB85_FLT_ID	Variable	Bedeutung
			High-Byte:
			1: Integrierte Funktion
			2: IEC-Timer
			Low-Byte:
			0: keine Fehlerauflösung
			1: Baustein nicht geladen
			2: Bereichslängenfehler
			3: Schreibschutzfehler
		OB85_Z23	High-Word: Bausteinnummer
			Low-Word:
			Relativadresse des Fehler verursachenden MC7-Befehls. Der Bausteintyp ist OB85_DKZ23 zu entnehmen.
			(88h: OB, 8Ch: FC, 8Eh: FB, 8Ah: DB)
35h	A4h		PROFINET-DB nicht ansprechbar
34h	A4h		PROFINET-DB wieder ansprechbar
39h	B1h		Peripheriezugriffsfehler beim Aktualisieren des Prozessabbilds der Eingänge.
	B2h		Peripheriezugriffsfehler beim Aktualisieren des Prozessabbilds der Ausgänge zu den Ausgabe-Modulen.
	B1h, B2h	OB85_DKZ23	Kennung für die Art des Prozessabbildtransfers bei dem der Peripheriezugriffsfehler auftrat:
			10h: Bytezugriff
			20h: Wortzugriff
			30h: Doppelwortzugriff
			57h: Übertragung eines projektierten Konsistenzbereichs
	B1h, B2h	OB85_Z1	reserviert für interne Verwendung der CPU: logische Basisadresse des Moduls
			Falls OB85_RESERVED_2 den Wert 76h hat, enthält OB85_Z1 den Rückgabewert der betroffenen SFC.
	B1h, B2h	OB85_Z23	Byte 0: Teilprozessabbild-Nummer
			Byte 1: Irrelevant, falls OB85_DKZ23=10, 20 oder 30 OB85_DKZ23=57:
			Länge des Konsistenzbereichs in Bytes
			Byte 2, 3: Nummer des PZF-verursachenden Peripheriebytes falls OB85_DKZ23=10, 20 oder 30 OB85_DKZ23=57:
			logische Anfangsadresse des Konsistenzbereichs

Sie erhalten die Fehlercodes B1h und B2h, falls Sie für die systemseitige Prozessabbildaktualisierung das wiederholte Melden von Peripheriezugriffsfehlern projektiert haben.

Asynchrone Fehleralarme - "Asynchronous error Interrupts" > OB 86 - RACK FLT - Slaveausfall / -wiederkehr

OB85_EV_CLASS	OB85_FLT_ID	Variable	Bedeutung
38h, 39h	B3h		Peripheriezugriffsfehler beim Aktualisieren des Prozessabbilds der Eingänge kommend/gehend.
38h, 39h	B4h		Peripheriezugriffsfehler beim Aktualisieren des Prozessabbilds der Ausgänge zu den Ausgabe- Modulen kommend/gehend.
	B3h, B4h	OB85_DKZ23	Kennung für die Art des Prozessabbildtransfers bei dem der Peripheriezugriffsfehler auftrat: 10h: Bytezugriff 20h: Wortzugriff 30h: Doppelwortzugriff 57h: Übertragung eines projektierten Konsistenz- bereichs
	B3h, B4h	OB85_Z1	reserviert für interne Verwendung der CPU: logische Basisadresse des Moduls Falls OB85_RESERVED_2 den Wert 76h hat, enthält OB85_Z1 den Rückgabewert der betroffenen SFC
	B3h, B4h	OB85_Z23	Byte 0: Teilprozessabbild-Nummer Byte 1: Irrelevant, falls OB85_DKZ23=10, 20 oder 30 OB85_DKZ23=57: Länge des Konsistenzbereichs in Bytes Byte 2, 3 Nummer des PZF-verursachenden Peripherie-bytes falls OB85_DKZ23=10, 20 oder 30 OB85_DKZ23=57: logische Anfangsadresse des Konsistenzbereichs

Sie erhalten die Fehlercodes B3h und B4h, falls Sie für die systemseitige Prozessabbildaktualisierung das Melden von kommenden und gehenden Peripheriezugriffsfehlern projektiert haben. Nach einem Neustart werden bei der nächsten Prozessabbildaktualisierung alle Zugriffe auf nicht vorhandenen Ein- und Ausgänge als kommende Peripheriezugriffsfehler gemeldet.

6.9.6 OB 86 - RACK_FLT - Slaveausfall / -wiederkehr

Beschreibung

Das Betriebssystem der CPU ruft den OB 86 auf, wenn der Ausfall eines Slaves erkannt wird (sowohl bei kommendem als auch bei gehendem Ereignis).

ĭ

Haben Sie den OB 86 nicht programmiert, geht die CPU in den Betriebszustand STOP.

Sie können den OB 86 mit Hilfe des SFC 41 verzögern bzw. mit SFC 42 wieder freigeben.

Asynchrone Fehleralarme - "Asynchronous error Interrupts" > OB 86 - RACK_FLT - Slaveausfall / -wiederkehr

Lokaldaten

Nachfolgend sehen Sie die Belegung der Startinformationen für den OB 86, die defaultmäßige symbolische Bezeichnung und die Datentypen:

Variable	Datentyp	Beschreibung
OB86_EV_CLASS	BYTE	Ereignisklasse und Kennung:
		38h: gehendes Ereignis
		39h: kommendes Ereignis
OB86_FLT_ID	BYTE	Fehlercode
		(mögliche Werte: C4h, C5h, C7h, C8h)
OB86_PRIORITY	BYTE	Prioritätsklasse:
		wird über den Hardware-Konfigurator eingestellt.
OB86_OB_NUMBR	BYTE	OB-NR. (86)
OB86_RESERVED_1	BYTE	reserviert
OB86_RESERVED_2	BYTE	reserviert
OB86_MDL_ADDR	WORD	Abhängig vom Fehlercode
OB86_RACKS_FLTD	ARRAY (0 31) OF BOOL	Abhängig vom Fehlercode
OB86_DATE_TIME	DATE_AND_TIME	Datum und Uhrzeit, zu denen der OB angefordert wurde

Informationen, wie Sie auf die Lokaldaten zugreifen können finden Sie in der Beschreibung zum OB 1.

OB 86 in Abhängigkeit von Fehlercodes

Falls Sie den OB 86 in Abhängigkeit von den möglichen Fehlercodes programmieren wollen, wird empfohlen die lokalen Variablen wie folgt zu organisieren:

Variable	Datentyp
OB86_EV_CLASS	BYTE
OB86_FLT_ID	BYTE
OB86_PRIORITY	BYTE
OB86_OB_NUMBR	ВҮТЕ
OB86_RESERVED_1	BYTE
OB86_RESERVED_2	ВҮТЕ
OB86_MDL_ADDR	WORD
OB86_Z23	DWORD
OB86_DATE_TIME	DATE_AND_TIME

Die Variablen, deren Inhalt abhängig vom Fehlercode ist, haben folgende Bedeutung:

EV_CLASS	FLT_ID	Variable	Bit	Beschreibung
39h, 38h	C4h			Ausfall einer DP-Station
C5h			Störung einer DP-Station	

Synchronalarme - "Synchronous Interrupts" > OB 121 - PROG ERR - Programmierfehler

EV_CLASS	FLT_ID	Variable	Bit	Beschreibung
	C4h, C5h	OB86_MDL_ADDR		Logische Basisadresse des DP- Masters
		OB86_Z23		Adresse des betroffenen DP-Slaves:
			Bit 7 0	Nummer der DP-Station
			Bit 15 8	DP-Mastersystem-ID
			Bit 30 16	Logische Basisadresse des DP- Slave
			Bit 31	I/O Kennung
38h	C7h			Wiederkehr einer DP-Station, jedoch Fehler bei der Modulpara- metrierung
		OB86_MDL_ADDR		Logische Basisadresse des DP- Masters
		OB86_Z23		Adresse des betroffenen DP-Slaves:
			Bit 7 0	Nummer der DP-Station
			Bit 15 8	DP-Mastersystem-ID
			Bit 30 16	Logische Basisadresse des DP- Slave
			Bit 31	I/O Kennung
	C8h			Wiederkehr einer DP-Station, jedoch Abweichung Soll-/Ist-ausbau
		OB86_MDL_ADDR		Logische Basisadresse des DP- Masters
		OB86_Z23		Adresse des betroffenen DP-Slaves:
			Bit 7 0	Nummer der DP-Station
			Bit 15 8	DP-Mastersystem-ID
			Bit 30 16	Logische Basisadresse des DP- Slave
			Bit 31	I/O Kennung

6.10 Synchronalarme - "Synchronous Interrupts"

6.10.1 OB 121 - PROG_ERR - Programmierfehler

Beschreibung

Das Betriebssystem der CPU generiert ein Fehler-Ereignis, wenn in unmittelbarem Zusammenhang mit der Programmbearbeitung ein Fehler auftritt. Ist der OB 121 nicht programmiert, wechselt die CPU in den Betriebszustand STOP.

Wenn Sie beispielsweise in Ihrem Programm einen Baustein aufrufen, der nicht in die CPU geladen wurde, dann wird der OB 121 aufgerufen.

Der OB 121 läuft in derselben Prioritätsklasse wie der unterbrochene Baustein. Sie können deshalb innerhalb des OB 121 auf die Register des unterbrochenen Bausteins zugreifen und diese ggf. mit geänderten Parametern an den OB zurückgeben.

Synchronalarme - "Synchronous Interrupts" > OB 121 - PROG ERR - Programmierfehler

Startereignisse maskieren

Die CPU verfügt über die folgenden SFCs, mit denen Sie Startereignisse des OB 121 maskieren und demaskieren können, während ihr Programm bearbeitet wird:

- Die SFC 36 MSK_FLT maskiert bestimmte Fehlercodes.
- Die SFC 37 DMSK_FLT demaskiert die Fehlercodes, die von der SFC 36 maskiert wurden.
- Die SFC 38 READ_ERR liest das Ereignisstatusregister.

Lokaldaten

Nachfolgend sehen Sie die Belegung der Startinformationen für den OB 121, die defaultmäßige symbolische Bezeichnung und die Datentypen:

Variable	Datentyp	Beschreibung
OB121_EV_CLASS	BYTE	Ereignisklasse und Kennung: 25h
OB121_SW_FLT	BYTE	Fehlercode
OB121_PRIORITY	BYTE	Prioritätsklasse: Prioritätsklasse des OBs, in dem der Fehler aufgetreten ist.
OB121_OB_NUMBR	BYTE	OB-Nr. (121)
OB121_BLK_TYPE	BYTE	Art des Bausteins, in dem der Fehler aufgetreten ist
		88h: OB, 8Ah: DB, 8Ch: FC, 8Eh: FB
OB121_RESEVED_1	BYTE	reserviert (Datenbereich und die Zugriffsart)
OB121_FLT_REG	WORD	Fehlerquelle (abhängig vom Fehlercode), z.B.:
		■ Register, in dem der Konvertierungsfehler aufgetreten ist.
		Fehlerhafte Adresse (Lese-/Schreibfehler)
		Fehlerhafte Nummer eines Timers, eines Zählers oder eines Bausteins.
		■ Fehlerhafter Speicherbereich
OB121_BLK_NUM	WORD	Nummer des Bausteins mit dem fehlerverursachenden Befehl.
OB121_PRG_ADDR	WORD	Relativadresse des fehlerverursachenden Befehls.
OB121_DATE_TIME	DATE_AND_TIME	Datum und Uhrzeit, zu denen der OB angefordert wurde.

Informationen, wie Sie auf die Lokaldaten zugreifen können finden Sie in der Beschreibung zum OB 1.

Fehlercodes

Die vom Fehlercode abhängigen Variablen haben folgende Bedeutung:

Fehlercode	Variable	Beschreibung
21h	OB121 FLT REG:	BCD-Konvertierungsfehler
		Kennung für das betroffene Register
		(0000h: Akku 1)
22h	OB121_RESERVED_1	Bereichslängenfehler beim Lesen
23h		Bereichslängenfehler beim Schreiben
28h		lesender Zugriff auf ein Byte, Wort oder Doppelwort mit einem Pointer, dessen Bitadresse ungleich 0 ist.

Synchronalarme - "Synchronous Interrupts" > OB 121 - PROG_ERR - Programmierfehler

Variable	Beschreibung		
	schreibender Zugriff auf ein Byte, Wort oder Doppelwort mit einem Pointer, dessen Bitadresse ungleich 0 ist.		
	fehlerhafte Byteadresse		
	Der Datenbereich und die Zugriffsart sind OB121_RESERVED_1 zu entnehmen		
	Bit 3 0 Speicherbereich:		
	0: Peripheriebereich		
	1: Prozessabbild der Eingänge		
	2: Prozessabbild der Ausgänge		
	3: Merker		
	4: Global-DB		
	5: Instanz-DB		
	6: Eigene Lokaldaten		
	7: Lokaldaten des Aufrufers		
	Bit 7 4 Zugriffsart:		
	0: Bitzugriff		
	1: Bytezugriff		
	2: Wortzugriff		
OP121 FLT DEC	Doppelwortzugriff Bereichsfehler beim Lesen		
OBIZI_FLI_NEG	Bereichsfehler beim Schreiben		
	enthält im Low-Byte die Kennung des unzulässigen Bereichs (86h eigener Lokaldatenbereich)		
OB121_FLT_REG	Fehler bei Timernummer		
	Fehler bei Zählernummer		
	unzulässige Nummer		
OB121_FLT_REG	Schreibender Zugriff auf einen schreibgeschützten Global-DB		
	Schreibender Zugriff auf einen schreibgeschützten Instanz-DB		
	DB-Nummernfehler beim Zugriff auf einen Global-DB		
	DB-Nummernfehler beim Zugriff auf einen Instanz-DB		
	unzulässige DB-Nummer		
OB121_FLT_REG	Nummernfehler beim FC-Aufruf		
	FB-Nummernfehler beim FB-Aufruf		
	Zugriff auf einen nicht geladenen DB; die DB-Nummer liegt im zulässigen Bereich		
	Zugriff auf einen nicht geladenen FC; die FC-Nummer liegt im zulässigen Bereich		
	Zugriff auf eine nicht geladenen SFC; die SFC-Nummer liegt im zulässigen Bereich		
	Zugriff auf einen nicht geladenen FB; die FB-Nummer liegt im zulässigen Bereich		
	OB121_FLT_REG OB121_FLT_REG OB121_FLT_REG		

Synchronalarme - "Synchronous Interrupts" > OB 122 - MOD_ERR - Peripheriezugriffsfehler

Fehlercode	Variable	Beschreibung
3Fh		Zugriff auf einen nicht geladenen SFB; die SFB-Nummer liegt im zulässigen Bereich
	unzulässige Nummer	

6.10.2 OB 122 - MOD_ERR - Peripheriezugriffsfehler

Beschreibung

Das Betriebssystem der CPU ruft den OB 122 auf, wenn beim Zugreifen auf Daten eines Moduls ein Fehler auftritt. Wenn die CPU beispielsweise einen Lesefehler beim Zugriff auf Daten eines I/O-Moduls erkennt, dann ruft das Betriebssystem den OB 122 auf. Ist der OB 122 nicht programmiert, wechselt die CPU in den Betriebszustand STOP.

Der OB 122 läuft in derselben Prioritätsklasse wie der unterbrochene Baustein. Sie können deshalb innerhalb des OB 122 auf die Register des unterbrochenen Bausteins zugreifen und diese ggf. mit geänderten Parametern an den OB zurückgeben.

Startereignisse maskieren

Die CPU verfügt über die folgenden SFCs, mit denen Sie Startereignisse des OB 122 maskieren und demaskieren können, während ihr Programm bearbeitet wird:

- Die SFC 36 MSK_FLT maskiert bestimmte Fehlercodes.
- Die SFC 37 DMSK_FLT demaskiert die Fehlercodes, die von der SFC 36 maskiert wurden.
- Die SFC 38 READ_ERR liest das Ereignisstatusregister.

Lokaldaten

Nachfolgend sehen Sie die Belegung der Startinformationen für den OB 122, die defaultmäßige symbolische Bezeichnung und die Datentypen:

Variable	Datentyp	Beschreibung	
OB122_EV_CLASS	BYTE	Ereignisklasse und Kennung: 29h	
OB122_SW_FLT	BYTE	Fehlercode:	
		42h: Peripheriezugriffsfehler - lesend	
		43h: Peripheriezugriffsfehler - schreibend	
OB122_PRIORITY	BYTE	Prioritätsklasse:	
		Prioritätsklasse des OBs, der Fehler verursachte	
OB122_OB_NUMBR	BYTE	OB-NR. (122)	
OB122_BLK_TYPE	BYTE	hier wird kein gültiger Wert eingetragen	
OB122_MEM_AREA	BYTE	Speicherbereich und Zugriffsart:	
		Bit 3 0: Speicherbereich	
		0: Peripheriebereich	
		1: Prozessabbild der Eingänge	
		2: Prozessabbild der Ausgänge	
		Bit 7 4: Zugriffsart:	
		0: Bitzugriff,	
		1: Bytezugriff,	
		2: Wortzugriff,	
		3: Doppelwortzugriff	

Synchronalarme - "Synchronous Interrupts" > OB 122 - MOD_ERR - Peripheriezugriffsfehler

Variable	Datentyp	Beschreibung
OB122_MEM_ADDR	WORD	Adresse des Fehlers im Speicher
OB122_BLK_NUM	WORD	hier wird kein gültiger Wert eingetragen
OB122_PGR_ADDR	WORD	hier wird kein gültiger Wert eingetragen
OB122_DATE_TIME	DATE_AND_TIME	Datum und Uhrzeit, zu denen der OB angefordert wurde

Informationen, wie Sie auf die Lokaldaten zugreifen können finden Sie in der Beschreibung zum OB 1.

Übersicht > Aufruf-Beispiel - Multiinstanzen-DB

7 Gebäude-Automatisierung - "Building Control"

Baustein-Bibliothek "Building Control"

Die Baustein-Bibliothek finden Sie im "Download Center" auf www.yaskawa.eu.com unter "Controls Library" als "Baustein-Bibliothek Building Control - SW90ES0MA" zum Download. Die Bibliothek liegt als gepackte zip-Dateien vor. Sobald Sie die Bausteine verwenden möchten, müssen Sie diese in Ihr Projekt importieren. → "Controls Library einbinden"...Seite 68

7.1 Übersicht

In diesem Kapitel finden Sie die Funktionsbausteine (FB45 ... FB50) für die Gebäudeleittechnik (GLT). Die Bausteine verwenden die Systemzeit der CPU. Es sind keine S7-Timer erforderlich. Sie haben die Möglichkeit für jeden Baustein einen Instanz-Datenbaustein oder Multiinstanzen zu verwenden. Es gibt folgende Bausteine:

FB		Beschreibung
FB 45	LAMP	Steuern einer Leuchte oder Steckdose
FB 46	BLIND	Steuern einer Jalousie
FB 47	DSTRIKE	Steuern eines elektrischen Türöffners
FB 48	ACONTROL	Zutrittsteuerung
FB 49	KEYPAD	Abfrage eines Tastenfelds mit externer Spannungsversorgung
FB 50	KEYPAD2	Abfrage eines Tastenfelds ohne externe Spannungsversorgung

7.1.1 Aufruf-Beispiel - Instanz-DB

Netzwerk 1

CALL "Deckenleuchte", DB 1
ON :=M20.0
OFF :=20.1
ONOFF :=20.2
Duration :=T#5M
Output :=M20.3
PulseOn :=
PulseOff :=

7.1.2 Aufruf-Beispiel - Multiinstanzen-DB

Inhalt von: "Umgebung\Schnittstelle\Stat" Nachfolgend sehen Sie einen Beispielaufruf für mehrere Leuchten und eine Jalousie in AWL mit Multiinstanzen.

Name	Datentyp	Adresse
Deckenleuchte	LAMP	0.0
Stehleuchte	LAMP	46.0
Spiegelleuchte	LAMP	92.0
Jalousie	BLIND	138.0

Raumsteuerung - "Room" > FB 45 - LAMP - Leuchte / Steckdose steuern

Netzwerk 1 CALL #Deckenleuchte

ON :=M20.0 OFF :=20.1 ONOFF :=20.2 Duration :=T#5M Output :=M20.3 PulseOn :=

PulseOff :=

Netzwerk 2 CALL #Jalousie

Uр :=M30.0Down :=M30.1CentralUp := CentralDown := TimeMaxDuration :=T#10S TimePause :=T#1S TimeShortLong :=T#2S Endable := BlindUp :=M30.6BlindDown :=M30.7

7.2 Raumsteuerung - "Room"

7.2.1 FB 45 - LAMP - Leuchte / Steckdose steuern

Beschreibung

Mit diesem Baustein können Sie Lastrelais für Leuchten und Steckdosen ansteuern. Die Ansteuerung kann über einen Ein/Aus-Taster oder über getrennte Ein- und Aus-Taster erfolgen. Zusätzlich haben Sie die Möglichkeit über *Duration* eine Zeit für das automatische Abschalten vorzugeben. Über *TimeDebounce* können Sie für die Eingangssignale eine Entprellzeit vorgeben.

- Bei Ansteuerung eines monostabilen Relais bleibt ein Ausgang solange gesetzt, solange das Relais aktiv sein soll. Mit einem Flankenwechsel 0-1 an *OnOff* bzw. *On* wird der statische Ausgang *Output* gesetzt. Dieser bleibt solange gesetzt, bis Sie diesen mit Flankenwechsel 0-1 an *OnOff* bzw. *Off* wieder zurücksetzen oder die über *Duration* vorgegebene Zeit abgelaufen ist.
- Bei Ansteuerung eines bistabilen Relais werden 2 Ausgänge verwendet. Hierbei steuert PulseOn den Einschaltvorgang und PulseOff den Ausschaltvorgang. Über TimePulse geben Sie die Impulsdauer und über TimePause die Umschaltzeit der beiden Ausgänge vor.

Parameter	Deklaration	Datentyp	Beschreibung
OnOff	INPUT	BOOL	Mit Flankenwechsel 0-1 wird der Ausgang Output aktiviert bzw. deaktiviert und PulseOn oder PulseOff aktiviert.
			Default: FALSE
On	INPUT	BOOL	Mit Flankenwechsel 0-1 wird der Ausgang Output bzw. PulseOn aktiviert.
			Default: FALSE
Off	INPUT	BOOL	Mit Flankenwechsel 0-1 wird der Ausgang Output deaktiviert und PulseOff aktiviert.
			Default: FALSE

Raumsteuerung - "Room" > FB 46 - BLIND - Jalousie steuern

Parameter	Deklaration	Datentyp	Beschreibung
Duration	INPUT	TIME	Zeit für die Dauer, nach der der Ausgang <i>Output</i> deaktiviert bzw. <i>PulseOff</i> aktiviert wird.
			Mit Angabe von 0ms ist das automatische Abschalten deaktiviert.
			Default: 0ms
Output	OUTPUT	BOOL	Statischer Ausgang zur Ansteuerung eines monostabilen Relais.
PulseOn	OUTPUT	BOOL	Impulsausgang zur Ansteuerung eines bistabilen Relais (Ein-Signal).
PulseOff	OUTPUT	BOOL	Impulsausgang zur Ansteuerung eines bistabilen Relais (Aus-Signal).
TimeDebounce	CONSTANT	TIME	Zeitvorgabe zum Entprellen der Eingänge.
			Default: 100ms
TimePulse	CONSTANT	TIME	Zeitvorgabe für die Impulsdauer von <i>PulseOn</i> bzw. <i>PulseOff</i> .
			Default: 100ms
TimePause	CONSTANT	TIME	Zeitvorgabe für die Pause zwischen dem Rücksetzen und Setzen von <i>PulseOn</i> bzw. <i>PulseOff</i> .
			Default: 100ms

7.2.2 FB 46 - BLIND - Jalousie steuern

Beschreibung

Mit diesem Baustein können Sie eine motorisch angetriebene Jalousie ansteuern. Hierzu müssen Sie den Antrieb mit *Enable* freigeben.

- Die Ansteuerung für "Heben" BlindUp und "Senken" BlindDown hat über 2 Taster (Up/ Down bzw. CentralUp/CentralDown) zu erfolgen.
 - CentralUp/CentralDown: Dient zur zentralen Ansteuerung aller Jalousien eines Gebäudes
 - Up/Down: Dient zur lokalen Ansteuerung einer Jalousie. Hier wird ein anstehendes CentralUp/CentralDown-Signal ignoriert.
- Wird der entsprechende Taster länger als die Zeit TimeShortLong gedrückt, fährt der Jalousie-Motor in die entsprechende Endlage. Durch Tippen eines der beiden Taster (Up/Down bzw. CentralUp/CentralDown) können Sie die Bewegung stoppen und diese gegebenenfalls umkehren.
- Mit TimeMaxDuration geben Sie die Maximal Laufzeit des Motors vor und mit Time-Pause die Pause für den Richtungswechsel.
- Durch Tippen fährt der Jalousie-Motor nur kurz an. Mit dieser Funktion können Sie die Jalousie-Lamellen fein justieren.
- Über *TimeDebounce* können Sie für die Eingangssignale eine Entprellzeit vorgeben.
- Über Status können Sie die Stellung der Jalousie abfragen
 - 0: Endposition oben
 - 50: Unbestimmte Position zwischen den beiden Endpositionen
 - 100: Endposition unten

VORSICHT

Der Jalousie-Motor muss über eigene Endlagenschalter verfügen, die diesen selbsttätig abschalten!

Raumsteuerung - "Room" > FB 46 - BLIND - Jalousie steuern

Parameter	Deklaration	Datentyp	Beschreibung
Up	INPUT	BOOL	Mit Flankenwechsel 0-1 wird der Ausgang <i>BlindUp</i> aktiviert. Abhängig vom Eingangs-Signal fährt die Jalousie in die Endlage oben oder wird nur kurz bewegt.
			Solange dieses Signal ansteht werden die Signale CentralUp/CentralDown ignoriert.
			Default: FALSE
Down	INPUT	BOOL	Mit Flankenwechsel 0-1 wird der Ausgang <i>Blind-Down</i> aktiviert. Abhängig vom Eingangs-Signal fährt die Jalousie in die Endlage unten oder wird nur kurz bewegt.
			Solange dieses Signal ansteht werden die Signale CentralUp/CentralDown ignoriert.
			Default: FALSE
CentralUp	INPUT	BOOL	Mit Flankenwechsel 0-1 wird der Ausgang <i>BlindUp</i> aktiviert. Hierbei fährt die Jalousie in die Endlage oben.
			Default: FALSE
CentralDown	INPUT	BOOL	Mit Flankenwechsel 0-1 wird der Ausgang <i>Blind-Down</i> aktiviert. Hierbei fährt die Jalousie in die Endlage unten.
			Default: FALSE
TimeMaxDuration	INPUT	TIME	Maximale Laufzeit des Motors für die Fahrt in die jeweilige Endlage.
			Default: 30s
TimePause	INPUT	TIME	Zeitvorgabe für die Pause für den Richtungs- wechsel.
			Default: 2s
TimeShortLong	INPUT	TIME	Zeitvorgabe für die Unterscheidung zwischen Tipp- und Dauer-Betrieb.
			Default: 1s
Enable	INPUT	BOOL	Freigabe für den Antrieb (statisch)
			Default: TRUE
BlindUp	OUTPUT	BOOL	Statischer Ausgang Jalousie "heben".
BlindDown	OUTPUT	BOOL	Statischer Ausgang Jalousie "senken".
Status	OUTPUT	INT	 Status - Position der Jalousie 0: Endposition oben 50: Unbestimmte Position zwischen den beiden Endpositionen 100: Endposition unten
TimeDebounce	CONSTANT	TIME	Zeitvorgabe zum Entprellen der Eingänge. Default: 100ms

Raumsteuerung - "Room" > FB 47 - DSTRIKE - Elektrischer Türöffner

7.2.3 FB 47 - DSTRIKE - Elektrischer Türöffner

Beschreibung

Mit diesem Baustein können Sie einen elektrischen Türöffner ansteuern, sofern dieser nicht mit *DoorlsLocked* "verriegelt" ist.

- Mit einem Flankenwechsel 0-1 am Eingang Open wird für die Zeit "TimeOpening" der Ausgang "Output" angesteuert.
- Mit einem Flankenwechsel 0-1 des Eingangsignals EnableAlwaysOpen bzw. Disable-AlwaysOpen wird der Ausgang Open dauerhaft aktiviert bzw. deaktiviert. Zusätzlich wird bei gesetztem EnableAlwaysOpen der statische Ausgang AlwaysOpen gesetzt.
- An die Eingangsignale DoorlsClosed und DoorlsLocked k\u00f6nnen Sie Ihre T\u00fcr-Kontakte anbinden. DoorlsClosed wird gesetzt, sobald Ihre T\u00fcre geschlossen ist. DoorlsLocked ist bei verriegelter T\u00fcr aktiv, d.h. der Kontakt wird \u00fcber den Schlie\u00dfmechanismus ausgel\u00f6st und das \u00f6ffnen mittels T\u00fcr\u00f6ffner ist nicht m\u00f6glich.

Parameter	Deklaration	Datentyp	Beschreibung
Open	INPUT	BOOL	Mit Flankenwechsel 0-1 wird der Ausgang <i>Output</i> für die Zeit <i>TimeOpening</i> aktiviert.
			Default: FALSE
EnableAlwaysOpen	INPUT	BOOL	Mit Flankenwechsel 0-1 wird der Ausgang <i>Output</i> dauerhaft angesteuert.
			Default: FALSE
DisableAlwaysOpen	INPUT	BOOL	Mit Flankenwechsel 0-1 wird der Ausgang <i>Output</i> dauerhaft deaktiviert.
			Default: FALSE
TimeOpening	INPUT	TIME	Zeit für die Dauer der Ansteuerung von Output.
			Default: 3s
DoorlsClosed	INPUT	BOOL	 Optional - Position der Tür TRUE: Tür ist geschlossen FALSE: Tür ist geöffnet Default: FALSE
DoorlsLocked	INPUT	BOOL	 Optional - Schließzustand der Tür TRUE: Tür ist verriegelt FALSE: Tür ist nicht verriegelt Default: FALSE
Outside	OUTDUT	DOOL	2 0 10 0 11 11 12 0 2
Output	OUTPUT	BOOL	Statischer Ausgang zur Ansteuerung eines monostabilen Relais.
AlwaysOpen	OUTPUT	BOOL	Statischer Ausgang für Anzeige "Tür ist dauerhaft geöffnet".

Zugangskontrolle - "Access Control" > FB 48 - ACONTROL - Zutrittssteuerung

7.3 Zugangskontrolle - "Access Control"

7.3.1 FB 48 - ACONTROL - Zutrittssteuerung

Beschreibung

Mit diesem Baustein können Sie eine Zugangssteuerung realisieren. Nach Vorgabe eines Codes von einem externen Tastenfeld, Panel oder RFID-Lesers wird dieser Code mit einer Liste verglichen. Je nach Ergebnis werden daraufhin entsprechende Ausgänge angesteuert.

- Die Zugangscodes sind in einem Datenbaustein anzulegen, welchen Sie über ACL-Block angeben. Hier bestimmen Sie auch welche Ausgänge Access1...6 angesteuert werden und wie (Impuls/statisch) diese angesteuert werden sollen. Mit dem Datenbaustein können Sie bis zu 16 Zugangscodes verwalten.
- Über *AccessCode1...4* geben Sie den Code des entsprechenden Eingabegeräts vor.
- Mit CheckCode1...4 wird der Code mit den Codes in Ihrem Datenbaustein ACLBlock verglichen.
 - Ist der Zugangscode im Datenbaustein vorhanden, werden die entsprechenden Ausgänge nach Vorgabe angesteuert. Bei projektierter Impuls-Ausgabe können Sie über *TimePulse* die Impulsdauer vorgeben.
 - Ist der Zugangscode im Datenbaustein nicht vorhanden, wird für die Zeit TimeError der Ausgang Error gesetzt.
- Mit einem Flankenwechsel 0-1 an CentralLock werden alle Zugangscodes deaktiviert. Hierbei wird der Ausgang CentralLocked gesetzt.
- Mit einem Flankenwechsel 0-1 an *CentralUnlock* werden alle Zugangscodes aktiviert und der Ausgang *CentralLocked* zurückgesetzt.

Parameter	Deklaration	Datentyp	Beschreibung
AccessCode1	INPUT	STRING[16]	Zutrittscode, z.B. von Keypad.
CheckCode1	INPUT	BOOL	Mit Flankenwechsel 0-1 wird der AccessCode1 mit dem Zugangscode im Datenbaustein ACL-Block verglichen. Default: 0
AccessCode2	INPUT	STRING[16]	Zutrittscode, z.B. von Panel
CheckCode2	INPUT	BOOL	Mit Flankenwechsel 0-1 wird der <i>AccessCode2</i> mit dem Zugangscode im Datenbaustein <i>ACL-Block</i> verglichen. Default: 0
AccessCode3	INPUT	STRING[16]	Zutrittscode, z.B. von RFID-Lesegerät
CheckCode3	INPUT	BOOL	Mit Flankenwechsel 0-1 wird der <i>AccessCode3</i> mit dem Zugangscode im Datenbaustein <i>ACL-Block</i> verglichen. Default: 0
AccessCode4	INPUT	STRING[16]	Zutrittscode, z.B. von sonstigem System
CheckCode4	INPUT	BOOL	Mit Flankenwechsel 0-1 wird der <i>AccessCode4</i> mit dem Zugangscode im Datenbaustein <i>ACL-Block</i> verglichen. Default: 0
CentralLock	INPUT	BOOL	Mit Flankenwechsel 0-1 werden alle Zugangscodes deaktiviert. Hierbei wird der Ausgang <i>CentralLocked</i> gesetzt.

Zugangskontrolle - "Access Control" > UDT 3 - ACLREC - Datenstruktur für FB 48

Parameter	Deklaration	Datentyp	Beschreibung
CentralUnlock	INPUT	BOOL	Mit Flankenwechsel 0-1 an <i>CentralUnlock</i> werden alle Zugangscodes aktiviert und der Ausgang <i>CentralLocked</i> zurückgesetzt.
ACLBlock	INPUT	BLOCK	Datenbaustein, in dem die Zugangscodes hinterlegt sind vom Typ UDT 4 - ACL. → "UDT 4 - ACL - Datenstruktur für FB 48"Seite 108
Access1	OUTPUT	BOOL	Ausgang 1, kann als Impuls oder statisch angesteuert werden.
Access2	OUTPUT	BOOL	Ausgang 2, kann als Impuls oder statisch angesteuert werden.
Access3	OUTPUT	BOOL	Ausgang 3, kann als Impuls oder statisch angesteuert werden.
Access4	OUTPUT	BOOL	Ausgang 4, kann als Impuls oder statisch angesteuert werden.
Access5	OUTPUT	BOOL	Ausgang 5, kann als Impuls oder statisch angesteuert werden.
Access6	OUTPUT	BOOL	Ausgang 6, kann als Impuls oder statisch angesteuert werden.
Error	OUTPUT	BOOL	Ist der Zugangscode im Datenbaustein nicht vorhanden, wird für die Zeit <i>TimeError</i> der Ausgang <i>Error</i> gesetzt.
CentralLocked	OUTPUT	BOOL	 Zugang TRUE: verriegelt - Zugang nicht möglich FALSE: nicht verriegelt - Zugang möglich Default: TRUE
TimePulse	CONSTANT	Time	Zeit für die Impulsdauer an einem Ausgang. Default: 3s
TimeError	CONSTANT	Time	Zeit für die Dauer des Error-Signals. Default: 500ms

7.3.2 UDT 3 - ACLREC - Datenstruktur für FB 48

Beschreibung

Adresse	Name	Тур	Anfangswert	Kommentar
0.0		STRUCT		
+0.0	Code	STRING[16]	• •	Byte 0 17: Zugangscode
				S7String mit max. 16 ASCII-Zeichen für Zugriffscode
+18.0	EnableOutput1	BOOL	FALSE	Byte 18: Signal für anzusteuernde Ausgänge
				TRUE: aktiviere Ausgang,
				FALSE: deaktiviere Ausgang
+18.1	EnableOutput2	BOOL	FALSE	
+18.2	EnableOutput3	BOOL	FALSE	
+18.3	EnableOutput4	BOOL	FALSE	

Zugangskontrolle - "Access Control" > UDT 4 - ACL - Datenstruktur für FB 48

Adresse	Name	Тур	Anfangswert	Kommentar
0.0		STRUCT		
+18.4	EnableOutput5	BOOL	FALSE	
+18.5	EnableOutput6	BOOL	FALSE	
+18.6	EnableRes7	BOOL	FALSE	
+18.7	EnableRes8	BOOL	FALSE	
+19.0	SignalOutput1	BOOL	FALSE	Byte 19: Signaltyp FALSE: Impuls, TRUE: statische 1, Deaktivierung mit weiterem Code
+19.1	SignalOutput2	BOOL	FALSE	
+19.2	SignalOutput3	BOOL	FALSE	
+19.3	SignalOutput4	BOOL	FALSE	
+19.4	SignalOutput5	BOOL	FALSE	
+19.5	SignalOutput6	BOOL	FALSE	
+19.6	SignalRes7	BOOL	FALSE	
+19.7	SignalRes8	BOOL	FALSE	
=20.0				

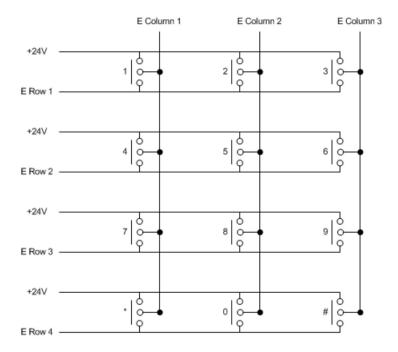
7.3.3 UDT 4 - ACL - Datenstruktur für FB 48

Beschreibung

Adresse	Name	Тур	Anfangswert	Kommentar
0.0		STRUCT		
+0.0	RecordCount	INT	16	DBW0: Anzahl gültiger Datensätze (0 n)
+2.0	RecordLen	INT	20	DBW2: Länge eines Datensatzes in Bytes (20)
+4.0	Record	ARRAY[015]		Ab DBB4 beginnt der erste Datensatz
*20.0		"UDT 3 - ACLREC"		→ "UDT 3 - ACLREC - Datenstruktur für FB 48"Seite 107
=324.0		BOOL		

VORSICHT

Ein Code darf nur 1 x in der ganzen Liste vorkommen. Doppelte Codes sind unzulässig.


Zugangskontrolle - "Access Control" > FB 49 - KEYPAD - Tastatur

7.3.4 FB 49 - KEYPAD - Tastatur

Beschreibung

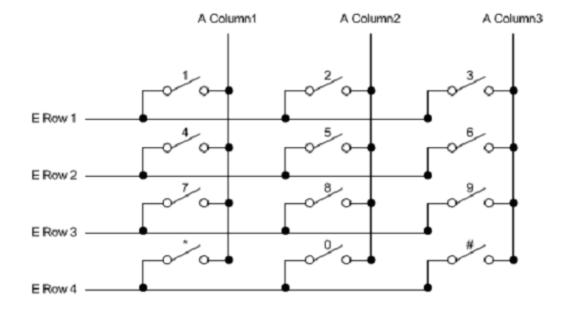
Dieser Baustein dient zur Anbindung eines externen Tastenfelds (0...9,*,#) mit externer DC 24V Spannungsversorgung. Abhängig von der betätigten Taste liefert die Tastatur Zeilen und Spaltensignale (24V). Der Baustein wertet die Signale intern mittels einer Bitmuster-Tabelle aus und übergibt den ermittelten ASCII-Code in den Tastaturpuffer. Bei Bedarf oder automatisch wird der Tastaturpuffer als max. 16Byte lange Zeichenkette ausgegeben.

- Über Row 1...4 werden die Zeilen 1...4 der Tastaturmatrix angebunden.
- Über Column 1...3 werden die Spalten 1...3 der Tastaturmatrix angebunden.
- Über *ClearCode* können Sie einen Tastencode vorgeben, mit dem der Eingabepuffer gelöscht wird.
- Über EnterCode können Sie einen Tastencode vorgeben, mit dem der Tastaturpuffer für die Länge eines Zyklus an Output ausgegeben wird. Während dieser Zeit wird der Ausgang Valid aktiv.
- Über Flankenwechsel 0-1 an Clear wird der Tastaturpuffer gelöscht.
- Über TimeAutoClear bestimmen Sie Zeit, innerhalb der eine Taste gedrückt werden muss. Ansonsten wird der Tastaturpuffer wieder gelöscht.
- Über CountCharAutoEnter können Sie die Anzahl der Zeichen vorgeben, nach deren Eingabe der Tastaturpuffer für die Länge eines Zyklus an Output ausgegeben wird. Während dieser Zeit wird der Ausgang Valid aktiv.
- Error wird für die Zeit TimeError aktiviert, wenn eine Taste betätigt wird, der Tastaturpuffer aber voll ist.
- Über TimeDebounce können Sie für die Eingangssignale eine Entprellzeit vorgeben.

Parameter	Deklaration	Datentyp	Beschreibung
Row1	INPUT	BOOL	Zeile 1 der Tastaturmatrix. Default: FALSE
Row2	INPUT	BOOL	Zeile 2 der Tastaturmatrix. Default: FALSE

Zugangskontrolle - "Access Control" > FB 49 - KEYPAD - Tastatur

Parameter	Deklaration	Datentyp	Beschreibung
Row3	INPUT	BOOL	Zeile 3 der Tastaturmatrix.
			Default: FALSE
Row4	INPUT	BOOL	Zeile 4 der Tastaturmatrix.
			Default: FALSE
Column1	INPUT	BOOL	Spalte 1 der Tastaturmatrix.
			Default: FALSE
Column2	INPUT	BOOL	Spalte 2 der Tastaturmatrix.
			Default: FALSE
Column3	INPUT	BOOL	Spalte 3 der Tastaturmatrix.
			Default: FALSE
ClearCode	INPUT	BYTE	Der Wert, bei dem der Tastaturpuffer gelöscht werden soll.
			0: deaktiviert
			Default: 42 = *
EnterCode	INPUT	BYTE	Der Wert, bei dem der Tastaturpuffer ausgegeben werden soll.
			0: deaktiviert
			Default: 35 = #
Clear	INPUT	BOOL	Flankenwechsel 0-1 löscht den Tastaturpuffer.
			Default: FALSE
TimeAutoClear	INPUT	TIME	Zeitvorgabe für die Dauer innerhalb der eine Taste gedrückt werden muss. Ansonsten wird der Tastaturpuffer wieder gelöscht.
			0: keine Löschung
			Default: 10s
CountCharAu- toEnter	INPUT	INT	Anzahl der Zeichen nach deren Eingabe der Tastaturpuffer automatisch ausgegeben wird.
			0: deaktiviert
			Default: 0
Output	OUTPUT	STRING[16]	Inhalt des Tastaturpuffers als max. 16 Byte lange Zeichenkette.
Valid	OUTPUT	BOOL	Statischer Ausgang, zeigt an, dass der über <i>Output</i> ausgegebene String gültig ist. Das Signal steht für einen Zyklus an.
Error	OUTPUT	BOOL	Error wird für die Zeit TimeError aktiviert, wenn eine Taste betätigt wird, der Tastaturpuffer aber voll ist.
TimeDebounce	CONSTANT	TIME	Zeitvorgabe zum Entprellen der Eingänge.
			Default: 100ms
TimeError	CONSTANT	TIME	Zeit für die Dauer des Error-Signals
			Default: 500ms


Zugangskontrolle - "Access Control" > FB 50 - KEYPAD2 - Tastatur

7.3.5 FB 50 - KEYPAD2 - Tastatur

Beschreibung

Dieser Baustein dient zur Anbindung eines externen Tastenfelds (0...9,*,#) ohne eigene Spannungsversorgung. Der Baustein liefert Ausgangs-Spalten-Signale. Abhängig von der betätigten Taste liefert die Tastatur das entsprechende Zeilen-Signal. Der Baustein wertet das Signal intern mittels einer Bitmuster-Tabelle aus und übergibt den ermittelten ASCII-Code in den Tastaturpuffer. Bei Bedarf oder automatisch wird der Tastaturpuffer als max. 16Byte lange Zeichenkette ausgegeben.

- Über die Eingänge *Row 1...4* werden die Zeilen 1...4 der Tastaturmatrix angebunden.
- Über die Ausgänge *Column 1...3* werden die Spalten 1...3 der Tastaturmatrix angebunden.
- Über *TimeDelay* geben Sie eine Wartezeit nach dem Setzen der Spalten-Ausgänge bis zum Einlesen der entsprechenden Zeilen-Eingänge vor. Diese Zeit muss größer sein als die Verzögerungszeit der verwendeten Baugruppe.
- Über *ClearCode* können Sie einen Tastencode vorgeben, mit dem der Eingabepuffer gelöscht wird.
- Über EnterCode können Sie einen Tastencode vorgeben, mit dem der Tastaturpuffer für die Länge eines Zyklus an Output ausgegeben wird. Während dieser Zeit wird der Ausgang Valid aktiv.
- Über Flankenwechsel 0-1 an Clear wird der Tastaturpuffer gelöscht.
- Über *TimeAutoClear* bestimmen Sie Zeit, innerhalb der eine Taste gedrückt werden muss. Ansonsten wird der Tastaturpuffer wieder gelöscht.
- Über CountCharAutoEnter können Sie die Anzahl der Zeichen vorgeben, nach deren Eingabe der Tastaturpuffer für die Länge eines Zyklus an Output ausgegeben wird. Während dieser Zeit wird der Ausgang Valid aktiv.
- Error wird für die Zeit TimeError aktiviert, wenn eine Taste betätigt wird, der Tastaturpuffer aber voll ist.
- Über TimeDebounce können Sie für die Eingangssignale eine Entprellzeit vorgeben.

Zugangskontrolle - "Access Control" > FB 50 - KEYPAD2 - Tastatur

Parameter	Deklaration	Datentyp	Beschreibung
Row1	INPUT	BOOL	Zeile 1 der Tastaturmatrix.
			Default: FALSE
Row2	INPUT	BOOL	Zeile 2 der Tastaturmatrix.
			Default: FALSE
Row3	INPUT	BOOL	Zeile 3 der Tastaturmatrix.
			Default: FALSE
Row4	INPUT	BOOL	Zeile 4 der Tastaturmatrix.
			Default: FALSE
ClearCode	INPUT	BYTE	Der Wert, bei dem der Tastaturpuffer gelöscht werden soll.
			0: deaktiviert
			Default: 42 = *
EnterCode	INPUT	BYTE	Der Wert, bei dem der Tastaturpuffer ausgegeben werden soll.
			0: deaktiviert
			Default: 35 = #
Clear	INPUT	BOOL	Flankenwechsel 0-1 löscht den Tastaturpuffer.
			Default: FALSE
TimeAutoClear	INPUT	TIME	Zeitvorgabe für die Dauer innerhalb der eine Taste gedrückt werden muss. Ansonsten wird der Tastaturpuffer wieder gelöscht.
			0: keine Löschung
			Default: 10s
CountCharAutoEnter	INPUT	INT	Anzahl der Zeichen nach deren Eingabe der Tastaturpuffer automatisch ausgegeben wird.
			0: deaktiviert
			Default: 0
Column1	OUTPUT	BOOL	Spalte 1 der Tastaturmatrix.
			Default: FALSE
Column2	OUTPUT	BOOL	Spalte 2 der Tastaturmatrix.
			Default: FALSE
Column3	OUTPUT	BOOL	Spalte 3 der Tastaturmatrix.
			Default: FALSE
Output	OUTPUT	BYTE	Inhalt des Tastaturpuffers als max. 16 Byte lange Zeichenkette.
Valid	OUTPUT	BOOL	Statischer Ausgang, zeigt an, dass der über <i>Output</i> ausgegebene String gültig ist. Das Signal steht für einen Zyklus an.
Error	OUTPUT	BOOL	Error wird für die Zeit TimeError aktiviert, wenn eine Taste betätigt wird, der Tastaturpuffer aber voll ist.

Zugangskontrolle - "Access Control" > FB 50 - KEYPAD2 - Tastatur

Parameter	Deklaration	Datentyp	Beschreibung
TimeDebounce	CONSTANT	TIME	Zeitvorgabe zum Entprellen der Eingänge.
			Default: 100ms
TimeError	CONSTANT	TIME	Zeit für die Dauer des Error-Signals
			Default: 500ms
TimeDelay	CONSTANT	TIME	Zeitvorgabe für die Dauer nach dem nach dem Setzen der Spalten-Ausgänge bis zum Einlesen der entsprechenden Zeilen-Eingänge vor. Diese Zeit muss größer sein als die Verzögerungszeit der ver- wendeten Baugruppe. Default: 10ms

Offene Kommunikation - "Open Communication" > Verbindungsorientierte Protokolle

8 Netzwerkkommunikation - "Network Communication"

Baustein-Bibliothek "Network Communication"

Die Baustein-Bibliothek finden Sie im "Download Center" auf www.yaskawa.eu.com unter "Controls Library" als "Baustein-Bibliothek Network Communication - SW90FS0MA" zum Download. Die Bibliothek liegt als gepackte zip-Dateien vor. Sobald Sie die Bausteine verwenden möchten, müssen Sie diese in Ihr Projekt importieren. → "Controls Library einbinden"...Seite 68

8.1 Offene Kommunikation - "Open Communication"

8.1.1 Verbindungsorientierte Protokolle

- Verbindungsorientierte Protokolle bauen vor der Datenübertragung eine (logische) Verbindung zum Kommunikationspartner auf und bauen diese nach Abschluss der Datenübertragung ggf. wieder ab.
- Verbindungsorientierte Protokolle werden eingesetzt, wenn es bei der Datenübertragung insbesondere auf Sicherheit ankommt. Auch wird hier die richtige Reihenfolge der empfangenen Pakete gewährleistet.
- Über eine physikalische Leitung k\u00f6nnen in der Regel mehrere logische Verbindungen bestehen.
- Bei den FBs zur Offenen Kommunikation über Industrial Ethernet werden die folgenden verbindungsorientierten Protokolle unterstützt:
 - TCP native gemäß RFC 793 (Verbindungstypen 01h und 11h)
 - ISO on TCP gemäß RFC 1006 (Verbindungstyp 12h)

TCP native

- Bei der Datenübertragung über TCP nativ werden weder Informationen zur Länge noch über Anfang und Ende einer Nachricht übertragen. Auch besteht keine Möglichkeit zu erkennen, wo ein Datenstrom endet und der nächste beginnt.
- Die Übertragung ist stream-orientiert. Aus diesem Grund sollten Sie in den FBs bei Sender und Empfänger identische Datenlängen angeben.
- Falls die empfangene Anzahl der Daten von der parametrierten Länge abweicht, erhalten Sie entweder Daten, welche nicht die vollständigen Telegrammdaten enthalten oder mit dem Inhalt eines nachfolgenden Telegramms aufgefüllt sind.
- Der Empfangsbaustein kopiert so viele Bytes in den Empfangsbereich, wie Sie als Länge parametriert haben. Anschließend setzt er NDR auf TRUE und beschreibt RCVD_LEN mit dem Wert von LEN. Mit jedem weiteren Aufruf erhalten Sie damit einen weiteren Block der gesendeten Daten.

ISO on TCP

- Bei der Datenübertragung werden Informationen zur Länge und zum Ende einer Nachricht übertragen. Die Übertragung ist blockorientiert.
- Falls Sie die Länge der zu empfangenden Daten größer gewählt haben als die Länge der gesendeten Daten, kopiert der Empfangsbaustein die gesendeten Daten vollständig in den Empfangsdatenbereich. Anschließend setzt er NDR auf TRUE und beschreibt RCVD_LEN mit der Länge der gesendeten Daten.
- Falls Sie die Länge der zu empfangenden Daten kleiner gewählt haben als die Länge der gesendeten Daten, kopiert der Empfangsbaustein keine Daten in den Empfangsdatenbereich, sondern liefert folgende Fehlerinformation: ERROR = 1, STATUS = 8088h.

8.1.2 Verbindungslose Protokolle

Bei den verbindungslosen Protokollen entfallen Verbindungsauf- und Verbindungsabbau zum remoten Partner. Verbindungslose Protokolle übertragen die Daten unquittiert und damit ungesichert zum remoten Partner. Bei den FBs zur Offenen Kommunikation über Industrial Ethernet wird das folgende verbindungslose Protokoll unterstützt:

UDP gemäß RFC 768 (Verbindungstyp 13h)

UDP

- Bei Aufruf des Sendebausteins ist ein Verweis auf die Adressparameter des Empfängers (IP-Adresse und Port-Nr.) anzugeben. Auch werden Informationen zur Länge und zum Ende einer Nachricht übertragen.
- Analog erhalten Sie nach Abschluss des Empfangsbausteins einen Verweis auf die Adressparameter des Senders (IP-Adresse und Port-Nr.).
- Damit sie Sende- und Empfangsbaustein nutzen k\u00f6nnen, m\u00fcssen Sie zuvor sowohl auf der Sender- als auch auf der Empf\u00e4ngerseite einen lokalen Kommunikationszugangspunkt einrichten.
- Bei jedem Sendauftrag können Sie den remoten Partner durch Angabe seiner IP-Adresse und seiner Port-Nr. neu referenzieren.
- Falls Sie die Länge der zu empfangenden Daten größer gewählt haben als die Länge der gesendeten Daten, kopiert der Empfangsbaustein die gesendeten Daten vollständig in den Empfangsdatenbereich. Anschließend setzt er NDR auf TRUE und beschreibt RCVD LEN mit der Länge der gesendeten Daten.
- Falls Sie die Länge der zu empfangenden Daten kleiner gewählt haben als die Länge der gesendeten Daten, kopiert der Empfangsbaustein keine Daten in den Empfangsdatenbereich, sondern liefert folgende Fehlerinformation: ERROR = 1, STATUS = 8088h.

8.1.3 FB 63 - TSEND - Daten senden - TCP native und ISO on TCP

Beschreibung

- Der FB 63 TSEND sendet Daten über eine bestehende Kommunikationsverbindung. Er ist ein asynchron arbeitender FB, d.h. die Bearbeitung erstreckt sich über mehrere FB-Aufrufe.
- Sie starten den Sendevorgang, indem Sie den FB 63 mit REQ = 1 aufrufen.
- Über den Ausgangsparameter BUSY und den Ausgangsparameter STATUS wird der Zustand des Auftrags angezeigt. Dabei entspricht STATUS dem Ausgangsparameter RET_VAL der asynchron arbeitenden SFCs (siehe auch Bedeutung von REQ, RET_VAL und BUSY bei asynchron arbeitenden SFCs).
- In der folgenden Tabelle ist der Zusammenhang zwischen BUSY, DONE und ERROR angegeben. Mit ihrer Hilfe können Sie feststellen, in welchem Zustand sich der FB 63 aktuell befindet bzw. wann der Verbindungsaufbau beendet ist.

BUSY	DONE	ERROR	Beschreibung
TRUE	irrelevant	irrelevant	Der Auftrag ist in Bearbeitung.
FALSE	TRUE	FALSE	Der Auftrag wurde erfolgreich abgeschlossen.
FALSE	FALSE	TRUE	Der Auftrag wurde mit einem Fehler beendet.
			Die Fehlerursache können Sie dem Parameter <i>STATUS</i> entnehmen.
FALSE	FALSE	FALSE	Dem FB wurde kein (neuer) Auftrag erteilt.

Durch die asynchrone Arbeitsweise des FB 63 TSEND müssen Sie die Daten im Sendebereich so lange konsistent halten, bis der Parameter DONE oder der Parameter ERROR den Wert TRUE annimmt.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
REQ	INPUT	BOOL	E, A, M, D, L	Steuerparameter <i>REQ</i> , aktiviert den Sendevorgang der durch <i>ID</i> gegebenen Verbindung bei steigender Flanke. Beim erstmaligen Aufruf mit <i>REQ</i> = 1 werden Daten aus dem mit Parameter <i>DATA</i> angegebenen Bereich übergeben.
ID	INPUT	WORD	M, D, Konstante	Referenz auf die zugehörige Verbindung. <i>ID</i> muss identisch sein mit dem zugehörigen Parameter <i>ID</i> in der lokalen Verbindungsbeschreibung. Wertebereich: 0001h 0FFFh
LEN	INPUT	INT	E, A, M, D, L	 Anzahl der Bytes, die mit dem Auftrag gesendet werden sollen Wertebereich: 1 1460, falls Verbindungstyp = 01h 1 8192, falls Verbindungstyp = 11h 1 1452, falls Verbindungstyp = 12h und ein CP benutzt wird 1 8192, falls Verbindungstyp = 12h und kein CP benutzt wird.
DONE	OUTPUT	BOOL	E, A, M, D, L	 Zustandsparameter DONE: 0: Auftrag wurde noch nicht gestartet oder wird noch ausgeführt. 1: Auftrag wurde fehlerfrei ausgeführt.
BUSY	OUTPUT	BOOL	E, A, M, D, L	 BUSY = 1: Der Auftrag ist noch nicht beendet. Es kann kein neuer Auftrag angestoßen werden. BUSY = 0: Der Auftrag ist beendet.
ERROR	OUTPUT	BOOL	E, A, M, D, L	 Zustandsparameter ERROR: ERROR = 1: Bei der Bearbeitung ist ein Fehler aufgetreten. STATUS liefert detaillierte Auskunft über die Art des Fehlers.
STATUS	OUTPUT	WORD	M, D	Zustandsparameter <i>STATUS</i> : Statusinformationen
DATA	IN_OUT	ANY	E, A, M, D	Sendebereich, enthält Adresse und Länge. Die Adresse verweist auf: das Prozessabbild der Eingänge das Prozessabbild der Ausgänge einen Merker einen Datenbaustein Zulässige referenzierte Datentypen: BOOL, BYTE, CHAR, WORD, INT, DWORD, DINT, REAL, DATE, TIME_OF_DAY, TIME, S5TIME, DATE_AND_TIME, STRING

Statusinformationen

ERROR	STATUS	Beschreibung			
0	0000h	Sendeauftrag wurde ohne Fehler abgeschlossen.			
0	7000h	Erstaufruf mit REQ = 0, kein Anstoß zum Senden.			
0	7001h	Erstaufruf mit REQ = 1, Anstoß des Sendevorgangs.			
0	7002h	Zwischenaufruf (REQ irrelevant), Auftrag ist in Bearbeitung			
		Hinweis: In dieser Bearbeitungsphase greift das Betriebssystem auf die Daten im Sendepuffer <i>DATA</i> zu.			
1	8085h	Parameter LEN hat den Wert 0 oder ist größer als der größte zulässige Wert.			
1	8086h	Parameter ID liegt in einem unzulässigen Wertebereich.			
0	8088h	Parameter LEN ist größer als der in DATA angegebene Speicherbereich.			
1	80A1h	Kommunikationsfehler:			
		 Zu der angegebenen ID wurde noch kein FB 65 TCON aufgerufen. Die angegebene Verbindung wird momentan abgebaut. Ein Sendevorgang über diese Verbindung ist nicht möglich. Schnittstelle wird neu initialisiert. 			
1	80B3h	Der parametrierte Verbindungstyp (Parameter <i>connection_type</i> in der Verbindungsbeschreibung) ist UDP.			
		Bitte verwenden Sie den FB 67 TUSEND.			
1	80C3h	Die Betriebsmittel (Speicher) der CPU sind temporär belegt.			
1	80C4h	Temporärer Kommunikationsfehler:			
		 Die Verbindung zum Kommunikationspartner kann momentan nicht aufgebaut werden. Die Schnittstelle wird neu parametriert. 			
1	8822h	Parameter DATA: Quellbereich ungültig, Bereich im DB nicht vorhanden.			
1	8824h	Parameter DATA: Bereichsfehler im ANY-Pointer.			
1	8832h	Parameter DATA: DB-Nummer ist zu groß.			
1	883Ah	Parameter DATA: Zugriff auf Sendepuffer nicht möglich (z.B. gelöschter DB).			
1	887Fh	Parameter DATA: Interner Fehler, z.B. unzulässige ANY-Referenz.			
1	8F7Fh	Interner Fehler (produktspezifisch)			
1	8xyyh	Allgemeine Fehlerinformation → "Allgemeine und spezifische Fehlercodes RET_VAL"Seite 65			

8.1.4 FB 64 - TRCV - Daten empfangen - TCP native und ISO on TCP

Beschreibung

Der FB 64 TRCV empfängt Daten über eine bestehende Kommunikationsverbindung. Für den Empfang und die Weiterverarbeitung der Daten gibt es folgende Varianten:

- Variante 1: Empfangenen Datenblock sofort weiterverarbeiten.
- Variante 2: Empfangene Datenblöcke in einem Empfangspuffer speichern und erst dann weiterverarbeiten, wenn dieser gefüllt ist.

Der Zusammenhang zwischen Verbindungstyp und den beiden Varianten ist in folgender Tabelle dargestellt.

Verbindungstyp	Variante
01h und 11h	Sie können die Variante selbst bestimmen.
12h	Variante 2 (fix)

Die beiden Varianten sind in der folgenden Tabelle näher beschrieben.

Empfangene Daten	Wertebereich von <i>LEN</i>	Wertebereich von RCVD_LEN	Beschreibung
stehen sofort zur Verfügung.	0	1 x	Sie übergeben einen Puffer, dessen Länge x im ANY-Pointer des Empfangspuffers hinterlegt ist (Parameter <i>DATA</i>).
			Nachdem ein Datenblock empfangen wurde, wird dieser sofort im Emp- fangspuffer zur Verfügung gestellt.
			Die Anzahl der empfang- enen Daten (Parameter RCVD_LEN) kann maximal so groß sein wie die im Parameter DATA hinterlegte Größe. Der Empfang wird angezeigt durch NDR = 1.
im Empfangspuffer spei- chern. Sie stehen zur Verfü- gung, sobald die projektierte Länge erreicht wird.	1 1460, falls Verbindungstyp = 01h 1 8192, falls Verbindungstyp = 11h 1 1452, falls Verbindungstyp = 12h und ein CP benutzt wird 1 8192, falls Verbindungstyp = 12h und kein CP benutzt wird	gleicher Wert wie im Para- meter LEN	Sie übergeben die Emp- fangslänge am Parameter LEN. Wenn diese paramet- rierte Länge erreicht ist, werden die Empfangsdaten im Parameter DATA zur Ver- fügung gestellt (NDR = 1).

Arbeitsweise

- Der FB 64 TRCV ist ein asynchron arbeitender FB, d.h. die Bearbeitung erstreckt sich über mehrere FB-Aufrufe. Sie starten den Empfangsvorgang, indem Sie den FB 64 mit REQ = 1 aufrufen.
- Über den Ausgangsparameter *BUSY* und den Ausgangsparameter STATUS wird der Zustand des Auftrags angezeigt. Dabei entspricht STATUS dem Ausgangsparameter *RET_VAL* der asynchron arbeitenden SFCs (siehe auch Bedeutung von *REQ*, *RET_VAL* und *BUSY* bei asynchron arbeitenden SFCs).
- In der folgenden Tabelle ist der Zusammenhang zwischen BUSY, NDR und ERROR angegeben. Mit ihrer Hilfe können Sie feststellen, in welchem Zustand sich der FB 64 TRCV aktuell befindet bzw. wann der Empfangsvorgang beendet ist.

BUSY	DONE	ERROR	Beschreibung
TRUE	irrelevant	irrelevant	Der Auftrag ist in Bearbeitung.
FALSE	TRUE	FALSE	Der Auftrag wurde erfolgreich abgeschlossen.
FALSE	FALSE	TRUE	Der Auftrag wurde mit einem Fehler beendet. Die Fehlerursache können Sie dem Parameter <i>STATUS</i> entnehmen.
FALSE	FALSE	FALSE	Dem FB wurde kein (neuer) Auftrag erteilt.

Durch die asynchrone Arbeitsweise des FB 64 TRCV sind die Daten im Empfangsbereich erst dann konsistent, wenn der Parameter NDR den Wert TRUE annimmt.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
EN_R	INPUT	BOOL	E, A, M, D, L	Mit EN_R = 1 wird der FB 64 TRCV empfangs- bereit (Steuerparameter). Der Empfangsauftrag wird bearbeitet.
ID	INPUT	WORD	M, D, Konstante	Referenz auf die zugehörige Verbindung. <i>ID</i> muss identisch sein mit dem zugehörigen Parameter <i>id</i> in der lokalen Verbindungsbeschreibung. Wertebereich: 0001h 0FFFh
LEN	INPUT	INT	E, A, M, D, L	 LEN = 0 (Ad-Hoc-Mode) empfohlen bei ISO on TCP: implizite Längenangabe im ANY-Pointer DATA verwenden. Die empfangenen Daten werden beim Bausteinaufruf unmittelbar bereitgestellt. Die Anzahl der empfangenen Daten steht in RCVD_LEN zur Verfügung. 1 ≤ LEN ≤ max: Anzahl der Bytes, die empfangen werden sollen. Die Anzahl der tatsächlich empfangenen Daten steht in RCVD_LEN zur Verfügung. Die Daten stehen Ihnen dann zur Verfügung, wenn sie vollständig empfangen wurden. max hängt vom Verbindungstyp ab: max = 1460 beim Verbindungstyp 01h max = 1452 beim Verbindungstyp 12h mit CP-Einsatz max = 8192 beim Verbindungstyp 12h ohne CP-Einsatz
NDR	OUTPUT	BOOL	E, A, M, D, L	 Zustandsparameter NDR: NDR = 0: Auftrag wurde noch nicht gestartet oder läuft noch NDR = 1: Auftrag wurde erfolgreich abgeschlossen

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
ERROR	OUTPUT	BOOL	E, A, M, D, L	Zustandsparameter <i>ERROR</i> :
				ERROR = 1: Bei der Bearbeitung ist ein Fehler aufgetreten. STATUS liefert detaillierte Auskunft über die Art des Fehlers.
BUSY	OUTPUT	BOOL	E, A, M, D, L	■ BUSY = 1: Der Auftrag ist noch nicht beendet. Es kann kein neuer Auftrag angestoßen werden.
				■ BUSY = 0: Der Auftrag ist beendet.
STATUS	OUTPUT	WORD	M, D	Zustandsparameter <i>STATUS</i> : Statusinformationen
RCVD_LEN	OUTPUT	INT	E, A, M, D, L	Anzahl der tatsächlich empfangenen Daten in Bytes
DATA	IN_OUT	ANY	E, A, M, D	Empfangsbereich (Adresse und Länge). Die Adresse verweist auf: das Prozessabbild der Eingänge das Prozessabbild der Ausgänge einen Merker einen Datenbaustein Zulässige referenzierte Datentypen: BOOL, BYTE, CHAR, WORD, INT, DWORD, DINT, REAL, DATE, TIME_OF_DAY, TIME, S5TIME, DATE_AND_TIME, STRING

Statusinformationen

ERROR	STATUS	Beschreibung
0	0000h	Neue Daten wurden übernommen. Die aktuelle Länge der empfangenen Daten wird in <i>RCVD_LEN</i> angezeigt.
0	7000h	Erstaufruf mit REQ = 0, kein Anstoß zum Empfangen
0	7001h	Baustein ist empfangsbereit. Empfangsauftrag wurde aktiviert.
0	7002h	Zwischenaufruf, Auftrag ist in Bearbeitung
		Hinweis: In dieser Bearbeitungsphase schreibt das Betriebssystem Daten in den Empfangspuffer <i>DATA</i> . Deshalb können im Fehlerfall inkonsistente Daten im Empfangspuffer stehen.
1	8085h	Parameter <i>LEN</i> ist größer als der größte zulässige Wert, oder Sie haben den Wert von <i>LEN</i> gegenüber dem Erstaufruf geändert
1	8086h	Parameter ID liegt in einem unzulässigen Wertebereich
1	8088h	Zielpuffer (DATA) ist zu klein Wert in LEN ist größer als der durch DATA vorgegebene Empfangsbereich. Fehler- behebung falls Verbindungstyp = 12h: Vergrößern Sie den Zielpuffer DATA.
1	80A1h	Kommunikationsfehler:
		 Zu der angegebenen ID wurde noch kein FB 65 TCON aufgerufen Die angegebene Verbindung wird momentan abgebaut. Ein Empfangsvorgang über diese Verbindung ist nicht möglich. Die Schnittstelle wird neu parametriert.

Offene Kommunikation - "Open Communication" > FB 65 - TCON - Verbindung aufbauen

ERROR	STATUS	Beschreibung
1	80B3h	Der parametrierte Verbindungstyp (Parameter <i>connection_type</i> in der Verbindungsbeschreibung) ist UDP. Bitte verwenden Sie den FB 68 TURCV.
1	80C3h	Die Betriebsmittel (Speicher) der CPU sind temporär belegt
1	80C4h	Temporärer Kommunikationsfehler: Die Verbindung wird gerade aufgebaut.
1	8922h	Parameter DATA: Zielbereich ungültig, Bereich im DB nicht vorhanden
1	8924h	Parameter DATA: Bereichsfehler im ANY-Pointer
1	8932h	Parameter DATA: DB-Nummer ist zu groß
1	893Ah	Parameter DATA: Zugriff auf Empfangspuffer nicht möglich (z.B. gelöschter DB)
1	897Fh	Parameter DATA: Interner Fehler, z.B. unzulässige ANY-Referenz
1	8F7Fh	Interner Fehler (produktspezifisch)
1	8xyyh	Allgemeine Fehlerinformation → "Allgemeine und spezifische Fehlercodes RET_VAL"Seite 65

8.1.5 FB 65 - TCON - Verbindung aufbauen

Verwendung bei TCP native und ISO on TCP

Beide Kommunikationspartner rufen den FB 65 TCON zum Aufbau der Kommunikationsverbindung auf. In der Parametrierung hinterlegen Sie, welcher der aktive und welcher der passive Kommunikationsendpunkt ist. Die Anzahl der möglichen Verbindungen entnehmen Sie den Technischen Daten Ihrer CPU. Nach dem Aufbau der Verbindung wird diese automatisch von der CPU überwacht und gehalten. Bei Verbindungsabbruch durch z.B. Leitungsunterbrechung oder durch den remoten Kommunikationspartner versucht der aktive Partner die Verbindung wieder aufzubauen. Sie müssen den FB 65 TCON nicht erneut aufrufen. Mit dem Aufruf des FB 66 TDISCON oder im Betriebszustand STOP der CPU wird eine bestehende Verbindung abgebrochen. Zum erneuten Aufbau der Verbindung müssen Sie den FB 65 TCON nochmals aufrufen.

Verwendung bei UDP

Beide Kommunikationspartner rufen den FB 65 TCON auf, um ihren lokalen Kommunikationszugangspunkt einzurichten. Dabei wird eine Verbindung zwischen Anwenderprogramm und der Kommunikationsschicht des Betriebssystems eingerichtet. Es erfolgt kein Verbindungsaufbau zum remoten Partner. Der lokale Zugangspunkt wird zum Senden und Empfangen von UDP Telegrammen verwendet.

Beschreibung

Der FB 65 TCON ist ein asynchron arbeitender FB, d.h. die Bearbeitung erstreckt sich über mehrere FB-Aufrufe. Sie starten den Verbindungsaufbau, indem Sie den FB 65 mit REQ = 1 aufrufen. Über den Ausgangsparameter BUSY und den Ausgangsparameter STATUS wird der Zustand des Auftrags angezeigt. Dabei entspricht STATUS dem Ausgangsparameter RET_VAL der asynchron arbeitenden SFCs (siehe auch Bedeutung von REQ, RET_VAL und BUSY bei asynchron arbeitenden SFCs). In der folgenden Tabelle ist der Zusammenhang zwischen BUSY, DONE und ERROR angegeben. Mit ihrer Hilfe können Sie feststellen, in welchem Zustand sich der FB 65 aktuell befindet bzw. wann der Verbindungsaufbau beendet ist.

BUSY	DONE	ERROR	Beschreibung
TRUE	irrelevant	irrelevant	Der Auftrag ist in Bearbeitung.
FALSE	TRUE	FALSE	Der Auftrag wurde erfolgreich abgeschlossen.
FALSE	FALSE	TRUE	Der Auftrag wurde mit einem Fehler beendet. Die Fehlerursache können Sie dem Parameter <i>STATUS</i> entnehmen.
FALSE	FALSE	FALSE	Dem FB wurde kein (neuer) Auftrag erteilt.

Offene Kommunikation - "Open Communication" > FB 65 - TCON - Verbindung aufbauen

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
REQ	INPUT	BOOL	E, A, M, D, L	Steuerparameter <i>REQ</i> , aktiviert den Verbindungs- aufbau bei steigender Flanke
ID	INPUT	WORD	M, D, Konstante	Referenz auf die aufzubauende Verbindung zum remoten Partner bzw. zwischen Anwenderprogramm und Kommunikationsschicht des Betriebssystems. ID muss identisch sein mit dem zugehörigen Parameter id in der lokalen Verbindungsbeschreibung. Wertebereich: 0001h 0FFFh
DONE	OUTPUT	BOOL	E, A, M, D, L	Zustandsparameter DONE:
				 0: Auftrag wurde noch nicht gestartet oder wird noch ausgeführt. 1: Auftrag wurde fehlerfrei ausgeführt.
BUSY	OUTPUT	BOOL	E, A, M, D, L	 BUSY = 1: Der Auftrag ist noch nicht beendet. BUSY = 0: Der Auftrag ist beendet.
ERROR	OUTPUT	BOOL	E, A, M, D, L	Zustandsparameter ERROR:
				ERROR = 1: Bei der Bearbeitung ist ein Fehler aufgetreten. STATUS liefert detaillierte Auskunft über die Art des Fehlers.
STATUS	OUTPUT	WORD	M, D	Zustandsparameter STATUS:
				Statusinformationen
CONNECT	IN_OUT	ANY	D	Zeiger auf die zugehörige Verbindungsbeschreibung.
				→ "UDT 65 - TCON_PAR - Datenstruktur für FB 65"Seite 123

Statusinformationen

ERROR	STATUS	Beschreibung
0	0000h	Verbindung konnte aufgebaut werden
0	7000h	Aufruf mit REQ = 0, kein Anstoß zum Verbindungsaufbau
0	7001h	Erstaufruf mit REQ = 1, Verbindung wird aufgebaut
0	7002h	Zwischenaufruf (REQ irrelevant), Verbindung wird aufgebaut
1	8086h	Der Parameter ID darf nicht den Wert Null haben.
0	8087h	Maximale Anzahl der Verbindungen ist erreicht, keine weitere Verbindung möglich.
1	8089h	Der Parameter CONNECT zeigt nicht auf einen Datenbaustein.
1	809Ah	Der Parameter <i>CONNECT</i> zeigt auf ein Feld, das nicht die Länge der Verbindungsbeschreibung (UDT 65) hat.
1	809Bh	Die über <i>local_device_id</i> und <i>next_staddr</i> angegebene Kommunikationsschnittstelle wird von der CPU nicht unterstützt.
1	80A1h	Verbindung bzw. Port ist bereits vom Anwender belegt.
1	80A2h	Lokaler oder remoter Port ist vom System belegt.
1	80A3h	Es wird versucht, eine bestehende Verbindung erneut aufzubauen.
1	80A4h	IP-Adresse des remoten Verbindungsendpunkts ist ungültig.

Offene Kommunikation - "Open Communication" > UDT 65 - TCON PAR - Datenstruktur für FB 65

ERROR	STATUS	Beschreibung
1	80A7h	Kommunikationsfehler: Sie haben nach einem nicht abgeschlossenen TCON einen TDISCON aufgerufen. Der Verbindungsaufbau wurde durch Aufruf eines TDISCON vorzeitig abgebrochen.
1	80B4h	Beim Protokoll ISO on TCP sind beim passiven Verbindungsaufbau eine oder mehrere der folgenden Bedingungen verletzt worden: local_tsap_id_len ≥ 02h local_tsap_id[1] = E0h bei local_tsap_id_len = 02h local_tsap_id[1] ein ASCII-Zeichen bei local_tsap_id_len ≥ 03h local_tsap_id[1] ist ein ASCII-Zeichen und local_tsap_id_len ≥ 03h
1	80B5h	Parameter active_est (UDT 65) ist TRUE bei der Protokollvariante UDP.
1	80B6h	Parameter connection_type ist ungültig (UDT 65).
1	80B7h	Fehler in einem der folgenden Parameter des UDT 65: block_length local_tsap_id_len rem_subnet_id_len rem_staddr_len rem_tsap_id_len next_staddr_len
1	80B8h	Parameter <i>id</i> in der lokalen Verbindungsbeschreibung (UDT 65) und Parameter ID sind unterschiedlich.
1	80C3h	Temporärer Ressourcenmangel der CPU
1	80C4h	Temporärer Kommunikationsfehler: Verbindung kann momentan nicht aufgebaut werden. Die Schnittstelle wird neu parametriert .
1	8F7Fh	Interner Fehler (produktspezifisch)
1	8xyyh	Allgemeine Fehlerinformation → "Allgemeine und spezifische Fehlercodes RET_VAL"Seite 65

8.1.6 UDT 65 - TCON PAR - Datenstruktur für FB 65

8.1.6.1 Datenstruktur für Verbindung

In der Verbindungsparametrierung von TCP native bzw. ISO on TCP legen Sie fest, welcher Kommunikationspartner den Verbindungsaufbau aktiviert und welcher auf eine Anforderung des Kommunikationspartners hin einen passiven Verbindungsaufbau durchführt. Wenn beide Kommunikationspartner ihren Verbindungsaufbau angestoßen haben, kann das Betriebssystem die Kommunikationsverbindung herstellen. Für die Kommunikation ist ein DB erforderlich. Hierbei erhält der DB seine Datenstruktur aus dem UDT 65 TCON_PAR. Für jede Verbindung ist solch eine Datenstruktur erforderlich, die Sie auch in einem globalen DB zusammenfassen können. Der Verbindungsparameter CONNECT des FB 65 TCON enthält einen Verweis auf die Adresse der zugehörigen Verbindungsbeschreibung (z.B. P#DB10.DBX0.0 Byte 64).

Datenstruktur

Byte	Parameter	Datentyp	Anfangswert	Beschreibung
0 1	block_length	WORD	40h	Länge des UDT 65: 64 Bytes (fest)

Offene Kommunikation - "Open Communication" > UDT 65 - TCON_PAR - Datenstruktur für FB 65

Byte	Parameter	Datentyp	Anfangswert	Beschreibung
2 3	id	WORD	0000h	 Referenz auf diese Verbindung (Wertebereich: 0001h 0FFFh) Den Wert dieses Parameters müssen Sie im jeweiligen Baustein bei <i>ID</i> angeben.
4	connection_type	BYTE	01h	Verbindungstyp: 11h: TCP/IP native 12h: ISO on TCP 13h: UDP 01h: TCP/IP native - Kompatibilitätsmode
5	active_est	BOOL	FALSE	Kennung für die Art des Verbindungsaufbaus: TCP, TCP, IoT: FALSE: passiver Verbindungsaufbau TRUE: aktiver Verbindungsaufbau UDP: FALSE
6	local_device_id	ВҮТЕ	02h	Kommunikationsschnittstelle 00h: Ethernet-PG/OP-Kanal der CPU 02h: Ethernet-CP der CPU
7	local_tsap_id_len	ВҮТЕ	02h	Verwendete Länge des Parameters local_tsap_id; mögliche Werte: TCP Aktive Seite: 0 (dynamische Portvergabe) oder 2 Passive Seite: 2 ISO on TCP 2 16 UDP Aktive Seite: 0 Passive Seite: 2
8	rem_subnet_id_len	BYTE	00h	Dieser Parameter wird derzeit nicht verwendet. Sie müssen ihn mit 00h belegen.
9	rem_staddr_len	ВҮТЕ	00h	Länge der Adresse des remoten Verbindungsend- punkts: TCP/ISO on TCP/TCP (Komp.) ■ 0: unspezifiziert, d.h. Parameter rem_staddr ist irrelevant. ■ 4: gültige IP-Adr. im Parameter rem_staddr UDP ■ 0¹

Offene Kommunikation - "Open Communication" > UDT 65 - TCON_PAR - Datenstruktur für FB 65

Byte	Parameter	Datentyp	Anfangswert	Beschreibung
10	rem_tsap_id_len	ВҮТЕ	00h	 Verwendete Länge des Parameters rem_tsap_id; mögliche Werte: TCP Aktive Seite: 2 (Der Port muss spezifiziert werden.) Passive Seite: 0 oder 2 ISO on TCP 0 oder 2 16 UDP Dieser Parameter wird nicht verwendet. Parameter mit 00h belegen. TCP (Komp.) Aktive Seite: 2 (Der Port muss spezifiziert werden.) Für die passive Seite ist nur der Wert 0 zulässig.
11	next_staddr_len	ВҮТЕ	00h	Verwendete Länge des Parameters next_staddr ■ 00h: Ethernet-CP der CPU ■ 01h: Ethernet-PG/OP-Kanal der CPU
12 27	local_tsap_id	ARRAY [116] of BYTE	00h	TCP, UDP local_tsap_id[1] = high byte der Port-Nr. in hexadezimaler Darstellung local_tsap_id[2] = low byte der Port-Nr. in hexadezimaler Darstellung local_tsap_id[3-16] = 00h ISO on TCP lokale TSAP-ID (mögliche Werte: 2000 5000) local_tsap_id[1] = E0h (Verbindungstyp T-Verbindung) local_tsap_id[2] = Rack und Steckplatz der eigenen CPU (Bits 0 4 Steckplatz, Bits 5 7: Racknummer) local_tsap_id[3-16] = TSAP-Erweiterung TCP (Komp.) local_tsap_id[1] = low byte der Port-Nr. in hexadezimaler Darstellung local_tsap_id[2] = high byte der Port-Nr. in hexadezimaler Darstellung local_tsap_id[3-16] = 00h Hinweis: Stellen Sie sicher, dass jeder Wert von local_tsap_id, den Sie auf Ihrer CPU verwenden, eindeutig ist.
28 33	rem_subnet_id	ARRAY [16] of BYTE	00h	Dieser Parameter wird derzeit nicht verwendet. Sie müssen ihn mit 00h belegen.

Offene Kommunikation - "Open Communication" > UDT 65 - TCON_PAR - Datenstruktur für FB 65

Byte	Parameter	Datentyp	Anfangswert	Beschreibung
34 39	rem_staddr	ARRAY [16] of BYTE	00h	IP-Adresse des remoten Verbindungsendpunkts, z.B. 192.168.002.003: bei connection_type ■ TCP / ISO on TCP - rem_staddr[1] = C0h (192) - rem_staddr[2] = A8h (168) - rem_staddr[3] = 02h (002) - rem_staddr[4] = 03h (003) - rem_staddr[5-6] = irrelevant ■ UDP - Dieser Parameter wird nicht verwendet. Sie müssen ihn mit 00h belegen. ■ TCP (Komp.) - rem_staddr[1] = 03h (003) - rem_staddr[2] = 02h (002) - rem_staddr[3] = A8h (168) - rem_staddr[4] = C0h (192) - rem_staddr[5-6] = irrelevant
40 55	rem_tsap_id	ARRAY [116] of BYTE	00h	 ■ TCP: remote Port-Nr. (mögliche Werte: 2000 5000), rem_tsap_id[1] = High-Byte der Port-Nr. in hexadezimaler Darstellung, rem_tsap_id[2] = Low-Byte der Port-Nr. in hexadezimaler Darstellung, rem_tsap_id[3-16] = 00h ■ ISO on TCP: remote TSAP-ID: rem_tsap_id[1] = E0h (Verbindungstyp T-Verbindung), rem_tsap_id[2] = Rack und Steckplatz des remoten Verbindungsendpunkts (CPU) (Bits 0 4: Steckplatz, Bits 5 7: Racknummer), rem_tsap_id[3-16] = TSAP-Erweiterung ■ UDP Dieser Parameter wird nicht verwendet. Sie müssen ihn mit 00h belegen. ■ TCP (Komp.): remote Port-Nr. (mögliche Werte: 2000 5000), local_tsap_id[1] = Low-Byte der Port-Nr. in hexadezimaler Darstellung, local_tsap_id[2] = High-Byte der Port-Nr. in hexadezimaler Darstellung, local_tsap_id[3-16] = 00h

Offene Kommunikation - "Open Communication" > UDT 65 - TCON PAR - Datenstruktur für FB 65

Byte	Parameter	Datentyp	Anfangswert	Beschreibung
56 61	next_staddr	ARRAY [16] of BYTE	00h	Rack und Steckplatz des projektierten CP für die PG/OP-Schnittstelle 00h (Ethernet-PG/OP-Kanal) - next_staddr[1]: 04h - next_staddr[2-6]: 00h 02h (Ethernet-CP) - next_staddr[1-6]: 00h
62 63	spare	WORD	0000h	irrelevant

¹⁾ Die Partner IP-Adresse wird beim Aufruf von TUSEND/TURECV über den Parameter ADDR angegeben.

8.1.6.2 Datenstruktur für Kommunikationszugangspunkt

Ein Kommunikationszugangspunkt stellt die Verbindung zwischen Anwenderprogramm der Kommunikationsschicht des Betriebssystems dar. Für die Kommunikation über UDP muss jeder Kommunikationspartner einen Kommunikationszugangspunkt mittels eines DB definieren. Hierbei erhält der DB seine Datenstruktur aus dem UDT 65 "TCON_PAR".

Datenstruktur

Byte	Parameter	Datentyp	Anfangswert	Beschreibung
0 1	block_length	WORD	40h	Länge des UDT 65: 64 Bytes (fest)
2 3	id	WORD	0000h	 Referenz auf diese Verbindung zwischen- Anwenderprogramm und Kommunikations- schicht des Betriebssystems (Wertebereich: 0001h 0FFFh) Den Wert dieses Parameters müssen Sie im jeweiligen Baustein bei ID angeben.
4	connection_type	BYTE	01h	Verbindungstyp:
				■ 13h: UDP
5	active_est	BOOL	FALSE	Kennung für die Art des Verbindungsaufbaus: Diesen Parameter müssen Sie mit FALSE belegen, da über den Kommunikationszugangs- punkt Daten sowohl gesendet als auch emp- fangen werden können.
6	local_device_id	BYTE	02h	Kommunikationsschnittstelle
				00h: Ethernet-PG/OP-Kanal der CPU02h: Ethernet-CP der CPU
7	local_tsap_id_len	BYTE	02h	Verwendete Länge des Parameters local_tsap_id; möglicher Wert: 2
8	rem_subnet_id_len	BYTE	00h	Dieser Parameter wird nicht verwendet. Wert 00h (fix)
9	rem_staddr_len	BYTE	00h	Dieser Parameter wird nicht verwendet. Wert 00h (fix)
10	rem_tsap_id_len	BYTE	00h	Dieser Parameter wird nicht verwendet. Wert 00h (fix)
11	next_staddr_len	BYTE	00h	Dieser Parameter wird nicht verwendet. Wert 00h (fix)

Offene Kommunikation - "Open Communication" > FB 66 - TDISCON - Verbindung abbauen

Byte	Parameter	Datentyp	Anfangswert	Beschreibung
12 27	local_tsap_id	ARRAY [116] of BYTE	00h	■ lokale Port-Nr. (mögliche Werte: 2000 5000) - local_tsap_id[1] = High-Byte der Port-Nr. in hexadezimaler Darstellung - local_tsap_id[2] = Low-Byte der Port-Nr. in hexadezimaler Darstellung - local_tsap_id[3-16] = irrelevant Hinweis: Stellen Sie sicher, dass jeder Wert von local_tsap_id, den Sie auf Ihrer CPU verwenden, eindeutig ist.
28 33	rem_subnet_id	ARRAY [16] of BYTE	00h	Dieser Parameter wird nicht verwendet. Wert 00h (fix)
34 39	rem_staddr	ARRAY [16] of BYTE	00h	Dieser Parameter wird nicht verwendet. Wert 00h (fix)
40 55	rem_tsap_id	ARRAY [116] of BYTE	00h	Dieser Parameter wird nicht verwendet. Wert 00h (fix)
56 61	next_staddr	ARRAY [16] of BYTE	00h	Dieser Parameter wird nicht verwendet. Wert 00h (fix)
62 63	spare	WORD	0000h	irrelevant

8.1.7 FB 66 - TDISCON - Verbindung abbauen

Verwendung bei TCP native und ISO on TCP

Der FB 66 TDISCON baut eine Kommunikationsverbindung der CPU zu einem Kommunikationspartner ab.

Verwendung bei UDP

Der FB 66 TDISCON löst den lokalen Kommunikationszugangspunkt auf, d.h. die Verbindung zwischen Anwenderprogramm und Kommunikationsschicht des Betriebssystems wird abgebaut.

Beschreibung

Der FB 66 TDISCON ist ein asynchron arbeitender FB, d.h. die Bearbeitung erstreckt sich über mehrere FB-Aufrufe. Sie starten den Verbindungsabbau, indem Sie den FB 66 mit *REQ* = 1 aufrufen.

Nach dem erfolgreichen Durchlauf des FB 66 TDISCON ist die beim FB 65 TCON angegebene ID nicht mehr gültig und kann damit weder zum Senden noch zum Empfangen verwendet werden.

Über den Ausgangsparameter *BUSY* und den Ausgangsparameter *STATUS* wird der Zustand des Auftrags angezeigt. Dabei entspricht *STATUS* dem Ausgangsparameter *RET_VAL* der asynchron arbeitenden SFCs (siehe auch Bedeutung von *REQ*, *RET_VAL* und *BUSY* bei asynchron arbeitenden SFCs).

In der folgenden Tabelle ist der Zusammenhang zwischen *BUSY*, *DONE* und *ERROR* angegeben. Mit ihrer Hilfe können Sie feststellen, in welchem Zustand sich der FB 66 aktuell befindet bzw. wann der Verbindungsaufbau beendet ist.

Offene Kommunikation - "Open Communication" > FB 66 - TDISCON - Verbindung abbauen

BUSY	DONE	ERROR	Beschreibung
TRUE	irrelevant	irrelevant	Der Auftrag ist in Bearbeitung.
FALSE	TRUE	FALSE	Der Auftrag wurde erfolgreich abgeschlossen.
FALSE	FALSE	TRUE	Der Auftrag wurde mit einem Fehler beendet.
			Die Fehlerursache können Sie dem Parameter STATUS entnehmen.
FALSE	FALSE	FALSE	Dem FB wurde kein (neuer) Auftrag erteilt.

Parameter

Parameter	Deklaration	Datentyp	Speicherbe- reich	Beschreibung
REQ	INPUT	BOOL	E, A, M, D, L	Steuerparameter <i>REQ</i> , aktiviert den Abbau der durch <i>ID</i> gegebenen Verbindung. Der Anstoß erfolgt bei steigender Flanke.
ID	INPUT	WORD	M, D, Kon- stante	Referenz auf die abzubauende Verbindung zum remoten Partner bzw. zwischen Anwenderprogramm und Kommunikationsschicht des Betriebssystems. <i>ID</i> muss identisch sein mit dem zugehörigen Parameter <i>ID</i> in der lokalen Verbindungsbeschreibung. Wertebereich: 0001h 0FFFh
DONE	OUTPUT	BOOL	E, A, M, D, L	 Zustandsparameter DONE: 0: Auftrag wurde noch nicht gestartet oder wird noch ausgeführt. 1: Auftrag wurde fehlerfrei ausgeführt.
BUSY	OUTPUT	BOOL	E, A, M, D, L	 BUSY = 1: Der Auftrag ist noch nicht beendet. BUSY = 0: Der Auftrag ist beendet.
ERROR	OUTPUT	BOOL	E, A, M, D, L	Zustandsparameter <i>ERROR</i> : ■ <i>ERROR</i> = 1: Bei der Bearbeitung ist ein Fehler aufgetreten. <i>STATUS</i> liefert detaillierte Auskunft über die Art des Fehlers.
STATUS	OUTPUT	WORD	M, D	Zustandsparameter STATUS: Statusinformationen

Statusinformationen

ERROR	STATUS	Erläuterung
0	0000h	Verbindung konnte abgebaut werden
0	7000h	Erstaufruf mit REQ = 0, kein Anstoß zum Verbindungsabbau
0	7001h	Erstaufruf mit REQ = 1, Start der Auftragsbearbeitung, Verbindung wird abgebaut
0	7002h	Zwischenaufruf (REQ irrelevant), Verbindung wird abgebaut
1	8086h	Parameter ID liegt in einem unzulässigen Wertebereich
1	80A3h	Es wird versucht, eine nicht bestehende Verbindung abzubauen
1	80C4h	Temporärer Kommunikationsfehler: Schnittstelle wird neu parametriert
1	8F7Fh	Interner Fehler (produktspezifisch)

Offene Kommunikation - "Open Communication" > FB 67 - TUSEND - Daten senden - UDP

ERROR	STATUS	Erläuterung
1	8xyyh	Allgemeine Fehlerinformation → "Allgemeine und spezifische Fehlercodes RET_VAL"Seite 65

8.1.8 FB 67 - TUSEND - Daten senden - UDP

Beschreibung

Der FB 67 TUSEND sendet Daten über UDP an den über den Parameter *ADDR* adressierten remoten Partner.

Bei aufeinander folgenden Sendevorgängen an verschiedene Partner müssen Sie bei den Aufrufen des FB 67 TUSEND lediglich den Parameter ADDR anpassen. Der erneute Aufruf der FB 65 TCON und FB 66 TDISCON hingegen entfällt.

Arbeitsweise

- Der FB 67 TUSEND ist ein asynchron arbeitender FB, d.h. die Bearbeitung erstreckt sich über mehrere FB-Aufrufe. Sie starten den Sendevorgang, indem Sie den FB 67 mit REQ = 1 aufrufen.
- Über den Ausgangsparameter *BUSY* und den Ausgangsparameter *STATUS* wird der Zustand des Auftrags angezeigt. Dabei entspricht *STATUS* dem Ausgangsparameter *RET_VAL* der asynchron arbeitenden SFCs (siehe auch Bedeutung von *REQ*, *RET_VAL* und *BUSY* bei asynchron arbeitenden SFCs).
- In der folgenden Tabelle ist der Zusammenhang zwischen BUSY, DONE und ERROR angegeben. Mit ihrer Hilfe können Sie feststellen, in welchem Zustand sich der FB 67 aktuell befindet bzw. wann der Sendevorgang beendet ist.

BUSY	DONE	ERROR	Beschreibung
TRUE	irrelevant	irrelevant	Der Auftrag ist in Bearbeitung.
FALSE	TRUE	FALSE	Der Auftrag wurde erfolgreich abgeschlossen.
FALSE	FALSE	TRUE	Der Auftrag wurde mit einem Fehler beendet.
			Die Fehlerursache können Sie dem Parameter STATUS entnehmen.
FALSE	FALSE	FALSE	Dem FB wurde kein (neuer) Auftrag erteilt.

Durch die asynchrone Arbeitsweise des FB 67 TUSEND müssen Sie die Daten im Sendebereich so lange konsistent halten, bis der Parameter DONE oder der Parameter ERROR den Wert TRUE annimmt.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
REQ	INPUT	BOOL	E, A, M, D, L	Steuerparameter <i>REQ</i> , aktiviert den Sendevorgang bei steigender Flanke.
				Beim erstmaligen Aufruf mit <i>REQ</i> = 1 werden Bytes aus dem mit Parameter <i>DATA</i> angegebenen Bereich übergeben.

Offene Kommunikation - "Open Communication" > FB 67 - TUSEND - Daten senden - UDP

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
ID	INPUT	WORD	M, D, Konstante	Referenz auf die zugehörige Verbindung zwischen Anwenderprogramm und Kommunikationsschicht des Betriebssystems.
				ID muss identisch sein mit dem zugehörigen Parameter ID in der lokalen Verbindungsbeschreibung.
				Wertebereich: 0001h 0FFFh
LEN	INPUT	INT	E, A, M, D, L	Anzahl der Bytes, die mit dem Auftrag gesendet werden sollen:
				Wertebereich: 1 1460
DONE	OUTPUT	BOOL	E, A, M, D, L	Zustandsparameter DONE:
				 0: Auftrag wurde noch nicht gestartet oder wird noch ausgeführt.
DUIO) (OUTDUT	DOOL	5 A M D I	■ 1: Auftrag wurde fehlerfrei ausgeführt.
BUSY	OUTPUT	BOOL	E, A, M, D, L	 BUSY = 1: Der Auftrag ist noch nicht beendet. Es kann kein neuer Auftrag angestoßen werden. BUSY = 0: Der Auftrag ist beendet.
ERROR	OUTPUT	BOOL	E, A, M, D, L	Zustandsparameter ERROR:
				ERROR = 1: Bei der Bearbeitung ist ein Fehler aufgetreten. STATUS liefert detaillierte Auskunft über die Art des Fehlers.
STATUS	OUTPUT	WORD	M, D	Zustandsparameter STATUS:
				Fehlerinformation
DATA	IN_OUT	ANY	E, A, M, D	Sendebereich, enthält Adresse und Länge
				Die Adresse verweist auf:
				das Prozessabbild der Eingänge
				das Prozessabbild der Ausgänge
				einen Merkereinen Datenbaustein
				Zulässige referenzierte Datentypen: BOOL, BYTE,
				CHAR, WORD, INT, DWORD, DINT, REAL, DATE, TIME_OF_DAY, TIME, S5TIME, DATE_AND_TIME, STRING
ADDR	IN_OUT	ANY	D	Zeiger auf die Adresse des Empfängers (z.B. P#DB100.DBX0.0 Byte 8), siehe Struktur der Adressinformation des remoten Partners bei UDP

Fehlerinformation

ERROR	STATUS	Erläuterung
0	0000h	Sendeauftrag wurde ohne Fehler abgeschlossen.
0	7000h	Erstaufruf mit REQ = 0, kein Anstoß zum Senden.
0	7001h	Erstaufruf mit <i>REQ</i> = 1, Anstoß des Sendevorgangs.
0	7002h	Zwischenaufruf (REQ irrelevant), Auftrag ist in Bearbeitung
		Hinweis: In dieser Bearbeitungsphase greift das Betriebssystem auf die Daten im Sendepuffer DATA zu.

Offene Kommunikation - "Open Communication" > FB 68 - TURCV - Daten empfangen - UDP

ERROR	STATUS	Erläuterung			
1	8085h	Parameter LEN hat den Wert 0 oder ist größer als der größte zulässige Wert.			
1	8086h	Parameter ID liegt in einem unzulässigen Wertebereich.			
0	8088h	Parameter LEN ist größer als der in DATA angegebene Speicherbereich.			
1	8089h	Parameter ADDR zeigt nicht auf einen Datenbaustein.			
1	80A1h	Kommunikationsfehler:			
		Zu der angegebenen ID wurde noch kein FB 65 TCON aufgerufen			
		Die angegebene Verbindung zwischen Anwenderprogramm und Kommunikations- schicht des Betriebssystems wird momentan abgebaut. Ein Sendevorgang über diese Verbindung ist nicht möglich.			
		Schnittstelle wird neu initialisiert.			
1	80A4h	Die IP-Adresse des Kommunikationspartners ist ungültig.			
1	80B3h	 Der parametrierte Verbindungstyp (Parameter connection_type in der Verbindungsbeschreibung) ist nicht UDP. Bitte verwenden Sie den FB 63 TSEND. Parameter ADDR: ungültige Angaben für Port-Nr. oder IP-Adresse. 			
1	80B7h	Längenfehler: Im Parameter <i>ADDR</i> ist die Längenangabe < 8Byte.			
1	80C4h	Temporärer Kommunikationsfehler:			
		 Der Kommunikationspartner ist momentan nicht erreichbar. 			
		■ Die Verbindung wird gerade konfiguriert (bzw. TCON läuft noch).			
1	8822h	Parameter DATA: Quellbereich ungültig, Bereich im DB nicht vorhanden			
1	8824h	Parameter DATA: Bereichsfehler im ANY-Pointer.			
1	8832h	Parameter DATA: DB-Nummer ist zu groß.			
1	883Ah	Parameter DATA: Zugriff auf Sendepuffer nicht möglich (z.B. gelöschter DB).			
1	887Fh	Parameter DATA: Interner Fehler, z.B. unzulässige ANY-Referenz.			
1	8F7Fh	Interner Fehler (produktspezifisch)			
1	8xyyh	Allgemeine Fehlerinformation → "Allgemeine und spezifische Fehlercodes RET_VAL"Seite 65			

8.1.9 FB 68 - TURCV - Daten empfangen - UDP

Beschreibung

- Der FB 68 TURCV empfängt Daten über UDP. Nach erfolgreichem Abschluss des FB 68 TURCV wird Ihnen am Parameter ADDR die Adresse des remoten Partners, also des Senders, zur Verfügung gestellt.
- Der FB 68 TURCV ist ein asynchron arbeitender FB, d.h. die Bearbeitung erstreckt sich über mehrere FB-Aufrufe. Sie starten den Sendevorgang, indem Sie den FB 68 mit REQ = 1 aufrufen.
- Über den Ausgangsparameter *BUSY* und den Ausgangsparameter *STATUS* wird der Zustand des Auftrags angezeigt. Dabei entspricht *STATUS* dem Ausgangsparameter *RET_VAL* der asynchron arbeitenden SFCs (siehe auch Bedeutung von *REQ*, *RET_VAL* und *BUSY* bei asynchron arbeitenden SFCs).
- In der folgenden Tabelle ist der Zusammenhang zwischen BUSY, NDR und ERROR angegeben. Mit ihrer Hilfe können Sie feststellen, in welchem Zustand sich der FB 68 aktuell befindet bzw. wann der Empfangsvorgang beendet ist.

Offene Kommunikation - "Open Communication" > FB 68 - TURCV - Daten empfangen - UDP

BUSY	NDR	ERROR	Beschreibung
TRUE	irrelevant	irrelevant	Der Auftrag ist in Bearbeitung.
FALSE	TRUE	FALSE	Der Auftrag wurde erfolgreich abgeschlossen.
FALSE	FALSE	TRUE	Der Auftrag wurde mit einem Fehler beendet. Die Fehlerursache können Sie dem Parameter <i>STATUS</i> entnehmen.
FALSE	FALSE	FALSE	Dem FB wurde kein (neuer) Auftrag erteilt.

Durch die asynchrone Arbeitsweise des FB 68 TURCV sind die Daten im Empfangsbereich erst dann konsistent, wenn der Parameter NDR den Wert TRUE annimmt.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
EN_R	INPUT	BOOL	E, A, M, D, L	Steuerparameter enabled to receive: Mit <i>EN_R</i> = 1 wird der FB 68 TURCV empfangsbereit.
ID	INPUT	WORD	M, D, Konstante	Referenz auf die zugehörige Verbindung zwischen Anwenderprogramm und Kommunikationsschicht des Betriebssystems.
				<i>ID</i> muss identisch sein mit dem zugehörigen Parameter <i>ID</i> in der lokalen Verbindungsbeschreibung.
				Wertebereich: 0001h 0FFFh
LEN	INPUT	INT	E, A, M, D, L	$1 \le LEN \le 1472$: Anzahl der Bytes, die empfangen werden sollen.
				Die empfangenen Daten werden beim Bausteinaufruf unmittelbar bereitgestellt. Die Anzahl der empfangenen Daten steht in <i>RCVD_LEN</i> zur Verfügung.
NDR	OUTPUT	BOOL	E, A, M, D, L	Zustandsparameter NDR:
				NDR = 0: Auftrag wurde noch nicht gestartet oder läuft noch
				NDR = 1: Auftrag wurde erfolgreich abge- schlossen
ERROR	OUTPUT	BOOL	E, A, M, D, L	Zustandsparameter <i>ERROR</i> :
				■ ERROR = 1: Bei der Bearbeitung ist ein Fehler aufgetreten. STATUS liefert detaillierte Auskunft über die Art des Fehlers.
BUSY	OUTPUT	BOOL	E, A, M, D, L	 BUSY = 1: Der Auftrag ist noch nicht beendet. Es kann kein neuer Auftrag angestoßen werden. BUSY = 0: Der Auftrag ist beendet.
STATUS	OUTPUT	WORD	M, D	Zustandsparameter STATUS:
				Fehlerinformation

Offene Kommunikation - "Open Communication" > FB 68 - TURCV - Daten empfangen - UDP

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
RCVD_LEN	OUTPUT	INT	E, A, M, D, L	Anzahl der tatsächlich empfangenen Daten in Bytes
DATA	IN_OUT	ANY	E, A, M, D	Empfangsbereich, enthält Adresse und Länge. Die Adresse verweist auf:
				das Prozessabbild der Eingänge
				das Prozessabbild der Ausgänge
				einen Merker
				einen Datenbaustein
				Zulässige referenzierte Datentypen: BOOL, BYTE, CHAR, WORD, INT, DWORD, DINT, REAL, DATE, TIME_OF_DAY, TIME, S5TIME, DATE_AND_TIME, STRING
ADDR	IN_OUT	ANY	D	Zeiger auf die Adresse des Senders
				(z.B. P#DB100.DBX0.0 Byte 8), siehe Struktur der Adressinformation des remoten Partners bei UDP

Fehlerinformation

ERROR	STATUS	Erläuterung
0	0000h	Neue Daten wurden übernommen. Die aktuelle Länge der empfangenen Daten wird in <i>RCVD_LEN</i> angezeigt.
0	7000h	Erstaufruf mit REQ = 0, kein Anstoß zum Empfangen
0	7001h	Baustein ist empfangsbereit
0	7002h	Zwischenaufruf, Auftrag ist in Bearbeitung
		Hinweis: In dieser Bearbeitungsphase schreibt das Betriebssystem Daten in den Empfangspuffer <i>DATA</i> . Deshalb können im Fehlerfall inkonsistente Daten im Empfangspuffer stehen.
1	8085h	Parameter <i>LEN</i> ist größer als der größte zulässige Wert, oder Sie haben den Wert von <i>LEN</i> gegenüber dem Erstaufruf geändert
1	8086h	Parameter ID liegt in einem unzulässigen Wertebereich
1	8088h	 Zielpuffer (<i>DATA</i>) ist zu klein Wert in <i>LEN</i> ist größer als der durch <i>DATA</i> vorgegebene Empfangsbereich.
1	8089h	Parameter ADDR zeigt nicht auf einen Datenbaustein.
1	80A1h	Kommunikationsfehler:
		 Zu der angegebenen ID wurde noch kein FB 65 "TCON" aufgerufen Die angegebene Verbindung zwischen Anwenderprogramm und der Kommunikationsschicht des Betriebssystems wird momentan abgebaut. Ein Empfangsvorgang über diese Verbindung ist nicht möglich. Die Schnittstelle wird neu parametriert.
1	80B3h	Der parametrierte Verbindungstyp (Parameter connection_type in der Verbindungsbeschreibung) ist nicht UDP.
		Bitte verwenden Sie den FB 64 TRCV.
1	80B7h	Längenfehler: Im Parameter ADDR ist die Längenangabe < 8Byte.

Offene Kommunikation - "Open Communication" > UDT 66 - TADDR PAR - Datenstruktur

ERROR	STATUS	Erläuterung
1	80C4h	Temporärer Kommunikationsfehler:
		■ Die Verbindung wird gerade konfiguriert (bzw. TCON läuft noch).
1	8922h	Parameter DATA: Zielbereich ungültig, Bereich im DB nicht vorhanden
1	8924h	Parameter DATA: Bereichsfehler im ANY-Pointer
1	8932h	Parameter DATA: DB-Nummer ist zu groß
1	893Ah	Parameter DATA: Zugriff auf Empfangspuffer nicht möglich (z.B. gelöschter DB)
1	897Fh	Parameter DATA: Interner Fehler, z.B. unzulässige ANY-Referenz
1	8F7Fh	Interner Fehler (produktspezifisch)
1	8xyyh	Allgemeine Fehlerinformation → "Allgemeine und spezifische Fehlercodes RET_VAL"Seite 65

8.1.10 UDT 66 - TADDR_PAR - Datenstruktur

8.1.10.1 Datenstruktur für Verbindung

Beschreibung

- Beim FB 67 TUSEND übergeben Sie am Parameter ADDR die Adresse des Empfängers. Diese Adressinformation muss die im Folgenden angegebene Struktur haben.
- Beim FB 68 TURCV erhalten Sie am Parameter ADDR die Adresse des Absenders der empfangenen Daten. Diese Adressinformation muss die im Folgenden angegebene Struktur haben.

Datenbaustein

Sie müssen einen DB anlegen, der eine oder mehrere Datenstrukturen gemäß UDT 66 TADDR_PAR enthält.

Im Parameter *ADDR* des FB 67 TUSEND übergeben Sie und am Parameter *ADDR* des FB 68 TURCV erhalten Sie einen Zeiger auf die Adresse des zugehörigen remoten Partners (z.B. P#DB10.DBX0.0 Byte 8).

Aufbau der Adressinformation des remoten Partners

Byte	Parameter	Datentyp	Anfangswert	Beschreibung
0 3	rem_ip_addr	ARRAY [14] of BYTE	00h	IP-Adresse des remoten Partners, z.B.192.168.002.003: ■ rem_ip_addr[1] = C0h (192) ■ rem_ip_addr[2] = A8h (168) ■ rem_ip_addr[3] = 02h (002)
				<pre>rem_ip_addr[4] = 03h (003)</pre>
4 5	rem_port_nr	ARRAY [12] of BYTE	00h	remote Port-Nr. (mögliche Werte: 2000 5000) ■ rem_port_nr[1] = High-Byte der Port-Nr. in hexadezimaler Darstellung ■ rem_port_nr[2] = Low-Byte der Port-Nr. in hexadezimaler Darstellung
6 7	spare	ARRAY [12] of BYTE	00h	reserviert (00h)

Ethernet-Kommunikation - "Ethernet Communication" > Kommunikation - FC 5...6 für CP 343

8.2 Ethernet-Kommunikation - "Ethernet Communication"

8.2.1 Kommunikation - FC 5...6 für CP 343

Die beiden Bausteine dienen der Verarbeitung von Verbindungsaufträgen auf SPS-Seite eines Ethernet-CP 343. Durch Einbindung dieser Bausteine in den Zyklus-Baustein OB1 können Sie zyklisch Daten senden und empfangen. Innerhalb dieser Bausteine werden die FCs 205 und 206 aufgerufen, die als Sonderfunktionsbausteine in der CPU abliegen.

<u>]</u>

Bitte beachten Sie, dass Sie in Ihrem Anwenderprogramm für die Kommunikation mit CPs von Yaskawa ausschließlich die produktspezifischen SEND/RECV-FCs einsetzen dürfen. Bei Wechsel zu CPs in einem schon bestehenden Projekt können die bestehenden AG_SEND / AG_LSEND bzw. AG_RECV / AG_LRECV durch die produktspezifischen AG_SEND bzw. AG_RECV ohne Anpassung ersetzt werden. Da sich der CP automatisch an die Länge der zu übertragenden Daten anpasst ist die L-Variante von SEND bzw. RECV bei CPs von Yaskawa nicht erforderlich.

Kommunikationsbausteine

Für die Kommunikation zwischen CPU und Ethernet-CP 343 stehen Ihnen folgende FCs zur Verfügung:

- AG SEND (FC 5)
 - Dieser Baustein übergibt die Nutzdaten aus dem über SEND angegebenen Datenbereich an den über ID und LADDR spezifizierten CP. Als Datenbereich können Sie einen PA-, Merker- oder Datenbaustein-Bereich angeben. Wurde der Datenbereich fehlerfrei übertragen, so wird "Auftrag fertig ohne Fehler" zurückgemeldet.
- AG RECV (FC 6)
 - Der Baustein übernimmt vom CP die Nutzdaten und legt sie in dem über RECV definierten Datenbereich ab. Als Datenbereich können Sie einen PE-, Merker- oder Datenbaustein-Bereich angeben. Wurde der Datenbereich fehlerfrei übernommen, so wird "Auftrag fertig ohne Fehler" zurückgemeldet.

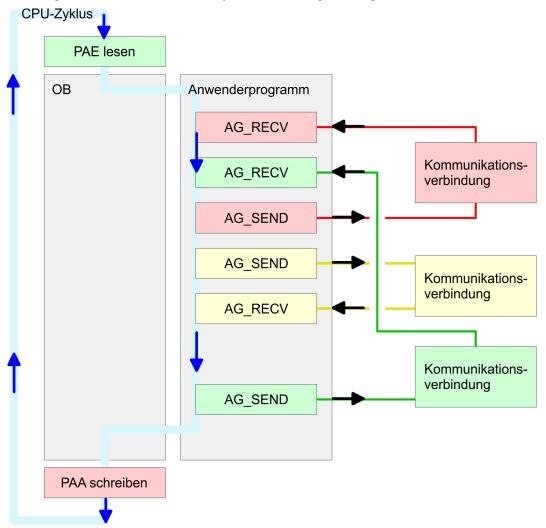
Statusanzeigen

Der CP bearbeitet Sende- und Empfangsaufträge unabhängig vom CPU Zyklus und benötigt hierzu eine Übertragungszeit. Die Schnittstelle mit den FC-Bausteinen zum Anwenderprogramm wird hierbei über Quittungen synchronisiert. Für die Statusauswertung liefern die Kommunikationsbausteine Parameter zurück, die Sie in Ihrem Anwenderprogramm direkt auswerten können. Diese Statusanzeigen werden bei jedem Baustein-Aufruf aktualisiert.

Einsatz unter hoher Kommunikationslast

Verwenden Sie keine zyklischen Aufrufe der Kommunikationsbausteine im OB 1. Dies führt zu einer ständigen Kommunikation zwischen CPU und CP. Programmieren Sie statt dessen Ihre Kommunikationsbausteine in einem Zeit-OB, deren Zykluszeit größer ist als die des OB1 bzw. ereignisgesteuert.

Aufruf FC schneller als CP-Übertragungszeit


Wird ein Baustein im Anwenderprogramm erneut aufgerufen, bevor die Daten vollständig gesendet oder empfangen wurden, wird an der Schnittstelle der FC-Bausteine wie folgt verfahren:

- AG SEND
 - Es wird kein Auftrag entgegen genommen, bis die Datenübertragung über die Verbindung vom Partner quittiert wurde. Solange erhalten Sie die Meldung "Auftrag läuft", bis der CP den nächsten Auftrag für die gleiche Verbindung übernehmen kann.
- AG RECV
 - Der Auftrag wird mit der Meldung "Es liegen noch keine Daten vor" quittiert, solange der CP die Empfangsdaten noch nicht vollständig empfangen hat.

Ethernet-Kommunikation - "Ethernet Communication" > FC 5 - AG SEND - Senden an CP 343

AG_SEND, AG_RECV im Anwenderprogramm

Eine mögliche Ablaufsequenz für die FC-Bausteine zusammen mit den Organisationsund Programmbausteinen im CPU-Zyklus ist nachfolgend dargestellt:

Die FC-Bausteine mit zugehöriger Kommunikationsverbindung sind farblich zusammengefasst. Hier können Sie auch erkennen, dass Ihr Anwenderprogramm aus beliebig vielen Bausteinen bestehen kann. Somit können Sie ereignis- bzw. programmgesteuert an beliebiger Stelle im CPU-Zyklus mit AG_SEND Daten senden bzw. mit AG_RECV Daten empfangen. Sie können die Bausteine für **eine** Kommunikationsverbindung auch mehrmals in einem Zyklus aufrufen.

8.2.2 FC 5 - AG_SEND - Senden an CP 343

Mit AG_SEND werden die zu sendenden Daten von der CPU an einen Ethernet-CP übertragen.

Bitte beachten Sie, dass dieser Baustein intern den FC bzw. SFC 205 AG_SEND aufruft. Dieser darf nicht überschrieben werden! Der direkte Aufruf eines internen Bausteins führt zu Fehler im entsprechenden Instanz-DB!

Ethernet-Kommunikation - "Ethernet Communication" > FC 5 - AG SEND - Senden an CP 343

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
ACT	INPUT	BOOL	Aktivierung des Senders
			0: Aktualisiert die DONE, ERROR und STATUS
			1: Der unter <i>SEND</i> mit der Länge <i>LEN</i> abgelegte Datenbereich wird gesendet
ID	INPUT	INT	Verbindungsnummer 1 16
			(identisch mit <i>ID</i> aus NetPro)
LADDR	INPUT	WORD	Logische Basisadresse des CPs
			(identisch mit LADDR aus NetPro)
SEND	INPUT	ANY	Datenbereich
LEN	INPUT	INT	Anzahl der Bytes, die aus dem Datenbereich zu übertragen sind
DONE	OUTPUT	BOOL	Zustandsparameter für den Auftrag
			0: Auftrag läuft
			1: Auftrag fertig ohne Fehler
ERROR	OUTPUT	BOOL	Fehleranzeige
			0: Auftrag läuft (bei <i>DONE</i> = 0)
			0: Auftrag fertig ohne Fehler (bei <i>DONE</i> = 1)
			1: Auftrag fertig mit Fehler
STATUS	OUTPUT	WORD	Statusanzeige, die in Verbindung mit <i>DONE</i> und <i>ERROR</i> zurückgeliefert wird. Näheres hierzu finden Sie in der nachfolgenden Tabelle.

DONE, ERROR, STATUS

In der nachfolgenden Tabelle sind alle Meldungen aufgeführt, die der Ethernet-CP nach einem SEND-Auftrag bzw. RECV-Auftrag zurückliefern kann. Ein "-" bedeutet, dass diese Meldung für den entsprechenden SEND- bzw. RECV-Auftrag nicht existiert.

DONE (SEND)	NDR (RECV)	ERROR	STATUS	Beschreibung
1	-	0	0000h	Auftrag fertig ohne Fehler.
-	1	0	0000h	Neue Daten wurden ohne Fehler übernommen.
0	-	0	0000h	Kein Auftrag in Bearbeitung.
-	0	0	8180h	Es liegen noch keine Daten vor.
0	0	0	8181h	Auftrag läuft
0	0	1	8183h	Für diesen Auftrag gibt es keine CP-Projektierung.
0	-	1	8184h	Es ist ein Systemfehler aufgetreten.
-	0	1	8184h	Es ist ein Systemfehler aufgetreten
				(Quelldatenbereich fehlerhaft)
0	-	1	8185h	Parameter LEN größer als Quell-Bereich SEND.
	0	1	8185h	Ziel-Puffer (RECV) ist zu klein.
0	0	1	8186h	Parameter ID ungültig (nicht im Bereich 1 16).

Ethernet-Kommunikation - "Ethernet Communication" > FC 5 - AG_SEND - Senden an CP 343

DONE (SEND)	NDR (RECV)	ERROR	STATUS	Beschreibung
0	-	1	8302h	Keine Empfangsressourcen bei Ziel-Station, Empfänger-Station kann empfangene Daten nicht schnell genug verarbeiten bzw. hat keine Empfangsressourcen bereitgestellt.
0	-	1	8304h	Die Verbindung ist nicht aufgebaut. Der Sendeauftrag sollte erst nach einer Wartezeit > 100ms erneut abgesetzt werden.
-	0	1	8304h	Die Verbindung ist nicht aufgebaut. Der Empfangsauftrag sollte erst nach einer Wartezeit > 100ms erneut abgesetzt werden.
0	-	1	8311h	Zielstation ist unter der angegebenen Ethernet-Adresse nicht erreichbar.
0	-	1	8312h	Ethernet-Fehler im CP
0		1	8F22h	Quell-Bereich ungültig, wenn beispielsweise Bereich im DB nicht vorhanden Parameter <i>LEN</i> < 0.
-	0	1	8F23h	Quell-Bereich ungültig, wenn beispielsweise Bereich im DB nicht vorhanden Parameter $LEN < 0$.
0	-	1	8F24h	Bereichsfehler beim Lesen eines Parameters.
-	0	1	8F25h	Bereichsfehler beim Schreiben eines Parameters.
0	-	1	8F28h	Ausrichtungsfehler beim Lesen eines Parameters.
-	0	1	8F29h	Ausrichtungsfehler beim Schreiben eines Parameters.
-	0	1	8F30h	Parameter liegt im schreibgeschützten 1. akt. Datenbaustein
-	0	1	8F31h	Parameter liegt im schreibgeschützten 2. akt. Datenbaustein
0	0	1	8F32h	Parameter enthält zu große DB-Nummer.
0	0	1	8F33h	DB-Nummer Fehler
0	0	1	8F3Ah	Bereich nicht geladen (DB)
0	-	1	8F42h	Quittungsverzug beim Lesen eines Parameters aus dem Peripheriebereich.
-	0	1	8F43h	Quittungsverzug beim Schreiben eines Parameters in den Peripheriebereich.
0	-	1	8F44h	Adresse des zu lesenden Parameters in der Zugriffsspur gesperrt.
-	0	1	8F45h	Adresse des zu schreibenden Parameters in der Zugriffsspur gesperrt.
0	0	1	8F7Fh	Interner Fehler z.B. unzulässige ANY-Referenz z.B. Parameter <i>LEN</i> = 0.
0	0	1	8090h	Baugruppe mit dieser Baugruppen-Anfangsadresse nicht vorhanden oder CPU in STOP.
0	0	1	8091h	Baugruppen-Anfangsadresse nicht auf Doppel-Wort-Raster.
0	0	1	8092h	In ANY-Referenz ist eine Typangabe ungleich BYTE angegeben.
-	0	1	80A0h	Negative Quittung beim Lesen von Baugruppe.
0	0	1	80A4h	reserviert
0	0	1	80B0h	Baugruppe kennt den Datensatz nicht.

Ethernet-Kommunikation - "Ethernet Communication" > FC 6 - AG_RECV - Empfangen von CP 343

DONE (SEND)	NDR (RECV)	ERROR	STATUS	Beschreibung
0	0	1	80B1h	Die Längenangabe (im Parameter LEN) ist falsch.
0	0	1	80B2h	reserviert
0	0	1	80C0h	Datensatz kann nicht gelesen werden.
0	0	1	80C1h	Der angegebene Datensatz ist gerade in Bearbeitung.
0	0	1	80C2h	Es liegt ein Auftragsstau vor.
0	0	1	80C3h	Die Betriebsmittel (Speicher) der CPU sind temporär belegt.
0	0	1	80C4h	Kommunikationsfehler (tritt temporär auf; daher ist eine Wiederholung im Anwenderprogramm sinnvoll).
0	0	1	80D2h	Baugruppen-Anfangsadresse ist falsch.

Status-Parameter bei Neuanlauf

Bei einem Neuanlauf des CP werden die Ausgabe-Parameter wie folgt zurückgesetzt:

- DONE = 0
- NDR = 0
- ERROR = 0
- STATUS = 8180h (bei AG RECV)
- STATUS = 8181h (bei AG_SEND)

8.2.3 FC 6 - AG_RECV - Empfangen von CP 343

Mit dem 1. Aufruf von AG_RECV richten Sie einen Empfangspuffer zwischen der CPU und einem Ethernet CP 343 ein. Von jetzt ab werden empfangene Daten automatisch in diesem Puffer abgelegt. Sobald nach einem Aufruf von AG_RECV der Rückgabewert NDR = 1 zurückgeliefert wird, liegen gültige Daten ab. Da mit einem weiteren Aufruf von AG_RECV der Empfangspuffer für den Empfang neuer Daten wieder freigegeben wird, müssen Sie die zuvor empfangenen Daten sichern.

Bitte beachten Sie, dass dieser Baustein intern den FC bzw. SFC 206 AG_RECV aufruft. Dieser darf nicht überschrieben werden! Der direkte Aufruf eines internen Bausteins führt zu Fehler im entsprechenden Instanz-DB!

Parameter	Deklaration	Datentyp	Beschreibung
ID	INPUT	INT	Verbindungsnummer 1 16
			(identisch mit ID aus NetPro)
LADDR	INPUT	WORD	Logische Basisadresse des CPs
			(identisch mit LADDR aus NetPro)
RECV	INPUT	ANY	Datenbereich für die empfangenen Daten.
NDR	OUTPUT	BOOL	Zustandsparameter für den Auftrag
			0: Auftrag läuft
			1: Auftrag fertig Daten wurden ohne Fehler übernommen

Ethernet-Kommunikation - "Ethernet Communication" > FC 6 - AG RECV - Empfangen von CP 343

Parameter	Deklaration	Datentyp	Beschreibung
ERROR	OUTPUT	BOOL	Fehleranzeige
			0: Auftrag läuft (bei <i>NDR</i> = 0)
			0: Auftrag fertig ohne Fehler (<i>NDR</i> = 1)
			1: Auftrag fertig mit Fehler
STATUS	OUTPUT	WORD	Statusanzeige, die in Verbindung mit <i>NDR</i> und <i>ERROR</i> zurückgeliefert wird. Näheres hierzu finden Sie in der nachfolgenden Tabelle.
LEN	OUTPUT	INT	Anzahl der Bytes, die empfangen wurden.

DONE, ERROR, STATUS

In der nachfolgenden Tabelle sind alle Meldungen aufgeführt, die der Ethernet-CP 343 nach einem SEND-Auftrag bzw. RECV-Auftrag zurückliefern kann.

Ein "-" bedeutet, dass diese Meldung für den entsprechenden SEND- bzw. RECV-Auftrag nicht existiert.

DONE (SEND)	NDR (RECV)	ERROR	STATUS	Beschreibung
1	-	0	0000h	Auftrag fertig ohne Fehler.
-	1	0	0000h	Neue Daten wurden ohne Fehler übernommen.
0	-	0	0000h	Kein Auftrag in Bearbeitung.
-	0	0	8180h	Es liegen noch keine Daten vor.
0	0	0	8181h	Auftrag läuft
0	0	1	8183h	Für diesen Auftrag gibt es keine CP-Projektierung.
0	-	1	8184h	Es ist ein Systemfehler aufgetreten.
-	0	1	8184h	Es ist ein Systemfehler aufgetreten
				(Quelldatenbereich fehlerhaft)
0	-	1	8185h	Parameter LEN größer als Quell-Bereich SEND.
	0	1	8185h	Ziel-Puffer (RECV) ist zu klein.
0	0	1	8186h	Parameter ID ungültig (nicht im Bereich 1 16).
0	-	1	8302h	Keine Empfangsressourcen bei Ziel-Station, Empfänger-Station kann empfangene Daten nicht schnell genug verarbeiten bzw. hat keine Empfangsressourcen bereitgestellt.
0	-	1	8304h	Die Verbindung ist nicht aufgebaut. Der Sendeauftrag sollte erst nach einer Wartezeit > 100ms erneut abgesetzt werden.
-	0	1	8304h	Die Verbindung ist nicht aufgebaut. Der Empfangsauftrag sollte erst nach einer Wartezeit > 100ms erneut abgesetzt werden.
0	-	1	8311h	Zielstation ist unter der angegebenen Ethernet-Adresse nicht erreichbar.
0	-	1	8312h	Ethernet-Fehler im CP
0		1	8F22h	Quell-Bereich ungültig, wenn beispielsweise Bereich im DB nicht vorhanden Parameter <i>LEN</i> < 0.
-	0	1	8F23h	Quell-Bereich ungültig, wenn beispielsweise Bereich im DB nicht vorhanden Parameter <i>LEN</i> < 0.
0	-	1	8F24h	Bereichsfehler beim Lesen eines Parameters.

Ethernet-Kommunikation - "Ethernet Communication" > FC 6 - AG_RECV - Empfangen von CP 343

DONE (SEND)	NDR (RECV)	ERROR	STATUS	Beschreibung
-	0	1	8F25h	Bereichsfehler beim Schreiben eines Parameters.
0	-	1	8F28h	Ausrichtungsfehler beim Lesen eines Parameters.
-	0	1	8F29h	Ausrichtungsfehler beim Schreiben eines Parameters.
-	0	1	8F30h	Parameter liegt im schreibgeschützten 1. akt. Datenbaustein
-	0	1	8F31h	Parameter liegt im schreibgeschützten 2. akt. Datenbaustein
0	0	1	8F32h	Parameter enthält zu große DB-Nummer.
0	0	1	8F33h	DB-Nummer Fehler
0	0	1	8F3Ah	Bereich nicht geladen (DB)
0	-	1	8F42h	Quittungsverzug beim Lesen eines Parameters aus dem Peripheriebereich.
-	0	1	8F43h	Quittungsverzug beim Schreiben eines Parameters in den Peripheriebereich.
0	-	1	8F44h	Adresse des zu lesenden Parameters in der Zugriffsspur gesperrt.
-	0	1	8F45h	Adresse des zu schreibenden Parameters in der Zugriffsspur gesperrt.
0	0	1	8F7Fh	Interner Fehler z.B. unzulässige ANY-Referenz z.B. Parameter <i>LEN</i> = 0.
0	0	1	8090h	Baugruppe mit dieser Baugruppen-Anfangsadresse nicht vorhanden oder CPU in STOP.
0	0	1	8091h	Baugruppen-Anfangsadresse nicht auf Doppel-Wort-Raster.
0	0	1	8092h	In ANY-Referenz ist eine Typangabe ungleich BYTE angegeben.
-	0	1	80A0h	Negative Quittung beim Lesen von Baugruppe.
0	0	1	80A4h	reserviert
0	0	1	80B0h	Baugruppe kennt den Datensatz nicht.
0	0	1	80B1h	Die Längenangabe (im Parameter LEN) ist falsch.
0	0	1	80B2h	reserviert
0	0	1	80C0h	Datensatz kann nicht gelesen werden.
0	0	1	80C1h	Der angegebene Datensatz ist gerade in Bearbeitung.
0	0	1	80C2h	Es liegt ein Auftragsstau vor.
0	0	1	80C3h	Die Betriebsmittel (Speicher) der CPU sind temporär belegt.
0	0	1	80C4h	Kommunikationsfehler (tritt temporär auf; daher ist eine Wiederholung im Anwenderprogramm sinnvoll).
0	0	1	80D2h	Baugruppen-Anfangsadresse ist falsch.

Ethernet-Kommunikation - "Ethernet Communication" > FC 10 - AG CNTRL - Control CP 343

Status-Parameter bei Neuanlauf

Bei einem Neuanlauf des CP werden die Ausgabe-Parameter wie folgt zurückgesetzt:

- DONE = 0
- NDR = 0
- ERROR = 0
- STATUS = 8180h (bei AG RECV)
- STATUS = 8181h (bei AG_SEND)

8.2.4 FC 10 - AG_CNTRL - Control CP 343

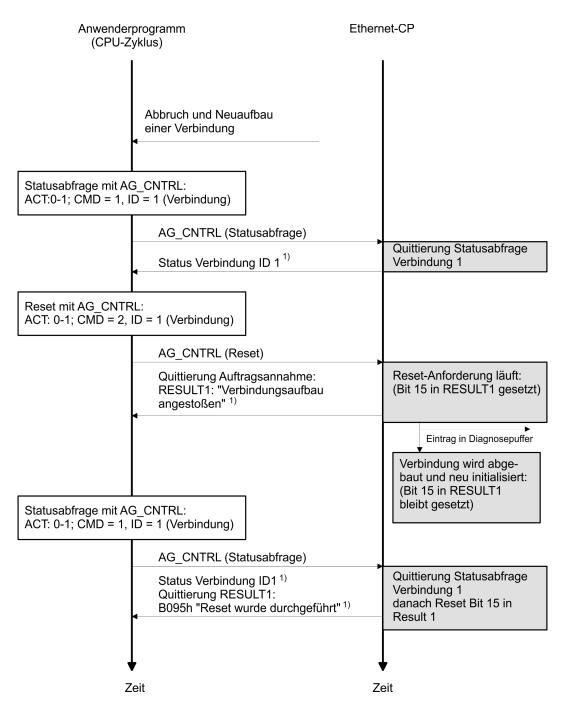
Beschreibung

Mit dem FC 10 besteht die Möglichkeit, Verbindungen des Ethernet-CP 343 zu diagnostizieren bzw. einen neuen Verbindungsaufbau zu initialisieren.

Folgende Aktionen können über parametrierbare Kommandos ausgeführt werden:

- Auslesen von Verbindungsinformationen
- Rücksetzen von projektierten Verbindungen

Die Kommandos dieses Bausteins sind nur für SEND-/RECV-Verbindungen zulässig, die auf die Protokolle ISO/RFC/TCP und UDP aufsetzen.



Bitte beachten Sie, dass dieser Baustein intern den FC bzw. SFC 196 AG_CNTRL aufruft. Dieser darf nicht überschrieben werden! Der direkte Aufruf eines internen Bausteins führt zu Fehler im entsprechenden Instanz-DB!

FC 10 im Anwenderprogramm

Die folgende Darstellung zeigt einen typischen Ablauf von AG_CNTRL. Hier sehen Sie, wie zunächst der Verbindungsstatus abgefragt und in einem zweiten Auftrag der Verbindungsaufbau mittels Reset-Kommando veranlasst wird.

Ethernet-Kommunikation - "Ethernet Communication" > FC 10 - AG CNTRL - Control CP 343

1) Parameterübergabe DONE, ERROR, STATUS und RESULT1/2

Parameter	Deklaration	Datentyp	Beschreibung
ACT	INPUT	BOOL	Auftrag wird durch Flankenwechsel 0-1 von ACT ausgeführt.
ID	INPUT	INT	Verbindungsnummer aus der Projektierung
LADDR	INPUT	WORD	Anfangsadresse des CP in der Hardware-Konfiguration
CMD	INPUT	INT	Kommando-Nr.
DONE	OUTPUT	BOOL	Zustandsparameter des Auftrags
ERROR	OUTPUT	BOOL	Fehler des Auftrags

Parameter	Deklaration	Datentyp	Beschreibung
STATUS	OUTPUT	WORD	Status des Auftrags
RESULT1	OUTPUT	DWORD	Rückmeldung 1 gemäß Kommando
RESULT2	OUTPUT	DWORD	Rückmeldung 2 gemäß Kommando

ACT Wertebereich: 0, 1

Der Aufruf des FC muss mit Flankenwechsel 0-1 von ACT erfolgen.

Beim Aufruf mit ACT = 0 erfolgt kein Funktionsaufruf und der Baustein wird sofort wieder

verlassen.

ID Wertebereich: 1, 2 ... n, oder 0

Im Parameter *ID* wird die Verbindungsnummer der Verbindung angegeben. Die Verbindungsnummer ist der Projektierung zu entnehmen. Die maximale Anzahl der Verbindungsnummer ist der Verbindungsnummer ist der Verbindungsnummer der Verbindungsnumm

dungen ist n.

Bei einem Aufruf, der alle Verbindungen anspricht, muss als ID 0 angegeben werden

(ALL-Funktion mit CMD 3 bzw. CMD 4).

LADDR Baugruppen-Anfangsadresse

Bei der Konfiguration des CP im Hardware-Konfigurator wird die Baugruppen-Anfangsad-

resse in der Konfigurationstabelle ausgegeben.

Geben Sie diese Adresse hier an.

CMD Kommandos an den FC AG_CNTRL

DONE 0: Auftrag ist noch in Bearbeitung bzw. noch nicht angestoßen

1: Auftrag ist ausgeführt

Der Zustandsparameter zeigt an, ob der Auftrag fehlerfrei abgewickelt wurde.

Bei DONE = 1 kann RESULT ausgewertet werden.

ERROR 0: kein Fehler

1: Fehleranzeige

STATUS Statusanzeige

RESULT1/2 Rückmeldung gemäß Kommando an den FC AG_CNTRL

DONE, ERROR, STATUS In der nachfolgenden Tabelle sind alle Meldungen aufgeführt, die der Ethernet-CP 343

nach einem AG_CNTRL zurückliefern kann.

Zusätzlich sind die Kommando-Ergebnisse in den Parametern RESULT1 und RESULT2

auszuwerten.

DONE	ERROR	STATUS	Beschreibung	
1	0	0000h	Auftrag fertig ohne Fehler	
0	0	0000h	Kein Auftrag in Bearbeitung	
0	0	8181h	Auftrag läuft, der Bausteinaufruf ist mit den gleichen Parametern zu wiederholen, bis <i>DONE</i> oder <i>ERROR</i> gemeldet werden.	
0	1	8183h	Für diesen Auftrag gibt es keine CP-Projektierung oder der Dienst im Ethernet-CP 343 ist noch nicht gestartet.	
0	1	8186h	Parameter $\it ID$ ungültig. Die zulässige $\it ID$ ist abhängig vom gewählten Kommando.	
0	1	8187h	Der Parameter CMD ist ungültig	
0	1	8188h	Sequenzfehler bei der ACT-Steuerung	
0	1	8090h	Baugruppe mit dieser Baugruppen-Anfangsadresse nicht vorhanden oder CPU in STOP.	
0	1	8091h	Baugruppen-Anfangsadresse nicht auf Doppel-Wort Raster.	
0	1	80B0h	Baugruppe kennt den Datensatz nicht.	
0	1	80C0h	Datensatz kann nicht gelesen werden.	
0	1	80C1h	Der angegebene Datensatz ist gerade in Bearbeitung.	
0	1	80C2h	Es liegt ein Auftragsstau vor.	
0	1	80C3h	Die Betriebsmittel (Speicher) der CPU sind temporär belegt.	
0	1	80C4h	Kommunikationsfehler (tritt temporär auf; daher ist eine Wiederholung im Anwenderprogramm sinnvoll).	
0	1	80D2h	Baugruppen-Anfangsadresse ist falsch.	

Status-Parameter bei Neuanlauf

Bei einem Neuanlauf des CP werden die Ausgabe-Parameter wie folgt zurückgesetzt:

- DONE = 0
- \blacksquare NDR = 0
- ERROR = 8180h (bei AG_RECV)
- ERROR = 8181h (bei AG_SEND)

9

Hinweis!

Bitte beachten Sie, dass Sie den Baustein nur dann mit neuen Parametern aufrufen können, wenn ein zuvor gestarteter Auftrag mit DONE = 1 abgeschlossen wurde.

Kommandos und Auswertung der Auftragsergebnisse

In der nachfolgenden Tabelle finden Sie die möglichen Kommandos und die in den Parametern *RESULT1* und *RESULT2* auswertbaren Ergebnisse.

CMD 0 NOP - no operation

Der Baustein wird ohne Auftrag an den CP durchlaufen.

RESULT	Hex-Wert/Bereich	Beschreibung
RESULT 1	0000 0001h	Ablauf ohne Fehler
RESULT 2	0000 0000h	Default

CMD 1

CN_STATUS - connection status

Dieses Kommando liefert den Status der mit *ID* gewählten Verbindung des über *LADDR* ausgewählten CP. Sollte das Bit 15 (RESET-Kennung) gesetzt sein, wird dieses automatisch zurückgesetzt (dieses Verhalten entspricht CMD 5 - CN_CLEAR_RESET).

RESULT	Hex-Wert/Bereich	Beschreibung
RESULT 1	0000 000xh	Bit 3 0: Anzeige Senderichtung (ausgeschlossen: 0010 _b)
		Bit 0: Sende/Empfangsverbindung reserviert
		Bit 1: Sendeauftrag in Bearbeitung
		Bit 3, 2: Vorangegangener Auftrag
		00: Keine Information
		01: Sendeauftrag positiv abgeschlossen
		10: Sendeauftrag negativ abgeschlossen
	0000 00x0h	Bit 7 4: Anzeige Empfangsrichtung (ausgeschlossen: 0010b)
		Bit 4: Sende/Empfangsverbindung reserviert
		Bit 5: Empfangsauftrag in Bearbeitung
		Bit 7, 6: Vorangegangener Auftrag
		00: Keine Information
		01: Empfangsauftrag positiv abgeschlossen
		10: Empfangsauftrag negativ abgeschlossen
	0000 0x00h	Bit 11 8: Anzeigen für FETCH/WRITE
		(ausgeschlossen: 0011 _b , 0111 _b , 1000 _b , 1011 _b , 0010 _b)
		Bit 8: Verbindungstyp
		0: keine FETCH-Verbindung
		1: Verbindung für FETCH-Aufträge reserviert
		Bit 9: Verbindungstyp
		0: keine WRITE-Verbindung
		1: Verbindung für WRITE-Aufträge reserviert
		Bit 10: Auftragsstatus (FETCH/ WRITE)
		0: Auftragsstatus OK
		1: Auftragsstatus nicht OK
		Diese Kennung wird in folgenden Fällen gesetzt:
		- Der Auftrag wurde von der CPU negativ quittiert
		- Der Auftrag wurde von der CPU negativ quittiert
		- Der Auftrag konnte nicht zur CPU weitergeleitet werden, weil sich die Verbindung im Zustand "LOCKED" befand.
		- Der Auftrag wurde abgelehnt, weil der FETCH/WRITE-Header nicht korrekt aufgebaut war.
		Bit 11: Status FETCH/WRITE-Auftrag
		0: es läuft kein Auftrag
		1: es läuft ein Auftrag von LAN

RESULT	Hex-Wert/Bereich	Beschreibung
	0000 x000h	Bit 15 12: Allgemeine CP-Informationen
		(ausgeschlossen: 0011 _b , 1011 _b)
		Bit 13, 12: Verbindungszustand
		(nur für SEND/RECV-Verbindungen verfügbar, die auf die Proto- kolle ISO/RFC/TCP aufsetzen; bei UDP werden die entsprechenden internen Informationen ausgegeben)
		00: Verbindung ist abgebaut
		01: Verbindungsaufbau läuft
		10: Verbindungsabbau läuft
		11: Verbindung ist aufgebaut
		Bit 14: CP-Information
		0: CP in STOP
		1: CP in RUN
		Bit 15: Reset-Kennung
		0: Es wurde durch den FC 10 noch kein Verbindungs-Reset durchgeführt bzw. die Reset-Kennung wurde zurück genommen.
		1: Es wurde durch den FC 10 ein Verbindungs-Reset durchgeführt.
	xxxx 0000h	Bit 31 16: Reserviert für spätere Erweiterungen
RESULT 2	0000 0000h	Reserviert für spätere Erweiterungen

CMD 2 CN_RESET - connection reset

Dieses Kommando setzt die mit *ID* gewählte Verbindung des über *LADDR* ausgewählten CP zurück.

Das Rücksetzen der Verbindung bewirkt einen Verbindungsabbruch und einen erneuten Verbindungsaufbau (aktiv oder passiv, abhängig von der Projektierung).

Es wird zusätzlich ein Eintrag im Diagnosepuffer erzeugt, dem das Auftragsergebnis zu entnehmen ist.

RESULT	Hex-Wert/Bereich	Beschreibung
RESULT 1	0000 0001h	Der Reset-Auftrag wurde erfolgreich an den CP übertragen.
		Der Verbindungsabbruch und der anschließende Verbindungsaufbau wurden angestoßen.
	0000 0002h	Der Reset-Auftrag konnte nicht an den CP übertragen werden, da der Dienst im CP nicht gestartet ist (z.B. CP in STOP).
RESULT 2	0000 0000h	Default

CMD₃

CN STATUS ALL - all connections status

Dieses Kommando liefert in den Parametern *RESULT1/2* (insgesamt 8Byte Sammelinformation) den Verbindungsstatus aller Verbindungen (aufgebaut/abgebaut) des über *LADDR* ausgewählten CP.

Hierbei muss der Parameter ID auf "0" gesetzt sein (wird auf "0" überprüft).

Detailinformationen einer abgebauten oder nicht projektierten Verbindung erhält man bei Bedarf über einen erneuten, auf die Verbindung gezielten Status-Aufruf mit *CMD* = 1.

RESULT	Hex-Wert/Bereich	Beschreibung
RESULT 1	xxxx xxxxh	32 Bit: Verbindung 1 32
		0: Verbindung abgebaut / nicht projektiert
		1: Verbindung aufgebaut
RESULT 2	xxxx xxxxh	32 Bit: Verbindung 33 64
		0: Verbindung abgebaut / nicht projektiert
		1: Verbindung aufgebaut

CMD 4

CN RESET ALL - all connections reset

Dieses Kommando setzt alle Verbindungen des über LADDR angewählten CP zurück.

Der Parameter ID muss auf "0" gesetzt sein (wird auf "0" überprüft).

Das Rücksetzen der Verbindung bewirkt einen Verbindungsabbruch und einen erneuten Verbindungsaufbau (aktiv oder passiv, abhängig von der Projektierung).

Es wird zusätzlich ein Eintrag im Diagnosepuffer erzeugt, dem das Auftragsergebnis zu entnehmen ist.

RESULT	Hex-Wert/Bereich	Beschreibung
RESULT 1	0000 0001h	Der Reset-Auftrag wurde erfolgreich an den CP übertragen.
		Der Verbindungsabbruch und der anschließende Verbindungsaufbau aller Verbindungen wurden angestoßen.
	0000 0002h	Der Reset-Auftrag konnte nicht an den CP übertragen werden, da der Dienst im CP nicht gestartet ist (z.B. CP in STOP).
RESULT 2	0000 0000h	Default

CMD 5

CN CLEAR RESET - clear the reset ID

Dieses Kommando setzt die Reset-Kennung (Bit 15 in RESULT1) für die mit *ID* gewählte Verbindung des über *LADDR* ausgewählten CP zurück.

Dieser Auftrag wird auch automatisch beim Lesen des Verbindungsstatus ausgeführt (*CMD* = 1); der hier beschriebene separat absetzbare Auftrag ist nur in Sonderfällen erforderlich.

Ethernet-Kommunikation - "Ethernet Communication" > FC 62 - C_CNTR - Zustand einer Verbindung abfragen

RESULT	Hex-Wert/Bereich	Beschreibung
RESULT 1	0000 0001h	Der Clear-Auftrag wurde erfolgreich an den CP übertragen.
	0000 0002h	Der Clear-Auftrag konnte nicht an den CP übertragen werden, da der Dienst im CP nicht gestartet ist (z.B. CP in STOP).
RESULT 2	0000 0000h	Default

CMD₆

CN DISCON - connection disconnect

Dieses Kommando setzt die Verbindung zurück, die mit *ID* und *LADDR* ausgewählt wurde. Das Rücksetzen der Verbindung wird durch einen Verbindungsabbruch durchgeführt.

Eventuell im Stack gespeicherte Daten gehen ohne Hinweis verloren. Im Anschluss erfolgt kein automatischer Aufbau der Verbindung. Die Verbindung kann durch den Control-Auftrag CN_STARTCON wieder aufgebaut werden. Es wird ein Diagnosepuffereintrag erzeugt, dem Sie das Auftragsergebnis entnehmen können.

RESULT	Hex-Wert/Bereich	Beschreibung
RESULT 1	0000 0001h	Der Auftrag wurde erfolgreich an den CP übertragen. Der Verbindungsabbruch wurde eingeleitet.
	0000 0002h	Der Auftrag konnte nicht an den CP übertragen werden, da der Dienst im CP nicht gestartet ist (z.B. CP in STOP).
RESULT 2	0000 0000h	Default

CMD 7

CN_STARTCON - start connection

Dieses Kommando baut eine Verbindung auf, die mit *ID* und *LADDR* ausgewählt und zuvor mit dem Control-Auftrag CN_DISCON abgebrochen wurde. Es wird ein Diagnosepuffereintrag erzeugt, dem Sie das Auftragsergebnis entnehmen können.

RESULT	Hex-Wert/Bereich	Beschreibung
RESULT 1	0000 0001h	Der Auftrag wurde erfolgreich an den CP übertragen. Der Verbindungsaufbau wurde eingeleitet.
	0000 0002h	Der Auftrag konnte nicht an den CP übertragen werden, da der Dienst im CP nicht gestartet ist (z.B. CP in STOP).
RESULT 2	0000 0000h	Default

8.2.5 FC 62 - C_CNTR - Zustand einer Verbindung abfragen

Beschreibung

Mit dem FC 62 ermitteln Sie den Zustand einer Verbindung. Nach Aufruf der Systemfunktion mit dem Wert 1 am Steuereingang *EN_R* wird der momentane Zustand der über ID adressierten Verbindung ermittelt. Intern wird der SFC196 aufgerufen.

Parameter

Parameter	Deklaration	Datentyp	Speicherbe- reich	Beschreibung
EN_R	INPUT	BOOL	E, A, M, D, L, Konst.	Steuerparameter enabled to receive, signalisiert Empfangsbereitschaft, wenn der Eingang gesetzt ist.

Ethernet-Kommunikation - "Ethernet Communication" > FB/SFB 8 - FB 55 - Übersicht

Parameter	Deklaration	Datentyp	Speicherbe- reich	Beschreibung
ID	INPUT	WORD	M, D, Konst.	Adressierungsparameter ID
RET_VAL	OUTPUT	INT	E, A, M, D, L	Fehlerinformation
ERROR	OUTPUT	BOOL	E, A, M, D, L	Zustandsparameter ERROR und STATUS
STATUS	OUTPUT	WORD	E, A, M, D, L	 ERROR=0 und STATUS hat den Wert: 0000h: weder Warnung noch Fehler <> 0000h: Warnung, STATUS liefert detaillierte Auskunft. ERROR=1 Es liegt ein Fehler vor. STATUS liefert detaillierte Auskunft über die Art des Fehlers.
C_CONN	OUTPUT	BOOL	E, A, M, D, L	 Zustand der zugehörigen Verbindung. Mögliche Werte: 0: Verbindung abgebrochen oder nicht aufgebaut. 1: Verbindung vorhanden.
C_STATUS	OUTPUT	WORD	E, A, M, D, L	 Verbindungszustand: W#16#0000: Verbindung ist nicht eingerichtet W#16#0001: Verbindung wird gerade eingerichtet W#16#0002: Verbindung ist eingerichtet W#16#000F: Keine Daten für Verbindungsstatus verfügbar (z. B. beim CP-Anlauf) W#16#00FF: Verbindung ist nicht projektiert

Fehlerinformationen

Der Ausgangsparameter *RET_VAL* kann bei der FC 62 C_CNTRL die folgenden beiden Werte annehmen:

- 0000h: Bei der Ausführung des FC ist kein Fehler aufgetreten.
- 8000h: Bei der Ausführung des FC ist ein Fehler aufgetreten.

Auch dann, wenn im Ausgangsparameter RET_VAL der Wert 0000h angezeigt wird, sind die Ausgangsparameter ERROR und STATUS auszuwerten.

ERROR	STATUS (dezimal)	Beschreibung
1	10	Fehler beim Zugriff auf den CP, weil gerade ein anderer Auftrag läuft. Auftragswiederholung zu einem späteren Zeitpunkt.
1	27	Für diesen Baustein existiert in der CPU kein Funktionscode.

8.2.6 FB/SFB 8 - FB 55 - Übersicht

Mit der Siemens S7-Kommunikation können Sie größere Datenmengen zwischen über Ethernet verbundenen SPS-Systemen auf Basis von Siemens STEP7® übertragen. Die Kommunikationsverbindungen sind statisch, d.h. sie sind über eine Verbindungstabelle zu projektieren.

Ethernet-Kommunikation - "Ethernet Communication" > FB/SFB 8 - USEND - Unkoordiniertes Senden

Möglichkeiten der Kommunikationsfunktionen

- Siemens S7-300-Kommunikationsfunktionen
 - Durch Einbindung der produktspezifischen Funktionsbausteine FB 8 ... FB 55 können Sie auf die Siemens S7-300-Kommunikationsfunktionen zugreifen. → "Controls Library einbinden"...Seite 68
- Siemens S7-400-Kommunikationsfunktionen
 - Für die Siemens S7-400-Kommunikationsfunktionen verwenden Sie die SFB 8 ... SFB 23, die im Betriebssystem der CPU integriert sind. Hierzu kopieren Sie die Schnittstellenbeschreibung der SFBs aus der Siemens Standard-Bibliothek in das Verzeichnis "Bausteine", generieren für jeden Aufruf einen Instanzen-Datenbaustein und rufen den SFB mit dem zugehörigen Instanzen-Datenbaustein auf.

Projektierung

Voraussetzung für die Siemens S7-Kommunikation ist eine projektierte Verbindungstabelle, in der die Kommunikationsverbindungen definiert werden. Hierzu können Sie beispielsweise WinPLC7 oder NetPro von Siemens verwenden. Eine Kommunikationsverbindung ist durch eine Verbindungs-ID für jeden Kommunikationspartner spezifiziert. Die lokale ID verwenden Sie für die Parametrierung des FB/SFB der SPS von der aus die Verbindung betrachtet wird und die Partner-ID für die Parametrierung des FB/SFB in der Partner-SPS.

Funktionsbausteine

FB/SFB	Bezeichnung	Beschreibung
FB/SFB 8	USEND	Unkoordiniertes Senden
FB/SFB 9	URCV	Unkoordiniertes Empfangen
FB/SFB 12	BSEND	Blockorientiertes Senden
FB/SFB 13	BRCV	Blockorientiertes Empfangen
FB/SFB 14	GET	Remote CPU lesen
FB/SFB 15	PUT	Remote CPU schreiben
FB 55	IP_CONF	Programmierbare Verbindungen

Bitte verwenden Sie für die Siemens S7-Kommunikation ausschließlich die hier aufgeführten FB/SFBs. Der direkte Aufruf der zugehörigen internen FC/SFCs führt zu Fehlern im entsprechenden Instanz-DB!

8.2.7 FB/SFB 8 - USEND - Unkoordiniertes Senden

Beschreibung

Mit dem FB/SFB 8 USEND können Daten an einen remoten Partner- FB/SFB vom Typ URCV (FB/SFB 9) gesendet werden, wobei darauf zu achten ist, dass der Parameter R_ID bei beiden FB/SFBs identisch ist. Der Sendevorgang wird mit einer positiven Flanke am Steuereingang REQ gestartet und verläuft ohne Koordination mit dem Partner-FB/SFB.

Je nach Kommunikationsfunktion haben Sie folgendes Verhalten:

- Siemens S7-300-Kommunikation (FB 8)
 - Der Sendevorgang erfolgt nach einer positiven Flanke an REQ. Mit jeder positiven Flanke an REQ werden die Parameter R_ID, ID und SD_1 übernommen. Nach Abschluss eines Auftrags können Sie den Parametern R_ID, ID und SD_1 neue Werte zuweisen.
- Siemens S7-400-Kommunikation (SFB 8)
 - Der Sendevorgang erfolgt nach einer positiven Flanke an REQ. Die zu sendenden Daten werden durch die Parameter SD_1 ... SD_4 referenziert, wobei diese vier Sendeparameter nicht alle belegt sein müssen.

Ethernet-Kommunikation - "Ethernet Communication" > FB/SFB 8 - USEND - Unkoordiniertes Senden

Parameter

Parameter	Deklaration	Datentyp	Speicherbe- reich	Beschreibung
REQ	INPUT	BOOL	E, A, M, D, L	Steuerparameter request, aktiviert den Datenaustausch bei steigender Flanke (gegenüber letztem FB/ SFB-Aufruf)
ID	INPUT	WORD	E, A, M, D, Konstante	Referenz auf die Verbindung. <i>ID</i> muss in der Form wxyzh angegeben werden.
R_ID	INPUT	DWORD	E, A, M, D, L, Konstante	Adressierungsparameter <i>R_ID</i> . Ist in der Form DW#16#wxyzWXYZ anzugeben.
DONE	OUTPUT	BOOL	E, A, M, D, L	Zustandsparameter DONE:
				0: Auftrag wurde noch nicht gestartet oder wird noch ausgeführt.1: Auftrag wurde fehlerfrei ausgeführt.
ERROR	OUTPUT	BOOL	E, A, M, D, L	Zustandsparameter ERROR:
				 ERROR = 0 + STATUS = 0000h Weder Warnung noch Fehler. ERROR = 0 + STATUS ungleich 0000h Es liegt eine Warnung vor. STATUS liefert detaillierte Auskunft. ERROR = 1 Es liegt ein Fehler vor.
STATUS	OUTPUT	WORD	E, A, M, D, L	Zustandsparameter <i>STATUS</i> , liefert detaillierte Auskunft über die Art des Fehlers.
SD_i,1≤ i ≤4	IN_OUT	ANY	E, A, M, D, T, Z	Zeiger auf i-ten Sendebereich. Zulässig sind nur die Datentypen: BOOL (nicht erlaubt: Bitfeld), BYTE, CHAR, WORD, INT, DWORD, DINT, REAL, DATE, TOD, TIME, S5TIME, DATE_AND_TIME, COUNTER, TIMER.

Bitte beachten Sie, dass die über die Parameter SD_1/SD_1...SD_4 und RD_1/RD_1...RD_4 (beim zugehörigen Partner-FB/SFB URCV) definierten Bereiche übereinstimmen in Anzahl, Länge und Datentyp.

Der Parameter R_ID muss bei beiden FB/SFBs identisch sein. Der erfolgreiche Abschluss des Sendevorgangs wird am Zustandsparameter DONE mit einer logischen 1 angezeigt.

Fehlerinformationen

ERROR	STATUS (dezimal)	Bedeutung
0	11	Warnung: Neuer Auftrag ist unwirksam, da vorangegangener Auftrag noch nicht abgeschlossen ist.
0	25	Die Kommunikation wurde angestoßen. Der Auftrag ist in Bearbeitung.

Ethernet-Kommunikation - "Ethernet Communication" > FB/SFB 9 - URCV - Unkoordiniertes Empfangen

ERROR	STATUS (dezimal)	Bedeutung
1	1	Kommunikationsprobleme, z.B.
		 Verbindungsbeschreibung nicht geladen (lokal oder remote)
		Verbindung unterbrochen (z.B. Kabel, CPU ausge- schaltet, CP in STOP)
1	4	Fehler in den Sendebereichszeigern <i>SD_i</i> bezüglich der Datenlänge oder des Datentyps.
1	10	Zugriff auf lokalen Anwenderspeicher nicht möglich (z.B. Zugriff auf gelöschten DB).
1	12	Beim Aufruf des FB/SFB wurde
		ein Instanz-DB, der nicht zum FB/SFB 8 gehört, ange- geben
		kein Instanz-DB, sondern ein Global-DB angegebenkein Instanz-DB gefunden
		(Laden eines neuen Instanz-DB vom PG)
1	18	R_ID existiert bereits in der Verbindung ID.
1	20	Zu wenig Arbeitsspeicher vorhanden.

Datenkonsistenz

Um sicherzustellen das die Datenkonsistenz nicht beeinträchtigt wird, dürfen die aktuell benutzten Sendebereiche *SD_i* erst dann wieder beschrieben werden, wenn der aktuelle Sendevorgang abgeschlossen ist. Dazu muss der Parameter *DONE* ausgewertet werden. Der gesamte Sendevorgang ist erst dann abgeschlossen, wenn der Zustandsparameter *DONE* den Wert 1 annimmt.

8.2.8 FB/SFB 9 - URCV - Unkoordiniertes Empfangen

Beschreibung

Mit dem FB/SFB 9 URCV können Daten asynchron von einem remoten Partner-FB/SFB vom Typ USEND (FB/SFB 8) empfangen werden, wobei darauf zu achten ist, dass der Parameter *R_ID* bei beiden FB/SFBs identisch ist. Der Baustein ist empfangsbereit, wenn am Eingang *EN_R* eine logische 1 anliegt. Mit *EN_R*=0 kann ein laufender Auftrag abgebrochen werden.

Je nach Kommunikationsfunktion haben Sie folgendes Verhalten:

- Siemens S7-300-Kommunikation (FB 9)
 - Mit jeder positiven Flanke an EN_R werden die Parameter R_ID, ID und RD_1
 übernommen. Nach Abschluss eines Auftrags können Sie den Parametern R_ID,
 ID und RD_1 neue Werte zuweisen.
- Siemens S7-400-Kommunikation (SFB 9)
 - Die Empfangsdatenbereiche werden durch die Parameter RD_1...RD_4 referenziert.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
EN_R	INPUT	BOOL	E, A, M, D, L	Steuerparameter enabled to receive, signalisiert Empfangsbereitschaft
ID	INPUT	WORD		Referenz auf die Verbindung. <i>ID</i> muss in der Form wxyzh angegeben werden.

Ethernet-Kommunikation - "Ethernet Communication" > FB/SFB 9 - URCV - Unkoordiniertes Empfangen

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
R_ID	INPUT	DWORD	E, A, M, D, L, Konstante	Adressierungsparameter <i>R_ID</i> . Er muss in der Form DW#16#wxyzWXYZ angegeben werden.
NDR	OUTPUT	BOOL	E, A, M, D, L	Zustandsparameter <i>NDR</i> : neue Daten übernommen.
ERROR	OUTPUT	BOOL	E, A, M, D, L	 Zustandsparameter ERROR: ERROR = 0 + STATUS = 0000h Weder Warnung noch Fehler. ERROR = 0 + STATUS ungleich 0000h Es liegt eine Warnung vor. STATUS liefert detaillierte Auskunft. ERROR = 1 Es liegt ein Fehler vor.
STATUS	OUTPUT	WORD	E, A, M, D, L	Zustandsparameter <i>STATUS</i> , liefert detaillierte Auskunft über die Art des Fehlers.
RD_i,1≤ i ≤4	IN_OUT	ANY	E, A, M, D, T, Z	Zeiger auf i-ten Empfangsbereich.
				Zulässig sind nur die Datentypen: BOOL (nicht erlaubt: Bitfeld), BYTE, CHAR, WORD, INT, DWORD, DINT, REAL, DATE, TOD, TIME, S5TIME, DATE_AND_TIME, COUNTER, TIMER.

 \int_{0}^{∞}

Es ist darauf zu achten, dass die über die Parameter SD_i und RD_i, $1 \le i \le 4$, definierten Bereiche in Anzahl, Länge und im Datentyp übereinstimmen (SD_i ist der Sendebereich des zugehörigen Partner-FB/SFB, siehe FB/SFB 8). Beim Erstaufruf des FB/SFB 9 wird das "Empfangsfach" angelegt, bei den Nachfolgeaufrufen müssen die zu empfangenden Daten in dieses Empfangsfach hineinpassen. Wird der Kopiervorgang erfolgreich abgeschlossen, hat der Parameter NDR den Wert 1.

Fehlerinformationen

ERROR	STATUS (dezimal)	Beschreibung
0	9	Overrun-Warnung: Ältere Empfangsdaten wurden von neueren Empfangsdaten überschrieben.
0	11	Warnung: Neuer Auftrag ist unwirksam, da vorangegangener Auftrag noch nicht abgeschlossen ist.
0	25	Die Kommunikation wurde angestoßen. Der Auftrag ist in Bearbeitung.
1	1	 Kommunikationsprobleme, z.B. Verbindungsbeschreibung nicht geladen (lokal oder remote) Verbindung unterbrochen (z.B. Kabel, CPU ausgeschaltet, CP in STOP)
1	4	Fehler in den Empfangsbereichszeigern <i>RD_i</i> bezüglich der Datenlänge oder des Datentyps.
1	10	Zugriff auf lokalen Anwenderspeicher nicht möglich (z.B. Zugriff auf gelöschten DB).

Ethernet-Kommunikation - "Ethernet Communication" > FB/SFB 9 - URCV - Unkoordiniertes Empfangen

ERROR	STATUS (dezimal)	Beschreibung
1	12	Beim Aufruf des FB/SFB wurde
		ein Instanz-DB, der nicht zum FB/SFB 9 gehört, angegeben
		■ kein Instanz-DB, sondern ein Global-DB angegeben
		kein Instanz-DB gefunden
		(Laden eines neuen Instanz-DB vom PG)
1	18	R_ID existiert bereits in der Verbindung ID.
1	19	Der zugehörige FB/SFB USEND sendet schneller Daten als diese vom FB/SFB URCV in die Empfangsbereiche kopiert werden können.
1	20	Zu wenig Arbeitsspeicher vorhanden.

Datenkonsistenz

Die Daten werden konsistent empfangen, wenn Sie folgendes beachten:

- Siemens S7-300-Kommunikation:
 - Nachdem der Zustandsparameter NDR den Wert 1 angenommen hat, müssen Sie den FB 9 URCV mit dem Wert 0 an EN_R sofort erneut aufrufen. Damit wird gewährleistet, dass der Empfangsbereich nicht bereits überschrieben wird, bevor Sie ihn ausgewertet haben. Werten Sie den Empfangsbereich RD_1 vollständig aus, bevor Sie den Baustein wieder mit dem Wert 1 am Steuereingang EN_R aufrufen.
- Siemens S7-400-Kommunikation:
 - Nachdem der Zustandsparameter NDR den Wert 1 angenommen hat, befinden sich neue Empfangsdaten in Ihren Empfangsbereichen (RD_i). Ein erneuter Bausteinaufruf kann diese Daten mit neuen Empfangsdaten überschreiben. Wenn Sie dies verhindern wollen, müssen Sie den SFB 9 URCV mit dem Wert 0 an EN_R so lange aufrufen (z.B. bei zyklischer Bausteinbearbeitung), bis Sie die Bearbeitung der Empfangsdaten beendet haben.

Ethernet-Kommunikation - "Ethernet Communication" > FB/SFB 12 - BSEND - Blockorientiertes Senden

8.2.9 FB/SFB 12 - BSEND - Blockorientiertes Senden

Beschreibung

Mit dem FB/SFB 12 BSEND können Daten an einen remoten Partner- FB/SFB vom Typ BRCV (FB/SFB 13) gesendet werden. Der zu sendende Datenbereich wird segmentiert. Jedes Segment wird einzeln an den Partner gesendet. Das letzte Segment wird vom Partner bereits bei seiner Ankunft quittiert, unabhängig vom zugehörigen Aufruf des FB/SFB BRCV. Aufgrund der Segmentierung können Sie mit einem Sendeauftrag bis zu 65534Byte große Daten übertragen.

Bitte beachten Sie, dass dieser Baustein intern den FC bzw. SFC 202 AG_BSEND aufruft. Dieser darf nicht überschrieben werden! Der direkte Aufruf eines internen Bausteins führt zu Fehler im entsprechenden Instanz-DB!

Je nach Kommunikationsfunktion haben Sie folgendes Verhalten:

- Siemens S7-300-Kommunikation (FB 12)
 - Der Sendevorgang erfolgt nach einer positiven Flanke an REQ. Mit jeder positiven Flanke an REQ werden die Parameter R_ID, ID, SD_1 und LEN übernommen. Nach Abschluss eines Auftrags können Sie den Parametern R_ID, ID, SD_1 und LEN neue Werte zuweisen. Zur Übertragung von segmentierten Daten ist der Baustein zyklisch im Anwenderprogramm aufzurufen. Die Anfangsadresse und die maximale Länge der zu sendenden Daten werden durch SD_1 vorgegeben. Die Länge des Datenblocks legen Sie auftragsbezogen durch LEN fest.
- Siemens S7-400-Kommunikation (SFB 12)
 - Die Aktivierung des Sendevorgangs erfolgt nach Aufruf des Bausteins und positiver Flanke an REQ. Das Senden der Daten aus dem Anwenderspeicher erfolgt asynchron zur Bearbeitung des Anwenderprogramms. Die Anfangsadresse der zu sendenden Daten wird durch SD_1 vorgegeben. Die Länge der Sendedaten legen Sie auftragsbezogen durch LEN fest. LEN ersetzt damit den Längenanteil von SD_1.

Funktion

- Bei einer positiven Flanke am Steuereingang *R* wird ein laufender Sendevorgang abgebrochen.
- Der erfolgreiche Abschluss des Sendevorgangs wird am Zustandsparameter DONE mit 1 angezeigt.
- Nach Abschluss eines Sendevorganges, kann erst wieder ein neuer Sendeauftrag bearbeitet werden, wenn die Zustandsparameter *DONE* oder *ERROR* den Wert 1 angenommen haben.
- Aufgrund der asynchronen Datenübertragung kann ein erneutes Senden von Daten erst gestartet werden, wenn die vorhergehenden Daten durch Aufruf des Partner-FB/SFB abgeholt wurden. Bis die Daten abgeholt werden, wird beim Aufruf des FB/SFB BSEND der Statuswert 7 ausgegeben.

Der Parameter R_ID muss bei den zusammengehörenden FB/SFBs identisch sein.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
REQ	INPUT	BOOL	E, A, M, D, L	Steuerparameter request, aktiviert den Datenaustausch bei steigender Flanke
				(gegenüber letztem FB/SFB-Aufruf)

Ethernet-Kommunikation - "Ethernet Communication" > FB/SFB 12 - BSEND - Blockorientiertes Senden

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
R	INPUT	BOOL	E, A, M, D, L, Konstante	Steuerparameter reset: Abbruch des aktuellen Auftrags
ID	INPUT	WORD	E, A, M, D, Konstante	Referenz auf die Verbindung. <i>ID</i> muss in der Form W#16#xxxx angegeben werden.
R_ID	INPUT	DWORD	E, A, M, D, L, Konstante	Adressierungsparameter <i>R_ID</i> . Er muss in der Form DW#16#wxyzWXYZ angegeben werden.
DONE	OUTPUT	BOOL	E, A, M, D, L	Zustandsparameter DONE:
				 0: Auftrag wurde noch nicht gestartet oder wird noch ausgeführt.
				1: Auftrag wurde fehlerfrei ausgeführt.
ERROR	OUTPUT	BOOL	E, A, M, D, L	Zustandsparameter <i>ERROR</i> :
				■ <i>ERROR</i> = 0 + <i>STATUS</i> = 0000h
				 Weder Warnung noch Fehler.
				■ ERROR = 0 + STATUS ungleich 0000h
				 Es liegt eine Warnung vor. STATUS liefert detaillierte Auskunft.
				■ <i>ERROR</i> = 1
				 Es liegt ein Fehler vor.
STATUS	OUTPUT	WORD	E, A, M, D, L	Zustandsparameter <i>STATUS</i> , liefert detaillierte Auskunft über die Art des Fehlers.
SD_1	IN_OUT	ANY	E, A, M, D, T, Z	Zeiger auf Sendebereich. Die Längenangabe wird nur beim ersten Bausteinaufruf nach dem Start ausgewertet. Sie gibt die maximale Länge des Sendebereichs vor. Zulässig sind nur die Datentypen: BOOL (nicht erlaubt: Bitfeld), BYTE, CHAR, WORD, INT, DWORD, DINT, REAL, DATE, TOD, TIME, S5TIME, DATE_AND_TIME, COUNTER, TIMER.
LEN	IN_OUT	WORD	E, A, M, D, L	Länge des zu sendenden Datenblocks in Byte.

Fehlerinformationen

ERROR	STATUS (dezimal)	Bedeutung
0	11	Warnung: Neuer Auftrag ist unwirksam, da vorangegangener Auftrag noch nicht abgeschlossen ist.
0	25	Die Kommunikation wurde angestoßen. Der Auftrag ist in Bearbeitung.
1	1	Kommunikationsprobleme, z.B.:
		 Verbindungsbeschreibung nicht geladen (lokal oder remote) Verbindung unterbrochen (z.B. Kabel, CPU ausgeschaltet, CP in STOP)
1	2	Negative Quittung vom Partner-FB/SFB. Die Funktion ist nicht ausführbar.
1	3	R_ID ist auf der durch ID vorgegebenen Kommunikationsverbindung nicht bekannt, oder der Empfangsbaustein wurde noch nie aufgerufen.
1	4	Fehler im Sendebereichszeiger <i>SD_1</i> bezüglich der Datenlänge oder des Datentyps, oder am Parameter <i>LEN</i> wurde der Wert 0 übergeben oder Fehler im Empfangsbereichszeiger <i>RD_1</i> des zugehörigen FB/SFB 13 BRCV

Ethernet-Kommunikation - "Ethernet Communication" > FB/SFB 13 - BRCV - Blockorientiertes Empfangen

ERROR	STATUS (dezimal)	Bedeutung
1	5	Resetanforderung wurde ausgeführt.
1	6	Partner-FB/SFB befindet sich im Zustand DISABLED (<i>EN_R</i> hat den Wert 0).
1	7	Partner-FB/SFB befindet sich in falschem Zustand.
		(Der Empfangsbaustein wurde nach der letzten Datenübertragung nicht mehr aufgerufen).
1	8	Zugriff auf remotes Objekt im Anwenderspeicher wurde abgelehnt.
1	10	Zugriff auf lokalen Anwenderspeicher nicht möglich (z.B. Zugriff auf gelöschten DB).
1	12	Beim Aufruf des FB/SFB wurde
		■ ein Instanz-DB, der nicht zum FB/SFB 12 gehört, angegeben
		kein Instanz-DB, sondern ein Global-DB angegeben
		kein Instanz-DB gefunden (Leden eines neuen Instanz DB vom BC)
		(Laden eines neuen Instanz-DB vom PG)
1	18	R_ID existiert bereits in der Verbindung ID.
1	20	Zu wenig Arbeitsspeicher vorhanden.

Datenkonsistenz

Um sicherzustellen das die Datenkonsistenz nicht beeinträchtigt wird, darf der aktuell benutzte Teil des Sendebereichs *SD_1* erst dann wieder beschrieben werden, wenn der aktuelle Sendevorgang abgeschlossen ist. Dazu muss der Parameter *DONE* ausgewertet werden.

8.2.10 FB/SFB 13 - BRCV - Blockorientiertes Empfangen

Beschreibung

Mit dem FB/SFB 13 BRCV können Daten von einem remoten Partner- FB/SFB vom Typ BSEND (FB/SFB 12) empfangen werden, wobei darauf zu achten ist, dass der Parameter R_ID bei beiden FB/SFBs identisch ist. Nach jedem empfangenen Datensegment wird eine Quittung an den Partner-FB/SFB geschickt, und der Parameter LEN aktualisiert.

Bitte beachten Sie, dass dieser Baustein intern den FC bzw. SFC 203 AG_BRCV aufruft. Dieser darf nicht überschrieben werden! Der direkte Aufruf eines internen Bausteins führt zu Fehler im entsprechenden Instanz-DB!

Je nach Kommunikationsfunktion haben Sie folgendes Verhalten:

- Siemens S7-300-Kommunikation (FB 13)
 - Mit jeder positiven Flanke an EN_R werden die Parameter R_ID, ID und RD_1 übernommen. Nach Abschluss eines Auftrags können Sie den Parametern R_ID, ID und RD_1 neue Werte zuweisen. Zur Übertragung von segmentierten Daten muss der Baustein zyklisch im Anwenderprogramm aufgerufen werden.
- Siemens S7-400-Kommunikation (SFB 13)
 - Der Empfang der Daten aus dem Anwenderspeicher erfolgt asynchron zur Bearbeitung des Anwenderprogramms.

Ethernet-Kommunikation - "Ethernet Communication" > FB/SFB 13 - BRCV - Blockorientiertes Empfangen

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
EN_R	INPUT	BOOL	E, A, M, D, L, Konstante	Steuerparameter enabled to receive, signalisiert Empfangsbereitschaft
ID	INPUT	WORD	E, A, M, D, Konstante	Referenz auf die Verbindung. <i>ID</i> muss in der Form W#16#xxxx angegeben werden.
R_ID	INPUT	DWORD	E, A, M, D, L, Konstante	Adressierungsparameter <i>R_ID</i> . Er muss in der Form DW#16#wxyzWXYZ angegeben werden.
NDR	OUTPUT	BOOL	E, A, M, D, L	Zustandsparameter <i>NDR</i> : neue Daten übernommen.
ERROR	OUTPUT	BOOL	E, A, M, D, L	 Zustandsparameter ERROR: ■ ERROR = 0 + STATUS = 0000h Weder Warnung noch Fehler. ■ ERROR = 0 + STATUS ungleich 0000h Es liegt eine Warnung vor. STATUS liefert detaillierte Auskunft. ■ ERROR = 1 Es liegt ein Fehler vor.
STATUS	OUTPUT	WORD	E, A, M, D, L	Zustandsparameter <i>STATUS</i> , liefert detaillierte Auskunft über die Art des Fehlers.
RD_1	IN_OUT	ANY	E, A, M, D, T, Z	Zeiger auf Empfangsbereich. Die Längenangabe gibt die maximale Länge des zu empfangenden Blocks vor. Zulässig sind nur die Datentypen: BOOL (nicht erlaubt: Bitfeld), BYTE, CHAR, WORD, INT, DWORD, DINT, REAL, DATE, TOD, TIME, S5TIME, DATE_AND_TIME, COUNTER, TIMER.
LEN	IN_OUT	WORD	E, A, M, D, L	Länge der bisher empfangenen Daten in Byte.

Funktion

- Der FB/SFB 13 ist empfangsbereit, wenn am Steuereingang *EN_R* der Wert 1 anliegt. Durch den Parameter *RD_1* wird die Anfangsadresse des Empfangsbereichs angegeben. Der Partner-FB/SFB erhält nach jedem empfangenen Datensegment eine Quittung und der Parameter *LEN* des FB/SFB 13 wird aktualisiert. Wenn der Baustein während des asynchronen Empfangs aufgerufen wird, erfolgt die Ausgabe einer Warnung im Zustandsparameter *STATUS*.
- Wenn dieser Aufruf mit dem Wert 0 am Steuereingang *EN_R* erfolgt, wird der Empfangsvorgang abgebrochen, und der FB/SFB in seinen Grundzustand zurückversetzt. Wird der fehlerfreie Empfang sämtlicher Datensegmente erfolgreich abgeschlossen, hat der Parameter *NDR* den Wert 1. Die empfangenen Daten bleiben solange unverändert, bis der FB/SFB 13 erneut mit dem Parameter *EN_R* = 1 aufgerufen wird.

Fehlerinformationen

ERROR	STATUS (dezimal)	Bedeutung
0	11	Warnung: Neuer Auftrag ist unwirksam, da vorangegangener Auftrag noch nicht abgeschlossen ist.
0	17	Warnung: Baustein empfängt asynchron Daten.
0	25	Die Kommunikation wurde angestoßen. Der Auftrag ist in Bearbeitung.

Ethernet-Kommunikation - "Ethernet Communication" > FB/SFB 13 - BRCV - Blockorientiertes Empfangen

ERROR	STATUS (dezimal)	Bedeutung
1	1	 Kommunikationsprobleme, z.B. Verbindungsbeschreibung nicht geladen (lokal oder remote) Verbindung unterbrochen
		(z.B. Kabel, CPU ausgeschaltet, CP in STOP)
1	2	Funktion nicht ausführbar.
1	4	Fehler im Empfangsbereichszeiger <i>RD_1</i> bezüglich der Datenlänge oder des Datentyps (gesendeter Datenblock ist länger als der Empfangsbereich).
1	5	Resetanforderung eingetroffen, unvollständige Übertragung.
1	8	Zugriff auf remotes Objekt im Anwenderspeicher wurde abgelehnt.
1	10	Zugriff auf lokalen Anwenderspeicher nicht möglich (z.B. Zugriff auf gelöschten DB).
1	12	Beim Aufruf des FB/SFB wurde
		 ein Instanz-DB, der nicht zum FB/SFB 13 gehört, angegeben kein Instanz-DB, sondern ein Global-DB angegeben kein Instanz-DB gefunden (Laden eines neuen Instanz-DB vom PG)
1	18	R_ID existiert bereits in der Verbindung ID.
1	20	Zu wenig Arbeitsspeicher vorhanden.

Datenkonsistenz

Die Daten werden konsistent empfangen, wenn Sie folgendes beachten:

- Nach Abschluss des Kopiervorganges (der Parameter *NDR* hat den Wert 1), muss der FB/SFB 13 erneut mit dem Wert 0 am Parameter *EN_R* aufgerufen werden, um zu gewährleisten, dass der Empfangsbereich nicht bereits wieder überschrieben wird, bevor er ausgewertet wurde.
- Der zuletzt benutzte Empfangsbereich RD_1 muss vollständig ausgewertet werden, bevor der Baustein wieder empfangsbereit gemacht werden kann (Aufruf mit dem Wert 1 am Parameter EN R).

Datenempfang Siemens S7-400

- Falls die Empfänger-CPU mit einem empfangsbereiten BRCV-Baustein (d.h. ein Aufruf mit *EN_R* =1 ist bereits erfolgt) in STOP geht, bevor der zugehörige Sendebaustein das erste Datensegment eines Auftrags abgeschickt hat, geschieht folgendes:
- Die Daten des ersten Auftrags nach Übergang der Empfänger-CPU in STOP werden vollständig in den Empfangsbereich eingetragen,
- Der Partner-SFB BSEND erhält darüber eine positive Quittung.
- Weitere BSEND-Aufträge können von der Empfänger-CPU im STOP-Zustand nicht mehr angenommen werden.
- Solange sie sich im STOP-Zustand befindet, haben NDR und LEN den Wert 0.
- Damit Ihnen die Information über die empfangenen Daten nicht verloren geht, müssen Sie bei der Empfänger-CPU einen Wiederanlauf durchführen und die SFB 13 BRCV mit EN_R = 1 aufrufen.

Ethernet-Kommunikation - "Ethernet Communication" > FB/SFB 14 - GET - Remote CPU lesen

8.2.11 FB/SFB 14 - GET - Remote CPU lesen

Beschreibung

Mit dem FB/SFB 14 GET können Daten aus einer remoten CPU ausgelesen werden, wobei sich die CPU im Betriebszustand RUN oder STOP befinden kann.

Bitte beachten Sie, dass dieser Baustein intern den FC bzw. SFC 200 AG_GET aufruft. Dieser darf nicht überschrieben werden! Der direkte Aufruf eines internen Bausteins führt zu Fehler im entsprechenden Instanz-DB!

Je nach Kommunikationsfunktion haben Sie folgendes Verhalten:

- Siemens S7-300-Kommunikation (FB 14)
 - Der Lesevorgang erfolgt nach einer positiven Flanke an REQ. Mit jeder positiven Flanke an REQ werden die Parameter ID, ADDR_1 und RD_1 übernommen. Nach Abschluss eines Auftrags können Sie den Parametern ID, ADDR_1 und RD_1 neue Werte zuweisen.
- Siemens S7-400-Kommunikation (SFB 14)
 - Bei einer positiven Flanke an REQ wird der SFB gestartet. Dabei werden die relevanten Zeiger auf die auszulesenden Bereiche (ADDR_i) an die Partner-CPU gesendet.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
REQ	INPUT	BOOL	E, A, M, D, L	Steuerparameter request, aktiviert den Datenaustausch bei steigender Flanke (gegenüber letztem FB/SFB-Aufruf)
ID	INPUT	WORD	E, A, M, D, Konstante	Referenz auf die Verbindung. <i>ID</i> muss in der Form W#16#xxxx angegeben werden.
NDR	OUTPUT	BOOL	E, A, M, D, L	Zustandsparameter <i>NDR</i> : Daten aus Partner-CPU übernommen.
ERROR	OUTPUT	BOOL	E, A, M, D, L	Zustandsparameter ERROR:
				 ERROR = 0 + STATUS = 0000h Weder Warnung noch Fehler. ERROR = 0 + STATUS ungleich 0000h Es liegt eine Warnung vor. STATUS liefert detaillierte Auskunft. ERROR = 1 Es liegt ein Fehler vor.
STATUS	OUTPUT	WORD	E, A, M, D, L	Zustandsparameter <i>STATUS</i> , liefert detaillierte Auskunft über die Art des Fehlers.
ADDR_1	IN_OUT	ANY	z.B. E, A, M, D	Zeiger auf diejenigen Bereiche in der Partner- CPU, die gelesen werden sollen
ADDR_2	IN_OUT	ANY	z.B. E, A, M, D	Zeiger auf diejenigen Bereiche in der Partner- CPU, die gelesen werden sollen
ADDR_3	IN_OUT	ANY	z.B. E, A, M, D	Zeiger auf diejenigen Bereiche in der Partner- CPU, die gelesen werden sollen
ADDR_4	IN_OUT	ANY	z.B. E, A, M, D	Zeiger auf diejenigen Bereiche in der Partner- CPU, die gelesen werden sollen

Ethernet-Kommunikation - "Ethernet Communication" > FB/SFB 14 - GET - Remote CPU lesen

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
RD_i,1≤ i ≤4	IN_OUT	ANY	E, A, M, D, T, Z	Zeiger auf diejenigen Bereiche in der eigenen CPU, in der die gelesenen Daten abgelegt werden. Zulässig sind nur die Datentypen: BOOL (nicht erlaubt: Bitfeld), BYTE, CHAR, WORD, INT, DWORD, DINT, REAL, DATE, TOD, TIME, S5TIME, DATE_AND_TIME, COUNTER, TIMER.

Funktion

- Die Remote-CPU sendet die Dateninhalte zurück und die Antwort wird daraufhin auf Zugriffsprobleme beim Lesen der Daten ausgewertet, des weiteren wird eine Datentypprüfung vorgenommen.
- Bei einer fehlerfreien Datenübertragung werden die empfangenen Daten beim nächsten Aufruf des FB/SFB 14 in die projektierten Empfangsbereiche (*RD_i*) kopiert und der Parameter *NDR* erhält den Wert 1.
- Ein erneuter Lesevorgang kann erst dann wieder aktiviert werden, wenn der letzte Lesevorgang abgeschlossen wurde. Sie müssen darauf achten, dass die über die Parameter *ADDR_i* und *RD_i* definierten Bereiche in der Anzahl, in der Länge und im Datentyp zueinander passen.

Fehlerinformationen

ERROR	STATUS (dezimal)	Bedeutung
0	11	Warnung: Neuer Auftrag ist unwirksam, da voran-gegangener Auftrag noch nicht abgeschlossen ist.
0	25	Die Kommunikation wurde angestoßen. Der Auftrag ist in Bearbeitung.
1	1	 Kommunikationsprobleme, z.B. Verbindungsbeschreibung nicht geladen (lokal oder remote) Verbindung unterbrochen (z.B.: Kabel, CPU ausgeschaltet, CP in STOP)
1	2	Negative Quittung vom Partnergerät. Die Funktion ist nicht ausführbar.
1	4	Fehler in den Empfangsbereichszeigern <i>RD_i</i> bezüglich der Datenlänge oder des Datentyps.
1	8	Zugriffsfehler bei der Partner-CPU
1	10	Zugriff auf lokalen Anwenderspeicher nicht möglich (z.B. Zugriff auf gelöschten DB).
1	12	 Beim Aufruf des FB/SFB wurde ein Instanz-DB, der nicht zum FB/SFB 14 gehört, angegeben kein Instanz-DB, sondern ein Global-DB angegeben kein Instanz-DB gefunden (Laden eines neuen Instanz-DB vom PG)
1	20	Zu wenig Arbeitsspeicher vorhanden.

Datenkonsistenz

Die Daten werden konsistent empfangen, wenn Sie den aktuell verwendeten des Empfangsbereichs *RD_i* vollständig auswerten, bevor Sie einen erneuten Auftrag aktivieren.

Ethernet-Kommunikation - "Ethernet Communication" > FB/SFB 15 - PUT - Remote CPU schreiben

8.2.12 FB/SFB 15 - PUT - Remote CPU schreiben

Beschreibung

Mit dem FB/SFB 15 PUT können Daten in eine remote CPU geschrieben werden, wobei sich die CPU im Betriebszustand RUN oder STOP befinden kann.

Bitte beachten Sie, dass dieser Baustein intern den FC bzw. SFC 201 AG_PUT aufruft. Dieser darf nicht überschrieben werden! Der direkte Aufruf eines internen Bausteins führt zu Fehler im entsprechenden Instanz-DB!

Je nach Kommunikationsfunktion haben Sie folgendes Verhalten:

- Siemens S7-300-Kommunikation (FB 15)
 - Der Sendevorgang erfolgt nach einer positiven Flanke an REQ. Mit jeder positiven Flanke an REQ werden die Parameter ID, ADDR_1 und SD_1 übernommen. Nach Abschluss eines Auftrags können Sie den Parametern ID, ADDR_1 und SD_1 neue Werte zuweisen.
- Siemens S7-400-Kommunikation (SFB 15)
 - Bei einer positiven Flanke an REQ wird der SFB gestartet. Dabei werden die Zeiger auf die zu schreibenden Bereiche (ADDR_i) und die Daten (SD_i) an die Partner-CPU gesendet.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
REQ	INPUT	BOOL	E, A, M, D, L	Steuerparameter request, aktiviert den Datenaustausch bei steigender Flanke
				(gegenüber letztem FB/SFB-Aufruf)
ID	INPUT	WORD	E, A, M, D, Kon- stante	Referenz auf die Verbindung. <i>ID</i> muss in der Form W#16#xxxx angegeben werden.
DONE	OUTPUT	BOOL	E, A, M, D, L	Zustandsparameter DONE: Funktion ausgeführt.
ERROR	OUTPUT	BOOL	E, A, M, D, L	 Zustandsparameter <i>ERROR</i>: ■ <i>ERROR</i> = 0 + <i>STATUS</i> = 0000h Weder Warnung noch Fehler. ■ <i>ERROR</i> = 0 + <i>STATUS</i> ungleich 0000h Es liegt eine Warnung vor. <i>STATUS</i> liefert detaillierte Auskunft. ■ <i>ERROR</i> = 1 Es liegt ein Fehler vor.
STATUS	OUTPUT	WORD	E, A, M, D, L	Zustandsparameter STATUS, liefert detaillierte Auskunft über die Art des Fehlers.
ADDR_1	IN_OUT	ANY	z.B. E, A, M, D	Zeiger auf diejenigen Bereiche in der Partner-CPU, in die geschrieben werden soll
ADDR_2	IN_OUT	ANY	z.B. E, A, M, D	Zeiger auf diejenigen Bereiche in der Partner-CPU, in die geschrieben werden soll
ADDR_3	IN_OUT	ANY	z.B. E, A, M, D	Zeiger auf diejenigen Bereiche in der Partner-CPU, in die geschrieben werden soll
ADDR_4	IN_OUT	ANY	z.B. E, A, M, D	Zeiger auf diejenigen Bereiche in der Partner-CPU, in die geschrieben werden soll

Ethernet-Kommunikation - "Ethernet Communication" > FB/SFB 15 - PUT - Remote CPU schreiben

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
SD_i,1≤i ≤4	IN_OUT	ANY	E, A, M, D, T, Z	Zeiger auf diejenigen Bereiche in der eigenen CPU, die die zu versendenden Daten enthalten. Zulässig sind nur die Datentypen BOOL (nicht erlaubt: Bitfeld), BYTE, CHAR, WORD, INT, DWORD, DINT, REAL, DATE, TOD, TIME, S5TIME, DATE_AND_TIME, COUNTER, TIMER.

Funktion

- Die Partner-CPU legt die gesendeten Daten unter den mitgeführten Adressen ab und sendet eine Ausführungsquittung zurück.
- Diese Ausführungsquittung wird ausgewertet und bei einer fehlerfreien Datenübertragung erhält der Parameter DONE beim nächsten Aufruf des FB/SFB 15 den Wert 1.
- Ein erneuter Schreibvorgang kann erst dann wieder aktiviert werden, wenn der letzte Schreibvorgang abgeschlossen wurde. Die über die Parameter ADDR_i und SD_i, 1 ≤ i ≤ 4, definierten Bereiche müssen in Anzahl, Länge und im Datentyp übereinstimmen.

Fehlerinformationen

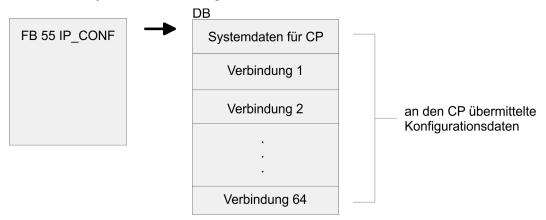
ERROR	STATUS (dezimal)	Bedeutung
0	11	Warnung: Neuer Auftrag ist unwirksam, da vorangegangener Auftrag noch nicht abgeschlossen ist.
0	25	Die Kommunikation wurde angestoßen. Der Auftrag ist in Bearbeitung.
1	1	 Kommunikationsprobleme, z.B. Verbindungsbeschreibung nicht geladen (lokal oder remote) Verbindung unterbrochen (z.B.: Kabel, CPU ausgeschaltet, CP in STOP)
1	2	Negative Quittung vom Partnergerät. Die Funktion ist nicht ausführbar.
1	4	Fehler in den Sendebereichszeigern <i>SD_i</i> bezüglich der Datenlänge oder des Datentyps.
1	8	Zugriffsfehler bei der Partner-CPU
1	10	Zugriff auf lokalen Anwenderspeicher nicht möglich (z.B. Zugriff auf gelöschten DB).
1	12	Beim Aufruf des FB/SFB wurde
		ein Instanz-DB, der nicht zum FB/SFB 15 gehört, angegeben.
		kein Instanz-DB, sondern ein Global-DB angegeben.
		kein Instanz-DB gefunden (laden eines neuen Instanz-DB vom PG).
1	20	Zu wenig Arbeitsspeicher vorhanden.

Datenkonsistenz

- Siemens S7-300-Kommunikation
 - Um Datenkonsistenz zu gewährleisten, dürfen Sie den Sendebereich SD_1 erst dann wieder beschreiben, wenn der aktuelle Sendevorgang abgeschlossen ist. Dies ist der Fall, wenn der Zustandsparameter DONE den Wert "1" annimmt.
- Siemens S7-400-Kommunikation
 - Mit dem Aktivieren eines Sendevorgangs (steigende Flanke an REQ) sind die zu sendenden Daten der Sendebereiche SD_i aus dem Anwenderprogramm kopiert. Sie können diese Bereiche nach dem Bausteinaufruf neu beschreiben, ohne die aktuellen Sendedaten zu verfälschen.

8.2.13 FB 55 - IP_CONF - Progr. Kommunikationsverbindungen

8.2.13.1 Übersicht


Der FB 55 - IP_CONF ermöglicht zur Einrichtung flexibler Kommunikationsverbindungen die programmgesteuerte Übergabe von Datenbausteinen mit Projektierdaten an einen CP.

Bitte beachten Sie, dass dieser Baustein intern den FC bzw. SFC 204 IP_CONF aufruft. Dieser darf nicht überschrieben werden! Der direkte Aufruf eines internen Bausteins führt zu Fehler im entsprechenden Instanz-DB!

Prinzip

Über den FB 55, der im Anwenderprogramm aufgerufen wird, können Konfigurationsdaten für Kommunikationsverbindungen an den CP übertragen werden. Der Konfigurations-DB kann jederzeit in den CP geladen werden.

VORSICHT

Sobald das Anwenderprogramm über den FB 55 IP_CONF die Verbindungsdaten übergibt, schaltet die CPU den CP kurzzeitig in STOP. Der CP übernimmt die Systemdaten (inklusive IP-Adresse) und die neuen Verbindungsdaten und arbeitet diese im Anlauf ab (RUN).

8.2.13.2 FB 55 - IP_CONF

Je nach Größe des Konfigurations-DB erfolgt die Übertragung zum CP in mehreren Segmenten. Sie müssen daher den FB solange erneut aufrufen, bis der FB mit dem *DONE*-Bit = 1 die vollständige Übertragung signalisiert. Der Auftrag wird ausgeführt, sobald *ACT* = 1 übergeben wird.

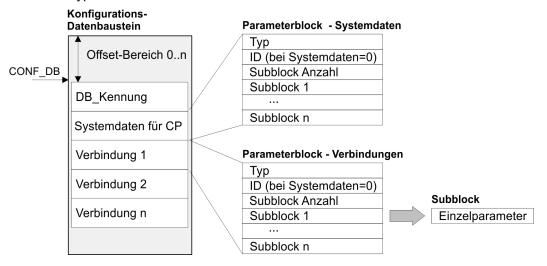
Parameter

Parameter	Deklaration	Datentyp	Speicherbe- reich	Beschreibung
ACT	INPUT	BOOL	E, A, M, D, L	 Beim FB-Aufruf mit ACT = 1 wird der DBxx an den CP gesendet. Beim FB-Aufruf mit ACT = 0 werden nur die Statusanzeigen DONE, ERROR und STATUS aktualisiert.
LADDR	INPUT	WORD	E, A, M, D, Konstante	Baugruppen-Anfangsadresse Bei der Hardware-Konfiguration wird die Baugruppen-Anfangsadresse in der Konfigurationstabelle ausgegeben. Geben Sie diese Adresse hier an.
CONF_DB	INPUT	ANY	E, A, M, D	Der Parameter zeigt die Anfangsadresse des Konfigurations-Datenbereichs in einem DB.
LEN	INPUT	INT	E, A, M, D, Konstante	Längenangabe in Byte für den Konfigurations- Datenbereich.
DONE	OUTPUT	BOOL	E, A, M, D, L	Der Parameter zeigt an, ob der Konfigurations-Datenbereich vollständig übertragen wurde. Beachten Sie, dass der FB je nach Größe des Konfigurations-Datenbereichs (in mehreren Zyklen) mehrfach angestoßen werden muss, bis die Anzeige <i>DONE</i> = 1 den Abschluss signalisiert.
ERROR	OUTPUT	BOOL	E, A, M, D, L	Fehleranzeige
STATUS	OUTPUT	WORD	E, A, M, D	Statusanzeige
EXT_STATUS	OUTPUT	WORD	E, A, M, D	Der Parameter zeigt bei einer fehlerhaften Aufragsausführung an, welcher Parameter im Konfigurations-DB als Fehlerursache erkannt wurde.
				 High-Byte: Index des Parameter-Blocks Low-Byte: Index des Subblocks innerhalb des Parameterblocks

Fehlerinformationen

ERROR	STATUS	Beschreibung
0	0000h	Auftrag fertig ohne Fehler
0	8181h	Auftrag läuft
1	80B1h	Anzahl der zu sendenden Daten überschreitet die für diesen Dienst zulässige Obergrenze.
1	80C4h	Kommunikationsfehler
		Fehler kann temporär auftreten, deshalb ist eine Wiederholung im Anwenderprogramm sinnvoll.
1	80D2h	Projektierungsfehler, die eingesetzte Baugruppe unterstützt diesen Dienst nicht.
1	8183h	CP lehnt die angeforderte Datensatznummer ab.
1	8184h	Systemfehler bzw. unzulässiger Parametertyp.
1	8185h	Wert des Parameters <i>LEN</i> ist größer als der <i>CONF_DB</i> abzüglich des reservierten Headers (4Byte) oder die Längenangabe ist falsch.
1	8186h	Unzulässigen Parameter erkannt. ANY-Pointer CONF_DB verweist nicht auf einen DB.

ERROR	STATUS	Beschreibung			
1	8187h	Ungültiger Zustand des FBs. Daten im Header des <i>CONF_DB</i> überschrieben oder Instanz-DB nicht vorhanden.			
1	8A01h	Statusanzeige im gelesenen Datensatz ist ungültig (Wert >=3)			
1	8A02h	Es läuft kein Auftrag auf dem CP; der FB hat jedoch eine Quittung für gelaufenen Auftrag erwartet.			
1	8A03h	Es läuft kein Auftrag auf dem CP und der CP ist nicht bereit; der FB hat einen ersten Auftrag für Datensatz-Lesen angestoßen.			
1	8A04h	s läuft kein Auftrag auf dem CP und der CP ist nicht bereit; der FB hat jedoch eine uittung für den gelaufenen Auftrag erwartet.			
1	8A05h	Auftrag läuft, eine Quittung ist jedoch noch nicht erfolgt; der FB hat einen ersten Auftrag für Datensatz-Lesen angestoßen.			
1	8A06h	Auftrag ist fertig; der FB hat jedoch einen ersten Auftrag für Datensatz-Lesen angestoßen.			
1	8B01h	Kommunikationsfehler, DB konnte nicht übertragen werden.			
1	8B02h	Parameterfehler, Doppelter Parameterblock			
1	8B03h	Parameterfehler, Subblock im Parameterblock ist nicht erlaubt.			
1	8B04h	Parameterfehler, Länge die im FB angegeben wurde, stimmt nicht mit der Länge der Parameterblöcke/Subblöcke überein.			
1	8B05h	Parameterfehler, Länge des Parameterblocks ist ungültig.			
1	8B06h	Parameterfehler, Länge des Subblocks ist ungültig.			
1	8B07h	Parameterfehler, ID des Parameterblocks ist ungültig.			
1	8B08h	Parameterfehler, ID des Subblocks ist ungültig.			
1	8B09h	ystemfehler, Verbindung existiert nicht.			
1	8B0Ah	Datenfehler, Inhalt des Subblocks ist nicht korrekt.			
1	8B0Bh	trukturfehler, Subblock ist doppelt aufgeführt.			
1	8B0Ch	Datenfehler, im Parameterblock sind nicht alle erforderlichen Parameter enthalten.			
1	8B0Dh	Datenfehler, der CONF_DB enthält keinen Parameterblock für Systemdaten.			
1	8B0Eh	Datenfehler/Strukturfehler, Typ des CONF_DB ist ungültig.			
1	8B0Fh	Systemfehler, CP hat zu wenig Ressourcen, um den CONF_DB vollständig bearbeiten zu können.			
1	8B10	Datenfehler, es ist nicht eingestellt, das die Konfiguration über das Anwenderprogramm erfolgt.			
1	8B11	Datenfehler, der angegebene Typ des Parameterblocks ist ungültig.			
1	8B12	Datenfehler, es wurden zu viele Verbindungen angegeben.			
1	8B13	CP interner Fehler			
1	8F22h	Bereichslängenfehler beim Lesen eines Parameters.			
1	8F23h	Bereichslängenfehler beim Schreiben eines Parameters.			
1	8F24h	Bereichsfehler beim Lesen eines Parameters.			
1	8F25h	Bereichsfehler beim Schreiben eines Parameters.			
1	8F28h	Ausrichtungsfehler beim Lesen eines Parameters.			
1	8F29h	Ausrichtungsfehler beim Schreiben eines Parameters.			


ERROR	STATUS	Beschreibung
1	8F30h	Parameter liegt im schreibgeschützten 1. aktuellen DB
1	8F31h	Parameter liegt im schreibgeschützten 2. aktuellen DB
1	8F32h	Parameter enthält eine zu große DB-Nummer.
1	8F33h	DB-Nummernfehler
1	8F3Ah	Zielbereich wurde nicht geladen (DB).
1	8F42h	Quittungsverzug beim Lesen eines Parameters aus dem Peripheriebereich.
1	8F43h	Quittungsverzug beim Schreiben eines Parameters in den Peripheriebereich.
1	8F44h	Zugriff auf einen in der Bausteinbearbeitung zu lesenden Parameter ist gesperrt.
1	8F45h	Zugriff auf einen in der Bausteinbearbeitung zu schreibenden Parameter ist gesperrt.
1	8F7Fh	Interner Fehler

8.2.13.3 Konfigurations- Datenbaustein

Der Konfigurations-Datenbaustein (*CONF_DB*) enthält sämtliche Verbindungsdaten und Konfigurationsdaten (IP-Adresse, Subnetz-Maske, Default-Router, NTP-Uhrzeit-Server und weitere) für einen Ethernet-CP. Der Konfigurations-DB wird mit dem FB 55 an den CP übergeben.

Aufbau

Der CONF_DB kann über einen Offset-Bereich an beliebiger Stelle innerhalb eines Datenbausteines beginnen. Jede Verbindung sowie die Systemdaten werden durch einen identisch aufgebauten Parameterblock beschrieben. Einzelne Parameter werden durch Subblöcke typisiert.

Parameterblock für Systemdaten für CP

Nachfolgend finden Sie die für die Vernetzung des CPs relevanten Subblöcke. Diese sind im Parameterblock für Systemdaten für CP anzugeben. Je nach Anwendungsfall sind nicht alle Subblock-Typen erforderlich.

Aufbau

Typ = 0
ID = 0
Subblock Anzahl = n
Subblock 1
Subblock 2
Subblock n

Subblock			Parameter		
ID	Тур	Länge (Byte)	Bedeutung	Besonderheiten	Anwendung
1	SUB_IP_V4	4 + 4	IP-Adresse lokale Station	on gemäß IPv4	zwingend
2	SUB_NETMASK	4 + 4	Subnetzmaske der loka	len Station	zwingend
4	SUB_DNS_SERV_ADDR	4 + 4	DNS Server Adresse	Kann bis zu 4 mal vorkommen. Erster Eintrag ist der primäre DNS Server.	optional
8	SUB_DEF_ROUTER	4 + 4	IP Adresse des Default	Routers	optional
14	SUB_DHCP_ENABLE	4 + 1	IP-Adresse von einem DHCP-Server beziehen	0: kein DHCP 1: DHCP	optional
15	SUB_CLIENT_ID	Länge Client-ID + 4	-	-	optional
51	MAC-ADR	4 + 6	MAC-Adresse lokaler Knoten		optional

Parameterblöcke für Verbindung

Sie erfahren nachfolgend, welche Werte in die Parameterblöcke einzutragen sind und welche Subblöcke zu den jeweiligen Verbindungstypen zu verwenden sind. Je nach Anwendungsfall sind nicht alle Subblock-Typen erforderlich. Von besonderer Bedeutung ist der ID-Parameter, der jedem Verbindungsparameterblock neben der Typkennung vorangestellt wird. Bei programmierten Verbindungen können Sie diese ID innerhalb des zulässigen Wertebereichs frei vergeben. Sie müssen diese ID dann an der Aufrufschnittstelle der FCs für die SEND/RECV-Schnittstelle zur Identifizierung der Verbindung verwenden.

Wertebereich für die Verbindungs-ID: 1, 2 ... 64

TCP-Verbindung

Typ = 1	
ID = Verbindungs-ID	
Subblock Anzahl = n	
Subblock 1	
Subblock 2	_
Subblock n	

Subblock		Parameter			
ID	Тур	Länge (Byte) Bedeutung Besonderheiten Anwendung		Anwendung	
1	SUB_IP_V4	4 + 4	IP-Adresse lokale S	Station gemäß IPv4	zwingend ¹

Subblock				Parameter	
ID	Тур	Länge (Byte)	Bedeutung Besonderheiten		Anwendung
9	SUB_LOC_PORT	4 + 2	Port der lokalen Sta	ation	zwingend
10	SUB_REM_PORT	4 + 2	Port der fernen Stat	tion	zwingend ¹
18	SUB_CONNECT_NAME	Länge Name + 4	Name der Verbindu	ing	optional
19	SUB_LOC_MODE	4 + 1	Lokale Betriebsart der Verbindung, Wertebereich: 0x00 = SEND/RECV 0x10 = S5-Adressierungsmodus bei FETCH/WRITE ² 0x80 = FETCH ² 0x40 = WRITE ² Defaulteinstellung bei Verzicht auf den Parameter ist SEND/RECV. FETCH/WRITE erfordern die Einstellung passiver Verbindungsaufbau.		optional
21	SUB_KBUS_ADR	-	-	Wert: fix 2	optional
22	SUB_CON_ESTABL	4 + 1	Typ des Verbindungsaufbaus. Legen Sie mit dieser Option fest, ob der Verbindungsaufbau von dieser Station aus erfolgen soll. Wertebereich: 0 = passiv 1 = aktiv		zwingend
1) optiona	al bei passiver Verbindung				

UDP-Verbindung

Typ = 2
ID = Verbindungs-ID
Subblock Anzahl = n
Subblock 1
Subblock 2
Subblock n

Subblock				Parameter	
ID	Тур	Länge (Byte)	Bedeutung Besonder- heiten		Anwendung
1	SUB_IP_V4	4 + 4	IP-Adresse lokale Station gemäß IPv4		zwingend
9	SUB_LOC_PORT	4 + 2	Port der lokalen Station		zwingend
10	SUB_REM_PORT	4 + 2	Port der fernen Station		zwingend

2) die Codierungen können mittels ODER-Verknüpfungen kombiniert werden

Subble	ock	Subblock Parameter			
ID	Тур	Länge (Byte)	Bedeutung	Besonder- heiten	Anwendung
18	SUB_CONNECT_NAME	Länge Name + 4	Name der Verbindung		optional
19	SUB_LOC_MODE	4+1	Lokale Betriebsart der Verbindun Wertebereich: 0x00 = SEND/RECV 0x10 = S5-Adressierungsmodus WRITE ¹ 0x80 = FETCH ¹ 0x40 = WRITE ¹ Defaulteinstellung bei Verzicht a meter ist SEND/RECV. FETCH/WRITE erfordern die Ein siver Verbindungsaufbau.	bei FETCH/ uf den Para-	optional
21	SUB_KBUS_ADR	-	-	Wert: fest auf 2	optional
23	SUB_ADDR_IN_DATA_ BLOCK	4+1	Freie UDP-Verbindung wählen. Der ferne Teilnehmer wird vom Anwenderprogramm beim AG_SEND Aufruf im Auftragsheader des Auftragspuffers eingetragen. Damit kann jeder beliebige Teilnehmer am Ethernet/LAN/WAN erreicht werden. Wertebereich: 1 = Freie UDP-Verbindung 0 = sonstige		optional

ISO-on-TCP-Verbindung

Typ = 3
ID = Verbindungs-ID
Subblock Anzahl = n
Subblock 1
Subblock 2
Subblock n

Subblock			Parameter		
ID	Тур	Länge (Byte)	Bedeutung	Besonderheiten	Anwendung
1	SUB_IP_V4	4 + 4	IP-Adresse der fernen Station gemäß IPv4		zwingend ¹
11	SUB_LOC_PORT	TSAP-Länge + 4	TSAP der lokalen Station		zwingend

IDTypLänge (Byte)Bedeutung12SUB_REM_PORTTSAP-Länge + 4TSAP der fell	Besonderheiten Anwendung
4	0
40 OUR CONNECT MAKE I I I I I I I I I I I I I I I I I I I	rnen Station zwingend¹
18 SUB_CONNECT_NAME Länge Name + Name der Ve	erbindung optional
Wertebereich 0x00 = SENI 0x10 = S5-A FETCH/WRI 0x80 = FETC 0x40 = WRIT Defaulteinste Parameter is FETCH/WRI	D/RECV dressierungsmodus bei TE ² CH ²
21 SUB_KBUS_ADR	Wert fest auf 2 optional
Legen Sie m	

²⁾ die Codierungen können mittels ODER-Verknüpfungen kombiniert werden

H1-Verbindung (ISO)

Typ = 10
ID = Verbindungs-ID
Subblock Anzahl = n
Subblock 1
Subblock 2
Subblock n

Subblock			Parameter		
ID	Тур	Länge (Byte)	Bedeutung	Besonderheiten	Anwendung
51	SUB_MAC	4 + 6	MAC-Adresse de	r fernen Station	zwingend
11	SUB_LOC_TSAP	TSAP-Länge + 4	TSAP der lokaler	Station	zwingend
12	SUB_REM_TSAP	TSAP-Länge + 4	TSAP der fernen	Station	zwingend ¹

Subb	Subblock						
ID	Тур	Länge (Byte)	Bedeutung	Besonderheiten	Anwendung		
18	SUB_CONNECT_NAME	Länge Name + 4	Name der Verbindung		optional		
19	SUB_LOC_MODE	4 + 1		rt der Verbindung	optional		
			Wertebereich:				
			0x00 = SEND/RECV				
			0x10 = S5-Adres FETCH/WRITE ²	sierungsmodus bei			
			0x80 = FETCH ²				
			0x40 = WRITE ²				
				Defaulteinstellung bei Verzicht auf den Parameter ist SEND/RECV.			
			FETCH/WRITE ellung passiver Ver	erfordern die Einstel- rbindungsaufbau.			
22	SUB_CON_ESTABL	4 + 1	Typ des Verbindungsaufbaus		zwingend		
			Legen Sie mit dieser Option fest, ob der Verbindungsaufbau von dieser Station aus erfolgen soll.				
			Wertebereich: 0 =	= passiv; 1 = aktiv			
52	SUB_TIME_CON_RETRAN	4 + 2	Zeitabstand nach welchem ein fehlgeschla- gener Verbin- dungsaufbau erneut ange- stoßen wird.	irrelevant bei pas- sivem Verbindungs- aufbau	optional		
			(160s, Default: 5s)				
53	SUB_TIME_DAT_RETRAN	4 + 2	Zeitabstand nach welchem ein fehlge- schlagener Sendeversuch erneut ange- stoßen wird (10030000ms, Default: 1000ms)		optional		
54		4 + 2	Anzahl der Sendeversuche inkl. 1. Versuch (1100, Default: 5)		optional		
55		4 + 2	bindung abgebau	n welchem eine Ver- ut wird, sofern von on keine Rückmeldung Default: 30s)	optional		
1) optior	1) optional bei passiver Verbindung						
2) die Co	odierungen können mittels ODER-Verknüpfungen kombi	niert werden					

²⁾ die Codierungen können mittels ODER-Verknüpfungen kombiniert werde

Siemens-S7-Verbindung

Typ = 11
ID = Verbindungs-ID
Subblock Anzahl = n
Subblock 1
Subblock 2
Subblock n

Subblock				Parameter	
ID	Тур	Länge (Byte)	Bedeutung	Besonderheiten	Anwendung
56	SUB_S/_C_DETAIL	4 + 14	Verbindungsspezifis	sche Parameter	zwingend
18	SUB_CONNECT_NAME	Länge Name + 4	Name der Verbindung		optional
1	SUB_IP_V4	4 + 4	IP-Adresse gemäß IPv4	IP-Adresse des Part- ners	zwingend ¹
51	SUB_MAC	4 + 6	MAC-Adresse der F	Partnerstation	zwingend
22	SUB_CON_ESTABL	4 + 1	Typ des Verbindungsaufbaus. Legen Sie mit dieser Option fest, ob der Verbindungsaufbau von dieser Station aus erfolgen soll. Wertebereich:		zwingend
			0 = passiv		
			1 = aktiv		
1) optional bei passiver Verbindung					

SUB_S/_C_DETAIL

Parameter	Deklaration	Datentyp	Beschreibung	
SubBlockID	IN	WORD	Kennung	
SubBlockLen	IN	WORD	Länge	
TcpIpActive	IN	INT	Verbindung über MAC- oder IP-Adresse (MAC=0, IP=1)	
LocalResource	IN	WORD	Lokale Ressource 0001h 00DFh (1=PG, 2=OP, 0010h 00DFh=unspezifiziert)	
LocalRack	IN	WORD	Nummer lokales Rack 0000h 0002h	
LocalSlot	IN	WORD	Nummer lokaler Steckplatz 0002h 000Fh (2=CPU, 4=Ethernet-PG/OP, 5=CP int., 6=CP ext.)	
RemoteResource	IN	WORD	Remote Ressource 0001h 00DFh (1=PG, 2=OP, 0010h 00DFh=unspezifiziert)	
RemoteRack	IN	WORD	Nummer remote Rack 0000h 0002h	
RemoteSlot	IN	WORD	Nummer remote Steckplatz 0002h 000Fh (2=CPU, 4=Ethernet-PG/OP, 5=CP int., 6=CP ext.)	
Der "Lokale TSAP" wird gebildet aus LocalResource, LocalRack und LocalSlot. Der "Remote TSAP" wird gebildet aus RemoteResource, RemoteRack und RemoteSlot.				

Beispiel zur Parametrierung einer Siemens S7-Verbindung Die Parametrierung einer dynamischen Siemens S7-Verbindung mit IP_CONF erfolgt analog zur Parametrierung einer fixen Siemens S7-Verbindung. Ausgehend von Siemens NetPro haben Sie folgende Parameter, welche folgenden Sub-Blöcken entsprechen:

Eigenschaften - Siemens S7- Verbindung				
Siemens NetPro	FB55 - IP_CONFIG			
aktiver Verbindungsaufbau	SUB_CON_ESATBL.CON_ESTABL			
TCP/IP	SUB_S7_C_DETAILS.TcplpActive			
IP- bzw. MAC-Adresse Partner	SUB_IP_V4.rem_IP.IP_0IP_3 bzw.			
	SUB_MAC.rem_MAC.MAC_0MAC5			
Lokale ID	Verbindungs-ID			

Adressdetails					
Siemens NetPro	FB55 - IP_CONFIG				
Lokales Rack	SUB_S7_C_DETAILS.LocalRack				
Lokaler Steckplatz	SUB_S7_C_DETAILS.LocalSlot				
Lokale Verbindungsressource	SUB_S7_C_DETAILS.LocalResource				
Remote Rack	SUB_S7_C_DETAILS.RemoteRack				
Remote Steckplatz	SUB_S7_C_DETAILS.RemoteSlot				
Remote Verbindungsressource	SUB_S7_C_DETAILS.RemoteResource				

Zusätzliche Parameterblöcke

Block_VIPA_HWK

Sobald der Block_VIPA_HWK (Sonderkennung 99) im DB enthalten ist, bleiben alle Verbindungen, die im NETPRO projektiert wurden, erhalten. Damit ist es möglich, nur die Systemdaten (IP, Netmask usw.) mit IP_CONFIG zu ändern. Wenn der Block_VIPA_HWK gefunden wurde, dürfen keine sonstigen Verbindungsdaten im DB parametriert sein, sonst wird Fehler im RetVal gemeldet. Ist die Sonderkennung Block_VIPA_HWK nicht im DB, so werden (wie bei Siemens) alle Verbindungen aus NETPRO entfernt und nur noch die Verbindungen aus diesem DB parametriert.

Typ = 99
ID = 0
Subblock Anzahl = 0

Block_VIPA_BACNET

Sobald der Block_VIPA_BACNET (Sonderkennung 100) im DB enthalten ist, wird eine BACNET-Konfiguration aus dem DB abgeleitet und es werden keine weiteren Blöcke danach ausgewertet.

Typ = 100	
Subblock Anzahl = 0	

Block_VIPA_IPK

Typ = 101
ID = Verbindungs-ID
Subblock Anzahl = n
Subblock 1
Subblock 2
Subblock n

Subblock				Parameter		
ID	Тур	Länge (Byte)	Bedeutung	Besonderheiten	Anwendung	
1	VIPA_IPK_CYCLE	4 + 4	IPK Zykluszeit für Verbindungs-ID	produktspezifisch	optional	

Beispiel-DB

Adresse	Name	Тур	Anfangswert	Aktualwert	Kommentar
0.0	DB_Ident	WORD	W#16#1	W#16#1	
2.0	Systemdaten.Typ	INT	0	0	Systemdaten
4.0	Systemdaten.VerbId	INT	0	0	fix 0
6.0	Systemdaten.SubBlock_Anzahl	INT	3	3	
8.0	Systemdaten.ip.SUB_IP_V4	WORD	W#16#1	W#16#1	
10.0	Systemdaten.ip.SUB_IP_V4_LEN	WORD	W#16#8	W#16#8	
12.0	Systemdaten.ip.IP_0	BYTE	B#16#0	B#16#AC	
13.0	Systemdaten.ip.IP_1	BYTE	B#16#0	B#16#14	
14.0	Systemdaten.ip.IP_2	BYTE	B#16#0	B#16#8B	
15.0	Systemdaten.ip.IP_3	BYTE	B#16#0	B#16#61	
16.0	Systemdaten.netmask.SUB_NETMASK	WORD	W#16#2	W#16#2	
18.0	Systemdaten.netmask.SUB_NETMASK_LEN	WORD	W#16#8	W#16#8	
20.0	Systemdaten.netmask.NETMASK_0	BYTE	B#16#0	B#16#FF	
21.0	Systemdaten.netmask.NETMASK_1	BYTE	B#16#0	B#16#FF	
22.0	Systemdaten.netmask.NETMASK_2	BYTE	B#16#0	B#16#FF	
23.0	Systemdaten.netmask.NETMASK_3	BYTE	B#16#0	B#16#0	
24.0	Systemdaten.router.SUB_DEF_ROUTER	WORD	W#16#8	W#16#8	
26.0	Systemdaten.router.SUB_DEF_ROUTER_LEN	WORD	W#16#8	W#16#8	
28.0	Systemdaten.router.ROUTER_0	BYTE	B#16#0	B#16#AC	
29.0	Systemdaten.router.ROUTER_1	BYTE	B#16#0	B#16#14	
30.0	Systemdaten.router.ROUTER_2	BYTE	B#16#0	B#16#8B	
31.0	Systemdaten.router.ROUTER_3	BYTE	B#16#0	B#16#61	
32.0	Con_TCP_ID1.Typ	INT	1	1	TCP-Verbindung
34.0	Con_TCP_ID1.VerbId	INT	0	1	Verbindungs-ID
36.0	Con_TCP_ID1.SubBlock_Anzahl	INT	4	4	

Adresse	Name	Тур	Anfangswert	Aktualwert	Kommentar
38.0	Con_TCP_ID1.ip1.SUB_IP_V4	WORD	W#16#1	W#16#1	
40.0	Con_TCP_ID1.ip1. SUB_IP_V4_LEN	WORD	W#16#8	W#16#8	
42.0	Con_TCP_ID1.ip1.IP_0	BYTE	B#16#0	B#16#AC	
43.0	Con_TCP_ID1.ip1.IP_1	BYTE	B#16#0	B#16#14	
44.0	Con_TCP_ID1.ip1.IP_2	BYTE	B#16#0	B#16#8B	
45.0	Con_TCP_ID1.ip1.IP_3	BYTE	B#16#0	B#16#62	
46.0	Con_TCP_ID1.locport.SUB_LOC_PORT	WORD	W#16#9	W#16#9	
48.0	Con_TCP_ID1.locport.SUB_LOC_PORT_LEN	WORD	W#16#6	W#16#6	
50.0	Con_TCP_ID1.locport.LOC_PORT	WORD	W#16#0	W#16#3E9	
52.0	Con_TCP_ID1.remport.SUB_REM_PORT	WORD	W#16#A	W#16#A	
54.0	Con_TCP_ID1.remport.SUB_REM_PORT_LEN	WORD	W#16#6	W#16#6	
56.0	Con_TCP_ID1.remport.REM_PORT	WORD	W#16#0	W#16#3E9	
58.0	Con_TCP_ID1.con_est.SUB_CON_ESTABL	WORD	W#16#16	W#16#16	
60.0	Con_TCP_ID1.con_est.SUB_CON_ESTABL_LEN	WORD	W#16#6	W#16#6	
62.0	Con_TCP_ID1.con_est.CON_ESTABL	BYTE	B#16#0	B#16#1	
64.0	Con_ISO_ID3.Typ	INT	3	3	ISO-on-TCP-Verbindung
66.0	Con_ISO_ID3.VerbId	INT	0	3	Verbindungs-ID
68.0	Con_ISO_ID3.SubBlock_Anzahl	INT	4	4	
70.0	Con_ISO_ID3.ip1. SUB_IP_V4	WORD	W#16#1	W#16#1	
72.0	Con_ISO_ID3.ip1. SUB_IP_V4_LEN	WORD	W#16#8	W#16#8	
74.0	Con_ISO_ID3.ip1.IP_0	BYTE	B#16#0	B#16#AC	
75.0	Con_ISO_ID3.ip1.IP_1	BYTE	B#16#0	B#16#10	
76.0	Con_ISO_ID3.ip1.IP_2	BYTE	B#16#0	B#16#8B	
77.0	Con_ISO_ID3.ip1.IP_3	BYTE	B#16#0	B#16#62	
78.0	Con_ISO_ID3.loc_TSAP.SUB_LOC_PORT	WORD	W#16#B	W#16#B	
80.0	Con_ISO_ID3.loc_TSAP.SUB_LOC_PORT_LEN	WORD	W#16#A	W#16#A	
82.0	Con_ISO_ID3.loc_TSAP.LOC_TSAP[0]	BYTE	B#16#0	B#16#54	
83.0	Con_ISO_ID3.loc_TSAP.LOC_TSAP[1]	BYTE	B#16#0	B#16#53	
84.0	Con_ISO_ID3.loc_TSAP.LOC_TSAP[2]	BYTE	B#16#0	B#16#41	
85.0	Con_ISO_ID3.loc_TSAP.LOC_TSAP[3]	BYTE	B#16#0	B#16#50	
86.0	Con_ISO_ID3.loc_TSAP.LOC_TSAP[4]	BYTE	B#16#0	B#16#30	
87.0	Con_ISO_ID3.loc_TSAP.LOC_TSAP[5]	BYTE	B#16#0	B#16#31	
88.0	Con_ISO_ID3.rem_TSAP.SUB_REM_PORT	WORD	W#16#C	W#16#C	
90.0	Con_ISO_ID3.rem_TSAP.SUB_REM_PORT_LEN	WORD	W#16#A	W#16#A	
92.0	Con_ISO_ID3.rem_TSAP.REM_TSAP[0]	BYTE	B#16#0	B#16#54	
93.0	Con_ISO_ID3.rem_TSAP.REM_TSAP[1]	BYTE	B#16#0	B#16#53	

Adresse	Name	Тур	Anfangswert	Aktualwert	Kommentar
94.0	Con_ISO_ID3.rem_TSAP.REM_TSAP[2]	BYTE	B#16#0	B#16#41	
95.0	Con_ISO_ID3.rem_TSAP.REM_TSAP[3]	BYTE	B#16#0	B#16#50	
96.0	Con_ISO_ID3.rem_TSAP.REM_TSAP[4]	BYTE	B#16#0	B#16#30	
97.0	Con_ISO_ID3.rem_TSAP.REM_TSAP[5]	BYTE	B#16#0	B#16#31	
98.0	Con_ISO_ID3.con_est.SUB_CON_ESTABL	WORD	W#16#16	W#16#16	
100.0	Con_ISO_ID3.con_est.SUB_CON_ESTABL_LEN SUB_CON_ESTABL_SUB_CON_ESTABL_LEN	WORD	W#16#6	W#16#6	
102.0	Con_ISO_ID3.con_est.CON_ESTABL	BYTE	B#16#0	B#16#1	
104.0	S7_Verb.Typ	INT	11	11	S7-Verbindung
106.0	S7_Verb.Verb_ID	INT	0	0	VerbID
108.0	S7_Verb.SubBlock_Anzahl	INT	5	5	
110.0	S7_Verb.Verb_Parameter.SUB_S7_C_DETAIL	INT	56	56	
112.0	S7_Verb.Verb_Parameter. SUB_S7_C_DETAIL_LEN	INT	18	18	
114.0	S7_Verb.Verb_Parameter.TcplpActive	INT	0	1	
116.0	S7_Verb.Verb_Parameter.LocalResource	INT	0	2	
118.0	S7_Verb.Verb_Parameter.LocalRack	INT	0	0	
120.0	S7_Verb.Verb_Parameter.LocalsSlot	INT	0	2	
122.0	S7_Verb.Verb_Parameter.RemoteResource	INT	0	2	
124.0	S7_Verb.Verb_Parameter.RemoteRack	INT	0	0	
126.0	S7_Verb.Verb_Parameter.RemoteSlot	INT	0	2	
128.0	S7_Verb.ipl.SUB_IP_V4	WORD	W#16#1	W#16#1	
130.0	S7_Verb.ipl. SUB_IP_V4_LEN	WORD	W#16#8	W#16#8	
132.0	S7_Verb.ipI.IP_0	BYTE	B#16#0	B#16#AC	
133.0	S7_Verb.ipI.IP_1	BYTE	B#16#0	B#16#10	
134.0	S7_Verb.ipI.IP_2	BYTE	B#16#0	B#16#8B	
135.0	S7_Verb.ipl.IP_3	BYTE	B#16#0	B#16#62	
136.0	S7_Verb.Mac.SUB_MAC	INT	51	51	
138.0	S7_Verb.Mac.SUB_MAC_LEN	INT	10	10	
140.0	S7_Verb.Mac.MAC_0	BYTE	B#16#0	B#16#0	
141.0	S7_Verb.Mac.MAC_1	BYTE	B#16#0	B#16#20	
142.0	S7_Verb.Mac.MAC_2	BYTE	B#16#0	B#16#D5	
143.0	S7_Verb.Mac.MAC_3	BYTE	B#16#0	B#16#77	
144.0	S7_Verb.Mac.MAC_4	BYTE	B#16#0	B#16#53	
145.0	S7_Verb.Mac.MAC_5	BYTE	B#16#0	B#16#9B	
146.0	S7_Verb.con_est .SUB_CON_ESTABL	WORD	W#16#16	W#16#16	
148.0	S7_Verb.con_est.SUB_CON_ESTABL_LEN	WORD	W#16#6	W#16#6	
150.0	S7_Verb.con_est.CON_ESTABL	BYTE	B#16#0	B#16#1	

Adresse	Name	Тур	Anfangswert	Aktualwert	Kommentar
152.0	S7_Verb.name_verb.SUB_CONNECT_NAME	WORD	W#16#12	W#16#12	
154.0	S7_Verb.name_verb.SUB_CONNECT_NAME_LEN	WORD	W#16#23	W#16#23	
156.0	S7_Verb.name_verb.CONNECT_NAME[0]	CHAR	11	'V'	S7-Verbindung mit
157.0	S7_Verb.name_verb.CONNECT_NAME[1]	CHAR	11	'e'	IP-Konfig. 1
158.0	S7_Verb.name_verb.CONNECT_NAME[2]	CHAR	11	'r'	
159.0	S7_Verb.name_verb.CONNECT_NAME[3]	CHAR	11	'b'	
160.0	S7_Verb.name_verb.CONNECT_NAME[4]	CHAR	11	'j'	
161.0	S7_Verb.name_verb.CONNECT_NAME[5]	CHAR	11	'n'	
162.0	S7_Verb.name_verb.CONNECT_NAME[6]	CHAR	11	'd'	
163.0	S7_Verb.name_verb.CONNECT_NAME[7]	CHAR	11	'u'	
164.0	S7_Verb.name_verb.CONNECT_NAME[8]	CHAR	**	'n'	
165.0	S7_Verb.name_verb.CONNECT_NAME[9]	CHAR	11	'g'	
166.0	S7_Verb.name_verb.CONNECT_NAME[10]	CHAR	**	***	
167.0	S7_Verb.name_verb.CONNECT_NAME[11]	CHAR	11	'S'	
168.0	S7_Verb.name_verb.CONNECT_NAME[12]	CHAR	**	'7'	
169.0	S7_Verb.name_verb.CONNECT_NAME[13]	CHAR	11	**	
170.0	S7_Verb.name_verb.CONNECT_NAME[14]	CHAR	**	'm'	
171.0	S7_Verb.name_verb.CONNECT_NAME[15]	CHAR	**	'i'	
172.0	S7_Verb.name_verb.CONNECT_NAME[16]	CHAR	**	't'	
173.0	S7_Verb.name_verb.CONNECT_NAME[17]	CHAR	**	***	
174.0	S7_Verb.name_verb.CONNECT_NAME[18]	CHAR	**	Т	
175.0	S7_Verb.name_verb.CONNECT_NAME[19]	CHAR	**	'P'	
176.0	S7_Verb.name_verb.CONNECT_NAME[20]	CHAR	**	Ų	
177.0	S7_Verb.name_verb.CONNECT_NAME[21]	CHAR	**	'C'	
178.0	S7_Verb.name_verb.CONNECT_NAME[22]	CHAR	**	'o'	
179.0	S7_Verb.name_verb.CONNECT_NAME[23]	CHAR	**	'n'	
180.0	S7_Verb.name_verb.CONNECT_NAME[24]	CHAR	**	'f '	
181.0	S7_Verb.name_verb.CONNECT_NAME[25]	CHAR		'i'	
182.0	S7_Verb.name_verb.CONNECT_NAME[26]	CHAR	• •	'g'	
183.0	S7_Verb.name_verb.CONNECT_NAME[27]	CHAR	**	11	
184.0	S7_Verb.name_verb.CONNECT_NAME[28]	CHAR	• •	'1'	
185.0	S7_Verb.name_verb.CONNECT_NAME[29]	CHAR		**	
186.0	S7_Verb.name_verb.CONNECT_NAME[30]	CHAR	D.	·	

TCP > FB 70 - TCP MB CLIENT - Modbus/TCP-Client

9 Modbus-Kommunikation - "Modbus Communication"

Baustein-Bibliothek "Modbus Communication"

Die Baustein-Bibliothek finden Sie im "Download Center" auf www.yaskawa.eu.com unter "Controls Library" als "Baustein-Bibliothek Modbus Communication - SW90AS0MA" zum Download. Die Bibliothek liegt als gepackte zip-Dateien vor. Sobald Sie die Bausteine verwenden möchten, müssen Sie diese in Ihr Projekt importieren. → "Controls Library einbinden"...Seite 68

9.1 TCP

9.1.1 FB 70 - TCP_MB_CLIENT - Modbus/TCP-Client

9.1.1.1 Beschreibung

Dieser Funktionsbaustein ermöglicht den Betrieb einer Ethernet-Schnittstelle als Modbus/TCP-Client.

Aufrufparameter

Name	Deklaration	Тур	Beschreibung	
REQ	IN	BOOL	Auftrag starten mit Flanke 0-1.	
ID	IN	WORD	ID von TCON.	
MB_FUNCTION	IN	BYTE	Modbus: Funktions-Code.	
MB_DATA_ADDR	IN	WORD	Modbus: Startadresse oder Sub-Funktions-Code.	
MB_DATA_LEN	IN	INT	Modbus: Anzahl der Register/Bits.	
MB_DATA_PTR	IN	ANY	Modbus: Datenpuffer (nur Merkerbereich oder Datenbaustein vom Datentyp Byte zulässig) für den Zugriff mit <i>Funktions-Code 03h</i> , <i>06h</i> und <i>10h</i> .	
DONE ¹	OUT	BOOL	Auftrag fertig ohne Fehler.	
BUSY	OUT	BOOL	Auftrag ist in Bearbeitung.	
ERROR ¹	OUT	BOOL	Auftrag fertig mit Fehler - Parameter STATUS enthält die Fehlerinformation.	
STATUS ¹	OUT	WORD	Erweiterte Status- und Fehlerinformationen.	
1) Parameter steht bis zum nächsten Aufruf des FBs zur Verfügung.				

Parameter im Instanz-DB

Name	Deklaration	Тур	Beschreibung
PROTOCOL_TIMEOUT	STAT	INT	Sperrzeit bevor ein aktiver Auftrag vom Anwender abgebrochen werden kann.
			Default: 3s
RCV_TIMEOUT	STAT	INT	Überwachungszeit für einen Auftrag.
			Default: 2s
MB_TRANS_ID	STAT	WORD	Modbus: Startwert für den Transaktions Identifier.
			Default: 1
MB_UNIT_ID	STAT	BYTE	Modbus: Geräteidentifikation.
			Default: 255

TCP > FB 70 - TCP_MB_CLIENT - Modbus/TCP-Client

Hierbei ist folgendes zu beachten:

- Die Aufrufparameter sind beim Baustein-Aufruf anzugeben. Neben den Aufrufparametern finden Sie alle Parameter im Instanz-DB.
- Die Kommunikationsverbindung muss zuvor über FB 65 (TCON) initialisiert werden.
- FB 63 (TSEND) und FB 64 (TRCV) sind für die Verwendung des Baustein erforderlich.
- Während einer Auftragsbearbeitung wird der Instanz-DB für andere Clients gesperrt.
- Während einer Auftragsbearbeitung werden Änderungen an den Eingangsparametern nicht ausgewertet.
- Unter einer der folgenden Bedingungen ist eine Auftragsbearbeitung abgeschlossen bzw. wird abgebrochen:
 - DONE = 1 bei Auftrag ohne Fehler
 - ERROR = 1 bei Auftrag mit Fehler
 - Ablauf von RCV_TIMEOUT
 - REQ = FALSE nach Ablauf von PROTOCOL_TIMEOUT
- Wird REQ zurückgesetzt bevor DONE oder ERROR gesetzt oder PROTOCOL_TIMEOUT abgelaufen ist, wird STATUS 8200h geliefert. Hierbei wird der aktive Auftrag weiterhin bearbeitet.

Status- und Fehleranzeige

Der Funktionsbaustein liefert über STATUS die folgenden Status- und Fehlerinformationen.

STATUS	DONE	BUSY	ERROR	Beschreibung
0000h	1	0	0	Anweisung fehlerfrei ausgeführt.
7000h	0	0	0	Keine Verbindung aufgebaut oder Kommunikationsfehler (TCON).
7004h	0	0	0	Verbindung hergestellt und überwacht.
				Keine Auftragsbearbeitung aktiv.
7005h	0	1	0	Daten werden gesendet.
7006h	0	1	0	Daten werden empfangen.
8210h	0	0	1	Die Hardware ist inkompatibel zur Baustein-Bibliothek Modbus RTU/TCP.
8380h	0	0	1	Empfangenes Modbus-Frame hat nicht das richtige Format oder eine ungültige Länge.
8381h	0	0	1	Server liefert Exception Code 01h. → 197
8382h	0	0	1	Server liefert <i>Exception Code 03h</i> oder falsche Startadresse. <i>→</i> 197
8383h	0	0	1	Server liefert Exception Code 02h. → 197
8384h	0	0	1	Server liefert Exception Code 04h. → 197
8386h	0	0	1	Server liefert falschen Funktions-Code.
8387h	0	0	1	Verbindungs-ID (TCON) passt nicht zur Instanz oder Server liefert falsche Protokoll-ID.
8388h	0	0	1	Server liefert falschen Wert oder falsche Quantity.
80C8h	0	0	1	Keine Antwort des Servers im definierten Zeitraum (RCV_TIMEOUT).
8188h	0	0	1	MB_FUNCTION ungültig.
8189h	0	0	1	MB_DATA_ADDR ungültig.
818Ah	0	0	1	MB_DATA_LEN ungültig.

TCP > FB 70 - TCP MB CLIENT - Modbus/TCP-Client

STATUS	DONE	BUSY	ERROR	Beschreibung
818Bh	0	0	1	MB_DATA_PTR ungültig.
818Ch	0	0	1	BLOCKED_PROC_TIMEOUT oder RCV_TIMEOUT ungültig.
818Dh	0	0	1	Server liefert falsche Transaktions-ID.
8200h	0	0	1	Eine andere Modbus-Anfrage wird zur Zeit über den Port verarbeitet (PROTOCOL_TIMEOUT).

9.1.1.2 Beispiel

Aufgabenstellung

Von einem Modbus/TCP-Server sollen mit *Funktions-Code 03h* 100 Register ab Startadresse 2000 gelesen werden und im Merkerbereich ab MB200 abgelegt werden. Fehler sollen abgespeichert werden.

OB₁

```
65 , DB65
       CALL FB
             :=M100.0
       REQ
       ID
              :=W#16#1
       DONE
              :=M100.1
       BUSY
               :=
       ERROR
              :=M100.2
       STATUS :=MW102
       CONNECT:=P#DB255.DBX 0.0 BYTE 64
      UN
            Μ
                  100.2
            ERR1
      SPB
                  102
      L
            MW
      Τ
            MW
                  104
ERR1: NOP
            0
                  100.1
      IJ
            М
                  100.0
      R
            M
            70 , DB70
CALL
      FΒ
       REO
                    :=M101.0
                    :=W#16#1
       ΙD
       MB FUNCTION :=B#16#3
       MB DATA ADDR:=W#16#7D0
       MB DATA LEN :=100
       MB DATA PTR :=P#M 200.0 BYTE 200
       DONE
                    :=M101.1
       BUSY
                    :=
                    :=M101.2
       ERROR
       STATUS
                    :=MW106
      UN
            Μ
                  101.2
      SPB
            ERR2
            MW
                  106
      L
      Т
            MW
                  108
ERR2: NOP
            0
      U
            Μ
                  101.1
      R
            Μ
                  101.0
```

TCP > FB 71 - TCP MB SERVER - Modbus/TCP-Server

OB1 - Beschreibung

- 1. Aufruf von FB 65 (TCON) zur Herstellung der Kommunikationsverbindung mit der Partnerstation.
- 2. Aufruf des Modbus/TCP-Client Hantierungsbausteins mit den korrekten Parametern.
- **3.** Es ist keine Verbindung zur Partnerstation aufgebaut und MW102 liefert 7000h.
- 4. M100.0 in der CPU auf TRUE setzten.
 - → Wenn M100.0 automatisch zurück gesetzt wird, ist die Verbindung zur Partnerstation aufgebaut und MW108 liefert 7004h.
- 5. M101.0 in der CPU auf TRUE setzen.
 - → Der Modbus-Request wird versendet und auf eine Antwort gewartet.

Wenn M101.0 automatisch zurück gesetzt wird, wurde der Auftrag fehlerfrei bearbeitet und die gelesenen Daten liegen ab Merkerbyte 200 in der CPU. MW108 liefert 7004h und signalisiert die Bereitschaft für einen neuen Auftrag.

Wenn M101.0 nicht automatisch zurück gesetzt wird und MW108 einen Wert ungleich 0 liefert, ist ein Fehler aufgetreten. Die Fehlerursache kann über den Code in MW108 ausgelesen werden (z.B. MW108 = 8382h wenn die Startadresse 2000 im Server nicht vorhanden ist). MW108 liefert 7004h und signalisiert die Bereitschaft für einen neuen Auftrag.

9.1.2 FB 71 - TCP MB SERVER - Modbus/TCP-Server

9.1.2.1 Beschreibung

Dieser Funktionsbaustein ermöglicht den Betrieb einer Ethernet-Schnittstelle als Modbus/TCP-Server.

Aufrufparameter

Name	Deklaration	Тур	Beschreibung
ENABLE	IN	BOOL	Aktivierung/Deaktivierung Modbus-Server.
MB_DATA_PTR	IN	ANY	Modbus: Datenpuffer (nur Merkerbereich oder Datenbaustein vom Datentyp Byte zulässig) für den Zugriff mit <i>Funktions-Code 03h</i> , <i>06h</i> und <i>10h</i> .
ID	IN	WORD	ID von TCON.
NDR ¹	OUT	BOOL	Neue Daten wurden durch den Modbus-Client geschrieben.
DR ¹	OUT	BOOL	Daten wurden vom Modbus Client gelesen.
ERROR ¹	OUT	BOOL	Auftrag fertig mit Fehler - Parameter STATUS enthält die Fehlerinformation.
STATUS ¹	OUT	WORD	Erweiterte Status- und Fehlerinformationen.
1) Parameter steht bis zum nächsten Aufruf des FE	Bs zur Verfügung.		

Parameter im Instanz-DB

Name	Deklaration	Тур	Beschreibung
REQUEST_COUNT	STAT	WORD	Zähler für jedes empfangene Telegramm.
MESSAGE_COUNT	STAT	WORD	Zähler für jeden gültigen Modbus-Request.
XMT_RCV_COUNT	STAT	WORD	Zähler für jedes empfangene Telegramm, welches keinen gültigen Modbus-Request enthält.
EXCEPTION_COUNT	STAT	WORD	Zähler für jeden negativ quittierten Modbus-Request.

TCP > FB 71 - TCP_MB_SERVER - Modbus/TCP-Server

Name	Deklaration	Тур	Beschreibung
SUCCESS_COUNT	STAT	WORD	Zähler für jeden positiv quittierten Modbus-Request.
FC1_ADDR_OUTPUT_START	STAT	WORD	Modbus <i>Funktions-Code 01h</i> Startregister für A0.0 Default: 0
FC1_ADDR_OUTPUT_END	STAT	WORD	Modbus <i>Funktions-Code 01h</i> Endregister für Ax.y Default: 19999
FC1_ADDR_MEMORY_START	STAT	WORD	Modbus <i>Funktions-Code 01h</i> Startregister für M0.0 Default: 20000
FC1_ADDR_MEMORY_END	STAT	WORD	Modbus <i>Funktions-Code 01h</i> Endregister für Mx.y Default: 39999
FC2_ADDR_INPUT_START	STAT	WORD	Modbus <i>Funktions-Code 02h</i> Startregister für E0.0 Default: 0
FC2_ADDR_INPUT_END	STAT	WORD	Modbus <i>Funktions-Code 02h</i> Endregister für Ex.y Default: 19999
FC2_ADDR_MEMORY_START	STAT	WORD	Modbus <i>Funktions-Code 02h</i> Startregister für M0.0 Default: 20000
FC2_ADDR_MEMORY_END	STAT	WORD	Modbus <i>Funktions-Code 02h</i> Endregister für Mx.y Default: 39999
FC4_ADDR_INPUT_START	STAT	WORD	Modbus <i>Funktions-Code 04h</i> Startregister für EW0 Default: 0
FC4_ADDR_INPUT_END	STAT	WORD	Modbus <i>Funktions-Code 04h</i> Endregister für EWx Default: 19999
FC4_ADDR_MEMORY_START	STAT	WORD	Modbus <i>Funktions-Code 04h</i> Startregister für MW0 Default: 20000
FC4_ADDR_MEMORY_END	STAT	WORD	Modbus <i>Funktions-Code 04h</i> Endregister für MWx Default: 39999
FC5_ADDR_OUTPUT_START	STAT	WORD	Modbus <i>Funktions-Code 05h</i> Startregister für A0.0 Default: 0
FC5_ADDR_OUTPUT_END	STAT	WORD	Modbus <i>Funktions-Code 05h</i> Endregister für Ax.y Default: 19999
FC5_ADDR_MEMORY_START	STAT	WORD	Modbus <i>Funktions-Code 05h</i> Startregister für M0.0 Default: 20000
FC5_ADDR_MEMORY_END	STAT	WORD	Modbus <i>Funktions-Code 05h</i> Endregister für Mx.y Default: 39999
FC15_ADDR_OUTPUT_START	STAT	WORD	Modbus <i>Funktions-Code 0Fh</i> Startregister für A0.0 Default: 0
FC15_ADDR_OUTPUT_END	STAT	WORD	Modbus <i>Funktions-Code 0Fh</i> Endregister für Ax.y Default: 19999

TCP > FB 71 - TCP_MB_SERVER - Modbus/TCP-Server

Name	Deklaration	Тур	Beschreibung
FC15_ADDR_MEMORY_START	STAT	WORD	Modbus <i>Funktions-Code 0Fh</i> Startregister für M0.0 Default: 20000
FC15_ADDR_MEMORY_END	STAT	WORD	Modbus <i>Funktions-Code 0Fh</i> Endregister für Mx.y Default: 39999

Hierbei ist folgendes zu beachten:

- Die Aufrufparameter sind beim Baustein-Aufruf anzugeben. Neben den Aufrufparametern finden Sie alle Parameter im Instanz-DB.
- Die Kommunikationsverbindung muss zuvor über FB 65 (TCON) initialisiert werden.
- FB 63 (TSEND) und FB 64 (TRCV) sind f
 ür die Verwendung des Bausteins erforderlich
- Die INPUT/OUTPUT Modbus-Adressen eines Funktions-Codes müssen vor den MEMORY Modbus-Adressen liegen und somit immer kleiner sein.
- Innerhalb eines *Funktions-Code* darf keine Modbus-Adresse mehrfach definiert werden auch die 0 nicht!
- Der Server kann nur einen Auftrag gleichzeitig bearbeiten. Neue Modbus-Anfragen während einer Auftragsbearbeitung werden ignoriert und nicht beantwortet.
- Mit dem Funktions-Code 03h können Sie Worte bis zum Register 32.699 (7FBBh) lesen, da die maximale Größe des zu verwendenden Datenbausteins 32.699 Worte beträgt.

Status- und Fehleranzeige

Der Funktionsbaustein liefert über *STATUS* die folgenden Status- und Fehlerinformationen.

STATUS	NDR	DR	ERROR	Beschreibung
0000h	0 oder 1	1	0	Anweisung fehlerfrei ausgeführt.
7000h	0	0	0	Keine Verbindung aufgebaut oder Kommunikationsfehler (TCON).
7005h	0	0	0	Daten werden gesendet.
7006h	0	0	0	Daten werden empfangen.
8210h	0	0	1	Die Hardware ist inkompatibel zur Baustein-Bibliothek Modbus RTU/TCP.
8380h	0	0	1	Empfangenes Modbus-Frame hat nicht das richtige Format oder es wurden zu wenige Bytes empfangen.
8381h	0	0	1	Exception Code 01h, Funktion-Code wird nicht unterstützt. → 197
8382h	0	0	1	Exception Code 03h, Datenlänge oder Datenwert ungültig. → 197
8383h	0	0	1	Exception Code 02h, Ungültige Startadresse bzw. Adressbereich. → 197
8384h	0	0	1	Exception Code 04h, Bereichslängenfehler beim Zugriff auf Eingänge, Ausgänge oder Merker. → 197
8387h	0	0	1	Verbindungs-ID (TCON) passt nicht zur Instanz oder Client liefert falsche Protokoll-ID.
8187h	0	0	1	MB_DATA_PTR ungültig.

1) Fehlerfreier Modbus-Auftrag mit Funktions-Code 05h, 06h, 0Fh oder 10h liefert NDR=1 und DR=0 bzw. fehlerfreier Modbus-Auftrag mit Funktions-Code 01h, 02h, 03h, 04h liefert DR=1 und NDR=0.

TCP > FB 71 - TCP_MB_SERVER - Modbus/TCP-Server

9.1.2.2 Beispiel

Aufgabenstellung

Die CPU stellt 100 Byte Daten im Merkerbereich ab MB200 für einen Modbus-Client über die Modbus-Register 0...49 zur Verfügung. Die Daten können vom Modbus-Client mit dem *Funktions-Code 03h* gelesen und mit *Funktions-Code 06h, 10h* geschrieben werden. Der Ausgang A1.0 in der CPU soll von einem Modbus-Client über den *Funktions-Code 05h* und die Startadresse 5008 angesteuert werden können. Fehler sollen abgespeichert werden.

OB1

```
CALL FB
             65 , DB65
                :=M100.0
        REQ
                :=W#16#1
        ΙD
        DONE
                :=M100.1
       BUSY
                :=
       ERROR :=M100.2
        STATUS :=MW102
        CONNECT:=P#DB255.DBX 0.0 BYTE 64
       UN
             Μ
                   100.2
       SPB
             ERR1
       \mathbf{L}
             MW
                   102
       Т
             MW
                   104
ERR1: NOP
             0
                   100.1
             Μ
       U
                   100.0
       R
             M
              5000
       \mathbf{L}
       Т
             DB71.DBW
                          52
       CALL
             FΒ
                    71 , DB71
        ENABLE
                    :=M101.0
        MB DATA PTR:=P#M 200.0 BYTE 100
        ΙD
                    :=W#16#1
        NDR
                     :=M101.1
        DR
                    :=M101.2
                    :=M101.3
        ERROR
        STATUS
                    :=MW106
       UN
                   101.3
             М
       SPB
             ERR2
       L
             MW
                   106
       Τ
             MW
                   108
ERR2: NOP
```

RTU > FB 72 - RTU MB MASTER - Modbus-RTU-Master

OB1 - Beschreibung

- 1. Aufruf von FB 65 (TCON) zur Herstellung der Kommunikationsverbindung mit der Partnerstation.
- 2. Aufruf des Modbus/TCP-Server Hantierungsbausteins mit den korrekten Parametern.
- 3. Es ist keine Verbindung zur Partnerstation aufgebaut und MW102 liefert 7000h.
- 4. M100.0 in der CPU auf TRUE setzten.
 - ➡ Wenn M100.0 automatisch zurück gesetzt wird, ist die Verbindung zur Partnerstation aufgebaut und MW108 liefert 7006h.
- Das Modbus-Startregister für die über Funktions-Code 05h erreichbaren Ausgänge im Prozessabbild wird im Beispiel über den Parameter FC5_ADDR_OUTPUT_START (Wort 52 im Instanz-Datenbaustein) geändert.
- 6. ▶ M101.0 in der CPU auf TRUE setzen.
 - → Der Modbus-Server arbeitet nun.
- 7. Der Client sendet einen Modbus-Request mit *Funktions-Code 03h*, Startadresse 10 und Quantity 30.
 - → Der Server antwortet mit 60 Byte ab MB220. DR wird für einen CPU-Zyklus angesteuert und somit M101.2 auf "1" gesetzt.
- **8.** Der Client sendet einen Modbus-Request mit *Funktions-Code 05h*, Startadresse 5008 und dem Wert FF00h.
 - → Der Server quittiert den Auftrag und schreibt den Ausgang A1.0 auf "1". NDR wird für einen CPU-Zyklus angesteuert und somit M101.1 auf "1" gesetzt.
- 9. Der Client sendet einen Modbus-Request mit *Funktions-Code 03h*, Startadresse 50 (nicht vorhanden!) und Quantity 1.
 - Der Server antwortet mit einem Exception Code 02h und steuert ERROR/ STATUS für einen CPU-Zyklus an. MW108 liefert 8383h.

9.2 RTU

9.2.1 FB 72 - RTU MB MASTER - Modbus-RTU-Master

9.2.1.1 Beschreibung

Dieser Funktionsbaustein ermöglicht den Betrieb der internen seriellen RS485 Schnittstelle einer SPEED7 CPU oder eines System SLIO CP 040 als Modbus-RTU-Master.

Aufrufparameter

Name	Deklaration	Тур	Beschreibung
REQ	IN	BOOL	Auftrag starten mit Flanke 0-1.
HARDWARE	IN	BYTE	1 = System SLIO CP 040 /
			2 = SPEED7 CPU
LADDR	IN	INT	Logische Adresse vom System SLIO CP 040 (Parameter wird für SPEED7 CPU ignoriert).
MB_UNIT_ID	IN	BYTE	Modbus: Geräteidentifikation = Adresse vom Slave (0 247).
MB_FUNCTION	IN	BYTE	Modbus: Funktions-Code.
			Bitte beachten Sie, dass der <i>Functions-Code</i> 16h nicht unterstützt wird!
MB_DATA_ADDR	IN	WORD	Modbus: Startadresse oder Sub-Funktions-Code.
MB_DATA_LEN	IN	INT	Modbus: Anzahl der Register/Bits.

RTU > FB 72 - RTU_MB_MASTER - Modbus-RTU-Master

Name	Deklaration	Тур	Beschreibung			
MB_DATA_PTR	IN	ANY	Modbus: Datenpuffer (nur Merkerbereich oder Datenbaustein vom Datentyp Byte zulässig) für den Zugriff mit <i>Funktions-Code 03h</i> , <i>06h</i> und <i>10h</i> .			
DONE ¹	OUT	BOOL	Auftrag fertig ohne Fehler.			
BUSY	OUT	BOOL	Auftrag ist in Bearbeitung.			
ERROR ¹	OUT	BOOL	Auftrag fertig mit Fehler - Parameter <i>STATUS</i> enthält die Fehlerinformation.			
STATUS ¹	OUT	WORD	Erweiterte Status- und Fehlerinformationen.			
1) Parameter steht bis zum nächsten Aufruf des FE	1) Parameter steht bis zum nächsten Aufruf des FBs zur Verfügung.					

Parameter im Instanz-DB

Name	Deklaration	Тур	Beschreibung
INIT	STAT	BOOL	Eine Flanke 0-1 führt einen Synchron Reset am System SLIO CP 040 durch. Nach erfolgreichem Reset wird das Bit automatisch zurück gesetzt.
PROTOCOL_TIMEOUT	STAT	INT	Sperrzeit bevor ein aktiver Auftrag vom Anwender abgebrochen werden kann. Default: 3s
RCV_TIMEOUT	STAT	INT	Überwachungszeit für einen Auftrag. Default: 2s

Hierbei ist folgendes zu beachten:

- Die Aufrufparameter sind beim Baustein-Aufruf anzugeben. Neben den Aufrufparametern finden Sie alle Parameter im Instanz-DB.
- Die verwendete Schnittstelle muss zuvor konfiguriert werden:
 - System SLIO CP 040: Projektierung als "Modbus Master RTU" mit 60 Byte IO-Size in der Hardwarekonfiguration.
 - Interne serielle RS485 Schnittstelle einer CPU von Yaskawa:
 Projektierung über SFC 216 (SER_CFG) mit Protokoll "Modbus Master RTU".
- FB 60 SEND und FB 61 RECEIVE (oder FB 65 SEND_RECV) sind für die Verwendung des Bausteins zwingend erforderlich, auch wenn die interne serielle RS485 Schnittstelle einer CPU von Yaskawa verwendet wird.
- Während einer Auftragsbearbeitung werden Änderungen an den Eingangsparametern nicht ausgewertet.
- Broadcast Request über MB_UNIT_ID = 0 werden nur für schreibende Funktionen akzeptiert.
- Unter einer der folgenden Bedingungen ist eine Auftragsbearbeitung abgeschlossen bzw. wird abgebrochen:
 - DONE = 1 bei Auftrag ohne Fehler
 - ERROR = 1 bei Auftrag mit Fehler
 - Ablauf vom Timeout (Parametrierung bei der Schnittstelle)
- Wird REQ zurückgesetzt bevor DONE oder ERROR gesetzt ist, wird STATUS 8200h geliefert. Hierbei wird der aktive Auftrag weiterhin bearbeitet.

RTU > FB 72 - RTU MB MASTER - Modbus-RTU-Master

Status- und Fehleranzeige

Der Funktionsbaustein liefert über STATUS die folgenden Status- und Fehlerinformationen.

STATUS	DONE	BUSY	ERROR	Beschreibung		
0000h	1	0	0	Anweisung fehlerfrei ausgeführt.		
7000h	0	0	0	Keine Verbindung aufgebaut oder Kommunikationsfehler.		
7004h	0	0	0	Verbindung hergestellt und überwacht. Keine Auftragsbearbeitung aktiv.		
7005h	0	1	0	Daten werden gesendet.		
7006h	0	1	0	Daten werden empfangen.		
8210h	0	0	1	Die Hardware ist inkompatibel zur Baustein-Bibliothek Modbus RTU/TCP.		
8381h	0	0	1	Server liefert Exception Code 01h. → 197		
8382h	0	0	1	Server liefert Exception Code 03h oder falsche Startadresse. → 197		
8383h	0	0	1	Server liefert Exception Code 02h. → 197		
8384h	0	0	1	Server liefert Exception Code 04h. → 197		
8386h	0	0	1	Server liefert falschen Funktions-Code.		
8388h	0	0	1	Server liefert falschen Wert oder falsche Quantity.		
80C8h	0	0	1	Keine Antwort des Servers im definierten Zeitraum (RCV_TIMEOUT).		
8188h	0	0	1	MB_FUNCTION ungültig.		
8189h	0	0	1	MB_DATA_ADDR ungültig.		
818Ah	0	0	1	MB_DATA_LEN ungültig.		
818Bh	0	0	1	MB_DATA_PTR ungültig.		
8201h	0	0	1	HARDWARE ungültig.		
8202h	0	0	1	MB_UNIT_ID ungültig.		
8200h	0	0	1	Eine andere Modbus-Anfrage wird zur Zeit über den Port verarbeitet.		

9.2.1.2 Beispiel

Aufgabenstellung

Von einem Modbus-RTU-Slave mit Adresse 99 sollen mit *Funktions-Code 03h*, 100 Register ab Startadresse 2000 gelesen und im Merkerbereich ab MB200 abgelegt werden. Fehler sollen abgespeichert werden. Der Modbus-RTU-Master wird über die interne serielle Schnittstelle einer CPU von Yaskawa realisiert.

OB100

CALL SFC 216
Protocol :=B#16#5
Parameter :=DB10
Baudrate:=B#16#9
CharLen:=B#16#3
Parity:=B#16#2
StopBits:=B#16#1
FlowControl:=B#16#1
RetVal:=MW100

OB100 - Beschreibung

- 1. Aufruf von SFC 216 (SER_CFG) zur Konfiguration der internen seriellen Schnittstelle der CPU.
- **2.** Protokoll: "Modbus Master RTU", 9600 Baud, 8 Datenbit, 1 Stoppbit, gerade Parität, kein Flusskontrolle.
- 3. Der DB10 enthält eine Variable vom Typ WORD mit einem Modbus-Timeout (Wert in ms).

OB₁

```
CALL
             72 , DB72
     FΒ
                    :=M101.0
       REO
       HARDWARE
                     :=B#16#2
       LADDR
                     :=
       MB UNIT ID :=B#16#63
       MB FUNCTION :=B#16#3
       MB_DATA_ADDR:=W#16#7D0
       MB_DATA_LEN :=100
       MB DATA PTR :=P#M 200.0 BYTE 200
       DONE
                     :=M101.1
       BUSY
                     :=M101.2
       ERROR
                     :=MW102
       STATUS
      UN
             M
                  101.2
      SPB
             ERR1
      \mathbf{L}
             MW
                  102
      Т
             MW
                  104
ERR1: NOP
             0
                  101.1
      U
             Μ
      R
             Μ
                  101.0
```

OB1 - Beschreibung

- 1. Aufruf des Modbus-RTU-Master Hantierungsbausteins mit den korrekten Parametern.
- 2. Wenn die Schnittstelle im OB 100 korrekt initialisiert wurde, ist der Master einsatzbereit und MW102 liefert 7004h zurück.
- 3. M101.0 in der CPU auf TRUE setzen.
 - → Der Modbus-Request wird versendet und auf eine Antwort gewartet.

Wenn M101.0 automatisch zurück gesetzt wird, wurde der Auftrag fehlerfrei bearbeitet und die gelesenen Daten liegen ab Merkerbyte 200 in der CPU. MW104 liefert 7004h und signalisiert die Bereitschaft für einen neuen Auftrag.

Wenn M101.0 nicht automatisch zurück gesetzt wird und MW104 einen Wert ungleich 0 liefert, ist ein Fehler aufgetreten. Die Fehlerursache kann über den Code in MW104 ausgelesen werden (z.B. MW104 = 8382h wenn die Startadresse 2000 im Server nicht vorhanden ist). MW102 liefert 7004h und signalisiert die Bereitschaft für einen neuen Auftrag.

9.2.2 FB 73 - RTU_MB_SLAVE - Modbus-RTU-Slave

9.2.2.1 Beschreibung

Dieser Funktionsbaustein ermöglicht den Betrieb der internen seriellen RS485 Schnittstelle einer SPEED7 CPU oder eines System SLIO CP 040 als Modbus-RTU-Slave.

Aufrufparameter

Name	Deklaration	Тур	Beschreibung
ENABLE	IN	BOOL	Aktivierung/Deaktivierung des Modbus-Server.
HARDWARE	IN	BYTE	1 = System SLIO CP 040 /
			2 = SPEED7 CPU
LADDR	IN	INT	Logische Adresse vom System SLIO CP 040 (Parameter wird für SPEED7 CPU ignoriert).
MB_UNIT_ID	IN	BYTE	Modbus: Geräteidentifikation = eigene Adresse (1 247).
MB_DATA_PTR	IN	ANY	Modbus: Datenpuffer (nur Merkerbereich oder Datenbaustein vom Datentyp Byte zulässig) für den Zugriff mit <i>Funktions-Code 03h</i> , <i>06h</i> und <i>10h</i> .
NDR ¹	OUT	BOOL	Neue Daten wurden durch den Modbus-Client geschrieben.
DR ¹	OUT	BOOL	Daten wurden vom Modbus-Client gelesen.
ERROR ¹	OUT	BOOL	Auftrag fertig mit Fehler - Parameter <i>STATUS</i> enthält die Fehlerinformation.
STATUS ¹	OUT	WORD	Erweiterte Status- und Fehlerinformationen.
1) Parameter steht bis zum nächsten Aufruf des Fl	3s zur Verfügung		

Parameter im Instanz-DB

Name	Deklaration	Тур	Beschreibung
INIT	STAT	BOOL	Eine Flanke 0-1 führt einen Synchron Reset am System SLIO CP 040 durch.
REQUEST_COUNT	STAT	WORD	Zähler für jedes empfangene Telegramm.
MESSAGE_COUNT	STAT	WORD	Zähler für jeden gültigen Modbus-Request.
BROADCAST_COUNT	STAT	WORD	Zähler für jeden gültigen Modbus-Broadcast-Request.
EXCEPTION_COUNT	STAT	WORD	Zähler für jeden negativ quittierten Modbus-Request.
SUCCESS_COUNT	STAT	WORD	Zähler für jeden positiv quittierten Modbus-Request.
BAD_CRC_COUNT	STAT	WORD	Zähler für jeden gültigen Modbus-Request mit CRC-Fehler.
FC1_ADDR_OUTPUT_START	STAT	WORD	Modbus Funktions-Code 01h Startregister für A0.0
			Default: 0
FC1_ADDR_OUTPUT_END	STAT	WORD	Modbus Funktions-Code 01h Endregister für Ax.y
			Default: 19999
FC1_ADDR_MEMORY_START	STAT	WORD	Modbus Funktions-Code 01h Startregister für M0.0
			Default: 20000
FC1_ADDR_MEMORY_END	STAT	WORD	Modbus Funktions-Code 01h Endregister für Mx.y
			Default: 39999
FC2_ADDR_INPUT_START	STAT	WORD	Modbus Funktions-Code 02h Startregister für E0.0
			Default: 0
FC2_ADDR_INPUT_END	STAT	WORD	Modbus Funktions-Code 02h Endregister für Ex.y
			Default: 19999
FC2_ADDR_MEMORY_START	STAT	WORD	Modbus Funktions-Code 02h Startregister für M0.0
			Default: 20000

Name	Deklaration	Тур	Beschreibung
FC2_ADDR_MEMORY_END	STAT	WORD	Modbus <i>Funktions-Code 02h</i> Endregister für Mx.y Default: 39999
FC4_ADDR_INPUT_START	STAT	WORD	Modbus <i>Funktions-Code 04h</i> Startregister für EW0 Default: 0
FC4_ADDR_INPUT_END	STAT	WORD	Modbus <i>Funktions-Code 04h</i> Endregister für EWx Default: 19999
FC4_ADDR_MEMORY_START	STAT	WORD	Modbus <i>Funktions-Code 04h</i> Startregister für MW0 Default: 20000
FC4_ADDR_MEMORY_END	STAT	WORD	Modbus <i>Funktions-Code 04h</i> Endregister für MWx Default: 39999
FC5_ADDR_OUTPUT_START	STAT	WORD	Modbus <i>Funktions-Code 05h</i> Startregister für A0.0 Default: 0
FC5_ADDR_OUTPUT_END	STAT	WORD	Modbus <i>Funktions-Code 05h</i> Endregister für Ax.y Default: 19999
FC5_ADDR_MEMORY_START	STAT	WORD	Modbus <i>Funktions-Code 05h</i> Startregister für M0.0 Default: 20000
FC5_ADDR_MEMORY_END	STAT	WORD	Modbus <i>Funktions-Code 05h</i> Endregister für Mx.y Default: 39999
FC15_ADDR_OUTPUT_START	STAT	WORD	Modbus <i>Funktions-Code 0Fh</i> Startregister für A0.0 Default: 0
FC15_ADDR_OUTPUT_END	STAT	WORD	Modbus <i>Funktions-Code 0Fh</i> Endregister für Ax.y Default: 19999
FC15_ADDR_MEMORY_START	STAT	WORD	Modbus <i>Funktions-Code 0Fh</i> Startregister für M0.0 Default: 20000
FC15_ADDR_MEMORY_END	STAT	WORD	Modbus <i>Funktions-Code 0Fh</i> Endregister für Mx.y Default: 39999

Hierbei ist folgendes zu beachten:

- Die Aufrufparameter sind beim Baustein-Aufruf anzugeben. Neben den Aufrufparametern finden Sie alle Parameter im Instanz-DB.
- Die verwendete Schnittstelle muss zuvor konfiguriert werden:
 - System SLIO CP 040: Projektierung als ASCII-Modul mit 60 Byte IO-Size in der Hardwarekonfiguration.
 - Interne serielle RS485 Schnittstelle einer CPU von Yaskawa:
 Projektierung über SFC 216 (SER_CFG) mit Protokoll "ASCII".
- FB 60 SEND und FB 61 RECEIVE (oder FB 65 SEND_RECV) sind für die Verwendung des Baustein zwingend erforderlich, auch wenn die interne serielle RS485 Schnittstelle einer CPU von Yaskawa verwendet wird.
- Broadcast Request über MB_UNIT_ID = 0 werden nur für schreibende Funktionen akzeptiert.
- Die INPUT/OUTPUT Modbus-Adressen eines *Funktions-Codes* müssen vor den MEMORY Modbus-Adressen liegen und somit immer kleiner sein.
- Innerhalb eines Funktions-Codes darf keine Modbus-Adresse mehrfach definiert werden, auch die 0 nicht!
- Der Slave kann nur einen Auftrag gleichzeitig bearbeiten. Neue Modbus-Anfragen während einer Auftragsbearbeitung werden ignoriert und nicht beantwortet.
- Mit dem Funktions-Code 03h können Sie Worte bis zum Register 32.699 (7FBBh) lesen, da die maximale Größe des zu verwendenden Datenbausteins 32.699 Worte beträgt.

Status- und Fehleranzeige

Der Funktionsbaustein liefert über STATUS die folgenden Status- und Fehlerinformationen.

STATUS	NDR	DR	ERROR	Beschreibung
0000h	0 oder 1 ¹		0	Anweisung fehlerfrei ausgeführt.
7000h	0	0	0	Keine Verbindung aufgebaut oder Kommunikationsfehler.
7005h	0	0	0	Daten werden gesendet.
7006h	0	0	0	Daten werden empfangen.
8210h	0	0	1	Die Hardware ist inkompatibel zur Baustein-Bibliothek Modbus RTU/TCP.
8380h	0	0	1	CRC-Fehler
8381h	0	0	1	Exception Code 01h, Funktions-Code wird nicht unterstützt. → 197
8382h	0	0	1	Exception Code 03h, Datenlänge oder Datenwert ungültig. → 197
8383h	0	0	1	Exception Code 02h, Ungültige Startadresse bzw. Adressbereich. → 197
8384h	0	0	1	Exception Code 04h, Bereichslängenfehler beim Zugriff auf Eingänge, Ausgänge oder Merker → 197
8187h	0	0	1	MB_DATA_PTR ungültig.
8201h	0	0	1	HARDWARE ungültig.
8202h	0	0	1	MB_UNIT_ID ungültig.
8203h	0	0	1	Fragmentiertes Empfangstelegramm ungültig (SFC 218).
1) Ephlorfroiar Madhua	Auftrag mit Eu	nktions Codo OF	h OSh OEh odor 10h	light NDP-1 and DP-0 byw foblerfroier Modbus Auftred mit Funktons Code 01b, 02b, 02b, 02b, 02b light DP-1 and NDP-0

1) Fehlerfreier Modbus-Auftrag mit Funktions-Code 05h, 06h, 0Fh oder 10h liefert NDR=1 und DR=0 bzw. fehlerfreier Modbus-Auftrag mit Funktions-Code 01h, 02h, 03h, 04h liefert DR=1 und NDR=0.

9.2.2.2 Beispiel

Aufgabenstellung

Die CPU stellt 100 Byte Daten im Merkerbereich ab MB200 für einen Modbus-Master über die Modbus-Register 0 ... 49 zur Verfügung. Die Daten können vom Modbus-Master über Funktions-Code 03h gelesen und über Funktions-Code 06h, 10h geschrieben werden. Der Ausgang A1.0 in der CPU soll von einem Modbus-Master über den Funktions-Code 05h und die Startadresse 5008 angesteuert werden können. Fehler sollen abgespeichert werden. Der Modbus-RTU-Slave mit der Adresse 99 wird über die interne serielle Schnittstelle einer CPU von Yaskawa realisiert.

OB100

```
CALL SFC 216
Protocol :=B#16#1
Parameter :=DB10
Baudrate:=B#16#9
CharLen:=B#16#3
Parity:=B#16#2
StopBits:=B#16#1
FlowControl:=B#16#1
RetVal:=MW100
```

OB100 - Beschreibung

- 1. Aufruf von SFC 216 (SER_CFG) zur Konfiguration der internen seriellen Schnittstelle der CPU.
- 2. Protokoll: "ASCII", 9600 Baud, 8 Datenbit, 1 Stoppbit, gerade Parität, kein Flusskontrolle.
- <u>3.</u> Der DB10 enthält eine Variable vom Typ WORD und muss als "Dummy" übergeben werden.

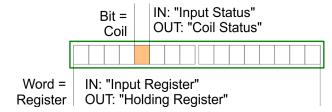
OB1

```
L
             5000
            DB73.DBW
                        58
      CALL FB
                   73 , DB73
       ENABLE
                   :=M101.0
       HARDWARE
                   :=B#16#2
       LADDR
                   :=
       MB UNIT ID :=B#16#63
       MB DATA PTR:=P#M 200.0 BYTE 100
       NDR
                   :=M101.1
                   :=M101.2
       DΒ
       ERROR
                   :=M101.3
       STATUS
                   :=MW102
      UN
            Μ
                  101.3
      SPB
            ERR1
      L
            MW
                  102
            MW
                  104
ERR1: NOP
            0
```

OB1 - Beschreibung

- 1. Aufruf des Modbus/TCP-Server Hantierungsbausteins mit den korrekten Parametern.
- **2.** Wenn die Schnittstelle im OB100 korrekt initialisiert wurde, ist der Slave einsatzbereit und MW102 wird zu 7006h geliefert.
- Das Modbus-Startregister für die über Funktions-Code 05h erreichbaren Ausgänge im Prozessabbild wird im Beispiel über den Parameter FC5_ADDR_OUTPUT_START (Wort 58 im Instanz-Datenbaustein) geändert.
- 4. M101.0 in der CPU auf TRUE setzen.
 - → Der Modbus-Slave arbeitet nun.
- **5.** Der Master sendet einen Modbus-Request mit *Funktions-Code 03h*, Startadresse 10 und Quantity 30.
 - → Der Slave antwortet mit 60Byte ab MB200. DR wird für einen CPU-Zyklus angesteuert und somit M101.2 auf "1" gesetzt.
- **6.** Der Master sendet einen Modbus-Request mit *Funktions-Code 05h*, Startadresse 5008 und dem Wert FF00h.
 - → Der Slave quittiert den Auftrag und schreibt den Ausgang A1.0 auf "1". NDR wird für einen CPU-Zyklus angesteuert und somit M101.1 auf "1" gesetzt.
- 7. Der Master sendet einen Modbus-Request mit *Funktions-Code 03h*, Startadresse 50 (nicht vorhanden!) und Quantity 1.
 - Der Slave antwortet mit einem Exception Code 02h und steuert ERROR/ STATUS für einen CPU-Zyklus an. MW104 liefert 8383h.

Modbus Exception Codes - Exception Codes


9.3 Modbus Exception Codes - Exception Codes

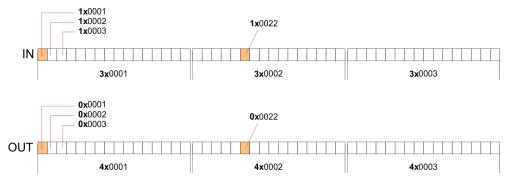
Code	Name	Beschreibung
01	ILLEGAL FUNCTION	Der in der Abfrage empfangene Funktionscode ist keine zulässige Aktion für den Server (oder Slave). Dies kann daran liegen, dass der Funktionscode nur für neuere Geräte gilt und nicht im ausgewählten Modul implementiert wurde. Dies könnte auch bedeuten, dass der Server (oder Slave) sich im falschen Zustand befindet, um eine Anforderung dieses Typs verarbeiten zu können, zum Beispiel da er nicht konfiguriert ist und Registerwerte auslesen soll.
02	ILLEGAL DATA ADDRESS	Der in der Abfrage empfangene Funktionscode ist keine zulässige Aktion für den Server (oder Slave). Insbesondere ist die Kombination aus Referenznummer und Übertragungslänge ungültig. Bei einem Controller mit 100 Registern adressiert die PDU (Protocol Data Unit) das erste Register mit 0 und das letzte mit 99. Wenn eine Anfrage mit einer Startregisteradresse von 96 und einer Anzahl von 4 Registern gesendet wird, wird diese Anfrage erfolgreich (zumindest adressenmäßig) in den Registern 96, 97, 98, 99 ausgeführt. Wenn eine Anfrage mit einer Startregisteradresse von 96 und einer Anzahl von 5 Registern gesendet wird, schlägt diese Anfrage mit dem <i>Exception Code</i> 0x02 "ILLEGAL DATA ADDRESS" fehl, da versucht wird, die Register 96, 97, 98, 99 und 100 zu bearbeiten. Es gibt aber kein Register mit Adresse 100.
03	ILLEGAL DATA VALUE	Ein Wert in der Datenabfrage ist kein zulässiger Wert für Server (oder Slave). Dies weist auf einen Fehler in der Struktur einer komplexen Datenanforderung hin, z.B. dass die implizierte Länge falsch ist. Dies bedeutet aber NICHT, dass ein zur Speicherung in einem Register übermittelter Datenwert einen Wert hat, welcher außerhalb eines erwarteten Wertes des Anwendungsprogramms liegt, da das Modbus-Protokoll die Bedeutung eines bestimmten Wertes eines bestimmten Registers nicht kennt.
04	SLAVE DEVICE FAILURE	Ein nicht behebbarer Fehler ist aufgetreten während der Server (oder Slave) die angeforderte Aktion ausgeführt hat.
05	ACKNOWLEDGE	Spezieller Einsatz in Verbindung mit Programmierbefehlen. Der Server (oder Slave) hat die Anforderung angenommen und verarbeitet sie. Dies kann länger dauern. Diese Antwort soll im Client (oder Master) einen Timeout-Fehler verhindern. Der Client (oder Master) kann danach zur Ermittlung, ob die Verarbeitung abgeschlossen ist, eine Poll Program Complete Nachricht ausgeben.
06	SLAVE DEVICE BUSY	Spezieller Einsatz in Verbindung mit Programmierbefehlen. Der Server (oder Slave) bearbeitet einen länger dauernden Programmbefehl. Der Client (oder Master) sollte die Nachricht später erneut senden, wenn der Server (oder Slave) frei ist.
08	MEMORY PARITY ERROR	Speziell in Verbindung mit den Funktionscodes 20 und 21 und dem Referenztyp 6, um anzuzeigen, dass der erweiterte Dateibereich die Konsistenzprüfung nicht bestanden hat.
0A	GATEWAY PATH UNAVAILABLE	Zeigt speziell in Verbindung mit Gateways an, dass das Gateway für die Verarbeitung der Anforderung keinen internen Kommunikationspfad vom Eingabeport zum Ausgabeport zuordnen konnte. In der Regel bedeutet dies, dass das Gateway falsch konfiguriert bzw. überlastet ist.
0B	GATEWAY TARGET DEVICE FAILED TO RESPOND	Die spezielle Verwendung in Verbindung mit Gateways zeigt an, dass keine Antwort vom Zielgerät erhalten wurde. In der Regel bedeutet dies, dass das Gerät nicht im Netzwerk vorhanden ist.

9.4 FKT Modbus-Funktionscodes - FKT Codes

Namenskonventionen

Für Modbus gibt es Namenskonventionen, die hier kurz aufgeführt sind:

- Modbus unterscheidet zwischen Bit- und Wortzugriff; Bits = "Coils" und Worte = "Register".
- Bit-Eingänge werden als "Input-Status" bezeichnet und Bit-Ausgänge als "Coil-Status".
- Wort-Eingänge werden als "Input-Register" und Wort-Ausgänge als "Holding-Register" bezeichnet.


Bereichsdefinitionen

Üblicherweise erfolgt unter Modbus der Zugriff mittels der Bereiche 0x, 1x, 3x und 4x.

Mit 0x und 1x haben Sie Zugriff auf digitale Bit-Bereiche und mit 3x und 4x auf analoge Wort-Bereiche.

Da aber bei den CPs von Yaskawa keine Unterscheidung zwischen Digital- und Analogdaten stattfindet, gilt folgende Zuordnung:

- 0x Bit-Bereich für Ausgabe-Daten des Masters Zugriff über Funktions-Code 01h, 05h, 0Fh
- 1x Bit-Bereich für Eingabe-Daten des Masters Zugriff über Funktions-Code 02h
- 3x Wort-Bereich für Eingabe-Daten des MastersZugriff über Funktions-Code 04h
- 4x Wort-Bereich für Ausgabe-Daten des MastersZugriff über Funktions-Code 03h, 06h, 10h, 16h

Übersicht

Mit folgenden Funktionscodes können Sie von einem Modbus-Master auf einen Slave zugreifen. Die Beschreibung erfolgt immer aus Sicht des Masters:

Code	Befehl	Beschreibung
01h	Read n Bits	n Bit lesen von Master-Ausgabe-Bereich 0x
02h	Read n Bits	n Bit lesen von Master-Eingabe-Bereich 1x
03h	Read n Words	n Worte lesen von Master-Ausgabe-Bereich 4x

Code	Befehl	Beschreibung
04h	Read n Words	n Worte lesen von Master-Eingabe-Bereich 3x
05h	Write 1 Bit	1 Bit schreiben in Master-Ausgabe-Bereich 0x
06h	Write 1 Word	1 Wort schreiben in Master-Ausgabe-Bereich 4x
0Fh	Write n Bits	n Bit schreiben in Master-Ausgabe-Bereich 0x
10h	Write n Words	n Worte schreiben in Master-Ausgabe-Bereich 4x
16h	Mask 1 Word	1 Wort in Master-Ausgabe-Bereich 4x maskieren

Byte-Reihenfolge im Wort

1 W	Vort
High Byte	Low Byte

Antwort des Kopplers

Liefert der Slave einen Fehler zurück, so wird der Funktionscode mit 80h "verodert" zurückgesendet. Ist kein Fehler aufgetreten, wird der Funktionscode zurückgeliefert.

Slave-Antwort: Funktionscode OR 80h \rightarrow Fehler & Fehlernummer Funktionscode \rightarrow OK

Zusätzlich erhalten Sie im Fehlerfall in einem weiteren Byte eine Fehlernummer. Hier gibt es folgende Fehlernummern:

01h: Funktionsnummer wird nicht unterstützt

02h: Adressierung fehlerhaft

03h: Daten fehlerhaft

04h: System SLIO Bus ist nicht initialisiert

07h: Allgemeiner Fehler

Read n Bits 01h, 02h

Code 01h: n Bit lesen von Master-Ausgabe-Bereich 0x. Code 02h: n Bit lesen von Master-Eingabe-Bereich 1x.

Kommandotelegramm

Modbus/TCP-Header				Slave-Adresse	Funktions-Code	Adresse 1. Bit	Anzahl der Bits		
X	Χ	0	0	0	6				
6Byte				1Byte	1Byte	1Wort	1Wort		

Antworttelegramm

Мо	Modbus/TCP-Header		Slave- Adresse	Funktions- Code	Anzahl gele- sene Bytes	Daten 1. Byte	Daten 2. Byte				
X	х	0	0	0							
		6E	Byte			1Byte	1Byte	1Byte	1Byte	1Byte	
										max. 252Byte	

Read n Words 03h, 04h

03h: n Worte lesen von Master-Ausgabe-Bereich 4x. 04h: n Worte lesen von Master-Eingabe-Bereich 3x.

Kommandotelegra	mm
-----------------	----

Mo	Modbus/TCP-Header					Slave-Adresse	Funktions-Code	Adresse Wort	Anzahl der Worte
X	x x 0 0 0 6				6				
6Byte						1Byte	1Byte	1Wort	1Wort

Antworttelegramm

M	odbus	s/TC	P-He	ader	-	Slave- Adresse	Funktions- Code	Anzahl gele- sene Bytes	Daten 1. Wort	Daten 2. Wort	
x	x x 0 0 0										
		6E	Byte			1Byte	1Byte	1Byte	1Wort	1Wort	
										max. 126Worte	

Write 1 Bit 05h Code 05h: 1 Bit schreiben in Master-Ausgabe-Bereich 0x.

Eine Zustandsänderung erfolgt unter "Zustand Bit" mit folgenden Werten:

"Zustand Bit" = $0000h \rightarrow Bit = 0$ "Zustand Bit" = $FF00h \rightarrow Bit = 1$

Kommandotelegramm

Мо	dbus	/TCF	P-Hea	ader		Slave-Adresse	Funktions-Code	Adresse Bit	Zustand Bit
X	x x 0 0 0 6				6				
6Byte						1Byte	1Byte	1Wort	1Wort

Antworttelegramm

Мо	Modbus/TCP-Header					Slave-Adresse	Funktions-Code	Adresse Bit	Zustand Bit
X	x x 0 0 0 6				6				
6Byte						1Byte	1Byte	1Wort	1Wort

Write 1 Word 06h Code 06h: 1 Wort schreiben in Master-Ausgabe-Bereich 4x.

Kommandotelegramm

Мо	dbus	/TCF	P-He	ader		Slave-Adresse	Funktions-Code	Adresse Wort	Wert Wort
X	x x 0 0 0 6				6				
6Byte						1Byte	1Byte	1Wort	1Wort

Antworttelegramm

Мо	dbus	/TCF	P-He	ader		Slave-Adresse	Funktions-Code	Adresse Wort	Wert Wort
X	x x 0 0 0 6				6				
6Byte						1Byte	1Byte	1Wort	1Wort

Write n Bits 0Fh Code 0Fh: n Bit schreiben in Master-Ausgabe-Bereich 0x

Bitte beachten Sie, dass die Anzahl der Bits zusätzlich in Byte anzugeben sind.

Kommandotelegramm

Modbus/TCP-Header	Slave- Adresse	Funk- tions- Code	Adresse 1. Bit	Anzahl Bits	Anzahl Bytes	Daten 1. Byte	Daten 2. Byte	
x x 0 0 0								
6Byte	1Byte	1Byte	1Wort	1Wort	1Byte	1Byte	1Byte	1Byte
						r	nax. 248Byt	e

Antworttelegramm

Mo	dbus	/TCF	P-Hea	ader		Slave-Adresse	Funktions-Code	Adresse 1.Bit	Anzahl Bits
X	x x 0 0 0 6				6				
6Byte						1Byte	1Byte	1Wort	1Wort

Write n Words 10h

Code 10h: n Worte schreiben in Master-Ausgabe-Bereich.

Kommandotelegramm

Modbus/TCP-Header	Slave- Adresse	Funk- tions- Code	Adresse 1. Wort	Anzahl Worte	Anzahl Bytes	Daten 1. Wort	Daten 2. Wort	
x x 0 0 0								
6Byte	1Byte	1Byte	1Wort	1Wort	1Wort	1Wort	1Wort	1Wort
						r	nax. 124Byt	е

Antworttelegramm

Мо	dbus	/TCF	P-Hea	ader		Slave-Adresse	Funktions-Code	Adresse 1. Wort	Anzahl Worte
X	x x 0 0 0 6								
6Byte						1Byte	1Byte	1Wort	1Wort

Mask 1 Word 16h

Code 16h: Mit dieser Funktion können Sie ein Wort im Master-Ausgabe-Bereich 4x mas-

Kommandotelegramm

Мо	dbus	/TCF	P-Hea	ader		Slave-Adresse	Funktions-Code	Adresse Wort	AND Mask	OR Mask
X	х	0	0	0	8					
		6B	Byte			1Byte	1Byte	1Wort	1Wort	1Wort

Antworttelegramm

Мо	dbus	/TCF	P-Hea	ader		Slave-Adresse	Funktions-Code	Adresse Wort	AND Mask	OR Mask
X	x x 0 0 0 8									
		6E	Byte			1Byte	1Byte	1Wort	1Wort	1Wort

Serielle Kommunikation - "Serial Communication" > SFC 207 - SER CTRL - Modemfunktionalität PtP

10 Serielle Kommunikation - "Serial Communication"

Baustein-Bibliothek "Serial Communication"

Die Baustein-Bibliothek finden Sie im "Download Center" auf www.yaskawa.eu.com unter "Controls Library" als "Baustein-Bibliothek Serial Communication - SW90GS0MA" zum Download. Die Bibliothek liegt als gepackte zip-Dateien vor. Sobald Sie die Bausteine verwenden möchten, müssen Sie diese in Ihr Projekt importieren. → "Controls Library einbinden"...Seite 68

10.1 Serielle Kommunikation - "Serial Communication"

10.1.1 SFC 207 - SER CTRL - Modemfunktionalität PtP

Beschreibung

Bitte beachten Sie, dass dieser Baustein von SPEED7 CPUs nicht unterstützt wird!

Der Einsatz in S7-1500 CPUs von Siemens wird ebenfalls nicht unterstützt!

Bei Einsatz des ASCII-Protokolls über die RS232-Schnittstelle haben Sie mit diesem Baustein zur Laufzeit Zugriff auf die seriellen Modemleitungen. Abhängig vom Parameter *FLOWCONTROL*, den Sie über *SFC 216 (SER_CFG)* vorgeben, bietet der Baustein folgende Funktionalität:

	Lesen	Schreiben
FLOWCONTROL=0:	DTR, RTS, DSR, RI, CTS, CD	DTR, RTS
FLOWCONTROL>0:	DTR, RTS, DSR, RI, CTS, CD	nicht möglich

Parameter

Name	Deklaration	Тур	Beschreibung
WRITE	IN	ВҮТЕ	Bit 0: Neuer Zustand DTRBit 1: Neuer Zustand RTS
MASKWRITE	IN	ВҮТЕ	Bit 0: Zustand an DTR übergebenBit 1: Zustand an RTS übergeben
READ	OUT	BYTE	Status (CTS, DSR, RI, CD, DTR, RTS)
READDELTA	OUT	BYTE	Status Änderung seit letztem Zugriff
RETVAL	OUT	WORD	Rückgabewert (0 = OK)

WRITE

Mit diesem Parameter geben Sie den Status für DTR und RTS vor, den Sie über *MASKWRITE* aktivieren können. Das Byte hat folgende Belegung:

- Bit 0 = DTR
- Bit 1 = RTS
- Bit 7 ... Bit 2: reserviert

MASKWRITE

Hier wird mit "1" der Status des entsprechenden Parameters übernommen. Das Byte hat folgende Belegung:

- Bit 0 = DTR
- Bit 1 = RTS
- Bit 7 ... Bit 2: reserviert

Serielle Kommunikation - "Serial Communication" > FC/SFC 216 - SER CFG - Parametrierung PtP

READ

READ liefert den aktuellen Status der Modem-Leitungen zurück. *READDELTA* liefert den Status der Modem-Leitungen zurück, die sich seit dem letzten Zugriff geändert haben. Die Bytes haben folgenden Aufbau:

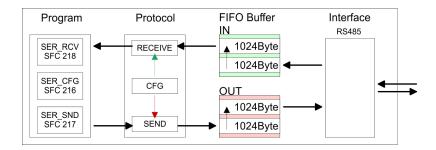
Bit-Nr.	7	6	5	4	3	2	1	0
Read	х	x	RTS	DTR	CD	RI	DSR	CTS
ReadDelta	Х	X	X	X	CD	RI	DSR	CTS

RETVAL (Rückgabewert)

Wert	Beschreibung
0000h	kein Fehler
8x24h	Fehler in SFC-Parameter x, mit x:
	■ 1: Fehler in <i>WRITE</i>
	2: Fehler in MASKWRITE
	■ 3: Fehler in <i>READ</i>
	■ 4: Fehler in <i>READDELTA</i>
809Ah	Schnittstelle ist nicht vorhanden
809Bh	Schnittstelle ist nicht konfiguriert (SFC 216)

10.1.2 FC/SFC 216 - SER CFG - Parametrierung PtP

Beschreibung


Bitte beachten Sie, dass dieser Baustein ausschließlich für den Einsatz in CPUs von Yaskawa bzw. in S7-300 CPUs von Siemens geeignet ist!

Über eine Hardware-Konfiguration können Sie unter Objekteigenschaften über den Parameter "Funktion RS485" den in der SPEED7-CPU integrierten DP-Master deaktivieren und die RS485-Schnittstelle für PtP-Kommunikation (point to point) freigeben. Die RS485-Schnittstelle im PtP-Betrieb ermöglicht die serielle Prozessankopplung zu verschiedenen Ziel- oder Quellsystemen. Die Parametrierung erfolgt zur Laufzeit unter Einsatz des FC/SFC 216 (SER_CFG). Hierbei sind für alle Protokolle mit Ausnahme von ASCII die Parameter in einem DB abzulegen.

Kommunikation

- Daten, die von der CPU in den entsprechenden Datenkanal geschrieben werden, werden in einen FIFO-Sendepuffer (first in first out) mit einer Größe von 2x1024Byte abgelegt und von dort über die Schnittstelle ausgegeben.
- Empfängt die Schnittstelle Daten, werden diese in einem FIFO-Empfangspuffer mit einer Größe von 2x1024Byte abgelegt und können dort von der CPU gelesen werden.
- Sofern Daten mittels eines Protokolls übertragen werden, erfolgt die Einbettung der Daten in das entsprechende Protokoll automatisch. Im Gegensatz zu ASCII und STX/ETX erfolgt bei den Protokollen 3964R, USS und Modbus die Datenübertragung mit Quittierung der Gegenseite.
- Durch erneuten Aufruf des FC/SFC 217 SER_SND bekommen Sie über RETVAL einen Rückgabewert geliefert, der unter anderem auch aktuelle Informationen über die Quittierung der Gegenseite beinhaltet. Zusätzlich ist bei USS und Modbus nach einem SER_SND das Quittungstelegramm durch Aufruf des FC/SFC 218 SER_RCV auszulesen.

Serielle Kommunikation - "Serial Communication" > FC/SFC 216 - SER_CFG - Parametrierung PtP

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
PROTOCOL	IN	BYTE	1=ASCII, 2=STX/ETX, 3=3964R
PARAMETER	IN	ANY	Zeiger zu den Protokoll-Parametern
BAUDRATE	IN	BYTE	Nr. der Baudrate
CHARLEN	IN	BYTE	0=5Bit, 1=6Bit, 2=7Bit, 3=8Bit
PARITY	IN	BYTE	0=Non, 1=Odd, 2=Even
STOPBITS	IN	BYTE	1=1Bit, 2=1,5Bit, 3=2Bit
FLOWCONTROL	IN	BYTE	1 - siehe Hinweis
RETVAL	OUT	WORD	Rückgabewert (0 = OK)

Alle Zeitangaben für Timeouts sind als Hexadezimaler Wert anzugeben. Den Hex-Wert erhalten Sie, indem Sie die gewünschte Zeit in Sekunden mit der Baudrate multiplizieren.

Beispiel:

- Gewünschte Zeit 8ms bei einer Baudrate von 19200Baud
- Berechnung: 19200Bit/s x 0,008s ≈ 154Bit → (9Ah)
- Als Hex-Wert ist 9Ah vorzugeben.

PROTOCOL

Geben Sie hier das Protokoll an, das verwendet werden soll. Zur Auswahl stehen:

- 1: ASCII
- 2: STX/ETX
- 3: 3964R
- 4: USS Master
- 5: Modbus RTU Master
- 6: Modbus ASCII Master

PARAMETER (als DB)

Bei eingestelltem ASCII-Protokoll wird dieser Parameter ignoriert. Für die Protokolle geben Sie hier einen DB an, der die Kommunikationsparameter beinhaltet und für die jeweiligen Protokolle STX/ETX, 3964R, USS und Modbus folgenden Aufbau hat:

Datenbaustein bei STX/ETX					
DBB0:	STX1	BYTE	(1. Start-Zeichen in hexadezimaler Form)		
DBB1:	STX2	BYTE	(2. Start-Zeichen in hexadezimaler Form)		
DBB2:	ETX1	BYTE	(1. Ende-Zeichen in hexadezimaler Form)		

Serielle Kommunikation - "Serial Communication" > FC/SFC 216 - SER CFG - Parametrierung PtP

DBB3:	ETX2	BYTE	(2. Ende-Zeichen in hexadezimaler Form)
DBW4:	TIMEOUT	WORD	(max. zeitlicher Abstand zwischen 2 Telegrammen)

ĭ

Das Zeichen für Start bzw. Ende sollte immer ein Wert kleiner 20 sein, ansonsten wird das Zeichen ignoriert!

Tragen Sie immer für nicht benutzte Zeichen FFh ein!

Datenbaus	stein bei 3964R			
DBB0:	Prio	BYTE	(Die Priorität beider Partner muss unterschiedlich sein)	
DBB1:	ConnAttmptNr	BYTE	(Anzahl der Verbindungsaufbauversuche)	
DBB2:	SendAttmptNr	BYTE	(Anzahl der Telegrammwiederholungen)	
DBB4:	CharTimeout	WORD	(Zeichenverzugszeit)	
DBW6:	ConfTimeout	WORD	(Quittungsverzugszeit)	
Detember	otoin hai IICC			
Datenbaus	stein bei USS			
DBW0:	Timeout	WORD	(Verzugszeit)	
Datenbaustein bei Modbus-Master				
DBW0:	Timeout	WORD	(Antwort-Verzugszeit)	

BAUDRATE

Geschwindigkeit der Datenübertragung in Bit/s (Baud).							
04h:	1200Baud	05h:	1800Baud	06h:	2400Baud	07h:	4800Baud
08h:	7200Baud	09h:	9600Baud	0Ah:	14400Baud	0Bh:	19200Baud
0Ch:	38400Baud	0Dh:	57600Baud	0Eh:	115200Baud		

CHARLEN

Anzahl der Datenbits, auf die ein Zeichen abgebildet wird.					
0: 5Bit	1: 6Bit	2: 7Bit	3: 8Bit		

PARITY

Die Parität ist je nach Wert gerade oder ungerade. Zur Paritätskontrolle werden die Informationsbits um das Paritätsbit erweitert, das durch seinen Wert ("0" oder "1") den Wert aller Bits auf einen vereinbarten Zustand ergänzt. Ist keine Parität vereinbart, wird das Paritätsbit auf "1" gesetzt, aber nicht ausgewertet.

0: NONE	1: ODD	2: EVEN
---------	--------	---------

Serielle Kommunikation - "Serial Communication" > FC/SFC 216 - SER CFG - Parametrierung PtP

STOPBITS

Die Stopbits werden jedem zu übertragenden Zeichen nachgesetzt und kennzeichnen das Ende eines Zeichens.

1: 1Bit	2: 1,5Bit ¹	3: 2Bit
1) Nur zulässig bei <i>CHARLEN</i> = 0 (5Bit)		

FLOWCONTROL

Der Parameter *FLOWCONTROL* wird ignoriert. Beim Senden ist RTS=1, beim Empfangen ist RTS=0.

Sonderfunktion in System MICRO CPU

Ab der Firmware-Version 2.4.4 können Sie in einer System MICRO CPU zwischen RS422- und RS485-Kommunikation umschalten.

0: RS422-Kommunikation

1: RS485-Kommunikation

RETVAL FC/SFC 216 (Rückgabewert)

Rückgabewerte, die der Baustein liefert:

Fehlercode	Beschreibung		
0000h	kein Fehler		
809Ah	Schnittstelle ist nicht vorhanden bzw. Schnittstelle wird für PROFIBUS verwendet.		
8x24h	Fehler in FC/SFC-Parameter x, mit x:		
	1: Fehler in PROTOKOLL		
	2: Fehler in <i>PARAMETER</i>		
	3: Fehler in BAUDRATE		
	4: Fehler in CHARLENGTH		
	5: Fehler in <i>PARITY</i>		
	6: Fehler in STOPBITS		
	7: Fehler in FLOWCONTROL (Parameter fehlt)		
809xh	Fehler in Wert des FC/SFC-Parameter x, mit x:		
	1: Fehler in PROTOKOLL		
	3: Fehler in BAUDRATE		
	4: Fehler in CHARLENGTH		
	5: Fehler in <i>PARITY</i>		
	6: Fehler in STOPBITS		
8092h	Zugriffsfehler auf Parameter-DB (DB zu kurz)		
828xh	Fehler in Parameter x von DB-Parameter mit x:		
	1: Fehler im 1. Parameter		
	2: Fehler im 2. Parameter		

Serielle Kommunikation - "Serial Communication" > FC/SFC 217 - SER SND - Senden an PtP

10.1.3 FC/SFC 217 - SER_SND - Senden an PtP

Beschreibung

Bitte beachten Sie, dass dieser Baustein ausschließlich für den Einsatz in CPUs von Yaskawa bzw. in S7-300 CPUs von Siemens geeignet ist!

Mit diesem Baustein werden Daten über die serielle Schnittstelle gesendet. Durch erneuten Aufruf des FC/SFC 217 SER_SND bekommen Sie bei 3964R, USS und Modbus über RETVAL einen Rückgabewert geliefert, der unter anderem auch aktuelle Informationen über die Quittierung der Gegenseite beinhaltet. Zusätzlich ist bei USS und Modbus nach einem SER_SND das Quittungstelegramm durch Aufruf des FC/SFC 218 SER RCV auszulesen.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
DATAPTR	IN	ANY	Zeiger auf Sendedaten
DATALEN	OUT	WORD	Länge der Sendedaten
RETVAL	OUT	WORD	Rückgabewert (0 = OK)

DATAPTR

Geben Sie hier einen Bereich vom Typ Pointer für den Sendepuffer an, in den die Daten, die gesendet werden sollen, abzulegen sind. Anzugeben sind Typ, Anfang und Länge.

Beispiel:

- Daten liegen in DB5 ab 0.0 mit einer Länge von 124Byte
- DataPtr:=P#DB5.DBX0.0 BYTE 124

DATALEN

- Wort, in dem die Anzahl der gesendeten Bytes abgelegt wird.
- Werden unter ASCII die Daten intern mittels FC/SFC 217 schneller an die serielle Schnittstelle übertragen als sie gesendet werden können, kann aufgrund eines Pufferüberlaufs die zu sendende Datenlänge von DATALEN abweichen. Dies sollte im Anwenderprogramm berücksichtigt werden!
- Bei STX/ETX, 3964R, Modbus und USS wird immer die unter *DATAPTR* angegebene Länge oder 0 eingetragen.

RETVAL FC/SFC 217 (Rückgabewerte)

Rückgabewerte, die der Baustein liefert:

Fehlercode	Beschreibung		
0000h	Daten gesendet - fertig		
1000h	Nichts gesendet (Datenlänge 0)		
20xxh	Protokoll wurde fehlerfrei ausgeführt mit xx-Bitmuster für Diagnose		
7001h	Daten liegen im internen Puffer - aktiv (busy)		
7002h	Transfer - aktiv		
80xxh	Protokoll wurde fehlerhaft ausgeführt mit xx-Bitmuster für Diagnose (keine Quittung der Gegenseite)		
90xxh	Protokoll wurde nicht ausgeführt mit xx-Bitmuster für Diagnose (keine Quittung der Gegenseite)		

Serielle Kommunikation - "Serial Communication" > FC/SFC 217 - SER_SND - Senden an PtP

Fehlercode	Beschreibung
8x24h	Fehler in FC/SFC-Parameter x, mit x:
	1: Fehler in <i>DATAPTR</i>
	2: Fehler in <i>DATALEN</i>
8122h	Fehler in Parameter DATAPTR (z.B. DB zu kurz)
807Fh	Interner Fehler
809Ah	Schnittstelle nicht vorhanden bzw. Schnittstelle wird für PROFIBUS verwendet
809Bh	Schnittstelle nicht konfiguriert

Protokollspezifische RETVAL-Werte

ASCII

Wert	Beschreibung
9000h	Pufferüberlauf (keine Daten gesendet)
9002h	Daten sind zu kurz (0Byte)

STX/ETX

Wert	Beschreibung
9000h	Pufferüberlauf (keine Daten gesendet)
9001h	Daten sind zu lang (>1024Byte)
9002h	Daten sind zu kurz (0Byte)
9004h	Unzulässiges Zeichen

3964R

Wert	Beschreibung	
2000h	Senden fertig ohne Fehler	
80FFh	NAK empfangen - Fehler in der Kommunikation	
80FEh	Datenübertragung ohne Quittierung der Gegenseite oder mit fehlerhafter Quittierung	
9000h	Pufferüberlauf (keine Daten gesendet)	
9001h	Daten sind zu lang (>1024Byte)	
9002h	Daten sind zu kurz (0Byte)	

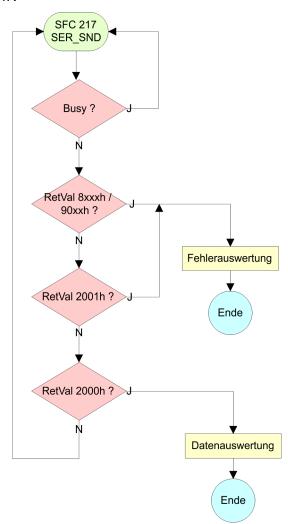
USS

Fehler- code	Beschreibung
2000h	Senden fertig ohne Fehler
8080h	Empfangspuffer voll (kein Platz für Quittung)
8090h	Quittungsverzugszeit überschritten
80F0h	Falsche Checksumme in Rückantwort

Serielle Kommunikation - "Serial Communication" > FC/SFC 217 - SER_SND - Senden an PtP

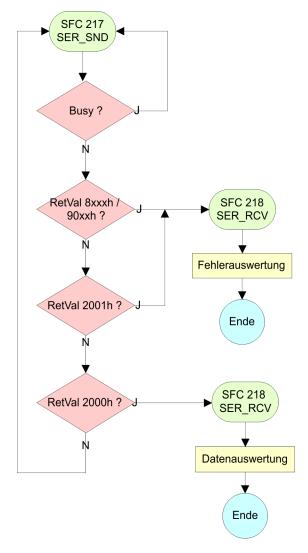
Fehler- code	Beschreibung
80FEh	Falsches Startzeichen in der Rückantwort
80FFh	Falsche Slave-Adresse in der Rückantwort
9000h	Pufferüberlauf (keine Daten gesendet)
9001h	Daten sind zu lang (>1024Byte)
9002h	Daten sind zu kurz (<2Byte)

Modbus RTU/ASCII Master

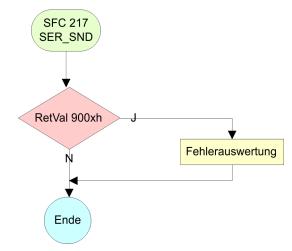

Fehler- code	Beschreibung
2000h	Senden fertig (positive Slave-Rückmeldung vorhanden)
2001h	Senden fertig (negative Slave-Rückmeldung vorhanden)
8080h	Empfangspuffer voll (kein Platz für Quittung)
8090h	Quittungsverzugszeit überschritten
80F0h	Falsche Checksumme in Rückantwort
80FDh	Länge der Rückantwort ist zu lang
80FEh	Falscher Funktionscode in der Rückantwort
80FFh	Falsche Slave-Adresse in der Rückantwort
9000h	Pufferüberlauf (keine Daten gesendet)
9001h	Daten sind zu lang (>1024Byte)
9002h	Daten sind zu kurz (<2Byte)

Serielle Kommunikation - "Serial Communication" > FC/SFC 217 - SER SND - Senden an PtP

Prinzip der Programmierung


Nachfolgend soll kurz die Struktur zur Programmierung eines Sendeauftrags für die verschiedenen Protokolle gezeigt werden.

3964R



Serielle Kommunikation - "Serial Communication" > FC/SFC 217 - SER SND - Senden an PtP

USS / Modbus

ASCII / STX/ETX

Serielle Kommunikation - "Serial Communication" > FC/SFC 218 - SER RCV - Empfangen von PtP

10.1.4 FC/SFC 218 - SER_RCV - Empfangen von PtP

Beschreibung

Bitte beachten Sie, dass dieser Baustein ausschließlich für den Einsatz in CPUs von Yaskawa bzw. in S7-300 CPUs von Siemens geeignet ist!

Mit diesem Baustein werden Daten über die serielle Schnittstelle empfangen. Bei den Protokollen USS und Modbus können Sie durch Aufruf des FC/SFC 218 SER_RCV nach einem SER_SND das Quittungstelegramm auslesen.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
DATAPTR	IN	ANY	Zeiger auf Empfangspuffer
DATALEN	OUT	WORD	Länge der empfangenen Daten
ERROR	OUT	WORD	Fehler-Nr.
RETVAL	OUT	WORD	Rückgabewert (0 = OK)

DATAPTR

Geben Sie hier einen Bereich vom Typ Pointer für den Empfangspuffer an, in den die Daten, die empfangen werden, abzulegen sind. Anzugeben sind Typ, Anfang und Länge.

Beispiel:

- Daten sind in DB5 ab 0.0 mit einer Länge von 124Byte abzulegen
- DataPtr:=P#DB5.DBX0.0 BYTE 124

DATALEN

- Wort, in dem die Anzahl der empfangenen Bytes abgelegt wird.
- Bei STX/ETX und 3964R wird immer die Länge der empfangenen Nutzdaten oder 0 eingetragen.
- Unter **ASCII** wird hier die Anzahl der gelesenen Zeichen eingetragen. Dieser Wert kann von der Telegrammlänge abweichen.

ERROR

In diesem Wort erfolgt ein Eintrag im Fehlerfall. Folgende Fehlermeldungen können protokollabhängig generiert werden:

ASCII

Bit	Fehler	Beschreibung
0	overrun	Überlauf, ein Zeichen konnte nicht schnell genug aus der Schnittstelle gelesen werden kann
1	framing error	Fehler, der anzeigt, dass ein definierter Bitrahmen nicht übereinstimmt, die zulässige Länge überschreitet oder eine zusätzliche Bitfolge enthält (Stoppbitfehler)
2	parity	Paritätsfehler
3	overflow	Der Puffer ist voll.

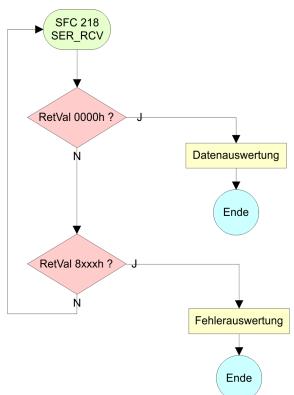
STX/ETX

Bit	Fehler	Beschreibung
0	overflow	Das empfangene Telegramm übersteigt die Größe des Empfangspuffers.

Serielle Kommunikation - "Serial Communication" > FC/SFC 218 - SER_RCV - Empfangen von PtP

Bit	Fehler	Beschreibung
1	char	Es wurde ein Zeichen außerhalb des Bereichs 20h 7Fh empfangen.
3	overflow	Der Puffer ist voll.

3964R / Modbus RTU/ASCII Master


Bit	Fehler	Beschreibung
0	overflow	Das empfangene Telegramm übersteigt die Größe des Empfangspuffers.

RETVAL FC/SFC 218 (Rückgabewert)

Fehlercode	Beschreibung			
0000h	kein Fehler			
1000h	Empfangspuffer ist zu klein (Datenverlust)			
8x24h	Fehler in FC/SFC-Parameter x, mit x:			
	1: Fehler in <i>DATAPTR</i>			
	2: Fehler in <i>DATALEN</i>			
	3: Fehler in ERROR			
8122h	Fehler in Parameter DATAPTR (z.B. DB zu kurz)			
809Ah	Schnittstelle nicht vorhanden bzw. Schnittstelle wird für PROFIBUS verwendet			
809Bh	Schnittstelle ist nicht konfiguriert			

Prinzip der Programmierung

Nachfolgend sehen Sie die Grundstruktur zur Programmierung eines Receive-Auftrags. Diese Struktur können Sie für alle Protokolle verwenden.

Serielle Kommunikation - "Serial Communication" > FB 1 - RECEIVE_ASCII - Empfangen mit definierter Länge von PtP

10.1.5 FB 1 - RECEIVE ASCII - Empfangen mit definierter Länge von PtP

Beschreibung

Bitte beachten Sie, dass dieser Baustein ausschließlich für den Einsatz in CPUs von Yaskawa bzw. in S7-300 CPUs von Siemens geeignet ist!

Dieser FB sammelt die Daten die über die interne serielle Schnittstelle im PtP-Betrieb empfangen werden und kopiert diese in den mittels *EMPF_PUFFER* angegebenen Telegrammpuffer. Wurde das komplette Telegramm empfangen, wird *EMPF_FERTIG* gesetzt und der FB verlassen. Das Einlesen der Daten, kann mehrere FB-Aufrufe erfordern. Das nächste Telegramm wird erst eingelesen, wenn das Bit *EMPF_FERTIG* vom Anwender zurückgesetzt wurde. Mit diesem FB können nur Telegramme mit fester Länge empfangen werden.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
EMPF_PUFFER	IN	ANY	Zeiger auf DB, in den das empfangene Telegramm übertragen wird.
ER_BYTE	OUT	WORD	Fehlercode
EMPF_FERTIG	IN_OUT	BOOL	Status

EMPF_PUFFER

Geben Sie hier einen Bereich vom Typ Pointer an, in den die empfangenen Daten zu kopieren sind. Anzugeben sind Typ, Anfang und Länge.

Beispiel:

- Daten sind in DB5 ab 0.0 mit einer Länge von 124Byte abzulegen
 - DataPtr:=P#DB5.DBX0.0 BYTE 124

ER_BYTE

In diesem Wort erfolgt ein Eintrag im Fehlerfall.

Fehlercode	Beschreibung
0003h	DB mit Telegrammpuffer nicht vorhanden.
0004h	DB mit Telegrammpuffer ist zu kurz.
7000h	Empfangspuffer ist zu klein - Daten wurden gelöscht!
8000h	Pointerangabe in <i>EMPF_PUFFER</i> fehlerhaft oder nicht vorhanden.
9001h	DB-Angabe in <i>EMPF_PUFFER</i> fehlerhaft oder nicht vorhanden.
9002h	Längen-Angabe in EMPF_PUFFER fehlerhaft oder nicht vorhanden.

Serielle Kommunikation - "Serial Communication" > FB 7 - P_RCV_RK - Empfangen von CP 341

10.1.6 FB 7 - P RCV RK - Empfangen von CP 341

Beschreibung

Bitte beachten Sie, dass dieser Baustein ausschließlich für den Einsatz in CPUs von Yaskawa bzw. in S7-300 CPUs von Siemens geeignet ist!

Der FB 7 P_RCV_RK überträgt Daten vom CP in einen Datenbereich der CPU, spezifiziert durch die Parameter *DB_NO*, *DBB_NO* und *LEN*. Der FB wird zur Datenübertragung im Zyklus oder in einem zeitgesteuerten Programm aufgerufen. Bitte beachten Sie, dass dieser Baustein intern den FC bzw. SFC 192 CP_S_R aufruft. Dieser darf nicht überschrieben werden! Der direkte Aufruf eines internen Bausteins führt zu Fehler im entsprechenden Instanz-DB!

Parameter

Parameter	Deklaration	Datentyp	Beschreibung	
EN_R	IN	BOOL	Freigabe für Daten lesen	
R	IN	BOOL	Auftragsabbruch - der laufende Auftrag wird abgebrochen und Empfang wird gesperrt.	
LADDR	IN	INT	Logische Basisadresse des CP - entspricht der Adresse aus der Hardware-Konfiguration des CP.	
DB_NO	IN	INT	Datenbausteinnummer - Nummer des Empfangs-DB, Null ist nicht erlaubt.	
DBB_NO	IN	INT	Datenbyte nummer - Empfangsdaten ab Datenbyte $0 \le DBB_NO \le 8190$	
L	OUT	-	Diese Parameter haben unter ASCII und 3964(R) keine Bedeutung, können aber von ladbaren Protokollen belegt sein.	
NDR1 ¹	OUT	BOOL	Auftrag fertig ohne Fehler, Daten übernommen Parameter <i>STATUS</i> = 00h	
ERROR ¹	OUT	BOOL	Auftrag fertig mit Fehler Parameter <i>STATUS</i> enthält die Fehlerinformation	
LEN ¹	OUT	BOOL	Länge des empfangenen Telegramms in Byte $1 \le LEN \le 1024$	
STATUS ¹	OUT	WORD	Spezifikation des Fehlers bei <i>ERROR</i> = 1	
1) Parameter steht bis z	1) Parameter steht bis zum nächsten Aufruf des FBs zur Verfügung.			

Auftrag freigeben und abbrechen

- Mit Signalzustand "1" an *EN_R* wird die Überprüfung, ob Daten vom CP zu lesen sind, freigegeben. Je nach Datenmenge kann eine Datenübertragung über mehrere Programmzyklen laufen.
- Sie können jederzeit mit dem Signalzustand "0" an EN_R eine laufende Übertragung abbrechen. Hierbei wird der abgebrochene Empfangsauftrag mit einer Fehlermeldung (STATUS) beendet.
- Solange "0" an *EN_R* ansteht, ist der Empfang ausgeschaltet. Mit Signalzustand "1" an R können Sie einen laufenden Auftrag abbrechen und den FB in den Grundzustand zurückversetzen. Steht statisch der Signalzustand "1" am Eingang R an, so ist der Empfang ausgeschaltet.

Serielle Kommunikation - "Serial Communication" > FB 8 - P SND RK - Senden an CP 341

Mechanismus zur Anlaufsynchronisation

Der FB 7 besitzen einen Mechanismus für die Anlaufsynchronisation zwischen CPU und CP, der automatisch beim erstmaligen Aufruf des FB ausgeführt wird. Bevor ein angestoßener Auftrag nach einem STOP-RUN-Übergang vom CP bearbeitet werden kann, muss die Anlauf-Synchronisation zwischen CP und CPU abgeschlossen sein. Ein in der Zwischenzeit angestoßener Auftrag wird nach der Synchronisation zum CP übertragen.

Zum Erkennen eines Signalwechsels ist eine Mindestimpulsdauer erforderlich. Ausschlaggebend sind die CPU-Zykluszeit, die Aktualisierungszeit auf dem CP und die Reaktionszeit des Kommunikationspartners.

Fehleranzeige

- Der Ausgang NDR zeigt "Auftrag fertig ohne Fehler/Daten übernommen" an. Bei ERROR wird die entsprechende Ereignisnummer in STATUS angezeigt. Ist kein Fehler aufgetreten, hat STATUS den Wert "0".
- NDR und ERROR/STATUS werden auch bei RESET des FB ausgegeben. Bei einem aufgetretenen Fehler wird das Binärergebnis BEI zurückgesetzt. Wird der Baustein ohne Fehler beendet, hat BEI den Zustand "1".
- Bitte beachten Sie, dass die Parameter *NDR*, *ERROR* und *STATUS* immer nur für einen Bausteinaufruf verfügbar sind. Zur weiteren Auswertung sollten Sie diese in einen freien Datenbereich kopieren.

Adressierung

Mit *LADDR* geben Sie die Adresse des anzusprechenden CP an. Dies ist die Adresse, die Sie über die Hardware-Konfiguration für den CP vergeben haben. Bitte beachten Sie beim CP, dass die Basis-Adressen für Ein- und Ausgabe identisch sind.

Datenbereich

Der FB 7 - P_RCV_RK arbeitet mit einem Instanz-DB I_RCV_RK zusammen. Dieser hat eine Länge von 60Byte. Die DB-Nr. geben Sie mit dem Aufruf mit. Ein Zugriff auf die Daten im Instanz-DB ist nicht zulässig.

10.1.7 FB 8 - P SND RK - Senden an CP 341

Beschreibung

Bitte beachten Sie, dass dieser Baustein ausschließlich für den Einsatz in CPUs von Yaskawa bzw. in S7-300 CPUs von Siemens geeignet ist!

Der FB 8 - P_SND_RK überträgt einen Datenblock von einem Datenbaustein zum CP, spezifiziert durch die Parameter *DB_NO*, *DBB_NO* und *LEN*. Hierbei ist der FB zur Datenübertragung im Zyklus oder statisch in einem zeitgesteuerten Programm aufzurufen. Bitte beachten Sie, dass dieser Baustein intern den FC bzw. SFC 192 CP_S_R aufruft. Dieser darf nicht überschrieben werden! Der direkte Aufruf eines internen Bausteins führt zu Fehler im entsprechenden Instanz-DB!

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
SF	IN	CHAR	S = Send, F = Fetch. Bei ASCII und 3964(R) kann hier der Defaultwert "S" für Senden übernommen werden.
REQ	IN	BOOL	Auftragsanstoß bei positiver Flanke
R	IN	BOOL	Auftragsabbruch - der laufende Auftrag wird abgebrochen und Senden wird gesperrt.

Serielle Kommunikation - "Serial Communication" > FB 8 - P SND RK - Senden an CP 341

Parameter	Deklaration	Datentyp	Beschreibung
LADDR	IN	INT	Logische Basisadresse des CP - entspricht der Adresse aus der Hardware-Konfiguration des CP.
DB_NO	IN	INT	Datenbausteinnummer - Nummer des Sende-DB, Null ist nicht erlaubt.
DBB_NO	IN	INT	Datenbytenummer - Sendedaten ab Datenbyte $0 \le DBB_NO \le 8190$
LEN	IN	INT	Länge des zu sendenden Telegramms in Byte. 1 ≤ <i>LEN</i> ≤ 1024
R	IN	-	Diese Parameter haben unter ASCII und 3964(R) keine Bedeutung, können aber von ladbaren Protokollen belegt sein. Bei Einsatz unter Modbus ist hier "X" einzutragen.
DONE ¹	OUT	BOOL	Auftrag fertig ohne Fehler, Daten gesendet Parameter <i>STATUS</i> = 00h
ERROR ¹	OUT	BOOL	Auftrag fertig mit Fehler Parameter <i>STATUS</i> enthält die Fehlerinformation
STATUS ¹	OUT	WORD	Spezifikation des Fehlers bei <i>ERROR</i> = 1
1) Parameter steht bis zum nächsten Aufruf des FBs zur Verfügung.			

Auftrag freigeben und abbrechen

- Mit einer positiven Flanke am Eingang REQ des FB 8 P_SND_RK wird die Übertragung der Daten angestoßen. Je nach Datenmenge kann eine Datenübertragung über mehrere Programmzyklen laufen.
- Sie können jederzeit mit dem Signalzustand "1" an R einen laufenden Auftrag abbrechen und den FB in den Grundzustand zurückversetzen. Bitte beachten Sie, dass hierbei die Daten, die der CP bereits erhalten hat, noch an den Kommunikationspartner gesendet werden.
- Steht statisch der Signalzustand "1" am Eingang R an, so ist das Senden ausgeschaltet.

Mechanismus zur Anlaufsynchronisation

Der FB 8 besitzen einen Mechanismus für die Anlaufsynchronisation zwischen CPU und CP, der automatisch beim erstmaligen Aufruf des FB ausgeführt wird. Bevor ein angestoßener Auftrag nach einem STOP-RUN-Übergang der CPU vom CP bearbeitet werden kann, muss die Anlauf-Synchronisation zwischen CP und CPU abgeschlossen sein. Ein in der Zwischenzeit angestoßener Auftrag wird nach der Synchronisation zum CP übertragen.

Zum Erkennen eines Signalwechsels ist eine Mindestimpulsdauer erforderlich. Ausschlaggebend sind die CPU-Zykluszeit, die Aktualisierungszeit auf dem CP und die Reaktionszeit des Kommunikationspartners.

Fehleranzeige

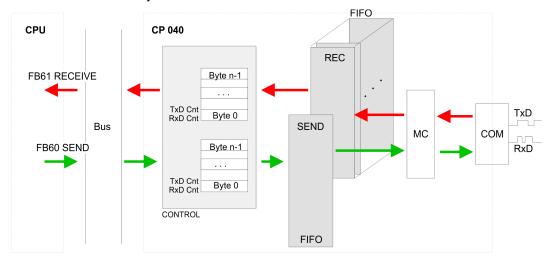
- Der Ausgang DONE zeigt "Auftragsende ohne Fehler" an. Bei ERROR wird die entsprechende Ereignisnummer in STATUS angezeigt. Ist kein Fehler aufgetreten, hat STATUS den Wert "0".
- DONE und ERROR/STATUS werden auch bei RESET des FB ausgegeben. Bei einem aufgetretenen Fehler wird das Binärergebnis BIE zurückgesetzt. Wird der Baustein ohne Fehler beendet, hat BIE den Zustand "1".
- Bitte beachten Sie, dass die Parameter DONE, ERROR und STATUS immer nur für einen Bausteinaufruf verfügbar sind. Zur weiteren Auswertung sollten Sie diese in einen freien Datenbereich kopieren.

CP040 > Übersicht

Adressierung

Mit *LADDR* geben Sie die Adresse des anzusprechenden CP an. Dies ist die Adresse, die Sie über die Hardware-Konfiguration für den CP vergeben haben. Bitte beachten Sie beim CP, dass die Basis-Adressen für Ein- und Ausgabe identisch sind.

Datenbereich


Der FB 8 - P_SND_RK arbeitet mit einem Instanz-DB I_SND_RK zusammen. Dieser hat eine Länge von 62Byte. Die DB-Nr. geben Sie mit dem Aufruf mit. Ein Zugriff auf die Daten im Instanz-DB ist nicht zulässig.

10.2 CP040

10.2.1 Übersicht

Kommunikationsprinzip

- Durch zyklischen Aufruf von FB 60 SEND und FB 61 RECEIVE bzw. FB 65
 CP040 COM können Sie mit dem CP zyklisch Daten senden und empfangen.
- Auf dem CP erfolgt die Umsetzung der Übertragungsprotokolle zum Kommunikationspartner, welche Sie mittels der Hardwarekonfiguration parametrieren können.
- Ein zu sendendes Telegramm wird in der CPU, abhängig von der IO-Size, in Blöcke unterteilt und über den Datenkanal an den CP übergeben. Im CP werden diese Blöcke im Sendepuffer zusammengesetzt und bei Vollständigkeit des Telegramms über die serielle Schnittstelle gesendet.
- Der Austausch von empfangenen Telegrammen über den Rückwandbus erfolgt asynchron.
- Ist ein komplettes Telegramm über die serielle Schnittstelle eingetroffen, so wird dies in einem 1024Byte großen Ringpuffer abgelegt. Aus der Länge des noch freien Ringpuffers ergibt sich die max. Länge eines Telegramms.
- Je nach Parametrierung können bis zu 250 Telegramme gepuffert werden, wobei deren Gesamtlänge 1024 nicht überschreiten darf.
- Ist der Puffer voll, werden neu ankommende Telegramme verworfen.
- Ein komplettes Telegramm wird in Blöcke, abhängig von der parametrierten IO-Size unterteilt und an den Rückwandbus übergeben.
- Das Zusammensetzen der Datenblöcke hat in der CPU zu erfolgen.
- Da der Datenaustausch über den Rückwandbus asynchron abläuft, wird ein Software-Handshake zwischen dem CP und der CPU eingesetzt. Hierzu besitzen beide Hantierungsbausteine den gemeinsamen Parameter CONTROL. Für diesen Parameter ist das selbe Merker-Byte zu verwenden.

FIFO Ringpuffer max. 250 Telegramme 1024Byte CONTROL Software-Handshake über CONTROL-Baustein

CP040 > FB 60 - SEND - Senden an System SLIO CP 040

Zum Erkennen eines Signalwechsels ist eine Mindestimpulsdauer erforderlich. Ausschlaggebend sind die CPU-Zykluszeit, die Aktualisierungszeit auf dem CP und die Reaktionszeit des Kommunikationspartners.

10.2.2 FB 60 - SEND - Senden an System SLIO CP 040

Beschreibung

Dieser FB dient zur Datenausgabe von der CPU an den System SLIO CP 040. Hierbei legen Sie über die Bezeichner *DB_NO*, *DBB_NO* und *LEN* den Sendebereich fest. Über eine positive Flanke an *REQ* wird das Senden angestoßen und die Daten werden gesendet.

Parameter

Name	Deklaration	Тур	Beschreibung		
REQ	IN	BOOL	Sendefreigabe bei positiver Flanke.		
R	IN	BOOL	Synchron Reset auslösen.		
LADDR / HW_ID	IN	INT / HW_IO	 LADDR Logische Basisadresse des CP. Bei Einsatz in CPUs von Yaskawa bzw. S7-300 CPUs von Siemens. HW_ID HW-Kennung zur Adressierung des CP. Bei Einsatz in S7-1500 CPUs von Siemens. 		
DB_NO	IN	INT	Datenbausteinnummer der Sendedaten.		
DBB_NO	IN	INT	Datenbytenummer - Sendedaten ab Datenbyte.		
LEN	IN	INT	Länge des zu sendenden Telegramms in Byte.		
IO_SIZE	IN	WORD	Parametrierte IO Größe des Moduls.		
DONE ¹	OUT	BOOL	Sende-Auftrag fertig ohne Fehler.		
ERROR ¹	OUT	BOOL	Sende-Auftrag fertig mit Fehler. Parameter <i>STATUS</i> enthält die Fehlerinformation.		
STATUS ¹	OUT	WORD	Spezifikation des Fehlers bei <i>ERROR</i> = 1.		
CONTROL	IN_OUT	BYTE	Geteiltes Byte mit RECEIVE Hantierungsbaustein: SEND (Bit 0 3), RECEIVE (Bit 4 7).		
1) Parameter steht bis	1) Parameter steht bis zum nächsten Aufruf des FBs zur Verfügung.				

REQ

Request - Sendefreigabe:

- Mit einer positiven Flanke am Eingang REQ wird die Übertragung der Daten angestoßen
- Je nach Datenmenge kann eine Datenübertragung über mehrere Programmzyklen laufen.

CP040 > FB 60 - SEND - Senden an System SLIO CP 040

R

Synchron Reset:

- Für die Initialisierung ist SEND im Anlauf-OB mit allen Parametern und mit gesetztem R einmalig aufzurufen.
- Sie k\u00f6nnen jederzeit mit dem Signalzustand "1" an R einen laufenden Auftrag abbrechen und den FB in den Grundzustand zur\u00fcckversetzen. Bitte beachten Sie, dass hierbei die Daten, die der CP bereits erhalten hat, noch an den Kommunikationspartner gesendet werden.
- Steht statisch der Signalzustand "1" am Eingang R an, so ist das Senden ausgeschaltet.

LADDR

Peripherieadresse:

- Dieser Parameter ist nur bei Einsatz in CPUs von Yaskawa bzw. S7-300 CPUs von Siemens verfügbar.
- Mit LADDR geben Sie die Adresse des anzusprechenden CP an. Dies ist die Adresse, die Sie über die Hardware- Konfiguration für den CP vergeben haben.

HW ID

HW-Kennung:

- Dieser Parameter ist nur bei Einsatz in S7-1500 CPUs von Siemens verfügbar.
- Geben Sie unter HW_ID die HW-Kennung an, mit deren Hilfe Ihr Modul entsprechend adressiert werden kann. → "HW-Kennung HW_ID"...Seite 64

DB_NO

Datenbaustein-Nummer:

- Nummer des Datenbausteins, der die zu sendenden Daten beinhaltet.
- Null ist nicht erlaubt.

DBB_NO

Datenbyte-Nummer:

Nummer des Datenbytes im Datenbaustein, ab dem die Sendedaten abgelegt sind.

LEN

Länge:

- Länge der Nutzdaten, welche zu übertragen sind.
- Es gilt: 1 ≤ LEN ≤ 1024.

IO_SIZE

Größe E/A-Bereich:

- Geben Sie hier die Größe des E/A-Bereichs an. Abhängig vom übergeordneten System belegt der CP für Ein- und Ausgabe jeweils folgende Anzahl an Bytes im Adress-Bereich:
 - PROFIBUS: 8Byte, 20Byte oder 60Byte wählbar
 - PROFINET: 20Byte oder 60Byte wählbar
 - CANopen: 8ByteEtherCAT: 60ByteDeviceNET: 60ByteModbusTCP: 60Byte

DONE

DONE:

■ wird gesetzt bei Auftrag fertig ohne Fehler und *STATUS* = 0000h.

CP040 > FB 61 - RECEIVE - Empfangen von System SLIO CP 040

ERROR

ERROR:

wird gesetzt bei Auftrag fertig mit Fehler. Hierbei enthält STATUS die entsprechende Fehlerinformation.

STATUS

Bei fehlerfreier Funktion *STATUS* = 0000h oder 8181h. Im Fehlerfall finden Sie hier den entsprechenden Fehlercode. Solange *ERROR* gesetzt ist bleibt der Wert in *STATUS* bestehen. Folgende Statusmeldungen sind möglich:

STATUS	Beschreibung
0000h	Kein Fehler vorhanden.
0202h	Mögliche Fehlerquellen:
	 Hantierungsbaustein und CP sind nicht synchron (Abhilfe: Synchron Reset auslösen) IO_SIZE ist ungültig (IO_SIZE = 0 oder IO_SIZE > 60).
0301h	DB ist ungültig.
0517h	LEN ist ungültig (LEN = 0 oder LEN > 1024).
070Ah	Übertragung fehlgeschlagen, Partner antwortet nicht, oder hat den Auftrag negativ quittiert.
8090h	HW_ID ist unbekannt.
80A0h	Beim Zugriff auf die Peripherie wurde ein Zugriffsfehler erkannt.
80A1h	
8181h	Auftrag läuft (Status und keine Fehlermeldung).
8323h	Sende-DB vorhanden, aber zu kurz.
833Ah	Sende-DB nicht lesbar (DB nicht vorhanden oder DB im optimierten Bausteinzugriff). → "Kein optimierter Bausteinzugriff"Seite 18

CONTROL

Die Hantierungsbausteine SEND und RECEIVE verwenden für den Handshake den gemeinsamen Parameter *CONTROL*. Weisen Sie diesem Parameter ein gemeinsames Merker-Byte zu.

Fehleranzeige

- Der Ausgang DONE zeigt "Auftragsende ohne Fehler" an. Bei ERROR wird die entsprechende Ereignisnummer in STATUS angezeigt. Ist kein Fehler aufgetreten, hat STATUS den Wert "0".
- DONE, ERROR und STATUS werden auch bei RESET des FB ausgegeben. Bei einem aufgetretenen Fehler wird das Binärergebnis BIE zurückgesetzt. Wird der Baustein ohne Fehler beendet, hat BIE den Zustand "1".
- Bitte beachten Sie, dass die Parameter *DONE*, *ERROR* und *STATUS* immer nur für einen Bausteinaufruf verfügbar sind. Zur weiteren Auswertung sollten Sie diese in einen freien Datenbereich kopieren.

10.2.3 FB 61 - RECEIVE - Empfangen von System SLIO CP 040

Beschreibung

Dieser FB dient zum Datenempfang vom System SLIO CP 040. Hierbei legen Sie über die Bezeichner *DB_NO* und *DBB_NO* den Empfangsbereich fest. Die Länge des eingelesenen Telegramms wird in *LEN* abgelegt.

CP040 > FB 61 - RECEIVE - Empfangen von System SLIO CP 040

Parameter

Parameter	Deklaration	Datentyp	Beschreibung	
EN_R	IN	BOOL	Freigabe zum Daten lesen.	
R	IN	BOOL	Synchron Reset auslösen.	
LADDR / HW_ID	IN	INT / HW_IO	 LADDR Logische Basisadresse des CP. Bei Einsatz in CPUs von Yaskawa bzw. S7-300 CPUs von Siemens. HW_ID HW-Kennung zur Adressierung des CP. Bei Einsatz in S7-1500 CPUs von Siemens. 	
DB_NO	IN	INT	Datenbausteinnummer der Empfangsdaten.	
DBB_NO	IN	INT	Datenbytenummer - Empfangsdaten ab Datenbyte.	
IO_SIZE	IN	WORD	Parametrierte I/O Größe des Moduls.	
LEN	OUT	INT	Länge des empfangenen Telegramms in Byte.	
NDR ¹	OUT	BOOL	Empfangs-Auftrag fertig ohne Fehler.	
ERROR ¹	OUT	BOOL	Empfangs-Auftrag fertig mit Fehler. Parameter <i>STATUS</i> enthält die Fehlerinformation.	
STATUS ¹	OUT	WORD	Spezifikation des Fehlers bei <i>ERROR</i> = 1.	
CONTROL	IN_OUT	BYTE	Geteiltes Byte mit SEND Hantierungsbaustein:	
			SEND (Bit 0 3), RECEIVE (Bit 4 7).	
1) Parameter steht bis zum nächsten Aufruf des FBs zur Verfügung.				

EN_R

Enable Receive - Lesefreigabe:

- Mit Signalzustand "1" an EN_R wird die Überprüfung, ob Daten vom CP zu lesen sind, freigegeben. Je nach Datenmenge kann eine Datenübertragung über mehrere Programmzyklen laufen.
- Sie können jederzeit mit dem Signalzustand "0" an EN_R eine laufende Übertragung abbrechen. Hierbei wird der abgebrochene Empfangsauftrag mit einer Fehlermeldung (STATUS) beendet.
- Solange "0" an EN_R ansteht, ist der Empfang ausgeschaltet.

R

Synchron Reset:

- Für die Initialisierung ist RECEIVE im Anlauf-OB mit allen Parametern und mit gesetztem *R* einmalig aufzurufen.
- Sie können jederzeit mit dem Signalzustand "1" an R einen laufenden Auftrag abbrechen und den FB in den Grundzustand zurückversetzen.
- Steht statisch der Signalzustand "1" am Eingang R an, so ist der Empfang ausgeschaltet.

LADDR

Peripherieadresse:

- Dieser Parameter ist nur bei Einsatz in CPUs von Yaskawa bzw. S7-300 CPUs von Siemens verfügbar.
- Mit LADDR geben Sie die Adresse des anzusprechenden CP an. Dies ist die Adresse, die Sie über die Hardware- Konfiguration für den CP vergeben haben.

CP040 > FB 61 - RECEIVE - Empfangen von System SLIO CP 040

HW_ID

HW-Kennung:

- Dieser Parameter ist nur bei Einsatz in S7-1500 CPUs von Siemens verfügbar.
- Geben Sie unter HW_ID die HW-Kennung an, mit deren Hilfe Ihr Modul entsprechend adressiert werden kann. → "HW-Kennung HW_ID"...Seite 64

DB_NO

Datenbaustein-Nummer:

- Nummer des Datenbausteins, der die gelesenen Daten beinhaltet.
- Null ist nicht erlaubt.

DBB_NO

Datenbyte-Nummer:

Nummer des Datenbytes im Datenbaustein, ab dem die empfangenen Daten abgelegt werden sollen.

IO_SIZE

Größe E/A-Bereich:

- Geben Sie hier die Größe des E/A-Bereichs an. Abhängig vom übergeordneten System belegt der CP für Ein- und Ausgabe jeweils folgende Anzahl an Bytes im Adress-Bereich:
 - PROFIBUS: 8Byte, 20Byte oder 60Byte wählbar
 - PROFINET: 20Byte oder 60Byte wählbar
 - CANopen: 8ByteEtherCAT: 60ByteDeviceNET: 60ByteModbusTCP: 60Byte

LEN

Länge:

- Länge der Nutzdaten, welche zu übertragen sind.
- Es gilt: $1 \le LEN \le 1024$.

NDR

New data ready:

Neu empfangene Daten stehen für die CPU im CP bereit.

ERROR

ERROR:

wird gesetzt bei Auftrag fertig mit Fehler. Hierbei enthält STATUS die entsprechende Fehlerinformation.

STATUS

Bei fehlerfreier Funktion *STATUS* = 0000h oder 8181h. Im Fehlerfall finden Sie hier den entsprechenden Fehlercode. Solange *ERROR* gesetzt ist bleibt der Wert in *STATUS* bestehen. Folgende Statusmeldungen sind möglich:

STATUS	Beschreibung
0000h	Kein Fehler vorhanden.
0202h	Mögliche Fehlerquellen:
	Hantierungsbaustein und CP sind nicht synchron (Abhilfe: Synchron Reset auslösen).
	■ IO_SIZE ist ungültig (IO_SIZE = 0 oder IO_SIZE > 60).

STATUS	Beschreibung	
0301h	DB ist ungültig.	
070Ah	Übertragung fehlgeschlagen, Partner antwortet nicht, oder hat den Auftrag negativ quittiert.	
8090h	HW_ID ist unbekannt.	
80A0h	Beim Zugriff auf die Peripherie wurde ein Zugriffsfehler erkannt.	
80A1h		
8181h	Auftrag läuft (Status und keine Fehlermeldung).	
8323h	Empfangs-DB vorhanden, aber zu kurz.	
833Ah	Empfangs-DB nicht beschreibbar (DB nicht vorhanden oder DB im optimierten Bausteinzugriff). → "Kein optimierter Bausteinzugriff"Seite 18	

CONTROL

- Die Hantierungsbausteine SEND und RECEIVE verwenden für den Handshake den gemeinsamen Parameter CONTROL.
- Weisen Sie diesem Parameter ein gemeinsames Merker-Byte zu.

Fehleranzeige

- Der Ausgang NDR zeigt "Auftrag fertig ohne Fehler/Daten übernommen" an. Bei ERROR wird die entsprechende Ereignisnummer in STATUS angezeigt. Ist kein Fehler aufgetreten, hat STATUS den Wert "0".
- NDR, ERROR und STATUS werden auch bei RESET des FBs ausgegeben. Bei einem aufgetretenen Fehler wird das Binärergebnis BIE zurückgesetzt. Wird der Baustein ohne Fehler beendet, hat BIE den Zustand "1".
- Bitte beachten Sie, dass die Parameter *NDR*, *ERROR* und *STATUS* immer nur für einen Bausteinaufruf verfügbar sind. Zur weiteren Auswertung sollten Sie diese in einen freien Datenbereich kopieren.

10.2.4 FB 65 - CP040 COM - Kommunikation SLIO CP 040

Beschreibung

Dieser FB dient zur Datenübergabe von der System SLIO CPU an den CP 040. Hierbei legen Sie über die Bezeichner *DB_NO_SEND*, *DB_NO_RECV* den Sende-/Empfangsbereich fest. Über eine positive Flanke an *REQ_SEND* wird das Senden angestoßen und die Daten werden gesendet. Über *EN_RECV* wird die Freigabe zum Daten empfangen gegeben.

Parameter bei Einsatz von CPUs von Yaskawa bzw. S7-300 CPUs von Siemens

Name	Deklaration	Тур	Beschreibung
REQ_SEND	IN	BOOL	Anstoß Sende-Auftrag bei positiver Flanke.
EN_RECV	IN	BOOL	Freigabe für Daten empfangen.
RESET	IN	BOOL	Synchron Reset auslösen.
ADDR_OUT	IN	INT	Ausgangsadresse des CP aus der HW-Konfiguration.
ADDR_IN	IN	INT	Eingangsadresse des CP aus der HW-Konfiguration.
IO_SIZE	IN	WORD	Parametrierte IO Größe des Moduls.
DB_NO_SEND	IN	INT	Datenbaustein-Nummer - Nummer des Sende-DB.
			Null ist nicht erlaubt.

Name	Deklaration	Тур	Beschreibung
DBB_NO_SEND	IN	INT	Datenbyte-Nummer - Sendedaten ab Datenbyte.
LEN_SEND	IN	INT	Länge des zu sendenden Telegramms in Byte. 1 ≤ <i>LEN_SEND</i> ≤ 1024
DB_NO_RECV	IN	INT	Datenbaustein-Nummer - Nummer des Empfang-DB. Null ist nicht erlaubt.
DBB_NO_RECV	IN	INT	Datenbyte-Nummer - Empfangsdaten ab Datenbyte.
DONE_SEND¹	OUT	BOOL	Sende-Auftrag fertig ohne Fehler. Daten gesendet: Parameter <i>STATUS_SEND</i> = 0000h.
ERROR_SEND ¹	OUT	BOOL	Sende-Auftrag fertig mit Fehler. Parameter <i>STATUS_SEND</i> enthält die Fehlerinformation.
NDR_RCV ¹	OUT	BOOL	Empfangs-Auftrag fertig ohne Fehler. Daten gesendet: Parameter <i>STATUS_RCV</i> = 0000h. Bleibt für einen Zyklus stehen.
ERROR_RCV1	OUT	BOOL	Empfangs-Auftrag fertig mit Fehler. Parameter <i>STATUS_RCV</i> enthält die Fehlerinformation.
STATUS_SEND1	OUT	WORD	Spezifikation des Fehlers beim Senden bei <i>ERROR_SEND</i> = 1
LEN_RCV	OUT	INT	Länge des empfangenen Telegramms in Byte. 1 ≤ LEN_RCV ≤ 1024
STATUS_RCV1	OUT	WORD	Spezifikation des Fehlers beim Empfangen bei <i>ERROR_RCV</i> = 1
1) Parameter steht bis zum nächsten Aufruf des FBs zur Verfügung.			

Parameter bei Einsatz von S7-1500 CPUs von Siemens

Name	Deklaration	Тур	Beschreibung
REQ_SEND	IN	BOOL	Anstoß Sende-Auftrag bei positiver Flanke.
EN_RECV	IN	BOOL	Freigabe für Daten empfangen.
RESET	IN	BOOL	Synchron Reset auslösen.
HW_ID	IN	HW_IO	HW-Kennung zur Adressierung des CP.
IO_SIZE	IN	WORD	Parametrierte IO Größe des Moduls.
DB_NO_SEND	IN	INT	Datenbaustein-Nummer - Nummer des Sende-DB.
			Null ist nicht erlaubt.
DBB_NO_SEND	IN	INT	Datenbyte-Nummer - Sendedaten ab Datenbyte.
LEN_SEND	IN	INT	Länge des zu sendenden Telegramms in Byte.
			1 ≤ <i>LEN_SEND</i> ≤ 1024
DB_NO_RECV	IN	INT	Datenbaustein-Nummer - Nummer des Empfang-DB.
			Null ist nicht erlaubt.
DBB_NO_RECV	IN	INT	Datenbyte-Nummer - Empfangsdaten ab Datenbyte.
DONE_SEND1	OUT	BOOL	Sende-Auftrag fertig ohne Fehler.
			Daten gesendet: Parameter STATUS_SEND = 0000h.

Name	Deklaration	Тур	Beschreibung
ERROR_SEND1	OUT	BOOL	Sende-Auftrag fertig mit Fehler.
			Parameter STATUS_SEND enthält die Fehlerinformation.
NDR_RCV1	OUT	BOOL	Empfangs-Auftrag fertig ohne Fehler.
			Daten gesendet: Parameter STATUS_RCV = 0000h.
			Bleibt für einen Zyklus stehen.
ERROR_RCV1	OUT	BOOL	Empfangs-Auftrag fertig mit Fehler.
			Parameter STATUS_RCV enthält die Fehlerinformation.
STATUS_SEND1	OUT	WORD	Spezifikation des Fehlers beim Senden bei <i>ERROR_SEND</i> = 1
LEN_RCV	OUT	INT	Länge des empfangenen Telegramms in Byte.
			1 ≤ <i>LEN_RCV</i> ≤ 1024
STATUS_RCV1	OUT	WORD	Spezifikation des Fehlers beim Empfangen bei <i>ERROR_RCV</i> = 1
1) Parameter steht bis zum nächsten Aufruf des FBs zur Verfügung.			

REQ SEND

Request - Sendefreigabe:

- Mit einer positiven Flanke am Eingang REQ_SEND wird die Übertragung der Daten angestoßen.
- Je nach Datenmenge kann eine Datenübertragung über mehrere Programmzyklen laufen.

EN RECV

Freigabe für Daten empfangen.

RESET

Synchron Reset:

- Für die Initialisierung ist der FB 65 im Anlauf-OB mit allen Parametern und mit gesetztem RESET einmalig aufzurufen.
- Sie können jederzeit mit dem Signalzustand "1" an RESET einen laufenden Auftrag abbrechen und den FB in den Grundzustand zurückversetzen. Bitte beachten Sie, dass hierbei die Daten, die der CP bereits erhalten hat, noch an den Kommunikationspartner gesendet werden.
- Steht statisch der Signalzustand "1" am Eingang RESET an, so ist das Senden ausgeschaltet.

ADDR IN

Eingangs-Peripherieadresse:

- Dieser Parameter ist nur bei Einsatz in CPUs von Yaskawa bzw. S7-300 CPUs von Siemens verfügbar.
- Mit ADDR_IN geben Sie die Eingangs-Adresse des anzusprechenden CP an. Dies ist die Adresse, die Sie über die Hardware-Konfiguration für den CP vergeben haben.

ADDR_OUT

Ausgangs-Peripherieadresse:

- Dieser Parameter ist nur bei Einsatz in CPUs von Yaskawa bzw. S7-300 CPUs von Siemens verfügbar.
- Mit ADDR_OUT geben Sie die Ausgangs-Adresse des anzusprechenden CP an. Dies ist die Adresse, die Sie über die Hardware-Konfiguration für den CP vergeben haben.

HW_ID

HW-Kennung:

- Dieser Parameter ist nur bei Einsatz in S7-1500 CPUs von Siemens verfügbar.
- Geben Sie unter HW_ID die HW-Kennung an, mit deren Hilfe Ihr Modul entsprechend adressiert werden kann. → "HW-Kennung HW_ID"...Seite 64

DB_NO_SEND

Datenbaustein-Nummer SEND:

- Nummer des Datenbausteins, der die zu sendenden Daten beinhaltet.
- Null ist nicht erlaubt.

DBB_NO_SEND

Datenbyte-Nummer SEND:

Nummer des Datenbytes im Datenbaustein, ab dem die Sendedaten abgelegt sind.

LEN_SEND

Länge SEND:

- Länge der Nutzdaten, welche zu übertragen sind.
- Es gilt: 1 ≤ *LEN_SEND* ≤ 1024.

DB_NO_RECV

Datenbaustein-Nummer RECV:

- Nummer des Empfang-DBs.
- Null ist nicht erlaubt.

DBB_NO_RECV

Datenbyte-Nummer RECV:

Nummer des Datenbytes im Datenbaustein, ab dem die Empfangsdaten abgelegt sind.

IO_SIZE

Größe E/A-Bereich:

- Geben Sie hier die Größe des E/A-Bereichs an. Abhängig vom übergeordneten System belegt der CP für Ein- und Ausgabe jeweils folgende Anzahl an Bytes im Adress-Bereich:
 - SLIO CPU: 8Byte, 20Byte oder 60Byte wählbar
 - PROFIBUS: 8Byte, 20Byte oder 60Byte wählbar
 - PROFINET: 20Byte oder 60Byte wählbar

CANopen: 8ByteEtherCAT: 60ByteDeviceNET: 60ByteModbusTCP: 60Byte

DONE_SEND

Sende-Auftrag fertig ohne Fehler, Daten gesendet. Parameter STATUS_SEND = 0000h.

ERROR_SEND

ERROR_SEND wird gesetzt bei Auftrag fertig mit Fehler. Hierbei enthält *STATUS_SEND* die entsprechende Fehlerinformation.

STATUS_SEND

Bei fehlerfreier Funktion ist *STATUS_SEND* 0000h oder 8181h. Im Fehlerfall finden Sie hier den entsprechenden Fehlercode. Solange *ERROR_SEND* gesetzt ist bleibt der Wert in *STATUS_SEND* bestehen. Folgende Statusmeldungen sind möglich:

STATUS	Beschreibung	
0000h	Kein Fehler vorhanden.	
0202h	IO_SIZE ist ungültig (IO_SIZE = 0 oder IO_SIZE > 60).	
0301h	DB ist ungültig.	
070Ah	Übertragung fehlgeschlagen, Partner antwortet nicht, oder hat den Auftrag negativ quittiert	
0517h	LEN ist ungültig (LEN = 0 oder LEN > 1024).	
8090h	HW_ID ist unbekannt.	
80A0h	Beim Zugriff auf die Peripherie wurde ein Zugriffsfehler erkannt.	
80A1h		
8181h	Auftrag läuft (Status und keine Fehlermeldung).	
8323h	Sende-DB vorhanden, aber zu kurz.	
833Ah	Sende-DB nicht lesbar (DB nicht vorhanden oder DB im optimierten Bausteinzugriff. → "Kein optimierter Bausteinzugriff"Seite 18)	

LEN_RCV

Länge Receive:

- Länge des empfangenen Telegramms in Byte.
- 1 ≤ LEN_RCV ≤ 1024

NDR_RCV

New data ready:

- Neu empfangene Daten stehen im Empfangs-DB zur Verfügung. NDR_RCV bleibt für einen Zyklus stehen.
- Daten ohne Fehler empfangen: Parameter STATUS RCV = 0000h.

ERROR_RCV

ERROR_RCV wird gesetzt bei Auftrag fertig mit Fehler. Hierbei enthält *STATUS_REC* die entsprechende Fehlerinformation.

STATUS_RCV

Bei fehlerfreier Funktion ist *STATUS_RCV* 0000h oder 8181h. Im Fehlerfall finden Sie hier den entsprechenden Fehlercode. Solange *ERROR_RCV* gesetzt ist bleibt der Wert in *STATUS_RCV* bestehen. Folgende Statusmeldungen sind möglich:

STATUS	Beschreibung
0000h	Kein Fehler vorhanden.
0202h	IO_SIZE ist ungültig (IO_SIZE = 0 oder IO_SIZE > 60).
0301h	DB ist ungültig.
070Ah	Übertragung fehlgeschlagen, Partner antwortet nicht, oder hat den Auftrag negativ quittiert.
080Ah	Ein freier Empfangspuffer ist nicht vorhanden.
080Ch	Fehlerhaftes Zeichen empfangen
	(Zeichenrahmen- oder Paritätsfehler)
8090h	HW_ID ist unbekannt.
80A0h	Beim Zugriff auf die Peripherie wurde ein Zugriffsfehler erkannt.

CP240 > FC 0 - SEND ASCII STX 3964 - Senden an CP 240

STATUS	Beschreibung
80A1h	
8181h	Auftrag läuft (Status und keine Fehlermeldung).
8323h	Empfangs-DB vorhanden, aber zu kurz.
833Ah	Empfangs-DB nicht beschreibbar (DB nicht vorhanden oder DB im optimierten Bausteinzugriff). <i>→ "Kein optimierter Bausteinzugriff"Seite 18</i>

Fehleranzeige

- Der Ausgang *DONE_SEND* zeigt "Auftragsende ohne Fehler" an.
- Der Ausgang NDR_RCV zeigt "Auftragsempfang ohne Fehler" an.
- Bei ERROR_SEND oder ERROR_RCV wird die entsprechende Ereignisnummer in STATUS_SEND oder STATUS_RCV angezeigt. Ist kein Fehler aufgetreten, hat STATUS_SEND und STATUS_RCV den Wert 0000h.
- DONE_SEND, NDR_RCV, ERROR_SEND, ERROR_RCV und STATUS_SEND, STATUS_RCV werden auch bei RESET des FBs ausgegeben. Bei einem aufgetretenen Fehler wird das Binärergebnis BIE zurückgesetzt. Wird der Baustein ohne Fehler beendet, hat BIE den Zustand "1".
- Bitte beachten Sie, dass die Parameter DONE_SEND, NDR_RCV, ERROR_SEND, ERROR_RCV und STATUS_SEND, STATUS_RCV immer nur für einen Bausteinaufruf verfügbar sind. Zur weiteren Auswertung sollten Sie diese in einen freien Datenbereich kopieren.

10.3 CP240

10.3.1 FC 0 - SEND ASCII STX 3964 - Senden an CP 240

Beschreibung

Dieser FC dient zur Datenausgabe von der CPU an den CP 240. Hierbei legen Sie über die Bezeichner *_DB*, *ABD* und *ANZ* den Sendebereich fest. Über das Bit *FRG* wird der Sendeanstoß gesetzt und die Daten werden gesendet. Nach dem Übertragen der Daten setzt der Hantierungsbaustein das Bit *FRG* wieder zurück.

Parameter

Name	Deklaration	Тур	Beschreibung
ADR	IN	INT	Peripherieadresse
_DB	IN	BLOCK_DB / DB_ANY	 _DB-Nummer vom <i>Typ</i> BLOCK_DB mit den Sendedaten bei Einsatz in CPUs von Yaskawa bzw. in S7-300 CPUs von Siemens. Zeiger vom <i>Typ</i> DB_ANY auf den DB mit den Sendedaten bei Einsatz in S7-1500 CPUs von Siemens.
ABD	IN	WORD	Nummer des 1. Datenworts.
ANZ	IN	WORD	Anzahl der Bytes.
PAFE	OUT / IN_OUT	ВҮТЕ	 PAFE (0 = OK) Parametrierfehler Code vom <i>Typ</i> BYTE als OUT-Parameter bei Einsatz in CPUs von Yaskawa bzw. in S7-300 CPUs von Siemens. Parametrierfehler Code vom <i>Typ</i> BYTE als IN_OUT-Parameter bei Einsatz in S7-1500 CPUs von Siemens.

CP240 > FC 1 - RECEIVE ASCII STX 3964 - Empfangen von CP 240

Name	Deklaration	Тур	Beschreibung
FRG	IN_OUT	BOOL	Auftrag anstoßen.
GESE	IN_OUT	WORD	Wird intern verwendet.
ANZ_INT	IN_OUT	WORD	Wird intern verwendet.
ENDE_KOM	IN_OUT	BOOL	Wird intern verwendet.
LETZTER_BLOCK	IN_OUT	BOOL	Wird intern verwendet.
SENDEN_LAEUFT	IN_OUT	BOOL	Status der Funktion.
FEHLER_KOM	IN_OUT	BOOL	Wird intern verwendet.

ADR

Peripherieadresse unter welcher der CP 240 anzusprechen ist. Über die Hardware-Konfiguration bestimmen Sie die Peripherieadresse.

_DB

- Nummer vom Typ BLOCK_DB des Datenbausteins, welcher die Sendedaten für den CP beinhaltet, bei Einsatz in CPUs von Yaskawa bzw. in S7-300 CPUs von Siemens.
- Zeiger vom Typ DB_ANY auf den Datenbaustein, welcher die Sendedaten für den CP beinhaltet, bei Einsatz in S7-1500 CPUs von Siemens.

ABD

Wortvariable, welche die Nummer des Datenworts enthält, ab dem die auszugebenden Zeichen abgelegt sind.

ANZ

Anzahl der Bytes, die zu übertragen sind.

PAFE

Alle Bits dieses Merker-Bytes sind bei richtiger Funktion "0". Bei Fehlfunktion wird ein Fehlercode eingetragen. Die Fehlerangabe ist selbstquittierend, d.h. nach Beseitigung der Fehlerursache wird das Byte wieder auf "0" gesetzt. Folgende Fehler sind möglich:

- 1 = Datenbaustein nicht vorhanden
- 2 = Datenbaustein zu kurz
- 3 = Datenbausteinnummer nicht im gültigen Bereich

FRG Sendefreigabe

Bei FRG = "1" werden die über _DB, ADB und ANZ definieren Daten einmalig an den über ADR adressierten CP übertragen. Nach der Übertragung wird FRG wieder zurückgesetzt. Ist beim Aufruf FRG = "0", wird der Baustein sofort wieder verlassen!

GESE, ANZ_INT, ENDE_KOM, LETZTER_BLOCK, SENDEN_LAEUFT, FEHLER_KOM Diese Parameter werden intern verwendet. Sie dienen dem Informationsaustausch zwischen den Hantierungsbausteinen. Für den Einsatz des SYNCHRON_RESET (FC9) sind die Steuerbits FRG, ENDE_KOM, LETZTER _BLOCK, SENDEN_LAEUFT und FEHLER_KOM immer in einem Merker-Byte abzulegen.

10.3.2 FC 1 - RECEIVE_ASCII_STX_3964 - Empfangen von CP 240

Beschreibung

Dieser FC dient zum Datenempfang vom CP 240. Hierbei legen Sie über die Bezeichner _DB und ABD den Empfangsbereich fest. Ist der Ausgang EMFR gesetzt, so ist ein neues Telegramm komplett eingelesen worden. Die Länge des eingelesenen Telegramms wird in ANZ abgelegt. Nach der Auswertung des Telegramms ist dieses Bit vom Anwender zurückzusetzen, da ansonsten kein weiteres Telegramm in der CPU übernommen werden kann.

CP240 > FC 1 - RECEIVE ASCII STX 3964 - Empfangen von CP 240

Parameter

Name	Deklaration	Тур	Beschreibung
ADR	IN	INT	Peripherieadresse
_DB	IN	BLOCK_DB /	_DB
		DB_ANY	■ DB-Nummer vom <i>Typ</i> BLOCK_DB mit den Empfangsdaten bei Einsatz in CPUs von Yaskawa bzw. in S7-300 CPUs von Siemens.
			Zeiger vom Typ DB_ANY auf den DB mit den Empfangsdaten bei Einsatz in S7-1500 CPUs von Siemens.
ABD	IN	WORD	Nummer des 1. Datenworts.
ANZ	OUT /	WORD	ANZ
	IN_OUT		Anzahl der empfangenen Bytes vom Typ WORD als OUT-Parameter bei Einsatz in CPUs von Yaskawa bzw. in S7-300 CPUs von Siemens.
			 Anzahl der empfangenen Bytes vom Typ WORD als IN_OUT-Parameter bei Einsatz in S7-1500 CPUs von Siemens.
PAFE	OUT /	BYTE	PAFE (0 = OK)
	IN_OUT		Parametrierfehler Code vom Typ BYTE als OUT- Parameter bei Einsatz in CPUs von Yaskawa bzw. in S7-300 CPUs von Siemens.
			 Parametrierfehler Code vom Typ BYTE als IN_OUT-Parameter bei Einsatz in S7-1500 CPUs von Siemens.
EMFR	IN_OUT	BOOL	Empfangsbestätigung
GEEM	IN_OUT	WORD	Wird intern verwendet.
ANZ_INT	IN_OUT	WORD	Wird intern verwendet.
EMPF_LAEUFT	IN_OUT	BOOL	Status der Funktion.
LETZTER_BLOCK	IN_OUT	BOOL	Wird intern verwendet.
FEHLER_EMPF	IN_OUT	BOOL	Wird intern verwendet.
OFFSET	IN_OUT	WORD	Wird intern verwendet.

ADR

Peripherieadresse unter welcher der CP 240 anzusprechen ist. Über die Hardware-Konfiguration bestimmen Sie die Peripherieadresse.

_DB

- Nummer vom *Typ* BLOCK_DB des Datenbausteins, welcher die Empfangsdaten des CP beinhaltet, bei Einsatz in CPUs von Yaskawa bzw. in S7-300 CPUs von Siemens.
- Zeiger vom Typ DB_ANY auf den Datenbaustein, welcher die Empfangsdaten des CP beinhaltet, bei Einsatz in S7-1500 CPUs von Siemens.

ABD

Wortvariable, welche die Nummer des Datenworts enthält, ab dem die auszugebenden Zeichen abgelegt sind.

ANZ

Wort-Variable, welche die Anzahl der Bytes enthält, die empfangen wurden.

CP240 > FC 8 - STEUERBIT - Modemfunktionalität CP 240

PAFE

Alle Bits dieses Merker-Bytes sind bei richtiger Funktion "0". Bei Fehlfunktion wird ein Fehlercode eingetragen. Die Fehlerangabe ist selbstquittierend, d.h. nach Beseitigung der Fehlerursache wird das Byte wieder auf "0" gesetzt. Folgende Fehler sind möglich:

- 1 = Datenbaustein nicht vorhanden
- 2 = Datenbaustein zu kurz
- 3 = Datenbausteinnummer nicht im gültigen Bereich

EMFR

Durch Setzen des *EMFR* zeigt der Hantierungsbaustein an, dass Daten empfangen wurden. Erst durch Rücksetzen von *EMFR* im Anwenderprogramm können weitere Daten empfangen werden.

GEEM, ANZ_INT, LETZTER_BLOCK, EMPF_LAEUFT, FEHLER_EMPF, OFFSET Diese Parameter werden intern verwendet. Sie dienen dem Informationsaustausch zwischen den Hantierungsbausteinen. Für den Einsatz des SYNCHRON_RESET (FC9) sind die Steuerbits EMFR, LETZTER_BLOCK, EMPF_LAEUFT und FEHLER_EMPF immer in einem Merker-Byte abzulegen.

10.3.3 FC 8 - STEUERBIT - Modemfunktionalität CP 240

Beschreibung

Mit diesem Baustein haben Sie folgenden Zugriff auf die seriellen Modemleitungen:

Lesen:	DTR, RTS, DSR, RI, CTS, CD
Schreiben:	DTR, RTS

Parameter

Name	Deklaration	Тур	Beschreibung
ADR	IN	INT	Peripherieadresse
RTS	IN	BOOL	Neuer Zustand RTS
DTR	IN	BOOL	Neuer Zustand DTR
MASKE_RTS	IN	BOOL	0: nichts ändern1: Zustand an RTS übergeben
MASKE_DTR	IN	BOOL	0: nichts ändern1: Zustand an DTR übergeben
RET_VAL	OUT	WORD	Rückgabewert (0 = OK)
STATUS	OUT / IN_OUT	ВҮТЕ	 STATUS Status vom <i>Typ</i> BYTE als OUT-Parameter bei Einsatz in CPUs von Yaskawa bzw. in S7-300 CPUs von Siemens. Status vom <i>Typ</i> BYTE als IN_OUT-Parameter bei Einsatz in S7-1500 CPUs von Siemens.
DELTA_STATUS	OUT / IN_OUT	ВҮТЕ	 DELTA_STATUS Statusänderungen seit dem letzten Zugriff vom Typ BYTE als OUT-Parameter bei Einsatz in CPUs von Yaskawa bzw. in S7-300 CPUs von Siemens. Statusänderungen seit dem letzten Zugriff vom Typ BYTE als IN_OUT-Parameter bei Einsatz in S7-1500 CPUs von Siemens.
START	IN_OUT	BOOL	Auftrag anstoßen

CP240 > FC 9 - SYNCHRON RESET - Synchronisation CPU und CP 240

Name	Deklaration	Тур	Beschreibung
AUFTRAG_LAEUFT	IN_OUT	BOOL	Status der Funktion

Dieser Baustein darf nicht aufgerufen werden, solange ein Sendeauftrag läuft, ansonsten kann dies zu Datenverlust führen.

ADR Peripherieadresse unter welcher der CP 240 anzusprechen ist. Über die Hardware-Konfi-

guration bestimmen Sie die Peripherieadresse.

RTS, DTR Mit diesem Parameter geben Sie den Status für RTS bzw. DTR vor, den Sie über

MASK_RTS bzw. MASK_DTR aktivieren können.

MASK_RTS, MASK_DTR Hier wird mit 1 der Status des entsprechenden Parameters übernommen, sobald Sie

START auf 1 setzen.

RET_VAL Dieser Parameter liefert zur Zeit immer 00h zurück und dient zukünftigen Fehlermel-

dungen.

STATUS, DELTA_STATUS STATUS liefert den aktuellen Status der Modem-Leitungen zurück. DELTA_STATUS lie-

fert den Status der Modem-Leitungen zurück, die sich seit dem letzten Zugriff geändert

haben. Die Bytes haben folgenden Aufbau:

Bit-Nr.	7	6	5	4	3	2	1	0
STATUS	х	х	RTS	DTR	CD	RI	DSR	CTS
DELTA_STATUS	X	Х	Х	Х	CD	RI	DSR	CTS

START Durch Setzen von START wird der über die Maske aktivierte Status übernommen.

AUFTRAG_LAEUFT Solange die Funktion abgearbeitet wird, bleibt dieses Bit gesetzt.

10.3.4 FC 9 - SYNCHRON RESET - Synchronisation CPU und CP 240

Beschreibung

Der Baustein ist im zyklischen Programmteil aufzurufen. Mit dieser Funktion wird die Anlaufkennung des CP 240 quittiert, und so die Synchronisation zwischen CPU und CP hergestellt. Weiterhin kann bei einer Kommunikationsunterbrechung der CP rückgesetzt werden und so ein synchroner Anlauf erfolgen.

Eine Kommunikation mit SEND- und RECEIVE-Bausteinen ist nur möglich, wenn zuvor im Anlauf-OB der Parameter ANL des SYNCHRON-Bausteins gesetzt wurde.

CP240 > FC 9 - SYNCHRON RESET - Synchronisation CPU und CP 240

Parameter

Name	Deklaration	Тур	Beschreibung
ADR	IN	INT	Peripherieadresse
TIMER_NR	IN	TIMER	Timer
ANL	IN_OUT	BOOL	CPU-Neustart erfolgt
ZERO	IN_OUT	BOOL	wird intern verwendet
RESET	IN_OUT	BOOL	Reset an CP
TIME_AN	IN_OUT	BOOL	wird intern verwendet
STEUERB_S	IN_OUT	BYTE	wird intern verwendet
STEUERB_R	IN_OUT	BYTE	wird intern verwendet

ADR Peripherieadresse unter der CP 240 anzusprechen ist. Über die Hardware-Konfigura-

tion bestimmen Sie die Peripherieadresse.

TIMER_NR Timer für die Wartezeit.

ANL Mit *ANL* = 1 wird dem Hantierungsbaustein mitgeteilt, dass an der CPU STOP/START

bzw. NETZ-AUS/NETZ-EIN erfolgt ist und nun eine Synchronisation erfolgen muss. Nach

der Synchronisation wird ANL automatisch zurückgesetzt.

ZERO Parameter wird intern verwendet.

RESET Mit *RESET* = 1 können Sie den CP aus Ihrem Anwenderprogramm zurücksetzen.

TIME_AN Parameter wird intern verwendet.

STEUERB_S Hier ist das Merkerbyte anzugeben, in dem die Steuerbits FRG, ENDE_KOM,

LETZTER BLOCK, SENDEN LAEUFT und FEHLER KOM für den SEND-FC abgelegt

sind.

STEUERB_R Hier ist das Merkerbyte anzugeben, in dem die Steuerbits EMFR, LETZTER_BLOCK,

EMPF_LAEUFT und FEHLER_EMPF für den RECEIVE-FC abgelegt sind.

CP240 > FC 11 - ASCII FRAGMENT - Fragment Datenempfang CP 240

10.3.5 FC 11 - ASCII FRAGMENT - Fragment Datenempfang CP 240

Beschreibung

Bitte beachten Sie, dass dieser Baustein ausschließlich für den Einsatz in CPUs von Yaskawa bzw. in S7-300 CPUs von Siemens geeignet ist!

Dieser FC dient zum fragmentierten ASCII-Datenempfang. Hiermit haben Sie die Möglichkeit große Telegramme in 12Byte-Blöcken direkt nach dem Erhalt an die CPU weiterzureichen. Hierbei wartet der CP nicht, bis das komplette Telegramm empfangen wurde. Der Einsatz des FC 11 setzt voraus, dass Sie beim Empfänger "ASCII-fragmentiert" parametriert haben. Im FC 11 legen Sie über die Bezeichner *_DB* und *ABD* den Empfangsbereich fest. Ist der Ausgang *EMFR* gesetzt, so ist ein neues Telegramm komplett eingelesen worden. Die Länge des eingelesenen Telegramms wird in *ANZ* abgelegt. Nach der Auswertung des Telegramms ist dieses Bit vom Anwender zurückzusetzen, da ansonsten kein weiteres Telegramm in der CPU übernommen werden kann.

Parameter

Name	Deklaration	Тур	Beschreibung
ADR	IN	INT	Peripherieadresse
_DB	IN	BLOCK_DB	DB-Nummer mit den Empfangsdaten
ABD	IN	WORD	Nummer des 1. Datenworts
ANZ	OUT	WORD	Anzahl der empfangenen Bytes
EMFR	IN_OUT	BOOL	Empfangsbestätigung
GEEM	IN_OUT	WORD	wird intern verwendet
ANZ_INT	IN_OUT	WORD	wird intern verwendet
EMPF_LAEUFT	IN_OUT	BOOL	wird intern verwendet
LETZTER_BLOCK	IN_OUT	BOOL	wird intern verwendet
FEHLER_EMPF	IN_OUT	BOOL	wird intern verwendet
PAFE	OUT	BYTE	Parametrierfehler (0 = OK)

ADR	Peripherieadresse unter welcher der CP 240 anzusprechen ist. Über die Hardware-Konfiguration bestimmen Sie die Peripherieadresse.
_DB	Nummer des Datenbausteins, der die empfangenen Daten beinhaltet.
ABD	Wortvariable, welche die Nummer des Datenworts enthält, ab dem die empfangenen Zeichen abgelegt sind.
ANZ	Wort-Variable, die die Anzahl der Bytes enthält, die empfangen wurden.
EMFR	Durch Setzen des <i>EMFR</i> zeigt der Hantierungsbaustein an, dass Daten empfangen wurden. Erst durch Rücksetzen von <i>EMFR</i> im Anwenderprogramm können weitere Daten

empfangen werden.

CP240 > FC 11 - ASCII FRAGMENT - Fragment Datenempfang CP 240

PAFE

Alle Bits dieses Merker-Bytes sind bei richtiger Funktion "0". Bei Fehlfunktion wird ein Fehlercode eingetragen. Die Fehlerangabe ist selbstquittierend, d.h. nach Beseitigung der Fehlerursache wird das Byte wieder "0" gesetzt. Folgende Fehler sind möglich:

- 1 = Datenbaustein nicht vorhanden
- 2 = Datenbaustein zu kurz
- 3 = Datenbausteinnummer nicht im gültigen Bereich

GEEM, ANZ_INT, LETZTER_BLOCK, EMPF_LAEUFT, FEHLER_EMPF Diese Parameter werden intern verwendet. Sie dienen dem Informationsaustausch zwischen den Hantierungsbausteinen. Für den Einsatz des SYNCHRON_RESET sind die Steuerbits LETZTER_BLOCK, EMPF_LAEUFT und FEHLER_EMPF immer in einem Merker-Byte abzulegen.

SDO-Kommunikation - "SDO Communication" > FB 52 - SDO READ - Lesezugriff auf Objektverzeichnis

11 EtherCAT-Kommunikation - "EtherCAT Communication"

Baustein-Bibliothek
"EtherCAT Communication"

Die Baustein-Bibliothek finden Sie im "Download Center" auf www.yaskawa.eu.com unter "Controls Library" als "Baustein-Bibliothek EtherCAT Communication - SW90HS0MA" zum Download. Die Bibliothek liegt als gepackte zip-Dateien vor. Sobald Sie die Bausteine verwenden möchten, müssen Sie diese in Ihr Projekt importieren. → "Controls Library einbinden"...Seite 68

11.1 SDO-Kommunikation - "SDO Communication"

11.1.1 FB 52 - SDO READ - Lesezugriff auf Objektverzeichnis

Beschreibung

Mit diesem Baustein können Sie auf das Objektverzeichnis von EtherCAT-Slave-Stationen und EtherCAT-Master lesend zugreifen. Hierbei handelt es sich um einen asynchron arbeitenden Baustein, d.h. die Bearbeitung erstreckt sich über mehrere Baustein-Aufrufe. Sie starten den SDO-Auftrag, indem Sie den FB 52 mit REQ = 1 aufrufen. Über den Ausgangsparameter BUSY und den Ausgangsparameter RETVAL wird der Zustand des Auftrags angezeigt. Die Datensatzübertragung ist abgeschlossen, wenn der Ausgangsparameter BUSY den Wert FALSE angenommen hat.

Die Fehlerbehandlung erfolgt über die Parameter ERROR, ERROR_ID und RETVAL

→ "RET_VAL und BUSY bei asynchron arbeitenden Bausteinen"...Seite 65.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
REQ	IN	BOOL	REQ = 1:
			Aktiviert den SDO-Zugriff bei steigender Flanke.
ID	IN	WORD	Logische Basisadresse der EtherCAT-Slave-Station bzw. des Masters in der Hardwarekonfiguration.
			Bei einer Ausgabebaugruppe muss Bit 15 gesetzt werden (Bsp. für Adresse 5: ID:=DW#16#8005). Bei einer Mischbaugruppe ist die kleinere der beiden Adressen anzugeben.
INDEX	IN	WORD	Index des Objekts für den SDO-Zugriff.
SUBINDEX	IN	BYTE	Subindex des Objekts für den SDO-Zugriff.
COMPL_ACCESS	IN	BOOL	Mit diesem Parameter wird bestimmt, ob nur ein einzelner Subindex oder das gesamte Objekt gelesen werden soll.
MLEN	IN	INT	Maximale Länge der zu lesenden Daten.
VALID	OUT	BOOL	Gibt an, ob ein neuer Datensatz empfangen wurde und gültig ist.
BUSY	OUT	BOOL	Dieser Parameter gibt den Bearbeitungsstatus des SDO-Zugriffs an.
			BUSY = 1: SDO-Zugriff ist noch in Bearbeitung.
ERROR	OUT	BOOL	ERROR = 1: Beim Lesevorgang trat ein Fehler auf.
RETVAL	OUT	INT	Rückgabewert (0 = OK)
ERROR_ID	OUT	DWORD	Busspezifischer Fehlercode. Ist während der Bearbeitung des SDO-Zugriffs ein Fehler aufgetreten, so ist in diesem Parameter der SDO-Abort-Fehlercode (EtherCAT-Fehlercode) angegeben.
LEN	OUT	INT	Länge der gelesenen Daten.
RECORD	INOUT	ANY	Bereich für die gelesenen Daten.

SDO-Kommunikation - "SDO Communication" > FB 52 - SDO READ - Lesezugriff auf Objektverzeichnis

Bitte beachten Sie, dass die an RECORD übergebenen Daten nicht in einem temporären Bereich liegen.

Besonderheiten bei COMPL_ACCESS (CompleteAccess)

Bei Aktivierung des Parameters COMPL_ACCESS ist folgendes zu beachten:

- Bei COMPL_ACCESS = true darf der SUBINDEX nur 0 oder 1 betragen! Ansonsten bekommen Sie eine Fehlermeldung.
- Bei COMPL_ACCESS = true werden für SUBINDEX 0 2 Byte ausgelesen, da SUB-INDEX 1 einen Offset von 2 Byte besitzt.

RETVAL (Rückgabewert)

Zusätzlich zu den hier aufgeführten modulspezifischen Fehlercodes sind auch noch die allgemeingültigen Fehlercodes für FC/SFCs als Rückgabewert möglich.

"Allgemeine und spezifische Fehlercodes RET VAL"...Seite 65

RETVAL	Beschreibung	Fehlercode in
		ERROR_ID
0x7000	Erstaufruf mit REQ = 0, Auftrag wurde nicht angestoßen.	nein
0x7001	Erstaufruf mit REQ = 1, Auftrag wurde angestoßen, Baustein ist bereit für Datentransfer.	ja
0x7002	Zwischenaufruf: Auftrag ist in Bearbeitung.	nein
0x8090	E/A-Adressbereich unterscheidet sich von E/A-Adressbereich im SPEED7 EtherCAT Manager	ja
0x80A0	Negative Quittung beim Lesen von der Baugruppe.	ja
0x80A1	Negative Quittung beim Schreiben zur Baugruppe.	ja
0x80A3	Allgemeiner Protokollfehler.	ja
0x80A5	Interner Fehler.	Wert = 0: nein
		Wert <> 0: ja
0x80A7	Baugruppe beschäftigt (Timeout).	ja
0x80A9	Funktion wird von der Baugruppe nicht unterstützt.	ja
0x80AA	Baugruppe meldet einen herstellerspezifischen Fehler seiner Anwendung.	ja
0x80B0	Baugruppe kennt den Datensatz / das Objekt nicht.	ja
0x80B4	Baugruppe meldet einen Zugriff auf einen unzulässigen Bereich.	ja
0x80B5	Baugruppe ist nicht bereit.	ja
0x80B6	Baugruppe verweigert den Zugriff.	ja
0x80B7	Baugruppe meldet einen unzulässigen Bereich eines Parameters oder eines Wertes.	ja
0x80B8	Baugruppe meldet einen unzulässigen Parameter.	ja
0x80B9	Baugruppe meldet einen unzulässigen Typ:	ja
	Puffer zu klein (Lesen von Teilmengen ist nicht möglich).	
0x80C2	Die Baugruppe bearbeitet momentan das mögliche Maximum an Aufträgen für eine CPU.	ja

SDO-Kommunikation - "SDO Communication" > FB 52 - SDO_READ - Lesezugriff auf Objektverzeichnis

RETVAL	Beschreibung	Fehlercode in
		ERROR_ID
0x80C3	Die benötigten Betriebsmittel sind momentan belegt.	nein
0x80C4	Interner temporärer Fehler: Auftrag konnte nicht ausgeführt werden.	ja
0x80C5	Baugruppe nicht verfügbar.	ja
0x80D2	Fehler beim Lesen eines SDO aufgrund falscher Aufruf-Parameter.	ja

ERROR_ID

Bei einem *RETVAL* finden Sie nähere Informationen in der *ERROR_ID* sofern verfügbar. Ansonsten ist *ERROR_ID* 0.

Interner Fehler	Beschreibung
0x00000000	No error
0x98110001	Feature not supported
0x98110002	Invalid Index
0x98110003	Invalid Offset
0x98110005	Invalid Size
0x98110006	Invalid Data
0x98110007	Not ready
0x98110008	Busy
0x9811000A	No Memory left
0x9811000B	Invalid Parameter
0x9811000C	Not Found
0x9811000E	Invalid state
0x98110010	Timeout
0x98110011	Open Failed
0x98110012	Send Failed
0x98110014	Invalid Command
0x98110015	Unknown Mailbox Protocol Command
0x98110016	Access Denied
0x98110024	Slave error
0x9811002D	Ethernet link cable disconnected
0x98110031	No mailbox support

CoE-Fehlerwerte	Beschreibung	CoE slave abort code
0x98110040	SDO: Toggle bit not alternated	0x05030000
0x98110041	SDO protocol timed out	0x05040000
0x98110042	SDO: Client/server command specifier not valid or unknown	0x05040001
0x98110043	SDO: Invalid block size (block mode only)	0x05040002
0x98110044	SDO: Invalid sequence number (block mode only)	0x05040003
0x98110045	SDO: CRC error (block mode only)	0x05040004

SDO-Kommunikation - "SDO Communication" > FB 52 - SDO_READ - Lesezugriff auf Objektverzeichnis

CoE-Fehlerwerte	Beschreibung	CoE slave abort code
0x98110046	SDO: Out of memory	0x05040005
0x98110047	SDO: Unsupported access to an object	0x06010000
0x98110048	SDO: Attempt to read a write only object	0x06010001
0x98110049	SDO: Attempt to write a read only object	0x06010002
0x9811004A	SDO: Object does not exist in the object dictionary	0x06020000
0x9811004B	SDO: Object cannot be mapped to the PDO	0x06040041
0x9811004C	SDO: The number and length of the objects to be mapped would exceed PDO length	0x06040042
0x9811004D	SDO: General parameter incompatibility reason	0x06040043
0x9811004E	SDO: General internal incompatibility in the device	0x06040047
0x9811004F	SDO: Access failed due to an hardware error	0x06060000
0x98110050	SDO: Data type does not match, length of service parameter does not match	0x06070010
0x98110051	SDO: Data type does not match, length of service parameter too high	0x06070012
0x98110052	SDO: Data type does not match, length of service parameter too low	0x06070013
0x98110053	SDO: Sub-index does not exist	0x06090011
0x98110054	SDO: Value range of parameter exceeded (only for write access)	0x06090030
0x98110055	SDO: Value of parameter written too high	0x06090031
0x98110056	SDO: Value of parameter written too low	0x06090032
0x98110057	SDO: Maximum value is less than minimum value	0x06090036
0x98110058	SDO: General error	0x08000000
0x98110059	SDO: Data cannot be transferred or stored to the application	0x08000020
0x9811005A	SDO: Data cannot be transferred or stored to the application because of local control	0x08000021
0x9811005B	SDO: Data cannot be transferred or stored to the application because of the present device state	0x08000022
0x9811005C	SDO: Object dictionary dynamic generation fails or no object dictionary is present (e.g. object dictionary is generated from file and generation fails because of an file error)	0x08000023
0x9811005D	SDO: Unknown code	unknown
0x9811010E	Command not executed	Slave is not present at the bus

SDO-Kommunikation - "SDO Communication" > FB 53 - SDO WRITE - Schreibzugriff auf Objektverzeichnis

11.1.2 FB 53 - SDO WRITE - Schreibzugriff auf Objektverzeichnis

Beschreibung

Mit diesem Baustein können Sie auf das Objektverzeichnis von EtherCAT-Slave-Stationen und EtherCAT-Master schreibend zugreifen. Hierbei handelt es sich um einen asynchron arbeitenden Baustein, d.h. die Bearbeitung erstreckt sich über mehrere Baustein-Aufrufe. Sie starten den SDO-Auftrag, indem Sie den FB 53 mit REQ = 1 aufrufen. Über den Ausgangsparameter BUSY und den Ausgangsparameter RETVAL wird der Zustand des Auftrags angezeigt. Die Datensatzübertragung ist abgeschlossen, wenn der Ausgangsparameter BUSY den Wert FALSE angenommen hat.

Die Fehlerbehandlung erfolgt über die Parameter ERROR, ERROR_ID und RETVAL
→ "RET_VAL und BUSY bei asynchron arbeitenden Bausteinen"...Seite 65.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung	
REQ	IN	BOOL	REQ = 1:	
			Aktiviert den SDO-Zugriff bei steigender Flanke.	
ID	IN	WORD	Logische Basisadresse der EtherCAT-Slave-Station bzw. des Masters in der Hardwarekonfiguration.	
			Bei einer Ausgabebaugruppe muss Bit 15 gesetzt werden (Bsp. für Adresse 5: ID:=DW#16#8005). Bei einer Mischbaugruppe ist die kleinere der beiden Adressen anzugeben.	
INDEX	IN	WORD	Index des Objekts für den SDO-Zugriff.	
SUBINDEX	IN	BYTE	Subindex des Objekts für den SDO-Zugriff.	
COMPL_ACCESS	IN	BOOL	Mit diesem Parameter wird bestimmt, ob nur ein einzelner Subindex oder das gesamte Objekt geschrieben werden soll.	
LEN	IN	INT	Maximale Länge der zu schreibenden Daten.	
DONE	OUT	BOOL	Gibt an, ob ein neuer Datensatz übertragen wurde.	
BUSY	OUT	BOOL	Dieser Parameter gibt den Bearbeitungsstatus des SDO- Zugriffs an.	
			BUSY = 1: SDO-Zugriff ist noch in Bearbeitung.	
ERROR	OUT	BOOL	ERROR = 1: Beim Schreibvorgang trat ein Fehler auf.	
RETVAL	OUT	INT	Rückgabewert (0 = OK)	
ERROR_ID	OUT	DWORD	Busspezifischer Fehlercode. Ist während der Bearbeitung des SDO-Zugriffs ein Fehler aufgetreten, so ist in diesem Parameter der SDO-Abort-Fehlercode (EtherCAT-Fehlercode) angegeben.	
LEN	OUT	INT	Länge der zu schreibenden Daten.	
RECORD	INOUT	ANY	Bereich für die zu schreibenden Daten.	

ĭ

Bitte beachten Sie, dass die an RECORD übergebenen Daten nicht in einem temporären Bereich liegen.

SDO-Kommunikation - "SDO Communication" > FB 53 - SDO WRITE - Schreibzugriff auf Objektverzeichnis

Besonderheiten bei COMPL_ACCESS (CompleteAccess)

Bei Aktivierung des Parameters COMPL ACCESS ist folgendes zu beachten:

- Bei COMPL_ACCESS = true darf der SUBINDEX nur 0 oder 1 betragen! Ansonsten bekommen Sie eine Fehlermeldung.
- Bei COMPL_ACCESS = true werden für SUBINDEX 0 2 Byte geschrieben, da SUB-INDEX 1 einen Offset von 2 Byte besitzt.

RETVAL (Rückgabewert)

Zusätzlich zu den hier aufgeführten modulspezifischen Fehlercodes sind auch noch die allgemeingültigen Fehlercodes für FC/SFCs als Rückgabewert möglich. → "Allgemeine und spezifische Fehlercodes RET_VAL"... Seite 65

RETVAL	Beschreibung	Fehlercode in
		ERROR_ID
0x7000	Erstaufruf mit REQ = 0, Auftrag wurde nicht angestoßen.	nein
0x7001	Erstaufruf mit REQ = 1, Auftrag wurde angestoßen, Baustein ist bereit für Datentransfer.	ja
0x7002	Zwischenaufruf: Auftrag ist in Bearbeitung.	nein
0x80A0	Negative Quittung beim Lesen von der Baugruppe.	ja
0x80A1	Negative Quittung beim Schreiben zur Baugruppe.	ja
0x80A3	Allgemeiner Protokollfehler.	ja
0x80A5	Interner Fehler.	Wert = 0: nein
		Wert ≠ 0: ja
0x80A7	Baugruppe beschäftigt (Timeout).	ja
0x80A9	Funktion wird von der Baugruppe nicht unterstützt.	ja
0x80AA	Baugruppe meldet einen herstellerspezifischen Fehler seiner Anwendung.	ja
0x80B0	Baugruppe kennt den Datensatz / das Objekt nicht.	ja
0x80B4	Baugruppe meldet einen Zugriff auf einen unzulässigen Bereich.	ja
0x80B5	Baugruppe ist nicht bereit.	ja
0x80B6	Baugruppe verweigert den Zugriff.	ja
0x80B7	Baugruppe meldet einen unzulässigen Bereich eines Parameters oder eines Wertes.	ja
0x80B8	Baugruppe meldet einen unzulässigen Parameter.	ja
0x80B9	Baugruppe meldet einen unzulässigen Typ:	ja
	Puffer zu klein (Schreiben von Teilmengen ist nicht möglich).	
0x80C2	Die Baugrupe bearbeitet momentan das mögliche Maximum an Aufträgen für eine CPU.	ja
0x80C3	Die benötigten Betriebsmittel sind momentan belegt.	nein
0x80C4	Interner temporärer Fehler: Auftrag konnte nicht ausgeführt werden.	ja
0x80C5	Baugruppe nicht verfügbar.	ja
0x80D2	Fehler beim Lesen eines SDO aufgrund falscher Aufruf-Parameter.	ja

ERROR_ID

Bei einem *RETVAL* finden Sie nähere Informationen in der *ERROR_ID* sofern verfügbar. Ansonsten ist *ERROR_ID* 0.

SDO-Kommunikation - "SDO Communication" > FB 53 - SDO_WRITE - Schreibzugriff auf Objektverzeichnis

Interner Fehler	Beschreibung
0x00000000	No error
0x98110001	Feature not supported
0x98110002	Invalid Index
0x98110003	Invalid Offset
0x98110005	Invalid Size
0x98110006	Invalid Data
0x98110007	Not ready
0x98110008	Busy
0x9811000A	No Memory left
0x9811000B	Invalid Parameter
0x9811000C	Not Found
0x9811000E	Invalid state
0x98110010	Timeout
0x98110011	Open Failed
0x98110012	Send Failed
0x98110014	Invalid Command
0x98110015	Unknown Mailbox Protocol Command
0x98110016	Access Denied
0x98110024	Slave error
0x9811002D	Ethernet link cable disconnected
0x98110031	No mailbox support

CoE-Fehlerwerte	Beschreibung	CoE slave abort code
0x98110040	SDO: Toggle bit not alternated	0x05030000
0x98110041	SDO protocol timed out	0x05040000
0x98110042	SDO: Client/server command specifier not valid or unknown	0x05040001
0x98110043	SDO: Invalid block size (block mode only)	0x05040002
0x98110044	SDO: Invalid sequence number (block mode only)	0x05040003
0x98110045	SDO: CRC error (block mode only)	0x05040004
0x98110046	SDO: Out of memory	0x05040005
0x98110047	SDO: Unsupported access to an object	0x06010000
0x98110048	SDO: Attempt to read a write only object	0x06010001
0x98110049	SDO: Attempt to write a read only object	0x06010002
0x9811004A	SDO: Object does not exist in the object dictionary	0x06020000
0x9811004B	SDO: Object cannot be mapped to the PDO	0x06040041
0x9811004C	SDO: The number and length of the objects to be mapped would exceed PDO length	0x06040042
0x9811004D	SDO: General parameter incompatibility reason	0x06040043

SDO-Kommunikation - "SDO Communication" > FB 53 - SDO_WRITE - Schreibzugriff auf Objektverzeichnis

CoE-Fehlerwerte	Beschreibung	CoE slave abort code
0x9811004E	SDO: General internal incompatibility in the device	0x06040047
0x9811004F	SDO: Access failed due to an hardware error	0x06060000
0x98110050	SDO: Data type does not match, length of service parameter does not match	0x06070010
0x98110051	SDO: Data type does not match, length of service parameter too high	0x06070012
0x98110052	SDO: Data type does not match, length of service parameter too low	0x06070013
0x98110053	SDO: Sub-index does not exist	0x06090011
0x98110054	SDO: Value range of parameter exceeded (only for write access)	0x06090030
0x98110055	SDO: Value of parameter written too high	0x06090031
0x98110056	SDO: Value of parameter written too low	0x06090032
0x98110057	SDO: Maximum value is less than minimum value	0x06090036
0x98110058	SDO: General error	0x08000000
0x98110059	SDO: Data cannot be transferred or stored to the application	0x08000020
0x9811005A	SDO: Data cannot be transferred or stored to the application because of local control	0x08000021
0x9811005B	SDO: Data cannot be transferred or stored to the application because of the present device state	0x08000022
0x9811005C	SDO: Object dictionary dynamic generation fails or no object dictionary is present (e.g. object dictionary is generated from file and generation fails because of an file error)	0x08000023
0x9811005D	SDO: Unknown code	unknown
0x9811010E	Command not executed	Slave is not present at the bus

Frequenzmessung - "Frequency Measurement" > FC 300 - FM SET CONTROL - Control Frequenzmessung konsistent

12 Modulspezifisch - "Device Specific"

Baustein-Bibliothek "Device Specific"

Die Baustein-Bibliothek finden Sie im "Download Center" auf www.yaskawa.eu.com unter "Controls Library" als "Baustein-Bibliothek Device Specific - SW90LS0MA" zum Download. Die Bibliothek liegt als gepackte zip-Dateien vor. Sobald Sie die Bausteine verwenden möchten, müssen Sie diese in Ihr Projekt importieren. → "Controls Library einbinden"...Seite 68

12.1 Frequenzmessung - "Frequency Measurement"

12.1.1 FC 300 ... 303 - Frequenzmessung SLIO konsistent

Übersicht

Mit folgenden produktspezifischen Funktionen können Sie System SLIO Frequenzmess-Module ansteuern, welche über PROFIBUS, PROFINET oder EtherCAT angebunden sind. Der Einsatz unter EtherCAT ist ausschließlich mit einer EtherCAT-CPU von Yaskawa möglich. Von diesen Funktionen wird intern der SFC 14 - DPRD_DAT bzw. SFC 15 - DPWR_DAT für konsistentes Lesen bzw. Schreiben von Nutzdaten aufgerufen. Fehlermeldungen dieser Bausteine werden über den Parameter *ERROR* zurückgeliefert.

Baustein	Symbol	Kommentar
FC 300	FM_SET_CONTROL	Funktion zur Steuerung der Frequenzmessung mit integriertem konsistentem Zugriff.
FC 301	FM_GET_PERIOD	Funktion zur Berechnung der Periodendauer mit integriertem konsistentem Zugriff.
FC 302	FM_GET_FREQUENCY	Funktion zur Berechnung der Frequenz mit integriertem konsistentem Zugriff.
FC 303	FM_GET_SPEED	Funktion zur Berechnung der Drehzahl mit integriertem konsistentem Zugriff.

12.1.2 FC 300 - FM_SET_CONTROL - Control Frequenzmessung konsistent

Beschreibung

Mit dem FC 300 FM_SET_CONTROL können Sie das System SLIO Frequenzmess-Modul steuern. Von dieser Funktion wird intern der SFC 15 - DPWR_DAT für konsistentes Schreiben von Nutzdaten aufgerufen. Hierbei werden Fehlermeldungen des Bausteins über *ERROR* ausgegeben.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
ENABLE_FM	INPUT	BOOL	E, A, M, D, L	Freigabe Frequenzmessung
LADDR_OUT / HW_ID	INPUT	WORD / HW_IO	E, A, M, D, L	 LADDR_OUT Logische Basis-Ausgabeadresse des Frequenzmess-Moduls. Bei Einsatz in CPUs von Yaskawa bzw. in S7-300 CPUs von Siemens. HW_ID HW-Kennung zur Adressierung des Frequenzmess-Moduls. Bei Einsatz in S7-1500 CPUs von Siemens.
PRESET_CH0	INPUT	DINT	E, A, M, D, L	Kanal 0: Messperiode
PRESET_CH1	INPUT	DINT	E, A, M, D, L	Kanal 1: Messperiode

Frequenzmessung - "Frequency Measurement" > FC 300 - FM SET CONTROL - Control Frequenzmessung konsistent

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
DONE	OUTPUT	BOOL	E, A, M, D, L	Fertigmeldung (TRUE = OK)
ERROR	OUTPUT	WORD	E, A, M, D, L	Rückgabewert (0 = OK)

ENABLE_FM

Durch Setzen von *ENABLE_FM* werden die über *PRESET_CH0/1* vorgegebenen *Messperioden* an die Kanäle übergeben und bei beiden Kanälen die Messung gestartet. Durch Rücksetzen von *ENABLE_FM* werden beide Kanäle gestoppt.

Nur solange ENABLE_FM gesetzt ist, können ermittelte Werte vom Modul abgerufen werden. Ansonsten erhalten Sie die Fehlermeldung, dass die Kanäle deaktiviert sind.

LADDR_OUT

Peripherieadresse:

- Dieser Parameter ist bei Einsatz in CPUs von Yaskawa bzw. in S7-300 CPUs von Siemens verfügbar.
- Projektierte Anfangsadresse aus dem Ausgabebereich des System SLIO Frequenz-Messmoduls, in welchen geschrieben werden soll. Die Adresse wird hexadezimal angegeben.
- (Beispiel: Adresse 100: LADDR_OUT: = W#16#64)

HW_ID

HW-Kennung:

- Dieser Parameter ist nur bei Einsatz in S7-1500 CPUs von Siemens verfügbar.
- Geben Sie unter HW_ID die HW-Kennung an, mit deren Hilfe Ihr Modul entsprechend adressiert werden kann. → "HW-Kennung HW_ID"...Seite 64

PRESET_CHx

Geben Sie hier die Messperiode in µs für den entsprechenden Kanal an.

Wertebereich: 1µs ... 8 388 607µs

DONE

Fertigmeldung der Funktion

- TRUE: Funktion wurde ohne Fehler beendet.
- FALSE: Funktion nicht aktiv bzw. es ist ein Fehler aufgetreten.

Frequenzmessung - "Frequency Measurement" > FC 301 - FM_GET_PERIOD - Periodendauer berechnen konsistent

ERROR (Rückgabewert)

Folgende Codes können zurückgeliefert werden:

Code	Beschreibung
0x0000	Kein Fehler
0x80D2	Kanal 0:
	Eingangswert Messperiode ≤ 0
0x80D3	Kanal 1:
	Eingangswert Messperiode ≤ 0
0x80D4	Kanal 0:
	Eingangswert Messperiode > 8 388 607µs
0x80D5	Kanal 1:
	Eingangswert Messperiode > 8 388 607µs

Fehler des intern aufgerufenen SFC 15

Code	Beschreibung			
0x808x0	Systemfehler am Bus-Koppler			
0x8090	LADDR_OUT ist falsch, mögliche Gründe:			
	auf dieser Adresse ist kein Modul projektiert			
	 Einschränkung über die Länge der konsistenten Daten wurde nicht beachtet 			
	Anfangsadresse im Parameter LADDR_OUT wurde nicht hexadezimal angegeben			
0x8093	Für <i>LADDR_OUT</i> existiert kein Bus-Koppler, von dem Sie konsistente Daten lesen können.			
0x80A0	Beim Zugriff auf die Peripherie wurde ein Zugriffsfehler erkannt.			
0x80B0	Systemfehler am Bus-Koppler			
0x80B1	Angegebene Länge des Quellbereichs entspricht nicht der projektierten Nutzdatenlänge.			
0x80B2	Systemfehler am Bus-Koppler			
0x80B3	Systemfehler am Bus-Koppler			
0x80C1	Die Daten des auf der Baugruppe vorangegangenen Leseauftrags sind von der Baugruppe noch nicht bearbeitet.			
0x80C2	Systemfehler am Bus-Koppler			
0x80Fx	Systemfehler am Bus-Koppler			
0x85xy	Systemfehler am Bus-Koppler			
0x8xyy	Allgemeine Fehlerinformation			
	→ "Allgemeine und spezifische Fehlercodes RET_VAL"Seite 65			

12.1.3 FC 301 - FM_GET_PERIOD - Periodendauer berechnen konsistent

Beschreibung

Mit dem FC 301 FM_GET_PERIOD können Sie die Periodendauer der Eingangssignale beider Kanäle des System SLIO Frequenzmess-Moduls berechnen. Von dieser Funktion wird intern der SFC 14 - DPRD_DAT für konsistentes Lesen von Nutzdaten aufgerufen. Hierbei werden Fehlermeldungen des Bausteins über *ERROR* ausgegeben.

Frequenzmessung - "Frequency Measurement" > FC 301 - FM GET PERIOD - Periodendauer berechnen konsistent

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
LADDR_IN /	INPUT	WORD /	E, A, M, D, L	■ LADDR_IN
HW_ID		HW_IO		 Logische Basis-Eingabeadresse des Frequenzmess-Moduls.
				 Bei Einsatz in CPUs von Yaskawa bzw. in S7-300 CPUs von Sie- mens.
				HW_ID
				 HW-Kennung zur Adressierung des Frequenzmess-Moduls.
				 Bei Einsatz in S7-1500 CPUs von Siemens.
DONE	OUTPUT	BOOL	E, A, M, D, L	Fertigmeldung
				(TRUE = OK)
ERROR	OUTPUT	WORD	E, A, M, D, L	Rückgabewert
				(0 = OK)
PERIOD_CH0	OUTPUT	DINT	E, A, M, D, L	Kanal 0: Periodendauer
PERIOD_CH1	OUTPUT	DINT	E, A, M, D, L	Kanal 1: Periodendauer

LADDR_IN

Peripherieadresse:

- Dieser Parameter ist bei Einsatz in CPUs von Yaskawa bzw. in S7-300 CPUs von Siemens verfügbar.
- Projektierte Anfangsadresse aus dem Eingabebereich des System SLIO Frequenzmess-Moduls, aus welchem gelesen werden soll. Die Adresse wird hexadezimal angegeben.
- (Beispiel: Adresse 100: LADDR_IN: = W#16#64)

HW_ID

HW-Kennung:

- Dieser Parameter ist nur bei Einsatz in S7-1500 CPUs von Siemens verfügbar.
- Geben Sie unter *HW_ID* die *HW-Kennung* an, mit deren Hilfe Ihr Modul entsprechend adressiert werden kann. → "*HW-Kennung HW_ID*"...Seite 64

DONE

Fertigmeldung der Funktion

- TRUE: Funktion wurde ohne Fehler beendet.
- FALSE: Funktion nicht aktiv bzw. es ist ein Fehler aufgetreten.

PERIOD_CHx

Aktuell ermittelte Periodendauer des entsprechenden Kanals in 100ns.

Frequenzmessung - "Frequency Measurement" > FC 301 - FM_GET_PERIOD - Periodendauer berechnen konsistent

ERROR (Rückgabewert)

Folgende Codes können zurückgeliefert werden:

Code	Beschreibung
0x0000	Kein Fehler
0x80D0	Kanal 0 nicht im Status aktiv
0x80D1	Kanal 1 nicht im Status aktiv
0x80DC	Kanal 0: Gemessener Zeitwert < 0
0x80DD	Kanal 1: Gemessener Zeitwert < 0
0x80DE	Kanal 0: Gemessener Zeitwert > 0x7FFFFFF
0x80DF	Kanal 1: Gemessener Zeitwert > 0x7FFFFFF
0x80E0	Kanal 0: Anzahl ermittelter Flanken = 0
0x80E1	Kanal 1: Anzahl ermittelter Flanken = 0
0x80E2	Kanal 0: Anzahl ermittelter Flanken < 0
0x80E3	Kanal 1: Anzahl ermittelter Flanken < 0
0x80E4	Kanal 0: Anzahl ermittelter Flanken > 0xFFFFFF
0x80E5	Kanal 1: Anzahl ermittelter Flanken > 0xFFFFFF
0x80E8	Kanal 0: Keine gültige Messung innerhalb der vorgegebenen Messperiode
0x80E9	Kanal 1: Keine gültige Messung innerhalb der vorgegebenen Messperiode

Fehler des intern aufgerufenen SFC 14

Code	Beschreibung
0x808x0	Systemfehler am Bus-Koppler
0x8090	LADDR_IN ist falsch, mögliche Gründe:
	auf dieser Adresse ist kein Modul projektiert
	 Einschränkung über die Länge der konsistenten Daten wurde nicht beachtet
	Anfangsadresse im Parameter LADDR_IN wurde nicht hexadezimal angegeben
0x8093	Für <i>LADDR_IN</i> existiert kein Bus-Koppler, von dem Sie konsistente Daten lesen können.
0x80A0	Beim Zugriff auf die Peripherie wurde ein Zugriffsfehler erkannt.
0x80B0	Systemfehler am Bus-Koppler
0x80B1	Angegebene Länge des Quellbereichs entspricht nicht der projektierten Nutzdatenlänge.
0x80B2	Systemfehler am Bus-Koppler
0x80B3	Systemfehler am Bus-Koppler
0x80C1	Die Daten des auf der Baugruppe vorangegangenen Leseauftrags sind von der Baugruppe noch nicht bearbeitet.
0x80C2	Systemfehler am Bus-Koppler
0x80Fx	Systemfehler am Bus-Koppler
0x85xy	Systemfehler am Bus-Koppler

Frequenzmessung - "Frequency Measurement" > FC 302 - FM GET FREQUENCY - Frequenz berechnen konsistent

Code	Beschreibung
0x8xyy	Allgemeine Fehlerinformation
	→ "Allgemeine und spezifische Fehlercodes RET_VAL"Seite 65

12.1.4 FC 302 - FM_GET_FREQUENCY - Frequenz berechnen konsistent

Beschreibung

Mit dem FC 302 FM_GET_FREQUENCY können Sie die Frequenz der Eingangssignale beider Kanäle des System SLIO Frequenzmess-Moduls berechnen. Von dieser Funktion wird intern der SFC 14 - DPRD_DAT für konsistentes Lesen von Nutzdaten aufgerufen. Hierbei werden Fehlermeldungen des Bausteins über *ERROR* ausgegeben.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
LADDR_IN /	INPUT	WORD /	E, A, M, D, L	LADDR_IN
HW_ID		HW_IO		 Logische Basis-Eingabeadresse des Frequenzmess-Moduls.
				 Bei Einsatz in CPUs von Yaskawa bzw. in S7-300 CPUs von Sie- mens.
				HW_ID
				 HW-Kennung zur Adressierung des Frequenzmess-Moduls.
				 Bei Einsatz in S7-1500 CPUs von Siemens.
DONE	OUTPUT	BOOL	E, A, M, D, L	Fertigmeldung
				(TRUE = OK)
ERROR	OUTPUT	WORD	E, A, M, D, L	Rückgabewert
				(0 = OK)
FREQUENCY_CH0	OUTPUT	DINT	E, A, M, D, L	Kanal 0: Frequenz
FREQUENCY_CH1	OUTPUT	DINT	E, A, M, D, L	Kanal 1: Frequenz

LADDR IN

Peripherieadresse:

- Dieser Parameter ist bei Einsatz in CPUs von Yaskawa bzw. in S7-300 CPUs von Siemens verfügbar.
- Projektierte Anfangsadresse aus dem Eingabebereich des System SLIO Frequenzmess-Moduls, aus welchem gelesen werden soll. Die Adresse wird hexadezimal angegeben.
- (Beispiel: Adresse 100: LADDR_IN: = W#16#64)

HW_ID

HW-Kennung:

- Dieser Parameter ist nur bei Einsatz in S7-1500 CPUs von Siemens verfügbar.
- Geben Sie unter HW_ID die HW-Kennung an, mit deren Hilfe Ihr Modul entsprechend adressiert werden kann. → "HW-Kennung HW ID"...Seite 64

Frequenzmessung - "Frequency Measurement" > FC 302 - FM GET FREQUENCY - Frequenz berechnen konsistent

DONE

Fertigmeldung der Funktion

- TRUE: Funktion wurde ohne Fehler beendet.
- FALSE: Funktion nicht aktiv bzw. es ist ein Fehler aufgetreten.

FREQUENCY_CHx

Aktuell ermittelte Frequenz des entsprechenden Kanals in mHz.

ERROR (Rückgabewert)

Folgende Codes können zurückgeliefert werden:

Code	Beschreibung
0x0000	Kein Fehler
0x80D0	Kanal 0 nicht im Status aktiv
0x80D1	Kanal 1 nicht im Status aktiv
0x80DA	Kanal 0: Gemessener Zeitwert = 0
0x80DB	Kanal 1: Gemessener Zeitwert = 0
0x80DC	Kanal 0: Gemessener Zeitwert < 0
0x80DD	Kanal 1: Gemessener Zeitwert < 0
0x80DE	Kanal 0: Gemessener Zeitwert > 0x7FFFFFF
0x80DF	Kanal 1: Gemessener Zeitwert > 0x7FFFFFF
0x80E2	Kanal 0: Anzahl ermittelter Flanken < 0
0x80E3	Kanal 1: Anzahl ermittelter Flanken < 0
0x80E4	Kanal 0: Anzahl ermittelter Flanken > 0xFFFFFF
0x80E5	Kanal 1: Anzahl ermittelter Flanken > 0xFFFFFF
0x80E6	Kanal 0: Frequenz > 600kHz
0x80E7	Kanal 1: Frequenz > 600kHz
0x80E8	Kanal 0: Keine gültige Messung innerhalb der Messperiode.
0x80E9	Kanal 1: Keine gültige Messung innerhalb der Messperiode.

Fehler des intern aufgerufenen SFC 14

Code	Beschreibung
0x808x0	Systemfehler am Bus-Koppler
0x8090	LADDR_IN ist falsch, mögliche Gründe:
	auf dieser Adresse ist kein Modul projektiert
	 Einschränkung über die Länge der konsistenten Daten wurde nicht beachtet
	Anfangsadresse im Parameter LADDR_IN wurde nicht hexadezimal angegeben
0x8093	Für <i>LADDR_IN</i> existiert kein Bus-Koppler, von dem Sie konsistente Daten lesen können.
0x80A0	Beim Zugriff auf die Peripherie wurde ein Zugriffsfehler erkannt.
0x80B0	Systemfehler am Bus-Koppler
0x80B1	Angegebene Länge des Quellbereichs entspricht nicht der projektierten Nutzdatenlänge.

Frequenzmessung - "Frequency Measurement" > FC 303 - FM GET SPEED - Drehzahl berechnen konsistent

Code	Beschreibung
0x80B2	Systemfehler am Bus-Koppler
0x80B3	Systemfehler am Bus-Koppler
0x80C1	Die Daten des auf der Baugruppe vorangegangenen Leseauftrags sind von der Baugruppe noch nicht bearbeitet.
0x80C2	Systemfehler am Bus-Koppler
0x80Fx	Systemfehler am Bus-Koppler
0x85xy	Systemfehler am Bus-Koppler
0x8xyy	Allgemeine Fehlerinformation
	→ "Allgemeine und spezifische Fehlercodes RET_VAL"Seite 65

12.1.5 FC 303 - FM_GET_SPEED - Drehzahl berechnen konsistent

Beschreibung

Mit dem FC 303 FM_GET_SPEED können Sie die Drehzahl der Eingangssignale beider Kanäle des System SLIO Frequenzmess-Moduls berechnen. Von dieser Funktion wird intern der SFC 14 - DPRD_DAT für konsistentes Lesen von Nutzdaten aufgerufen. Hierbei werden Fehlermeldungen des Bausteins über *ERROR* ausgegeben.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
LADDR_IN / HW_ID	INPUT	WORD / HW_IO	E, A, M, D, L	 LADDR_IN Logische Basis-Eingabeadresse des Frequenzmess-Moduls. Bei Einsatz in CPUs von Yaskawa bzw. in S7-300 CPUs von Siemens. HW_ID HW-Kennung zur Adressierung des Frequenzmess-Moduls. Bei Einsatz in S7-1500 CPUs von Siemens.
RESOLUTION_CH0	INPUT	DINT	E, A, M, D, L	Kanal 0: Auflösung des Gebers
RESOLUTION_CH1	INPUT	DINT	E, A, M, D, L	Kanal 1: Auflösung des Gebers
DONE	OUTPUT	BOOL	E, A, M, D, L	Fertigmeldung (TRUE = OK)
ERROR	OUTPUT	WORD	E, A, M, D, L	Rückgabewert (0 = OK)
SPEED_CH0	OUTPUT	DINT	E, A, M, D, L	Kanal 0: Drehzahl
SPEED_CH1	OUTPUT	DINT	E, A, M, D, L	Kanal 1: Drehzahl

Frequenzmessung - "Frequency Measurement" > FC 303 - FM_GET_SPEED - Drehzahl berechnen konsistent

LADDR_IN

Peripherieadresse:

- Dieser Parameter ist bei Einsatz in CPUs von Yaskawa bzw. in S7-300 CPUs von Siemens verfügbar.
- Projektierte Anfangsadresse aus dem Eingabebereich des System SLIO Frequenzmess-Moduls, aus welchem gelesen werden soll. Die Adresse wird hexadezimal angegeben.
- (Beispiel: Adresse 100: *LADDR_IN*: = W#16#64)

HW_ID

HW-Kennung:

- Dieser Parameter ist nur bei Einsatz in S7-1500 CPUs von Siemens verfügbar.
- Geben Sie unter HW_ID die HW-Kennung an, mit deren Hilfe Ihr Modul entsprechend adressiert werden kann. → "HW-Kennung HW_ID"...Seite 64

RESOLUTION_CHx

Geben Sie hier die Auflösung in Inkremente pro Umdrehung für den entsprechenden Kanal an.

DONE

Fertigmeldung der Funktion

- TRUE: Funktion wurde ohne Fehler beendet.
- FALSE: Funktion nicht aktiv bzw. es ist ein Fehler aufgetreten.

SPEED_CHx

Aktuell ermittelte Drehzahl des entsprechenden Kanals in Umdrehungen pro Minute (rpm).

ERROR (Rückgabewert)

Folgende Codes können zurückgeliefert werden:

Frequenzmessung - "Frequency Measurement" > FC 303 - FM_GET_SPEED - Drehzahl berechnen konsistent

ERROR	Beschreibung
0x0000	Kein Fehler
0x80D0	Kanal 0 nicht im Status aktiv
0x80D1	Kanal 1 nicht im Status aktiv
0x80D6	Kanal 0: Eingangswert RESOLUTION_CH0 = 0
0x80D7	Kanal 1: Eingangswert RESOLUTION_CH1 = 0
0x80D8	Kanal 0: Eingangswert RESOLUTION_CH0 < 0
0x80D9	Kanal 1: Eingangswert RESOLUTION_CH1 < 0
0x80DA	Kanal 0: Gemessener Zeitwert = 0
0x80DB	Kanal 1: Gemessener Zeitwert = 0
0x80DC	Kanal 0: Gemessener Zeitwert < 0
0x80DD	Kanal 1: Gemessener Zeitwert < 0
0x80DE	Kanal 0: Gemessener Zeitwert > 0x7FFFFFF
0x80DF	Kanal 1: Gemessener Zeitwert > 0x7FFFFFF
0x80E2	Kanal 0: Anzahl ermittelter Flanken < 0
0x80E3	Kanal 1: Anzahl ermittelter Flanken < 0
0x80E4	Kanal 0: Anzahl ermittelter Flanken > 0xFFFFFF
0x80E5	Kanal 1: Anzahl ermittelter Flanken > 0xFFFFFF
0x80E6	Kanal 0: Ermittelte Drehzahl > max. (DINT)
0x80E7	Kanal 1: Ermittelte Drehzahl > max. (DINT)
0x80E8	Kanal 0: Keine gültige Messung innerhalb der vorgegebenen Messperiode
0x80E9	Kanal 1: Keine gültige Messung innerhalb der vorgegebenen Messperiode

Fehler des intern aufgerufenen SFC 14

Code	Beschreibung
0x808x0	Systemfehler am Bus-Koppler
0x8090	LADDR_IN ist falsch, mögliche Gründe:
	auf dieser Adresse ist kein Modul projektiert
	 Einschränkung über die Länge der konsistenten Daten wurde nicht beachtet
	Anfangsadresse im Parameter LADDR_IN wurde nicht hexadezimal angegeben
0x8093	Für <i>LADDR_IN</i> existiert kein Bus-Koppler, von dem Sie konsistente Daten lesen können.
0x80A0	Beim Zugriff auf die Peripherie wurde ein Zugriffsfehler erkannt.
0x80B0	Systemfehler am Bus-Koppler
0x80B1	Angegebene Länge des Quellbereichs entspricht nicht der projektierten Nutzdatenlänge.
0x80B2	Systemfehler am Bus-Koppler
0x80B3	Systemfehler am Bus-Koppler

Frequenzmessung - "Frequency Measurement" > FC 310 - FM CONTROL - Control Frequenzmessung

Code	Beschreibung
0x80C1	Die Daten des auf der Baugruppe vorangegangenen Leseauftrags sind von der Baugruppe noch nicht bearbeitet.
0x80C2	Systemfehler am Bus-Koppler
0x80Fx	Systemfehler am Bus-Koppler
0x85xy	Systemfehler am Bus-Koppler
0x8xyy	Allgemeine Fehlerinformation
	→ "Allgemeine und spezifische Fehlercodes RET_VAL"Seite 65

12.1.6 FC 310 ... 313 - Frequenzmessung SLIO

Übersicht

Mit folgenden produktspezifischen Funktionen können Sie System SLIO Frequenzmess-Module ansteuern, wenn die Konsistenz der Nutzdaten über das Bus-Protokoll sichergestellt ist und konsistentes Lesen bzw. Schreiben mittels SFC 14 bzw. SFC 15 nicht möglich ist. Innerhalb der Funktionen befinden sich "FM_..."-Parameter, deren Inhalte konsistent über das Bus-System mit dem entsprechenden Ein- bzw. Ausgabebereich des Frequenzmess-Moduls zu verschalten sind. Mit dem Aufruf der Funktionen werden die entsprechenden "FM_..."-Parameter von der Funktion automatisch befüllt.

Baustein	Symbol	Kommentar
FC 310	FM_CONTROL	Funktion zur Steuerung der Frequenzmessung
FC 311	FM_CALC_PERIOD	Funktion zur Berechnung der Periodendauer
FC 312	FM_CALC_FREQUENCY	Funktion zur Berechnung der Frequenz
FC 313	FM_CALC_SPEED	Funktion zur Berechnung der Drehzahl

12.1.7 FC 310 - FM_CONTROL - Control Frequenzmessung

Beschreibung

Mit dem FC 310 FM_CONTROL können Sie das System SLIO Frequenzmess-Modul steuern. Da dieser FC keinen Baustein für konsistentes Schreiben intern aufruft, müssen Sie in Ihrem System die konsistente Übertragung der Daten sicherstellen.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
ENABLE_FM	INPUT	BOOL	E, A, M, D, L	Freigabe
				Frequenzmessung
PRESET_CH0	INPUT	DINT	E, A, M, D, L	Kanal 0: Messperiode
PRESET_CH1	INPUT	DINT	E, A, M, D, L	Kanal 1: Messperiode
DONE	OUTPUT	BOOL	E, A, M, D, L	Fertigmeldung
				(TRUE = OK)
ERROR	OUTPUT	WORD	E, A, M, D, L	Rückgabewert
				(0 = OK)

Frequenzmessung - "Frequency Measurement" > FC 310 - FM CONTROL - Control Frequenzmessung

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
FM_PRESET_PERIOD_CH0	OUTPUT	DWORD	E, A, M, D, L	Sollwertvorgabe für Frequenz- mess-Modul Ausgabe-Adresse: +0
FM_PRESET_PERIOD_CH1	OUTPUT	DWORD	E, A, M, D, L	Sollwertvorgabe für Frequenz- mess-Modul Ausgabe-Adresse: +4
FM_CONTROL_CH0	OUTPUT	WORD	E, A, M, D, L	Sollwertvorgabe für Frequenz- mess-Modul Ausgabe-Adresse: +8
FM_CONTROL_CH1	OUTPUT	WORD	E, A, M, D, L	Sollwertvorgabe für Frequenz- mess-Modul Ausgabe-Adresse: +10

ENABLE_FM

Durch Setzen von *ENABLE_FM* wird das entsprechende CONTROL generiert und über *FM_CONTROL_CHx* ausgegeben. Sobald der Inhalt von *FM_CONTROL_CHx* über das Bussystem konsistent an das Frequenzmess-Modul übertragen wurde, werden beide Messungen der Kanäle gestartet. Durch Rücksetzen von *ENABLE_FM* wird die Messung beider Kanäle gestoppt, nachdem *FM_CONTROL_CHx* über das Bussystem konsistent an das Frequenzmess-Modul übertragen wurde.

Nur solange die Messung gestartet ist, können ermittelte Werte vom Modul abgerufen werden. Ansonsten erhalten Sie die Fehlermeldung, dass die Kanäle deaktiviert sind.

PRESET_CHx

Geben Sie hier die Messperiode in µs für den entsprechenden Kanal an.

Wertebereich: 1µs ... 8 388 607µs

DONE

Fertigmeldung der Funktion

- TRUE: Funktion wurde ohne Fehler beendet.
- FALSE: Funktion nicht aktiv bzw. es ist ein Fehler aufgetreten.

FM_PRESET_ PERIOD_CHx

Dieser Parameter enthält die Messperiode für Kanal 0 bzw. Kanal 1. Der Inhalt ist über das entsprechende Bussystem konsistent mit Adresse +0 bzw. +4 im Ausgabebereich des Frequenzmess-Moduls zu verschalten.

FM_CONTROL_CHx

Dieser Parameter enthält das CONTROL, welches über *ENABLE_FM* generiert wird. Der jeweilige Inhalt ist für Kanal 0 bzw. Kanal 1 über das entsprechende Bussystem konsistent mit Adresse +8 bzw. +10 im Ausgabebereich des Frequenzmess-Moduls zu verschalten.

Frequenzmessung - "Frequency Measurement" > FC 311 - FM CALC PERIOD - Periodendauer berechnen

ERROR (Rückgabewert)

Folgende Codes können zurückgeliefert werden:

Code	Beschreibung
0x0000	Kein Fehler
0x80D2	Kanal 0:
	Eingangswert Messperiode ≤ 0
0x80D3	Kanal 1:
	Eingangswert Messperiode ≤ 0
0x80D4	Kanal 0:
	Eingangswert Messperiode > 8 388 607µs
0x80D5	Kanal 1:
	Eingangswert Messperiode > 8 388 607µs

12.1.8 FC 311 - FM_CALC_PERIOD - Periodendauer berechnen

Beschreibung

Mit dem FC 311 FM_CALC_PERIOD können die Periodendauer der Eingangssignale beider Kanäle berechnen. Da dieser FC keinen Baustein für konsistentes Lesen intern aufruft, müssen Sie in Ihrem System die konsistente Übertragung der Daten sicherstellen.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
FM_PERIOD_CH0	INPUT	DWORD	E, A, M, D, L	Istwert von Frequenzmess-Modul Eingabe-Adresse: +0
FM_PERIOD_CH1	INPUT	DWORD	E, A, M, D, L	Istwert von Frequenzmess-Modul Eingabe-Adresse: +8
FM_RISING_EDGES_CH0	INPUT	DWORD	E, A, M, D, L	Istwert von Frequenzmess-Modul Eingabe-Adresse: +4
FM_RISING_EDGES_CH1	INPUT	DWORD	E, A, M, D, L	Istwert von Frequenzmess-Modul Eingabe-Adresse: +12
FM_STATUS_CH0	INPUT	WORD	E, A, M, D, L	Istwert von Frequenzmess-Modul Eingabe-Adresse: +16
FM_STATUS_CH1	INPUT	WORD	E, A, M, D, L	Istwert von Frequenzmess-Modul Eingabe-Adresse: +18
DONE	OUTPUT	BOOL	E, A, M, D, L	Fertigmeldung (TRUE = OK)
ERROR	OUTPUT	WORD	E, A, M, D, L	Rückgabewert (0 = OK)

Frequenzmessung - "Frequency Measurement" > FC 311 - FM CALC PERIOD - Periodendauer berechnen

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
PERIOD_CH0	OUTPUT	DINT	E, A, M, D, L	Kanal 0:
				Berechnete Periodendauer
PERIOD_CH1	OUTPUT	DINT	E, A, M, D, L	Kanal 1:
				Berechnete Periodendauer

FM_PERIOD_CHx

Dieser Parameter enthält den gemessenen Zeitwert von Kanal 0 bzw. Kanal 1. Der Inhalt ist über das entsprechende Bussystem konsistent mit Adresse +0 bzw. +4 im Eingabebereich des Frequenzmess-Moduls zu verschalten.

FM RISING EDGES CHx

Dieser Parameter enthält die ermittelte Anzahl steigender Flanken für Kanal 0 bzw. Kanal 1. Der Inhalt ist über das entsprechende Bussystem konsistent mit Adresse +8 bzw. +12 im Eingabebereich des Frequenzmess-Moduls zu verschalten.

FM_STATUS_CHx

Dieser Parameter enthält den Status für Kanal 0 bzw. Kanal 1. Der Inhalt ist über das entsprechende Bussystem konsistent mit Adresse +16 bzw. +18 im Eingabebereich des Frequenzmess-Moduls zu verschalten.

DONE

Fertigmeldung der Funktion

TRUE: Funktion wurde ohne Fehler beendet.

■ FALSE: Funktion nicht aktiv bzw. es ist ein Fehler aufgetreten.

PERIOD_CHx

Aktuell ermittelte Periodendauer des entsprechenden Kanals in 100ns.

ERROR (Rückgabewert)

Folgende Codes können zurückgeliefert werden:

Code	Beschreibung
0x0000	Kein Fehler
0x80D0	Kanal 0 nicht im Status aktiv
0x80D1	Kanal 1 nicht im Status aktiv
0x80DC	Kanal 0: Gemessener Zeitwert < 0
0x80DD	Kanal 1: Gemessener Zeitwert < 0
0x80DE	Kanal 0: Gemessener Zeitwert > 0x7FFFFFF
0x80DF	Kanal 1: Gemessener Zeitwert > 0x7FFFFFF
0x80E0	Kanal 0: Anzahl ermittelter Flanken = 0
0x80E1	Kanal 1: Anzahl ermittelter Flanken = 0
0x80E2	Kanal 0: Anzahl ermittelter Flanken < 0
0x80E3	Kanal 1: Anzahl ermittelter Flanken < 0
0x80E4	Kanal 0: Anzahl ermittelter Flanken > 0xFFFFFF
0x80E5	Kanal 1: Anzahl ermittelter Flanken > 0xFFFFFF
0x80E8	Kanal 0: Keine gültige Messung innerhalb der vorgegebenen Messperiode
0x80E9	Kanal 1: Keine gültige Messung innerhalb der vorgegebenen Messperiode

Frequenzmessung - "Frequency Measurement" > FC 312 - FM_CALC_FREQUENCY - Frequenz berechnen

12.1.9 FC 312 - FM CALC FREQUENCY - Frequenz berechnen

Beschreibung

Mit dem FC 312 FM_CALC_FREQUENCY können Sie die Frequenz der Eingangssignale beider Kanäle berechnen. Da dieser FC keinen Baustein für konsistentes Lesen intern aufruft, müssen Sie in Ihrem System die konsistente Übertragung der Daten sicherstellen.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
FM_PERIOD_CH0	INPUT	DWORD	E, A, M, D, L	Istwert von Frequenzmess-Modul Eingabe-Adresse: +0
FM_PERIOD_CH1	INPUT	DWORD	E, A, M, D, L	Istwert von Frequenzmess-Modul Eingabe-Adresse: +8
FM_RISING_EDGES_CH0	INPUT	DWORD	E, A, M, D, L	Istwert von Frequenzmess-Modul Eingabe-Adresse: +4
FM_RISING_EDGES_CH1	INPUT	DWORD	E, A, M, D, L	Istwert von Frequenzmess-Modul Eingabe-Adresse: +12
FM_STATUS_CH0	INPUT	WORD	E, A, M, D, L	Istwert von Frequenzmess-Modul Eingabe-Adresse: +16
FM_STATUS_CH1	INPUT	WORD	E, A, M, D, L	Istwert von Frequenzmess-Modul Eingabe-Adresse: +18
DONE	OUTPUT	BOOL	E, A, M, D, L	Rückmeldung (TRUE = OK)
ERROR	OUTPUT	WORD	E, A, M, D, L	Rückgabewert (0 = OK)
FREQUENCY_CH0	OUTPUT	DINT	E, A, M, D, L	Kanal 0: Berechnete Frequenz
FREQUENCY_CH1	OUTPUT	DINT	E, A, M, D, L	Kanal 1: Berechnete Frequenz

FM PERIOD CHX

Dieser Parameter enthält den gemessenen Zeitwert für Kanal 0 bzw. Kanal 1. Der Inhalt ist über das entsprechende Bussystem konsistent mit Adresse +0 bzw. +4 im Eingabebereich des Frequenzmess-Moduls zu verschalten.

FM RISING EDGES CHX

Dieser Parameter enthält die ermittelte Anzahl steigender Flanken für Kanal 0 bzw. Kanal 1. Der Inhalt ist über das entsprechende Bussystem konsistent mit Adresse +8 bzw. +12 im Eingabebereich des Frequenzmess-Moduls zu verschalten.

FM_STATUS_CHx

Dieser Parameter enthält den Status für Kanal 0 bzw. Kanal 1. Der Inhalt ist über das entsprechende Bussystem konsistent mit Adresse +16 bzw. +18 im Eingabebereich des Frequenzmess-Moduls zu verschalten.

Frequenzmessung - "Frequency Measurement" > FC 313 - FM CALC SPEED - Drehzahl berechnen

DONE

Fertigmeldung der Funktion

■ TRUE: Funktion wurde ohne Fehler beendet.

■ FALSE: Funktion nicht aktiv bzw. es ist ein Fehler aufgetreten.

FREQUENCY_CHx

Aktuell ermittelte Frequenz des entsprechenden Kanals in mHz.

ERROR (Rückgabewert)

Folgende Codes können zurückgeliefert werden:

Code	Beschreibung
0x0000	Kein Fehler
0x80D0	Kanal 0 nicht im Status aktiv
0x80D1	Kanal 1 nicht im Status aktiv
0x80DA	Kanal 0: Gemessener Zeitwert = 0
0x80DB	Kanal 1: Gemessener Zeitwert = 0
0x80DC	Kanal 0: Gemessener Zeitwert < 0
0x80DD	Kanal 1: Gemessener Zeitwert < 0
0x80DE	Kanal 0: Gemessener Zeitwert > 0x7FFFFFF
0x80DF	Kanal 1: Gemessener Zeitwert > 0x7FFFFFF
0x80E2	Kanal 0: Anzahl ermittelter Flanken < 0
0x80E3	Kanal 1: Anzahl ermittelter Flanken < 0
0x80E4	Kanal 0: Anzahl ermittelter Flanken > 0xFFFFFF
0x80E5	Kanal 1: Anzahl ermittelter Flanken > 0xFFFFFF
0x80E6	Kanal 0: Frequenz > 600kHz
0x80E7	Kanal 1: Frequenz > 600kHz
0x80E8	Kanal 0: Keine gültige Messung innerhalb der Messperiode.
0x80E9	Kanal 1: Keine gültige Messung innerhalb der Messperiode.

12.1.10 FC 313 - FM_CALC_SPEED - Drehzahl berechnen

Beschreibung

Mit dem FC 313 FM_CALC_SPEED können Sie die Drehzahl der Eingangssignale beider Kanäle berechnen. Da dieser FC keinen Baustein für konsistentes Lesen intern aufruft, müssen Sie in Ihrem System die konsistente Übertragung der Daten sicherstellen.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
FM_PERIOD_CH0	INPUT	DWORD	E, A, M, D, L	Istwert von Frequenzmess-Modul Eingabe-Adresse: +0
FM_PERIOD_CH1	INPUT	DWORD	E, A, M, D, L	Istwert von Frequenzmess-Modul Eingabe-Adresse: +8

Frequenzmessung - "Frequency Measurement" > FC 313 - FM_CALC_SPEED - Drehzahl berechnen

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
FM_RISING_EDGES_CH0	INPUT	DWORD	E, A, M, D, L	Istwert von Frequenzmess-Modul Eingabe-Adresse: +4
FM_RISING_EDGES_CH1	INPUT	DWORD	E, A, M, D, L	Istwert von Frequenzmess-Modul Eingabe-Adresse: +12
FM_STATUS_CH0	INPUT	WORD	E, A, M, D, L	Istwert von Frequenzmess-Modul Eingabe-Adresse: +16
FM_STATUS_CH1	INPUT	WORD	E, A, M, D, L	Istwert von Frequenzmess-Modul Eingabe-Adresse: +18
RESOLUTION_CH0	INPUT	DINT	E, A, M, D, L	Kanal 0: Auflösung des Gebers
RESOLUTION_CH1	INPUT	DINT	E, A, M, D, L	Kanal 1: Auflösung des Gebers
DONE	OUTPUT	BOOL	E, A, M, D, L	Fertigmeldung (TRUE = OK)
ERROR	OUTPUT	WORD	E, A, M, D, L	Rückgabewert (0 = OK)
SPEED_CH0	OUTPUT	DINT	E, A, M, D, L	Kanal 0: Berechnete Drehzahl
SPEED_CH1	OUTPUT	DINT	E, A, M, D, L	Kanal 1: Berechnete Drehzahl

FM_PERIOD_CHx

Dieser Parameter enthält den gemessenen Zeitwert für Kanal 0 bzw. Kanal 1. Der Inhalt ist über das entsprechende Bussystem konsistent mit Adresse +0 bzw. +4 im Eingabebereich des Frequenzmess-Moduls zu verschalten.

FM_RISING_ EDGES_CHx

Dieser Parameter enthält die ermittelte Anzahl steigender Flanken für Kanal 0 bzw. Kanal 1. Der Inhalt ist über das entsprechende Bussystem konsistent mit Adresse +8 bzw. +12 im Eingabebereich des Frequenzmess-Moduls zu verschalten.

FM_STATUS_CHx

Dieser Parameter enthält den Status für Kanal 0 bzw. Kanal 1. Der Inhalt ist über das entsprechende Bussystem konsistent mit Adresse +16 bzw. +18 im Eingabebereich des Frequenzmess-Moduls zu verschalten.

RESOLUTION_CHx

Geben Sie hier die Auflösung in Inkremente pro Umdrehung für den entsprechenden Kanal an.

DONE

Zustandsparameter des Funktionsbausteins

TRUE: Funktion wurde ohne Fehler beendet.

FALSE: Funktion nicht aktiv bzw. es ist ein Fehler aufgetreten.

Energiemessung - "Energy Measurement" > Übersicht

SPEED_CHx

Aktuell ermittelte Drehzahl des entsprechenden Kanals in Umdrehungen pro Minute (rpm).

ERROR (Rückgabewert)

Folgende Codes können zurückgeliefert werden:

J	ŭ
ERROR	Beschreibung
0x0000	Kein Fehler
0x80D0	Kanal 0 nicht im Status aktiv
0x80D1	Kanal 1 nicht im Status aktiv
0x80D6	Kanal 0: Eingangswert RESOLUTION_CH0 = 0
0x80D7	Kanal 1: Eingangswert RESOLUTION_CH1 = 0
0x80D8	Kanal 0: Eingangswert RESOLUTION_CH0 < 0
0x80D9	Kanal 1: Eingangswert RESOLUTION_CH1 < 0
0x80DA	Kanal 0: Gemessener Zeitwert = 0
0x80DB	Kanal 1: Gemessener Zeitwert = 0
0x80DC	Kanal 0: Gemessener Zeitwert < 0
0x80DD	Kanal 1: Gemessener Zeitwert < 0
0x80DE	Kanal 0: Gemessener Zeitwert > 0x7FFFFFF
0x80DF	Kanal 1: Gemessener Zeitwert > 0x7FFFFFF
0x80E2	Kanal 0: Anzahl ermittelter Flanken < 0
0x80E3	Kanal 1: Anzahl ermittelter Flanken < 0
0x80E4	Kanal 0: Anzahl ermittelter Flanken > 0xFFFFFF
0x80E5	Kanal 1: Anzahl ermittelter Flanken > 0xFFFFFF
0x80E6	Kanal 0: Ermittelte Drehzahl > max. (DINT)
0x80E7	Kanal 1: Ermittelte Drehzahl > max. (DINT)
0x80E8	Kanal 0: Keine gültige Messung innerhalb der vorgegebenen Messperiode
0x80E9	Kanal 1: Keine gültige Messung innerhalb der vorgegebenen Messperiode

12.2 Energiemessung - "Energy Measurement"

12.2.1 Übersicht

12.2.1.1 Begriffe

Messgröße

Eine *Messgröße* ist eine physikalische Größe, die zu messen ist, z.B. Strom, Spannung oder Temperatur.

Messwert Ein Messwert ist ein Wert einer Messgröße, der durch Messung oder durch Berechnung

ermittelt wird.

Im Modul ist jeder Messgröße eine ID zugeordnet. Der Zugriff auf den Messwert einer

Messgröße erfolgt durch Angabe der entsprechenden ID.

ID

Energiemessung - "Energy Measurement" > Übersicht

DS-ID

Sobald das Modul über die DC 24V Leistungsversorgung versorgt wird, beginnt die Messwerterfassung und der Zählvorgang der Energiezähler wird mit den remanent gespeicherten Zählerständen fortgesetzt. Die Messwerte aller Messgrößen werden unter einer Datensatz-ID *DS-ID* im Modul gespeichert. Hierbei ist folgendes zu beachten:

- Alle Messwerte mit der gleichen DS-ID stammen aus der gleichen Messung und sind konsistent.
- Durch Angabe der DS-ID können Sie die einzelnen Messwerte aus der gleichen Messung adressieren.
- Die DS-ID umfasst die Werte 1 ... 15.
- Zur Aktualisierung der Messwerte ist die DS-ID um 1 zu inkrementieren. Nach dem Wert 15 muss wieder die 1 folgen.
- Wird die DS-ID inkrementiert und es liegt noch kein neuer Wert vor, wird der aktuelle Wert geliefert. Hierbei meldet das Energiemess-Modul einen Fehler.
- *DS-ID* = 0 Autoinkrement-Modus
 - Mit DS-ID = 0 erfolgt eine Anfrage im Autoinkrement-Modus. Hierbei liefert das Modul immer den aktuellsten Messwert zurück. Sobald hier ein neuer Messwert vorhanden ist, wird die DS-ID innerhalb der Werte 1 ... 15 um 1 inkrementiert. Sollte noch kein neuer Messwert vorliegen, bleibt die DS-ID unverändert. Hierbei meldet das Energiemess-Modul einen Fehler.
- Die Eindeutigkeit eines Messwerts besteht immer aus der ID der Messgröße und der DS-ID.

Frame

Im Modul können Sie mehrere Messgrößen zu einem Datenpaket (Frame) zusammenfassen, welches in einem Durchgang übertragen wird. Ein Datenpaket umfasst 12Byte Nutzdaten. Unter Berücksichtigung der Nutzdatenlänge von 12Byte können Sie durch Angabe der Messgrößen-*ID* die Inhalte eines Frames definieren. Sie können bis zu 256 Frames (*Frame 0 ... Frame 255*) konfigurieren. Hierbei ist folgendes zu beachten:

- Die Definition von Frame 1 bis Frame 255 erfolgt mit dem Befehl Set Frame. .
- Frame 0 mit den entsprechenden Messgrößen kann ausschließlich über die Parametrierung konfiguriert werden.
- Mit dem Telegrammtyp Zero Frame haben Sie Zugriff auf das Datenpaket von Frame 0. Nach dem Hochlauf des Moduls erfolgen automatische Zero Frame-Anforderungen solange bis vom Kopfmodul die Prozessdatenkommunikation übernommen wird.

FR-ID

Bei der Definition von Frames mittels "Set Frame" werden diese über die FR-ID mit einer beliebigen Ziffer aus 0 ... 255 versehen. Durch Angabe der FR-ID können Sie das entsprechende Frame anfordern.

Datentyp

Nachfolgend sind die Datentypen aufgeführt, welche im Modul verwendet werden. Die Länge ist insbesondere bei der Definition von *Frames* zu berücksichtigen.

Datentyp	Länge in Byte	Beschreibung
UINT_8	1	Ganzzahl 8Bit
UINT_16	2	Ganzzahl 16Bit
UINT_32	4	Ganzzahl 32Bit
INT_8	1	Vorzeichenbehaftete Ganzzahl 8Bit
INT_16	2	Vorzeichenbehaftete Ganzzahl 16Bit
INT_32	4	Vorzeichenbehaftete Ganzzahl 32Bit
FLOAT	4	32Bit Gleitkommazahl nach IEEE 754

Energiemessung - "Energy Measurement" > Übersicht

12.2.1.2 Funktionsweise

Übersicht

- Das Energiemess-Modul dient der Energiemessung eines 3-Phasen Anschlusses.
 Hierbei ermittelt das Modul neben Spannung, Strom und Phase viele weitere Messgrößen.
- Für manche Messgrößen lassen sich Grenzwerte parametriert. Bei Über- bzw. Unterschreiten werden entsprechende Alarm-Status-Bits gesetzt. Das Modul unterstützt mehrere Kommandos (CMD). Beispielsweise lassen sich hiermit Alarm-Status-Bits wieder zurücksetzen.
- Mit dem Funktionsbaustein FB 325 und der zugehörigen Datenstruktur vom Typ UDT 325 können Sie Energie-Messwerte und Alarm-Status-Bits des Energiemess-Moduls lesen und Kommandos auf dem Modul ausführen. Hierbei kommuniziert der FB 325 über die zyklischen E/A-Daten (je 16 Byte) des Moduls, welche beim Aufruf des FB 325 entsprechend anzugeben sind.
- Die eigentliche Auftragsschnittstelle ist über die Datenstruktur vom Typ UDT 325 realisiert. Hierdurch ist eine einfache Ansteuerung und Auswertung beispielsweise über ein Touch Panel möglich.

Beschaltung des FB 325

- Bei der Projektierung ist auf eine korrekte Verschaltung der Parameter CHANNEL_IN und CHANNEL_OUT des FB 325 zu achten. Ansonsten erhalten Sie eine Timeout-Fehlermeldung.
 - CHANNEL_IN ist auf die 16Byte Eingabedaten des Energiemess-Moduls zu verschalten.
 - CHANNEL_OUT auf die 16Byte Ausgabedaten des Energiemess-Moduls zu verschalten.

Zyklische Messwert-Erfassung

- Indem Sie nach einem PowerON einen manuellen Reset am Energiemess-Modul durchführen, können Sie temporäre Fehlermeldungen vermeiden. Setzen Sie hierzu in der Datenstruktur MEAS_DATA des FB 325 Bit 7 der Variable Header.Control_Global.
- Mit den Grundeinstellungen der UDT 325 werden alle Messwerte des Energiemess-Moduls mit einer Periode von 1s gelesen und in der Datenstruktur MEAS_DATA gespeichert. Die Periode k\u00f6nnen Sie \u00fcber Variable Header.Polltime in der Datenstruktur MEAS_DATA des FB 325 anpassen.

Zur Validierung der Aktualität Ihrer Messwerte können Sie den Parameter DS-ID auf den Zeitpunkt seiner letzten Änderung überprüfen. Sobald ein neuer Messwert vorhanden ist, wird die DS-ID innerhalb der Werte 1 ... 15 um 1 inkrementiert. Der Zeitpunkt der letzten Änderung ist gleichzeitig das Alter der letzten Messwerte.

Manuelle Messwerterfassung

Zur manuellen Erfassung der Messwerte setzen Sie in der Datenstruktur *MEAS_DATA* des FB 325 Bit 1 der Variable *Header.Control_Global*. Ist das Bit gesetzt, werden die Messwerte einmalig vom Energiemess-Modul gelesen und danach das Bit wieder zurück gesetzt.

Selektion von Messgrößen

Per Default werden die Messwerte aller *Messgrößen* periodisch gelesen. Sie haben aber die Möglichkeit die *Messgrößen* in der Datenstruktur *MEAS_DATA* zu selektieren. Über Bit 0 der Variable *Data.[Name der Messgröße].Read_Mode* können Sie den Zugriff auf den Messwert der entsprechenden *Messgröße* einstellen. Bitte beachten Sie, dass hier die Messgrößen-IDs in Gruppen zusammengefasst sind. Sobald mindestens ein Messwert einer *Messgröße* einer Gruppe gelesen werden soll, werden die Messwerte aller *Messgrößen* dieser Gruppe gelesen. Soll beispielsweise der Wert der Messgröße mit der ID-Nr. 4 gelesen werden, so werden auch die mit ID-Nr. 5 und 6 gelesen. Es gibt folgende Gruppierungen:

Energiemessung - "Energy Measurement" > FB 325 - EM COM R1 - Kommunikation mit 031-1PAxx

Gruppe	IDs der Messgrößen	Gruppe	IDs der Messgrößen	Gruppe	IDs der Messgrößen
1	1, 2, 3	6	16, 17, 18	11	31, 32, 33
2	4, 5, 6	7	19, 20, 21	12	34, 35, 36
3	7, 8, 9	8	22, 23, 24	13	37, 38, 39
4	10, 11, 12	9	25, 26, 27	14	40, 41
5	13, 14, 15	10	28, 29, 30		

Die gelesenen Messwerte werden in die entsprechenden Variablen von *Data.[Name der Messgröße]. Value* eingetragen. Bei nicht gelesenen Messwerten ist *Value* = 0.

Kommando-Schnittstelle

Kommandos können Sie über die Datenstruktur *MEAS_DATA* durch Setzten der entsprechenden Bits in der Variablen *Header.Cmd* auslösen. Sind mehrere Bits gesetzt, werden sie nacheinander abgearbeitet. Hierbei stehen Ihnen folgende Kommandos zur Verfügung:

- Bit 0: Rücksetzen aller Wirkenergiezähler
- Bit 1: Reset auf dem Stromwandler auslösen
- Bit 2: Rücksetzen von Status Messung
- Bit 3: Schreiben der Energiesollwerte aus "SetValues" auf die ID3...ID8.

Fehlerverhalten

- Fehlermeldungen, welche bei der Initialisierung des Bausteins bzw. beim Lesen von Messwerten auftreten, finden Sie in der Datenstruktur MEAS_DATA unter Header.Status_Global.
- Fehlermeldungen, welche bei der Kommando-Abarbeitung auftreten, finden Sie unter Header.Status_Cmd und die Detailinformationen unter Header.Error_ID
- Im Fehlerfall setzt der Funktionsbaustein die Auftragsbearbeitung fort. Hierbei werden die fehlerhaft ausgeführten Aufträge wiederholt. Die Messwerte in der Datenstruktur MEAS DATA werden durch Fehlermeldungen nicht beeinflusst.

12.2.2 FB 325 - EM_COM_R1 - Kommunikation mit 031-1PAxx

Übersicht

Dieser Baustein ermöglicht die Kommunikation mit den Modulen 031-1PAxx zur Energiezählung und Leistungsmessung. Für die Kommunikation ist ein Datenbaustein erforderlich. Hierbei erhält der DB seine Struktur aus der UDT 325 EM_DATA_R1. Der Baustein besitzt folgende Funktionalitäten:

- Grundparameter laden nach dem Anlauf
- Ablage von Parameter, Grenzwerte, Messwerte und Meldungen
- Übertragung konsistenter Messwerte
- Schreiben von Sollwerten
- Definition der Messwerte mittels UDT-Struktur
- Kommunikation mittels Telegrammtyp und ID
- Funktionsdiagnose, Verbindungsüberwachung und Störmeldeauswertung

Parameter	Deklaration	Datentyp	Beschreibung
MODE	INPUT	BYTE	 0x01 = Datenaustausch via Prozessdaten Aktuell wird nur MODE = 0x01 unterstützt

Parameter	Deklaration	Datentyp	Beschreibung
CHANNEL_IN	INPUT	ANY	Zeiger auf die Eingangsdaten
			 Mit MODE = 0x01 ist ausschließlich Datentyp BYTE und Länge 16 zulässig. Beispiel: P#E100.0 BYTE 16 oder P#DB10.DBX0.0 BYTE 16
CHANNEL_OUT	INPUT	ANY	Zeiger auf die Ausgangsdaten
			 Mit MODE = 0x01 ist ausschließlich Datentyp BYTE und Länge 16 zulässig. Beispiel: P#A100.0 BYTE 16 oder P#DB10.DBX16.0 BYTE 16
MEAS_DATA	IN_OUT	UDT	 ■ UDT für die Messwerte → "UDT 325 - EM_DATA_R1 - Datenstruktur für FB 325"Seite 266 ■ Bitte beachten Sie, dass diese Struktur nicht in den temporären Lokaldaten liegen darf!

12.2.3 UDT 325 - EM_DATA_R1 - Datenstruktur für FB 325

12.2.3.1 Struktur

UDT 325

Die UDT 325 ist dynamisch aufgebaut und besitzt folgende Grundstruktur.

UDT-Bereiche	Beschreibung
UDT - Header	Struktur für die Header-Daten
UDT - Daten	Gleiche Datenstruktur für die einzelnen <i>Messgrößen</i> . Eine <i>Messgröße</i> ist eine physikalische Größe, die zu messen ist, z.B. Strom, Spannung oder Temperatur. Eine Übersicht der Messgrößen finden Sie im Handbuch zu ihrem Energiemess-Modul.
UDT - Daten	
UDT - SetValues	Struktur für die Sollwertvorgabe

UDT - Header	Deklaration	Datentyp	Beschreibung
Timeout	INPUT	TIME	■ Timeout-Zeit für die Auftragsbearbeitung. Bei Überschreiten von <i>Timeout</i> wird der Auftrag abgebrochen und eine entsprechende Fehlermeldung ausgegeben.
Polltime	INPUT	TIME	■ Intervall für das periodische Lesen
			Polltime ist nur relevant, wenn die Messwerte im Intervall von Polltime periodisch gelesen werden d.h. wenn Bit 0 von Header. Control_Global gesetzt ist. Ist Polltime kleiner als das schnellstmögliche Intervall, werden die Messwerte im schnellstmöglichen Intervall gelesen.
Control_Global	INPUT	BYTE	0: nicht aktiv, 1: aktiv
			 Bit 0: Periodische Ausführung entsprechend der <i>Polltime</i> (Default) Bit 1: Einmalige Ausführung - Bit wird nach der Ausführung zurückgesetzt. Bit 6 2: reserviert Bit 7: Neuinitialisierung des Bausteins, indem die Konfiguration neu gesendet wird

UDT - Header	Deklaration	Datentyp	Beschreibung
Status_Global	OUTPUT	ВҮТЕ	Bausteinstatus 0x00: Nicht bearbeitet 0x01: In Bearbeitung (BUSY) 0x02: Fertig ohne Fehler (DONE) 0x80: Fehler bei der Bearbeitung (ERROR)
Status Alarm_Global	OUTPUT	BYTE	 Entspricht B3: Header-Byte 3 - Sammelstatus Bit 0: Frequenz F_MAX überschritten Bit 1: Frequenz F_MIN unterschritten Bit 2: Temperatur T_MAX überschritten Bit 3: Spannung VRMS_MAX überschritten Bit 4: Spannung VRMS_MIN unterschritten Bit 5: Wirkungsgrad PF_MIN unterschritten Bit 6: Strom IRMS_MAX überschritten Bit 7: reserviert
Cmd	INPUT	BYTE	 0: nicht aktiv, 1: aktiv ■ Bit 0: Rücksetzen aller Wirkenergiezähler ■ Bit 1: Reset auf dem Stromwandler auslösen ■ Bit 2: Rücksetzen von Status Messung ■ Bit 3: Schreiben der Energiesollwerte aus "SetValues" auf die ID3 8 und ID 39 40. Sind mehrere Bits gesetzt, werden sie nacheinander abgearbeitet. Hinweis: Schreiben der Energiesollwerte setzt eine Protokollversion Major ≥ 1 Minor ≥ 1 voraus!
Status_Cmd	OUTPUT	ВУТЕ	Status Kommando 0x00: Nicht bearbeitet 0x01: In Bearbeitung (BUSY) 0x02: Fertig ohne Fehler (DONE) 0x80: Fehler bei der Bearbeitung (ERROR) - siehe Error_ID
Jobtime	OUTPUT	TIME	Zeitdauer, welche für das Auslesen der Messwerte bzw. für das Ausführen eines Kommandos erforderlich war.
DsID	OUTPUT	BYTE	Nummer der aktuellen DS-ID <i>→ "DS-ID"Seite 263</i>
Frame_ID	OUTPUT	BYTE	Nummer der aktuellen FR-ID <i>□ "FR-ID"Seite 263</i>
Error_ID	OUTPUT	WORD	Detaillierte Fehlerinformationen
Status_ReadVersion	OUTPUT	ВҮТЕ	Status Read FW Version 0x00: nie ausgeführt 0x01: Busy 0x02: Done 0x80: Error
Reserve	STATIC	ARRAY of BYTE (115)	reserviert
VersionInfo		Struct	Die Firmware-Version wird automatisch ermittelt

UDT - Header	Deklaration	Datentyp	Beschreibung	
FirmwareMajor	OUTPUT	Byte	Firmware Version: Major	
FirmwareMinor	OUTPUT	Byte	Firmware Version: Minor	
FirmwareRevision	OUTPUT	Byte	Firmware Revision	
ProtocollMajor	OUTPUT	Byte	Protokoll Version: Major	
ProtocollMinor	OUTPUT	Byte	Protokoll Version: Minor	
ProtocollRevsion	OUTPUT	Byte	Protokoll Version: Revision	
ChipDateYear	OUTPUT	Word	Datum Mess-Chip: Jahr	
ChipDateMonth	OUTPUT	Byte	Datum Mess-Chip: Monat	
ChipDateDay	OUTPUT	Byte	Datum Mess-Chip: Tag	
Gleiche Datenstruktur für die einzelnen <i>Messgrößen</i> . Eine Übersicht der <i>Messgrößen</i> finden Sie im Handbuch zu ihrem Energiemess-Modul.				
LIDT - Daten	Deklaration	Datentyn	Reschreibung	

UDT - Daten	Deklaration	Datentyp	Beschreibung
Name	IN_OUT	STRUCT	■ Name der <i>Messgröße</i>
Read_Mode	INPUT	BYTE	 Bit 0: Zugriff auf den Messwert der Messgröße 0: Messwert soll nicht gelesen werden. 1: Messwert soll gelesen werden.
Value	OUTPUT	DWORD	■ Aktueller Messwert

UDT - SetValues	Deklaration	Datentyp	Beschreibung
SetValues		STRUCT	
EN_L1_CON- SUMED	INPUT	DWORD	Sollwert für Wirkenergie L1 Verbraucher: UINT32, 1Wh
EN_L1_ DELI- VERED	INPUT	DWORD	Sollwert für Wirkenergie L1 Erzeuger: UINT32, 1Wh
EN_L2_CON- SUMED	INPUT	DWORD	Sollwert für Wirkenergie L2 Verbraucher: UINT32, 1Wh
EN_L2_ DELI- VERED	INPUT	DWORD	Sollwert für Wirkenergie L2 Erzeuger: UINT32, 1Wh
EN_L3_CON- SUMED	INPUT	DWORD	Sollwert für Wirkenergie L3 Verbraucher: UINT32, 1Wh
EN_L3_ DELI- VERED	INPUT	DWORD	Sollwert für Wirkenergie L3 Erzeuger: UINT32, 1Wh
EXCESS_ACTIVE_ EN_CONSUME	INPUT	DWORD	Sollwert für Überlauf Energiezähler Phase 1 3 Verbraucher ■ 0xXX112233 - XX: nicht genutzt - 11: Sollwert (Byte) für Überlauf Energiezähler Phase 1 Verbraucher - 22: Sollwert (Byte) für Überlauf Energiezähler Phase 2 Verbraucher - 33: Sollwert (Byte) für Überlauf Energiezähler Phase 3 Verbraucher Wird bei Überlauf des Energiezählers (ID = 1) um 1 inkrementiert

UDT - SetValues	Deklaration	Datentyp	Beschreibung
EXCESS_ACTIVE_ EN_DELIVERED	INPUT	DWORD	Sollwert für Überlauf Energiezähler Phase 1 3 Erzeuger ■ 0xXX112233 - XX: nicht genutzt - 11: Sollwert (Byte) für Überlauf Energiezähler Phase 1 Erzeuger - 22: Sollwert (Byte) für Überlauf Energiezähler Phase 2 Erzeuger - 33: Sollwert (Byte) für Überlauf Energiezähler Phase 3 Erzeuger Wird bei Überlauf des Energiezählers (ID = 2) um 1 inkrementiert

12.2.3.2 Fehlerrückmeldung

ERROR ID	Beschreibung
0x0000	kein Fehler
0x8060	Fehler: Eine aktuellere Protokollversion ist erforderlich
0x8070	Fehler: Parameter MODE
0x8073	Fehler: Parameter CHANNEL_IN passt nicht zu MODE
0x8074	Fehler: Parameter CHANNEL_OUT passt nicht zu MODE
0x8080	Fehler: "SET Frame": Timeout beim Zugriff erkannt
0x8081	Fehler: "READ Frame": Timeout beim Zugriff erkannt
0x8082	Fehler: "CMD Frame": Timeout beim Zugriff erkannt
0x8083	Fehler: Timeout beim automatischen Lesen der Firmwareinformation
0x80A1	Status Kommunikation: Fehler: Datensatz konnte nicht aktualisiert werden
0x80A2	Status Kommunikation: Fehler: "DS-ID"
0x80A3	Status Kommunikation: Fehler: Telegrammlänge
0x80A4	Status Kommunikation: Fehler: Frame zu groß
0x80A5	Status Kommunikation: Fehler: Frame nicht definiert
0x80A6	Status Kommunikation: Fehler: Messgröße nicht vorhanden
0x80A7	Status Kommunikation: "CMD Frame" - Kommando konnte nicht ausgeführt werden
0x80A8	Status Kommunikation: Fehler: "SetFrame" - Ungültige Framedefinition (Set Frame)
0x80A9	Status Kommunikation: Fehler: Telegrammtyp nicht vorhanden - ungültige Anfrage
0x80AA	Status Kommunikation: Fehler: Parameter - der letzte Parametersatz war ungültig
0x80AB	Fehler: Messmodul BUSY, es werden keine neuen Daten geliefert
0x80AE	Externer Fehler - Bitte kontaktieren Sie unseren Support
0x80AF	Interner Fehler: Aufgrund einer temporären Störung bei der Verarbeitung der Messdaten konnten diese nicht aktualisiert werden. Sollte dieser Fehler öfter auftreten, kontaktieren Sie bitte unsere Hotline.

Motion-Module - "Motion Modules" > Übersicht

12.3 Motion-Module - "Motion Modules"

12.3.1 Übersicht

Bausteine

Mit den nachfolgend aufgeführten Bausteinen haben Sie Zugriff auf die System SLIO Motion-Module:

- FB 320 ACYC RW Azyklischer Zugriff auf System SLIO Motion-Modul
- FB 321 ACYC DS Azyklische Parametrierung System SLIO Motion-Modul
- UDT 321 ACYC_OBJECT-DATA Datenstruktur für FB 321

Unterstützte Motion-Module

Folgende System SLIO Motion-Module werden unterstützt:

- 054-1BA00: FM 054 Motion Modul Stepper
- 054-1CB00: FM 054 Motion Modul 2xDC
- 054-1DA00: FM 054 Motion Modul Pulse Train RS422

Index - Subindex

Die System SLIO Motion-Modul stellen ihre Daten wie z.B. "Profilgeschwindigkeit" über ein Objektverzeichnis zur Verfügung. In diesem Objektverzeichnis sind die Objekte organisiert und durch eine eindeutige Nummer, bestehend aus *Index* und *Subindex* adressierbar. Die Nummer wird wie folgt angegeben:

0x	Index (hexadezimal)		Subindex (dezimal)
Beispie	I: 0x8400-03		

Zur besseren Strukturierung und Erweiterung wurde beim System SLIO Motion-Modul eine andere Objektnummerierung (Index-Vergabe) gegenüber dem Standard CiA 402 gewählt.

Index - Bereiche

Durch die Aufteilung in *Index* und *Subindex* ist eine Gruppierung möglich. Die einzelnen Bereiche sind in Gruppen zusammengehöriger Objekte gegliedert. Dieses Objektverzeichnis ist bei den System SLIO Motion Modul wie folgt strukturiert:

Index-Bereich	Inhalt
0x1000 bis 0x6FFF	Allgemeine Daten und Systemdaten
0x7000 bis 0x7FFF	Daten der digitalen Ein- und Ausgabeeinheit
ab 0x8000	Daten der Achse bzw. Antriebe

Näheres zum Aufbau des Objektverzeichnis finden Sie im Handbuch zu ihrem Motion-Modul.

Jedes Objekt verfügt über einen Subindex 0. Durch Aufruf eines Objekts mit Subindex 0 bekommen Sie die Anzahl der verfügbaren Subindizes des entsprechenden Objekts zurückgeliefert.

Motion-Module - "Motion Modules" > FB 320 - ACYC RW - Azyklischer Zugriff auf System SLIO Motion-Modul

E/A-Adressbereich

Die Motion-Module belegen eine gewisse Anzahl an Bytes im E/A-Adressbereich.

Kopfmodul	Rückwandbus	Motion	-Modul
CPU bzw. Buskoppler	\rightarrow	Prozessdaten	Azyklischer Kanal
	←		

Über den Azyklischen Kanal können Sie azyklisch Schreib- und Lesebefehle ausführen. Hierzu wurden in den Ein-/Ausgabe-Bereich der Motion-Module Datenbereiche für die azyklische Kommunikation implementiert. Dieser Bereich umfasst 8Byte Ausgabe- und 8Byte Eingabe-Daten. Bei Einsatz der Bausteine erfolgt die Kommunikation über den Azyklischen Kanal.

Der Datenaustausch mit dem Motion-Modul muss über die Länge der Ein- bzw. Ausgabedaten konsistent sein! Es wird daher die Ansteuerung über das Prozessabbild empfohlen. Sie können aber auch SFC 14 und 15 für konsistentes Lesen und Schreiben der Eingabe- bzw. Ausgabe-Daten verwenden.

Beschaltung der FBs

- Bei der Projektierung ist auf eine korrekte Verschaltung der Parameter CHANNEL_IN und CHANNEL OUT der FBs zu achten.
 - CHANNEL_IN ist auf die Eingabedaten des Azyklischen Kanals des Motion-Moduls zu verschalten.
 - CHANNEL_OUT auf die Ausgabedaten des Azyklischen Kanals des Motion-Moduls zu verschalten.

Ausgehend von der Basisadresse ist die Anfangsadresse des *Azyklischen Kanals* für die Ein- und Ausgabedaten über folgenden Offset zu erreichen:

- 054-1BA00: FM 054 Stepper: Basis-Adresse + 26
- 054-1CB00: FM 054 2xDC: Basis-Adresse + 50
- 054-1DA00: FM 054 Pulse Train RS422: Basis-Adresse + 26

Beispiel mit Basisadresse 256:

```
CHANNEL_IN :=P#E 282.0 BYTE 10 // Basisadresse 256 + 26 CHANNEL OUT :=P#A 282.0 BYTE 10 // Basisadresse 256 + 26
```


Bitte beachten Sie, dass Sie eine Länge von 10Byte angeben, obwohl der Azyklische Kanal intern 8Byte verwendet!

12.3.2 FB 320 - ACYC_RW - Azyklischer Zugriff auf System SLIO Motion-Modul

Beschreibung

Mit diesem Baustein können Sie aus Ihrem Anwenderprogramm auf das Objektverzeichnis der System SLIO Motion-Module zugreifen. Hierbei verwendet der Baustein einen azyklischen Kommunikationskanal, auf Basis einer Anfrage-/Antwort-Sequenz. Dieser ist Bestandteil des Ein-/Ausgabereichs des Motion-Moduls.

Folgende System SLIO Motion-Module werden unterstützt:

- 054-1BA00: FM 054 Stepper
- 054-1CB00: FM 054 2xDC
- 054-1DA00: FM 054 Pulse Train RS422

Motion-Module - "Motion Modules" > FB 320 - ACYC RW - Azyklischer Zugriff auf System SLIO Motion-Modul

Da der FB 321 intern den FB 320 aufruft und beide Bausteine auf die gleiche Datenbasis zugreifen, dürfen Sie je Antriebskanal (sofern mehrkanalig) nur einen dieser Bausteine in Ihrem Anwenderprogramm verwenden! Auch darf dieser Baustein nur einmal pro Zyklus aufgerufen werden!

ĭ

Der Datenaustausch mit dem Motion-Modul muss über die Länge der Ein- bzw. Ausgabedaten konsistent sein! Es wird daher die Ansteuerung über das Prozessabbild empfohlen. Sie können aber auch SFC 14 und 15 für konsistentes Lesen und Schreiben der Eingabe- bzw. Ausgabe-Daten verwenden.

Parameter	Deklaration	Datentyp	Beschreibung
REQUEST	IN	BOOL	Mit Flanke 0-1 wird die Auftragsbearbeitung gestartet.
MODE	IN	BYTE	Geben Sie hier 0x01 für das azyklische Protokoll an
COMMAND	IN	BYTE	0x11 = Lesen eines Datenobjekts (max. 4Byte)
			0x21 = Schreiben eines Datenobjekts (max. 4Byte)
INDEX	IN	WORD	Index des Objekts im Objektverzeichnis - siehe Handbuch zum System SLIO Motion-Modul.
SUBINDEX	IN	BYTE	Subindex des Objekts im Objektverzeichnis - siehe Handbuch zum System SLIO Motion-Modul.
WRITE_LENGTH	IN	DINT	Länge der zu schreibenden Daten in Byte (max. 4Byte)
WRITE_DATA	IN	ANY	Zeiger auf die zu schreibenden Daten.
READ_DATA	IN	ANY	Zeiger auf die gelesenen Daten.
CHANNEL_IN	IN	ANY	Zeiger auf den Beginn des azyklischen Kanals im Eingabe-Bereich des Motion-Moduls.
			Tragen Sie als Länge 10Byte ein.
			Beispiele: P#E100.0 BYTE 10 oder P#DB10.DBX0.0 BYTE 10
CHANNEL_OUT	IN	ANY	Zeiger auf den Beginn des azyklischen Kanal im Ausgabe-Bereich des Motion-Moduls.
			Tragen Sie als Länge 10Byte ein.
			Beispiele: P#A100.0 BYTE 10 oder P#DB10.DBX10.0 BYTE 10
READ_LENGTH	OUT	DINT	Länge der empfangenen Daten in Byte.
			Dieser Wert ist auf ein Vielfaches von 4 aufzurunden, da die Längenangabe nicht übertragen wird.
DONE	OUT	BOOL	1: Auftrag wurde fehlerfrei ausgeführt
BUSY	OUT	BOOL	0: Kein Auftrag in Bearbeitung
			1: Auftrag wird bearbeitet
ERROR	OUT	BOOL	0: Kein Fehler
			1: Fehler aufgetreten. Die Fehlerursache wird über den Parameter <i>ERROR_ID</i> angezeigt
ERROR_ID	OUT	WORD	Detaillierte Fehlerinformationen

Motion-Module - "Motion Modules" > FB 320 - ACYC RW - Azyklischer Zugriff auf System SLIO Motion-Modul

Bitte beachten Sie, dass bei den Parametern WRITE_DATA und READ_DATA keine Überprüfung auf Datentyp und Länge stattfindet!

Verhalten der Bausteinparameter

- Ausschließlichkeit der Ausgänge:
 - Die Ausgänge BUSY, DONE und ERROR schließen sich gegenseitig aus. Es kann immer nur einer dieser Ausgänge zur gleichen Zeit TRUE sein.
 - Sobald der Eingang REQUEST TRUE wird, muss einer der Ausgänge TRUE werden.

Ausgangs-Zustand

- Die Ausgänge DONE, ERROR, ERROR_ID und READ_LENGTH werden mit einer Flanke 1-0 am Eingang REQUEST zurückgesetzt, wenn der Funktionsbaustein nicht aktiv ist (BUSY = FALSE).
- Eine Flanke 1-0 an REQUEST beeinflusst die Auftragsbearbeitung nicht.
- Falls REQUEST bereits während der Auftragsbearbeitung zurückgesetzt wird, so ist sichergestellt, dass einer der Ausgänge am Ende des Auftrags für einen SPS-Zyklus gesetzt wird. Erst danach werden die Ausgänge zurückgesetzt.

Eingangs-Parameter

- Die Eingangs-Parameter werden mit Flanke 0-1 an REQUEST übernommen. Zur Änderung von Parametern, müssen Sie den Auftrag neu triggern.
- Tritt w\u00e4hrend der Auftragsbearbeitung erneut eine Flanke 0-1 an REQUEST auf, wird ein Fehler ausgegeben, kein neues Kommando aktiviert und die Antwort vom laufenden Kommando verworfen!

Fehlerbehandlung

- Der Baustein besitzt 2 Fehlerausgänge zur Anzeige von Fehlern während der Auftragsbearbeitung. ERROR zeigt den Fehler an und ERROR_ID gibt eine ergänzende Fehlernummer aus.
- Die Ausgänge DONE und READ_LENGTH bezeichnen eine erfolgreiche Auftragsbearbeitung und werden nicht gesetzt, wenn ERROR TRUE wird.
- Verhalten des DONE Ausgangs
 - Der DONE Ausgang wird gesetzt, wenn ein Auftrag erfolgreich ausgeführt wurde.
- Verhalten des BUSY Ausgangs
 - Der BUSY Ausgang zeigt an, dass der Funktionsbaustein aktiv ist.
 - BUSY wird sofort mit der Flanke 0-1 an REQUEST gesetzt und wird erst zurückgesetzt, wenn der Auftrag erfolgreich oder auch nicht erfolgreich beendet wurde.
 - Solange BUSY TRUE ist, muss der Baustein zyklisch aufgerufen werden um das Kommando ausführen zu können.

Tritt während der Auftragsbearbeitung erneut eine Flanke 0-1 an REQUEST auf, wird ein Fehler ausgegeben, kein neues Kommando aktiviert und die Antwort vom laufenden Kommando verworfen!

ERROR ID

ERROR_ID	Beschreibung
0x0000	Kein Fehler vorhanden
0x8070	Fehlerhafter Parameter MODE
0x8071	Fehlerhafter Parameter COMMAND

ERROR_ID	Beschreibung
0x8072	Parameter WRITE_LENGTH überschreitet die maximal Größe
0x8073	Parameter CHANNEL_IN passt nicht zum Parameter MODE
0x8074	Parameter CHANNEL_OUT passt nicht zum Parameter MODE
0x8075	Nicht zulässiger Befehl (Flanke 0-1 bei <i>REQUEST</i> während Auftrag ausgeführt wird)
0x8081	Fehler - Lesezugriff - Daten nicht vorhanden
	Befehl wurde nicht ausgeführt!
0x8091	Fehler - Schreibzugriff - Daten nicht vorhanden
	Befehl wurde nicht ausgeführt!
0x8092	Fehler - Schreibzugriff - Datenbereich überschritten
	Befehl wurde nicht ausgeführt!
0x8093	Fehler - Schreibzugriff - Daten können nur gelesen werden
	Befehl wurde nicht ausgeführt!
0x8094	Fehler - Schreibzugriff - Daten sind schreibgeschützt
	Befehl wurde nicht ausgeführt!
0x8099	Fehler während der azyklischen Kommunikation
	Befehl wurde nicht ausgeführt!

Programm-Struktur

Ist kein Auftrag aktiv, so sind alle Ausgabe-Parameter auf 0 zu setzen. Mit einer Flanke 0-1 an *REQUEST* aktivieren Sie nach folgender Vorgehensweise einen Auftrag:

- 1. Überprüfen Sie, ob bereits ein Auftrag aktiv ist, ggf. Auftrag abbrechen und Fehler ausgeben.
 - → Abfragen auf DONE = 1 bzw. BUSY = 0
- 2. Beschalten Sie die Eingabeparameter:
 - MODE
 - COMMAND
 - WRITE LENGTH
 - CHANNEL_IN
 - CHANNEL OUT
 - ⇒ Im Fehlerfall Auftrag abrechen, ansonsten weiter mit Schritt 3.
- 3. Eingangsparameter intern speichern.
- **4.** Das gewünschte Kommando ausführen und warten bis dieses ausgeführt wurde.
- **5.** Frgebnis der Kommandoausführung intern speichern und ausgeben.
- **6.** Alle Ausgabeparameter wieder auf 0 setzen.

12.3.3 FB 321 - ACYC DS - Azyklische Parametrierung System SLIO Motion-Modul

Beschreibung

Mit diesem Baustein können Sie aus Ihrem Anwenderprogramm Ihr Motion-Modul parametrieren. Hierbei können Sie in einem Datenbaustein Ihre Parameter in Form einer *Objektliste* ablegen und diese über den azyklischen Kommunikationskanal in Ihr Motion-Modul übertragen.

Folgende System SLIO Module werden unterstützt:

- 054-1BA00: FM 054 Motion Modul Stepper
- 054-1CB00: FM 054 Motion Modul 2xDC
- 054-1DA00: FM 054 Motion Modul Pulse Train RS422

Da der FB 321 intern den FB 320 aufruft und beide Bausteine auf die gleiche Datenbasis zugreifen, dürfen Sie je Antriebskanal (sofern mehrkanalig) nur einen dieser Bausteine in Ihrem Anwenderprogramm verwenden! Auch darf dieser Baustein nur einmal pro Zyklus aufgerufen werden!

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
REQUEST	IN	BOOL	Mit Flanke 0-1 wird die Auftragsbearbeitung gestartet.
MODE	IN	BYTE	Geben Sie hier 0x01 für das azyklische Protokoll an.
READ_BACK	IN	BOOL	0: Geschriebene Objekte werden nicht zurückgelesen.
			1: Geschrieben Objekte werden direkt nach dem Schreibvorgang zurückgelesen und einem Vergleich unterzogen.
GROUP	IN	WORD	0x010x7F: Selektion einer Gruppe in der Objektliste.
			0xFF: Selektion aller Objekte in der Objektliste.
OBJECT_DATA	IN	ANY	Zeiger auf die UDT. → "UDT 321 - ACYC_OBJECT-DATA - Daten- struktur für FB 321"Seite 278
CHANNEL_IN	IN	ANY	Zeiger auf den Beginn des azyklischen Kanals im Eingabe-Bereich des Motion-Moduls.
			Tragen Sie als Länge 10Byte ein.
			Beispiele: P#E100.0 BYTE 10 oder P#DB10.DBX0.0 BYTE 10
CHANNEL_OUT	IN	ANY	Zeiger auf den Beginn des azyklischen Kanal im Ausgabe-Bereich des Motion-Moduls.
			Tragen Sie als Länge 10Byte ein.
			Beispiele: P#A100.0 BYTE 10 oder P#DB10.DBX10.0 BYTE 10
DONE	OUT	BOOL	1: Auftrag wurde fehlerfrei ausgeführt.
BUSY	OUT	BOOL	0: Kein Auftrag in Bearbeitung.
			1: Auftrag wird bearbeitet.
DATASET_INDEX	OUT	INT	Objekt, welches aktuell bearbeitet wird.
ERROR	OUT	BOOL	0: Kein Fehler
			1: Fehler aufgetreten. Die Fehlerursache wird über den Parameter <i>ERROR_ID</i> angezeigt.
ERROR_ID	OUT	WORD	Detaillierte Fehlerinformationen

Verhalten der Bausteinparameter

- Ausschließlichkeit der Ausgänge:
 - Die Ausgänge BUSY, DONE und ERROR schließen sich gegenseitig aus. Es kann immer nur einer dieser Ausgänge zur gleichen Zeit TRUE sein.
 - Sobald der Eingang REQUEST TRUE wird, muss einer der Ausgänge TRUE werden.

Ausgangs-Zustand

- Nach Ende der Abarbeitung der Objektliste werden mit einer Flanke 1-0 an REQUEST die Ausgänge DONE, ERROR, ERROR_ID und DATASET_INDEX zurückgesetzt.
- Falls REQUEST bereits während der Abarbeitung der Objektliste zurückgesetzt wird, so ist sichergestellt, dass die ganze Objektliste abgearbeitet wird.
- Am Ende der Abarbeitung wird bei fehlerfreier Ausführung DONE für einen SPS-Zyklus gesetzt wird. Erst danach werden die Ausgänge zurückgesetzt.

Eingangs-Parameter

- Die Eingangs-Parameter werden mit Flanke 0-1 an REQUEST übernommen. Zur Änderung von Parametern, müssen Sie den Auftrag neu triggern.
- Tritt während der Auftragsbearbeitung erneut eine Flanke 0-1 an REQUEST auf, wird ein Fehler ausgegeben (unzulässige Kommandofolge) und die Abarbeitung der Objektliste beendet.

■ Eingangs-Parameter READ BACK

- Bei aktiviertem Parameter READ_BACK werden zu schreibende Objekte unmittelbar nach dem Schreibauftrag des Objekts mit einem Leseauftrag zurückgelesen.
- Der geschriebene und zurückgelesene Wert werden einem Vergleich unterzogen.
 Bei Gleichheit wird das nächste Objekt bearbeitet.

 Bei Ungleichheit erfolgt eine Fehlermeldung (FRBOR /D = 0x2070) und die Aber
 - Bei Ungleichheit erfolgt eine Fehlermeldung (*ERROR_ID* = 0x8079) und die Abarbeitung der Objektliste wird beendet.

Eingangs-Parameter GROUP

- In der Objektliste k\u00f6nnen Sie zur besseren Strukturierung jedem Objekt eine Gruppe zuordnen.
- Über GROUP definieren Sie die Gruppe, deren Parameter zu übertragen sind.
 0x01...0x7F: Objekte der gewählten Gruppe übertragen.
 0xFF: Objekte aller Gruppen übertragen.

Fehlerbehandlung

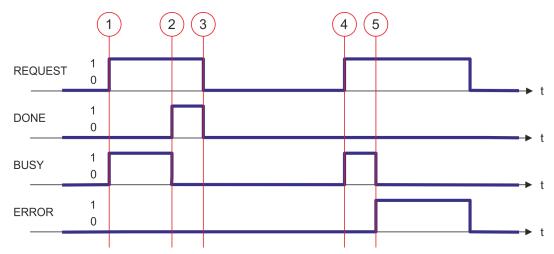
- Der Baustein besitzt Fehlerausgänge zur Anzeige von Fehlern während der Auftragsbearbeitung. ERROR zeigt den Fehler an, ERROR_ID gibt eine ergänzende Fehlernummer aus und DATASET_INDEX zeigt an, bei welchem Objekt der Fehler aufgetreten ist.
- Der Ausgang DONE bezeichnet eine erfolgreiche Auftragsbearbeitung und wird nicht gesetzt, wenn ERROR TRUE wird.

Verhalten des DONE Ausgangs

Der DONE Ausgang wird gesetzt, wenn ein Auftrag erfolgreich ausgeführt wurde.

Verhalten des BUSY Ausgangs

- Der BUSY Ausgang zeigt an, dass der Funktionsbaustein aktiv ist.
- BUSY wird sofort mit der Flanke 0-1 an REQUEST gesetzt und wird erst zurückgesetzt, wenn der Auftrag erfolgreich oder auch nicht erfolgreich beendet wurde.
- Solange BUSY TRUE ist, muss der Baustein zyklisch aufgerufen werden, um das Kommando ausführen zu können.


Verhalten des DATASET INDEX Ausgangs

- Der DATASET_INDEX Ausgang zeigt an, welches Objekt der Objektliste aktuell bearbeitet wird.
- Ist kein Auftrag aktiv, wird DATASET_INDEX = 0 geliefert.
- Tritt w\u00e4hrend der Objektbearbeitung ein Fehler auf, zeigt DATASET_INDEX das fehlerverursachende Objekt an.

Tritt während der Auftragsbearbeitung erneut eine Flanke 0-1 an REQUEST auf, wird ein Fehler (ERROR_ID = 0x8075) ausgegeben, kein neues Kommando aktiviert und die Antwort vom laufenden Kommando verworfen!

Zustandsdiagramm

- (1) Mit Flanke 0-1 an *REQUEST* zum Zeitpunkt (1) wird die Abarbeitung gestartet und *BUSY* liefert den Wert TRUE.
- (2) Zum Zeitpunkt (2) ist die Abarbeitung abgeschlossen. *BUSY* liefert den Wert FALSE und *DONE* den Wert TRUE.
- (3) Zum Zeitpunkt (3) ist die Abarbeitung abgeschlossen und *REQUEST* wird gleich FALSE gesetzt und dadurch sämtliche Ausgangsparameter auf FALSE bzw. 0 gesetzt.
- (4) Zum Zeitpunkt (4) wird erneut die Abarbeitung mit einer Flanke 0-1 an *REQUEST* gestartet und *BUSY* liefert den Wert TRUE.
- (5) Zum Zeitpunkt (5) tritt ein Fehler bei der Abarbeitung auf. BUSY liefert den Wert FALSE und ERROR den Wert TRUE.

ERROR_ID

ERROR_ID	Beschreibung
0x0000	Kein Fehler vorhanden
0x8070	Fehlerhafter Parameter MODE
0x8071	Fehlerhafter Parameter OBJECT_DATA
0x8075	Nicht zulässiger Befehl (Flanke 0-1 bei <i>REQUEST</i> während Auftrag ausgeführt wird)
0x8078	Fehlerhafter Parameter GROUP
0x8079	READ_BACK erkennt einen Fehler (geschriebener und gelesener Wert ungleich)
0x807A	Zeiger bei OBJECT_DATA ungültig

Innerhalb des Funktionsbausteins erfolgt ein Aufruf des FB 320. Hierbei werden eventuelle Fehler des FB 320 an den FB 321 durchgereicht.

→ "ERROR_ID"...Seite 273

Motion-Module - "Motion Modules" > UDT 321 - ACYC OBJECT-DATA - Datenstruktur für FB 321

12.3.4 UDT 321 - ACYC_OBJECT-DATA - Datenstruktur für FB 321

Datenstruktur für die Objektliste

Die Parameter sind in einem Datenbaustein als *Objektliste* abzulegen, welche aus einzelnen *Objekten* besteht. Die Struktur eines *Objekts* ist über eine UDT definiert.

Struktur eines Objekts

Variable	Deklaration	Datentyp	Beschreibung
Group	IN	WORD	0 < Group < 0x80 zulässig
Command	IN	BYTE	0x11 = Lesen aus dem Objektverzeichnis
			0x21 = Schreiben in das Objektverzeichnis
Index	IN	WORD	Index des Objekts
Subindex	IN	BYTE	Subindex des Objekts
Write_Length	IN	BYTE	Länge der zu schreibenden Daten in Byte
Data_Write	IN	DWORD	Zu schreibende Daten.
Data_Read	OUT	DWORD	Gelesene Daten
State	OUT	BYTE	0x00 = nie bearbeitet
			0x01 = BUSY - in Bearbeitung
			0x02 = DONE - erfolgreich bearbeitet
			0x80 = <i>ERROR</i> - bei der Bearbeitung ist ein Fehler aufgetreten

Bitte beachten Sie, dass Sie bei einem Schreibauftrag immer die zum Objekt passende Länge angeben!

Beispiel-DB

Adr.	Name	Тур	Anfangswert	Aktualwert	Kommentar
0.0	Object(1).Group	WORD			1. Objekt
2.0	Object(1).Command	BYTE			
4.0	Object(1).Index	WORD			
6.0	Object(1).Subindex	BYTE			
7.0	Object(1).Write_Length	BYTE			
8.0	Object(1).Data_Write	DWORD			
12.0	Object(1).Data_Read	DWORD			
16.0	Object(1).State	BYTE			
18.0	Object(2).Group	WORD			2. Objekt
34.0	Object(2).State	BYTE			
36.0	Object(3).Group	WORD			3. Objekt
52.0	Object(3).State	BYTE			

RAM nach WLD - "WLD" > FB 241 - RAM to autoload.wld - RAM nach autoload.wld

12.4 RAM nach WLD - "WLD"

12.4.1 FB 240 - RAM_to_s7prog.wld - RAM nach s7prog.wld

Beschreibung

Mit *REQ* = TRUE kopiert dieser Baustein das aktuell geladenen Projekt im RAM einer CPU auf eine gesteckte Speicherkarte als s7prog.wld. Bei einer SPEED7-CPU wird die s7prog.wld immer automatisch nach Urlöschen von einer gesteckten Speicherkarte gelesen. Der FB 240 ruft intern den Baustein SFB 239 mit den entsprechenden Parametern auf. Hierbei werden die Werte für *BUSY* und *RET_VAL* vom SFB 239 an den FB 240 zurückgegeben.

Д

Bitte beachten Sie, dass dieser Baustein in der Bibliothek für das Siemens TIA Portal nicht enthalten ist.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
REQ	IN	BOOL	E, A, M, D, L	Funktionsanstoß mit <i>REQ</i> = 1
BUSY	OUT	BOOL	E, A, M, D, L	Rückgabewert des SFB 239
RET_VAL	OUT	WORD	E, A, M, D, L	Rückgabewert des SFB 239

Bitte beachten Sie, dass nach der Ausführung des Bausteins die CPU systembedingt in den Zustand STOP übergeht. Danach können Sie diese mittels Betriebsartenschalter, Power-Cycle bzw. über Ihr Programmiertool wieder in RUN bringen.

12.4.2 FB 241 - RAM to autoload.wld - RAM nach autoload.wld

Beschreibung

Mit *REQ* = TRUE kopiert dieser Baustein das aktuell geladenen Projekt im RAM einer CPU auf eine gesteckte Speicherkarte als autoload.wld. Bei einer SPEED7-CPU wird die autoload.wld immer automatisch nach NetzEIN von einer gesteckten Speicherkarte gelesen. Der FB 241 ruft intern den Baustein SFB 239 mit den entsprechenden Parametern auf. Hierbei werden die Werte für *BUSY* und *RET_VAL* vom SFB 239 an den FB 241 zurückgegeben.

Bitte beachten Sie, dass dieser Baustein in der Bibliothek für das Siemens TIA Portal nicht enthalten ist.

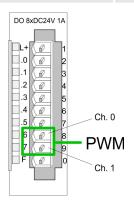
Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
REQ	IN	BOOL	E, A, M, D, L	Funktionsanstoß mit <i>REQ</i> = 1
BUSY	OUT	BOOL	E, A, M, D, L	Rückgabewert des SFB 239
RET_VAL	OUT	WORD	E, A, M, D, L	Rückgabewert des SFB 239

System 100V interne E/As - "Onboard I/O System 100V" > SFC 223 - PWM - Pulsweitenmodulation

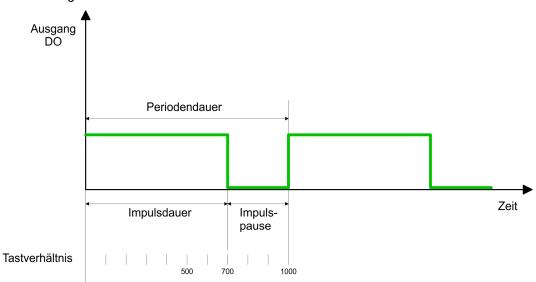
Bitte beachten Sie, dass nach der Ausführung des Bausteins die CPU systembedingt in den Zustand STOP übergeht. Danach können Sie diese mittels Betriebsartenschalter, Power-Cycle bzw. über Ihr Programmiertool wieder in RUN bringen.

12.5 System 100V interne E/As - "Onboard I/O System 100V"

12.5.1 SFC 223 - PWM - Pulsweitenmodulation


Beschreibung

Dieser Baustein dient zur Parametrierung der Pulsweitenmodulation für die letzten beiden Ausgabe-Kanäle von X5.



Bitte beachten Sie, dass dieser Baustein in der Bibliothek für das Siemens TIA Portal nicht enthalten ist.

Parameter	Deklaration	Тур	Beschreibung
CHANNEL	IN	INT	Nummer des Ausgabekanals für PWM
ENABLE	IN	BOOL	Auftrag anstoßen
TIMEBASE	IN	INT	Zeitbasis
PERIOD	IN	DINT	Periode der PWM
DUTY	IN	DINT	Tastverhältnis in Promille
MINLEN	IN	DINT	Minimale Impulsdauer
RET_VAL	OUT	WORD	Rückgabewert (0 = OK)

- Sie geben Zeitbasis, Periode, Tastverhältnis und minimale Impulsdauer vor. Hieraus ermittelt die CPU eine Impulsfolge mit entsprechendem Impuls/Pausenverhältnis und gibt dies über den entsprechenden Ausgabe-Kanal aus.
 - → Der SFC liefert einen Fehlercode zurück. Die entsprechenden Fehlermeldung finden Sie in der Tabelle auf der nächsten Seite. Die PWM-Parameter stehen in folgendem Verhältnis:

System 100V interne E/As - "Onboard I/O System 100V" > SFC 223 - PWM - Pulsweitenmodulation

Periodendauer = Zeitbasis x Periode

Impulsdauer = (Periodendauer / 1000) x Tastverhältnis

Impulspause = Periodendauer - Impulsdauer

Die Parameter haben folgende Bedeutung:

CHANNEL

- Geben Sie hier den Ausgabe-Kanal an, den Sie ansteuern möchten.
 - Wertebereich: 0 ... 1

ENABLE

- Über diesen Parameter können Sie die PWM-Funktion aktivieren (true) bzw. deaktivieren (false).
 - Wertebereich: true, false

TIMEBASE

- *TIMEBASE* bedeutet "Zeitbasis" über die Sie die Auflösung und den Wertebereich der Impuls-, Perioden- und Mindestimpulsdauer je Kanal bestimmen.
- Eingestellt werden können die Werte 0 für 0,1ms und 1 für 1ms.
 - Wertebereich: 0 ... 1

PERIOD

- Durch Multiplikation des unter PERIOD vorgegebenen Werts mit der TIMEBASE erhalten Sie die Periodendauer.
 - Wertebereich: 0 ... 60000

DUTY

- Mit diesem Parameter geben Sie das Tastverhältnis in Promille an. Hiermit bestimmen Sie, bezogen auf eine Periode, das Verhältnis zwischen Impulsdauer und Impulspause.
 - 1 Promille = 1 TIMEBASE
- Ist die errechnete Impulsdauer kein Vielfaches von *TIMEBASE*, wird auf die nächst kleinere *TIMEBASE*-Grenze abgerundet.
 - Wertebereich: 0 ... 1000

MINLEN

- Über *MINLEN* bestimmen Sie die minimale Impulsdauer. Schalthandlungen werden nur dann durchgeführt, wenn der Impuls die hier eingestellte minimale Zeitdauer überschreitet.
 - Wertebereich: 0 ... 60000

RET VAL (Rückgabewert)

Über den Parameter *RET_VAL* bekommen Sie eine Fehler-Nr. zurückgeliefert. 0 bedeutet, dass alles OK ist. Die entsprechende Fehlermeldung entnehmen Sie bitte der nachfolgenden Tabelle:

Wert	Bedeutung
0000h	Kein Fehler
8005h	Parameter MINLEN außerhalb der zulässigen Grenzen.
8006h	Parameter DUTY außerhalb der zulässigen Grenzen.
8007h	Parameter PERIOD außerhalb der zulässigen Grenzen.
8008h	Parameter TIMEBASE außerhalb der zulässigen Grenzen.
8009h	Parameter CHANNEL außerhalb der zulässigen Grenzen.

System 100V interne E/As - "Onboard I/O System 100V" > SFC 224 - HSC - High-speed-Counter

Wert	Bedeutung
9001h	Interner Fehler - Für einen Parameter konnte keine gültige Adresse zugeordnet werden.
9002h	Interner Hardwarefehler - Kontaktieren Sie bitte die Hotline.
9003h	Ausgang ist nicht als PWM-Ausgang parametriert bzw. Hardware-Konfiguration ist fehlerhaft.
9004h	HF-PWM wurde parametriert aber SFC 223 wurde aufgerufen (bitte SFC 225 HF_PWM verwenden!).

12.5.2 SFC 224 - HSC - High-speed-Counter

Beschreibung

Dieser SFC dient zur Parametrierung der Zählfunktionen (high speed counter) für die ersten 4 Eingänge.

Bitte beachten Sie, dass dieser Baustein in der Bibliothek für das Siemens TIA Portal nicht enthalten ist.

Parameter

Parameter	Deklaration	Тур	Beschreibung
CHANNEL	IN	INT	Nummer des Eingabekanals für HSC
ENABLE	IN	BOOL	Auftrag anstoßen
DIRECTION	IN	INT	Zählrichtung
PRESETVALUE	IN	DINT	Ladewert
LIMIT	IN	DINT	Zählgrenze
RET_VAL	OUT	WORD	Rückgabewert (0 = OK)
SETCOUNTER	IN OUT	BOOL	Ladewert laden

CHANNEL

- Geben Sie hier den Eingabe-Kanal an, den Sie als Zähler aktivieren möchten.
 - Wertebereich: 0 ... 3

ENABLE

- Über diesen Parameter können Sie die Zählerfunktion aktivieren (true) bzw. deaktivieren (false).
 - Wertebereich: true, false

DIRECTION

- Bestimmen sie mit *DIRECTION* die Zählrichtung.
 - Hierbei bedeuten:
 - 0: Zähler ist deaktiviert, entspricht ENABLE = false
 - 1: hochzählen
 - 2: runterzählen

PRESETVALUE

- Hiermit können sie einen Zählerinhalt vorgeben, der über SETCOUNTER = true in den entsprechenden Zähler transferiert wird.
 - Wertebereich: 0 ... FFFFFFFh

System 100V interne E/As - "Onboard I/O System 100V" > SFC 225 - HF_PWM - HF Pulsweitenmodulation

LIMIT

- Über Limit geben Sie eine obere bzw. untere Grenze an, für die Zählrichtung Auf- bzw. Abwärts. Bei Erreichen der Grenze wird der entsprechende Zähler auf 0 gestellt und neu gestartet; ggf. erfolgt eine Alarmausgabe.
 - Wertebereich: 0 ... FFFFFFFh

RET_VAL (Rückgabewert)

Über den Parameter RET_VAL bekommen Sie eine Fehler-Nr. zurückgeliefert. Die entsprechende Fehlermeldung entnehmen Sie bitte der nachfolgenden Tabelle:

Wert	Bedeutung
0000h	Kein Fehler
8002h	Der ausgewählte Kanal ist nicht als Zähler konfiguriert (Fehler in Hardware-Konfiguration).
8008h	Parameter DIRECTION außerhalb der zulässigen Grenzen.
8009h	Parameter CHANNEL außerhalb der zulässigen Grenzen.
9001h	Interner Fehler - Für einen Parameter konnte keine gültige Adresse zugeordnet werden.
9002h	Interner Hardwarefehler - Kontaktieren Sie bitte die Hotline.

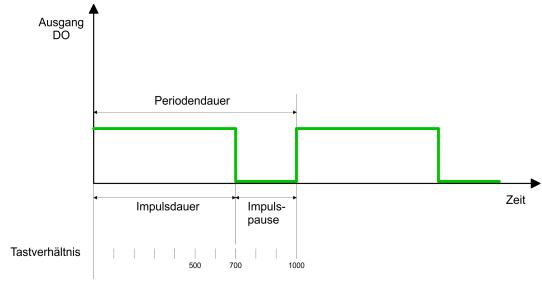
SETCOUNTER

- Durch SETCOUNTER = true wird der mit PRESETVALUE übergebene Wert in den entsprechenden Zähler übertragen.
- Das Bit wird vom SFC wieder zurückgesetzt.
 - Wertebereich: true, false

12.5.3 SFC 225 - HF PWM - HF Pulsweitenmodulation

Beschreibung

Dieser Baustein dient zur Parametrierung der Pulsweitenmodulation für die letzten beiden Ausgabe-Kanäle. Dieser Baustein hat die gleiche Funktion wie der SFC 223. Anstelle von *TIMEBASE* und *PERIODE* geben Sie hier eine Frequenz (bis zu 50kHz) vor.


Bitte beachten Sie, dass dieser Baustein in der Bibliothek für das Siemens TIA Portal nicht enthalten ist.

Parameter	Deklaration	Тур	Beschreibung
CHANNEL	IN	INT	Nummer des Ausgabekanals für HF-PWM
ENABLE	IN	BOOL	Auftrag anstoßen
FREQUENCE	IN	WORD	Frequenz der HF-PWM
DUTY	IN	DINT	Tastverhältnis in Promille
MINLEN	IN	DINT	Minimale Impulsdauer
RET_VAL	OUT	WORD	Rückgabewert (0 = OK)

System 100V interne E/As - "Onboard I/O System 100V" > SFC 225 - HF_PWM - HF Pulsweitenmodulation

- Sie geben Frequenz, Tastverhältnis und minimale Impulsdauer vor. Hieraus ermittelt die CPU eine Impulsfolge mit entsprechendem Impuls/Pausenverhältnis und gibt dies über den entsprechenden Ausgabe-Kanal aus.
 - ▶ Der SFC liefert einen Fehlercode zurück. Die entsprechenden Fehlermeldung finden Sie in der Tabelle auf der nächsten Seite. Die PWM-Parameter stehen in folgendem Verhältnis:

Periodendauer = 1 / Frequenz

Impulsdauer = (Periodendauer / 1000) x Tastverhältnis

Impulspause = Periodendauer - Impulsdauer

CHANNEL

- Geben Sie hier den Ausgabe-Kanal an, den Sie ansteuern möchten.
 - Wertebereich: 0 ... 1

ENABLE

- Über diesen Parameter können Sie die PWM-Funktion aktivieren (true) bzw. deaktivieren (false).
 - Wertebereich: true, false

FREQUENCE

- Geben Sie hier die Frequenz in Hz als hexadezimalen Wert an.
 - Wertebereich: 09C4h ... C350h (2,5kHz ... 50kHz)

DUTY

- Mit diesem Parameter geben Sie das Tastverhältnis in Promille an. Hiermit bestimmen Sie, bezogen auf eine Periode, das Verhältnis zwischen Impulsdauer und Impulspause.
 - 1 Promille = 1 TIMEBASE
- Ist die errechnete Impulsdauer kein Vielfaches von TIMEBASE, wird auf die n\u00e4chst kleinere TIMEBASE-Grenze abgerundet.
 - Wertebereich: 0 ... 1000

MINLEN

- Über MINLEN bestimmen Sie die minimale Impulsdauer in µs. Schalthandlungen werden nur dann durchgeführt, wenn der Impuls die hier eingestellte minimale Zeitdauer überschreitet.
 - Wertebereich: 0 ... 60000

System 100V interne E/As - "Onboard I/O System 100V" > SFC 225 - HF PWM - HF Pulsweitenmodulation

RET_VAL (Rückgabewert)

Über den Parameter *RET_VAL* bekommen Sie eine Fehler-Nr. zurückgeliefert. 0 bedeutet, dass alles OK ist. Die entsprechende Fehlermeldung entnehmen Sie bitte der nachfolgenden Tabelle:

Wert	Bedeutung
0000h	Kein Fehler
8005h	Parameter MINLEN außerhalb der zulässigen Grenzen.
8006h	Parameter DUTY außerhalb der zulässigen Grenzen.
8007h	Parameter FREQUENCE außerhalb der zulässigen Grenzen.
8008h	Parameter TIMEBASEaußerhalb der zulässigen Grenzen.
8009h	Parameter CHANNEL außerhalb der zulässigen Grenzen.
9001h	Interner Fehler - Für einen Parameter konnte keine gültige Adresse zugeordnet werden.
9002h	Interner Hardwarefehler - Kontaktieren Sie bitte die Hotline.
9003h	Ausgang ist nicht als PWM-Ausgang parametriert bzw. Hardware-Konfiguration ist fehlerhaft.
9004h	HF-PWM wurde parametriert aber SFC 223 wurde aufgerufen (bitte SFC 225 HF_PWM verwenden!).

Übersicht

13 Antriebssteuerung - Simple Motion Control Library

13.1 Übersicht

Baustein-Bibliothek "Controls Library"

Die Baustein-Bibliothek finden Sie im "Download Center" auf www.yaskawa.eu.com unter "Controls Library" als "Baustein-Bibliothek Simple Motion Control - SW90MS0MA" zum Download. Die Bibliothek liegt als gepackte zip-Dateien vor. Sobald Sie die Bausteine verwenden möchten, müssen Sie diese in Ihr Projekt importieren.

Leistungsmerkmale

Mit den Bausteinen der Simple Motion Control Library können Sie auf einfache Weise ohne Detailwissen Antriebe in Ihre Applikationen integrieren. Hierbei werden verschiedene Antriebe und Bussystem unterstützt. Mittels der PLCopen-Bausteine können Sie einfache Antriebsaufgaben in Ihrer Steuerung realisieren. Dieses System bietet folgenden Leistungsumfang:

- Einsetzbar im SPEED7 Studio, Siemens SIMATIC Manager und TIA Portal
- Umsetzung von einfachen Antriebsfunktionen
 - Einschalten bzw. Ausschalten
 - Drehzahlvorgabe
 - Relative bzw. absolute Positionierung
 - Referenzfahrt (Homing)
 - Lesen und Schreiben von Parametern
 - Abfrage von Achsposition und Status
- Einfache Inbetriebnahme und Diagnose ohne detaillierte Kenntnisse der Antriebe
- Unterstützung verschiedener Antriebe und Feldbusse
- Visualisierung einzelner Achsen
- Skalierbar durch Einsatz von PLCopen-Bausteinen

Übersicht

Struktur

Die Simple Motion Control Library ist in folgende Gruppen gegliedert:

- Axis Control
 - Allgemeine Bausteine zur Steuerung der Antriebe.
- Sigma5 EtherCAT
 - Spezifische Bausteine für den Einsatz von Sigma-5-Antrieben, welche über EtherCAT angebunden sind.
- Sigma7 EtherCAT
 - Spezifische Bausteine für den Einsatz von Sigma-7S-Antrieben, welche über EtherCAT angebunden sind.
 - Spezifische Bausteine für den Einsatz von Sigma-7W-Antrieben, welche über EtherCAT angebunden sind.
- Sigma5+7 PROFINET
 - Spezifische Bausteine für den Einsatz von Sigma-5 bzw. Sigma-7-Antrieben, welche über PROFINET angebunden sind.
- Sigma5+7 PulseTrain
 - Spezifischer Baustein für den Einsatz von Sigma-5 bzw. Sigma-7-Antrieben, welche über Pulse Train angebunden sind.
- V1000 PWM
 - Spezifischer Baustein für den Einsatz von V1000-Frequenzumrichter, welche über PWM angebunden sind.
- V1000 Modbus RTU
 - Spezifische Bausteine für den Einsatz von V1000-Frequenzumrichter, welche über Modbus-RTU angebunden sind.
- Inverter EtherCAT
 - Spezifische Bausteine für den Einsatz von Frequenzumrichter, welche über EtherCAT angebunden sind.
- SLIO Motion Modules
 - Spezifische Bausteine für den Einsatz von System SLIO Motion Modulen für Stepper-, DC- und Pulse Train-Antriebe.

Bitte beachten Sie, dass manche Funktionalitäten nicht von allen Projektier-Tools unterstützt werden und somit manche Gruppen in dem entsprechenden Projektier-Tool nicht zur Verfügung stehen!

Einsatz Sigma-5/7 EtherCAT > Einsatz Sigma-5 EtherCAT

Demo-Projekte

SPEED7 Studio

Bei der Installation des *SPEED7 Studio* werden Demoprojekte automatisch installiert. Sie finden diese in ihrem Programm-Verzeichnis unter C:\Program Files (x86)\VIPA GmbH\SPEED7 Studio\Public\DemoProjects. Für den Einsatz eines Demoprojekts ist dieses zu importieren:

- 1. Starten Sie das SPEED7 Studio ohne Projekt.
- 2. ▶ Öffnen Sie mit "Datei → Projekt importieren" den Import-Dialog.
- 3. Navigieren Sie zu den Demoprojekten unter → C:\Program Files (x86)\VIPA GmbH\SPEED7 Studio\Public\DemoProjects und importieren Sie die entsprechende vpz-Datei.
 - → Das Demo-Projekt wird importiert und geöffnet.

Siemens SIMATIC Manager

Zusammen mit der Baustein-Bibliothek finden Sie für den Siemens SIMATIC Manager entsprechende Demo-Projekte im Download-Bereich. Für den Einsatz eines Demoprojekts ist dieses zu importieren:

- 1. ▶ Laden Sie die Datei *Demo_S7_... .zip* und entpacken Sie diese ggf. mehrfach.
 - ➡ Die zip-Dateien werden aufgelistet.
- 2. Starten Sie den Siemens SIMATIC Manager ohne Projekt.
- 3. ▶ Öffnen Sie mit "Datei → Dearchivieren ..." den Import-Dialog.
- **4.** Navigieren Sie zu den entpackten zip-Dateien und dearchivieren Sie die entsprechende zip-Datei.
 - → Das Demo-Projekt wird importiert und kann geöffnet werden.

Siemens TIA Portal

Zusammen mit der Baustein-Bibliothek finden Sie für das Siemens TIA Portal entsprechende Demo-Projekte im Download-Bereich. Für den Einsatz eines Demoprojekts ist dieses zu importieren:

- 1. Laden Sie die Datei *Demo_TIA_....zip* und entpacken Sie diese ggf. mehrfach.
 - → Die zap-Dateien werden aufgelistet.
- 2. Starten Sie das Siemens TIA Portal ohne Projekt.
- 3. → Öffnen Sie mit "Datei → Dearchivieren ..." den Import-Dialog.
- **4.** Navigieren Sie zu den entpackten zap-Dateien und dearchivieren Sie die entsprechende zap-Datei.
 - → Das Demo-Projekt wird importiert und geöffnet.

13.2 Einsatz Sigma-5/7 EtherCAT

13.2.1 Einsatz Sigma-5 EtherCAT

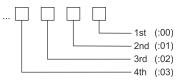
13.2.1.1 Übersicht

Voraussetzung

■ SPEED7 Studio ab V1.6.1

Motion Control Library

- oder
 Siemens SIMATIC Manager ab V 5.5 SP2 & SPEED7 EtherCAT Manager & Simple
- CPU mit EtherCAT-Master wie z.B. CPU 015-CEFNR00
- Sigma-5-Antrieb mit EtherCAT-Optionskarte


Schritte der Projektierung

- 1. Parameter am Antrieb einstellen
 - Die Einstellung der Parameter erfolgt mit dem Softwaretool Sigma Win+.

- 2. Hardwarekonfiguration im SPEED7 Studio oder Siemens SIMATIC Manager
 - Projektierung einer CPU mit EtherCAT-Master-Funktionalität.
 - Projektierung eines Sigma-5 EtherCAT-Antriebs.
 - Projektierung der EtherCAT-Anbindung über SPEED7 EtherCAT Manager.
- 3. Programmierung im SPEED7 Studio oder Siemens SIMATIC Manager
 - Init-Baustein zur Konfiguration der Achse beschalten.
 - Kernel-Baustein zur Kommunikation mit der Achse beschalten.
 - Bausteine für die Bewegungsabläufe beschalten.
 - → "Demo-Projekte"...Seite 288

13.2.1.2 Parameter am Antrieb einstellen

Parameter-Digits

VORSICHT

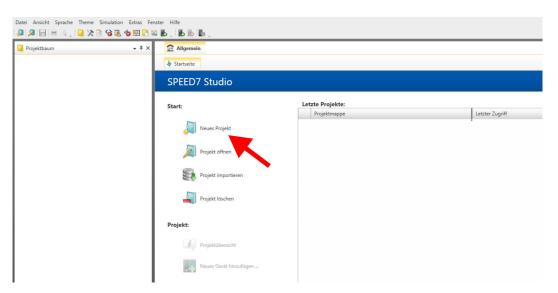
Vor der Erstinbetriebnahme müssen Sie Ihren Antrieb mit dem Softwaretool *Sigma Win+* an Ihre Applikation anpassen! Näheres hierzu finden Sie im Handbuch zu ihrem Antrieb.

Zur Abstimmung auf die Simple Motion Control Library sind folgende Parameter über Sigma Win+ einzustellen:

Sigma-5 (20Bit Encoder)

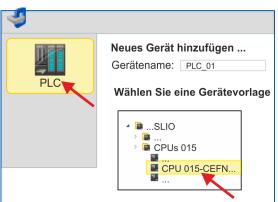
Servopack Para- meter	Adresse:Digit	Name	Wert
Pn205	(2205h)	Multiturn Limit Setting	65535
Pn20E	(220Eh)	Electronic Gear Ratio (Numerator)	1
Pn210	(2210h)	Electronic Gear Ratio (Denominator)	1
PnB02	(2701h:01)	Position User Unit (Numerator)	1
PnB04	(2701h:02)	Position User Unit (Denominator)	1
PnB06	(2702h:01)	Velocity User Unit (Numerator)	1
PnB08	(2702h:02)	Velocity User Unit (Denominator)	1
PnB0A	(2703h:01)	Acceleration User Unit (Numerator)	1
PnB0C	(2703h:02)	Acceleration User Unit (Denominator)	1

Bitte beachten Sie, dass Sie gemäß ihren Anforderungen die entsprechende Fahrtrichtung für Ihren Antrieb freigeben. Verwenden Sie hierzu die Parameter Pn50A (P-OT) bzw. Pn50B (N-OT) in Sigma Win+.


13.2.1.3 Einsatz im SPEED7 Studio

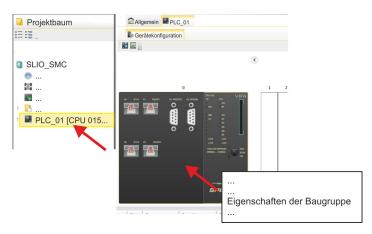
13.2.1.3.1 Hardware-Konfiguration

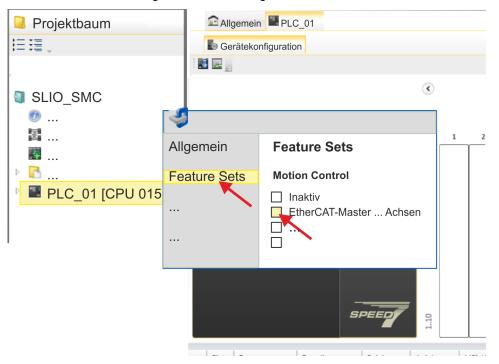
CPU im Projekt anlegen


Bitte verwenden Sie für die Projektierung das SPEED7 Studio ab V1.6.1.

1. Starten Sie das SPEED7 Studio.

- **2.** Erstellen sie auf der Startseite mit "Neues Projekt" ein neues Projekt und vergeben Sie einen "Projektnamen".
 - ⇒ Ein neues Projekt wird angelegt und in die Sicht "Geräte und Netze" gewechselt.
- 3. Klicken Sie im Projektbaum auf "Neues Gerät hinzufügen ...".



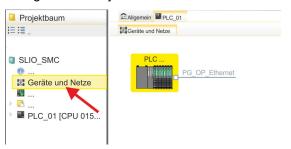

- ➡ Es öffnet sich ein Dialog für die Geräteauswahl.
- **4.** Wählen Sie unter den "Gerätevorlagen" eine CPU mit EtherCAT-Master-Funktionalität wie z.B. die CPU 015-CEFNR00 und klicken Sie auf [OK].
 - → Die CPU wird in "Geräte und Netze" eingefügt und die "Gerätekonfiguration" geöffnet.

Motion-Control-Funktionen aktivieren

Sofern bei Ihrer CPU die EtherCAT-Master-Funktionalität noch nicht aktiviert ist, erfolgt die Aktivierung nach folgenden Vorgehensweise:

- 1. Klicken Sie in der "Gerätekonfiguration" auf die CPU und wählen Sie "Kontextmenü Eigenschaften der Baugruppe".
 - ⇒ Es öffnet sich der Eigenschaften-Dialog der CPU.

- 2. Klicken Sie auf "Feature Sets" und aktivieren Sie unter "Motion Control" einen der Parameter "EtherCAT-Master ... Achsen". Die Anzahl der Achsen ist in diesem Beispiel nicht relevant.
- 3. Bestätigen Sie Ihre Angaben mit [OK].
 - ➡ Die Motion-Control-Funktionen steht Ihnen nun in Ihrem Projekt zur Verfügung.



VORSICHT

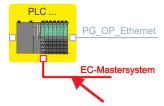
Bitte beachten Sie, dass bei jeder Änderung der Feature-Set-Einstellungen systembedingt das EtherCAT-Feldbus-System zusammen mit der Motion-Control-Konfiguration aus Ihrem Projekt gelöscht werden!

Ethernet-PG/OP-Kanal parametrieren

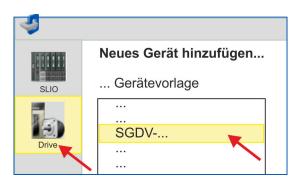
- 1. Klicken Sie im Projektbaum auf "Geräte und Netze".
 - ⇒ Sie erhalten eine grafische Objekt-Ansicht Ihrer CPU.

- 2. Klicken Sie auf das Netzwerk "PG_OP_Ethernet".
- 3. ▶ Wählen Sie "Kontextmenü → Eigenschaften der Schnittstelle".
 - ➡ Es öffnet sich ein Dialogfenster. Hier können Sie IP-Adressdaten für Ihren Ethernet-PG/OP-Kanal angeben. Gültige IP-Adress-Parameter erhalten Sie von Ihrem Systemadministrator.
- 4. Bestätigen Sie Ihre Eingabe mit [OK].
 - Die IP-Adressdaten werden in Ihr Projekt übernommen und in "Geräte und Netze" unter "Lokale Baugruppen" aufgelistet.

Nach der Übertragung Ihres Projekts ist Ihre CPU über die angegebenen IP-Adressdaten via Ethernet-PG/OP-Kanal erreichbar.

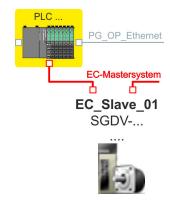

ESI-Datei installieren

Damit der *Sigma-5* EtherCAT Antrieb im *SPEED7 EtherCAT Manager* konfiguriert werden kann, muss die entsprechende ESI-Datei installiert sein. In der Regel wird das *SPEED7 Studio* mit aktuellen ESI-Dateien ausgeliefert und Sie können diesen Teil überspringen. Sollte Ihre ESI-Datei veraltet sein, finden Sie die aktuellste ESI-Datei für den *Sigma-5* EtherCAT Antrieb unter www.yaskawa.eu.com im *"Download Center"*.


- 1. Laden Sie die zu Ihrem Antrieb passende ESI-Datei herunter. Entpacken Sie diese falls erforderlich.
- 2. Gehen Sie in Ihr SPEED7 Studio.
- 3. Öffnen Sie mit "Extras → Gerätebeschreibungsdatei installieren (EtherCAT ESI)" das zugehörige Dialogfenster.
- **4.** Geben Sie unter "Quellpfad" die ESI-Datei an und installieren Sie diese mit [Installieren].
 - Die Geräte der ESI-Datei steht Ihnen nun zur Verfügung.

Sigma-5 Antrieb hinzufügen

- 1. Klicken Sie im Projektbaum auf "Geräte und Netze".
- <u>2.</u> Klicken Sie hier auf "EC-Mastersystem" und wählen sie "Kontextmenü → Neues Gerät hinzufügen".



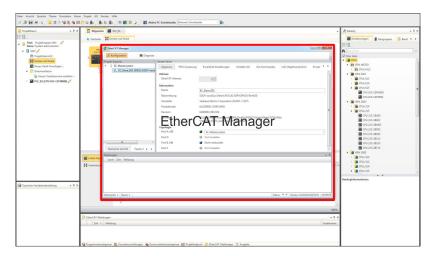
➡ Es öffnet sich die Gerätevorlage zur Auswahl eines EtherCAT-Devices.

- 3. Wählen Sie Ihren Sigma-5 Antrieb aus:
 - SGDV-xxxxE5...
 - SGDV-xxxxE1...

Bestätigen Sie Ihre Angaben mit [OK]. Sollte Ihr Antrieb nicht vorhanden sein, müssen Sie die entsprechende ESI-Datei wie weiter oben beschrieben installieren.

→ Der Sigma-5 Antrieb wird an Ihr EC-Mastersystem angebunden.

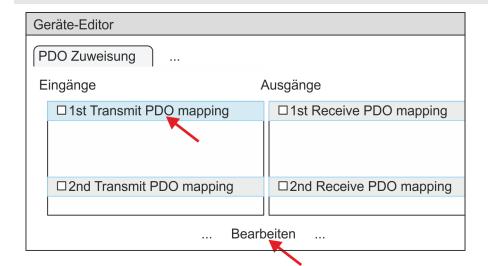
Sigma-5 Antrieb konfigurieren

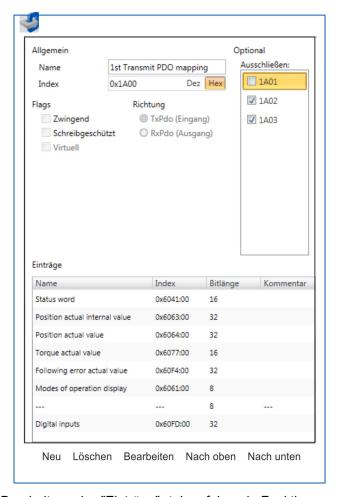

1. ▶ Klicken Sie auf "EC-Mastersystem" und wählen sie "Kontextmenü → Eigenschaft des Bussystems (Experte)".

PDOs können Sie nur im "Experten-Modus" bearbeiten! Ansonsten werden die Schaltflächen ausgeblendet.

▶ Der SPEED7 EtherCAT Manager wird gestartet. Hier können Sie die EtherCAT-Kommunikation zu Ihrem Sigma-5 Antrieb konfigurieren.

Näheres zum Einsatz des SPEED7 EtherCAT Manager finden Sie in der Onlinehilfe zum SPEED7 Studio.


2. Klicken Sie im SPEED7 EtherCAT Manager auf den Slave und wählen Sie im "Geräte-Editor" den Reiter "PDO-Zuweisung" an.


- ➡ Dieser Dialog zeigt eine Auflistung aller PDOs.
- 3. Durch Anwahl des entsprechenden PDO-Mappings können Sie mit [Bearbeiten] die PDOs bearbeiten. Wählen Sie das Mapping "1st Transmit PDO mapping" an und klicken Sie auf [Bearbeiten].

Bitte beachten Sie, dass aufgrund der Voreinstellung manche PDOs nicht bearbeitet werden können. Durch Deaktivierung bereits aktivierter PDOs können Sie die Bearbeitung von gesperrten PDOs frei geben.

➡ Es öffnet sich der Dialog "PDO bearbeiten". Bitte überprüfen Sie hier die aufgeführten PDO-Einstellungen und passen Sie diese ggf. an. Bitte berücksichtigen Sie hierbei auch die Reihenfolge der "Einträge" und ergänzen Sie diese entsprechend.

Für die Bearbeitung der "Einträge" stehen folgende Funktionen zur Verfügung:

- Neu
 - Hiermit können Sie in einem Dialogfenster einen neuen Eintrag anlegen, indem Sie aus dem "CoE-Objektverzeichnis" den entsprechenden Eintrag auswählen und Ihre Einstellungen vornehmen. Mit [OK] wird der Eintrag übernommen und in der Liste der Einträge aufgeführt.
- Löschen
 - Hiermit können Sie den angewählte Eintrag löschen.
- Bearbeiten
 - Hiermit können Sie allgemeinen Daten eines Eintrags bearbeiten.
- Nach oben/unten
 - Hiermit können Sie den angewählten Eintrag in der Liste nach oben bzw. nach unten bewegen.

4. Führen Sie folgende Einstellungen durch:

Eingänge: 1st Transmit PDO 0x1A00

Allgemein

- Name: 1st Transmit PDO mapping

Index: 0x1A00

Flags

Alles deaktiviert

Richtung

- TxPdo (Eingang): aktiviert

Ausschließen

Bitte diese Einstellungen beachten, da ansonsten die PDO-Mappings nicht zeitgleich aktiviert werden können!

- 1A01: deaktiviert

Einträge

Name	Index	Bitlänge
Status word	0x6041:00	16Bit
Position actual internal value	0x6063:00	32Bit
Position actual value	0x6064:00	32Bit
Torque actual value	0x6077:00	16Bit
Following error actual value	0x60F4:00	32Bit
Modes of operation display	0x6061:00	8Bit
		8Bit
Digital inputs	0x60FD:00	32Bit

Schließen Sie den Dialog "PDO bearbeiten" mit [OK].

5. Wählen Sie das Mapping "2nd Transmit PDO mapping" an und klicken Sie auf [Bearbeiten]. Führen Sie folgende Einstellungen durch:

Eingänge: 2nd Transmit PDO 0x1A01

Allgemein

- Name: 2nd Transmit PDO mapping

- Index: 0x1A01

■ Flags

- Alles deaktiviert

Richtung

TxPdo (Eingang): aktiviert

Ausschließen

Bitte diese Einstellungen beachten, da ansonsten die PDO-Mappings nicht zeitgleich aktiviert werden können!

1A00: deaktiviert1A02: deaktiviert1A03: deaktiviert

Einträge

Name	Index	Bitlänge
Touch probe status	0x60B9:00	16Bit
Touch probe 1 position value	0x60BA:00	32Bit
Touch probe 2 position value	0x60BC:00	32Bit
Velocity actual value	0x606C:00	32Bit

Schließen Sie den Dialog "PDO bearbeiten" mit [OK].

6. Wählen Sie das Mapping "1st Receive PDO mapping" an und klicken Sie auf [Bearbeiten]. Führen Sie folgende Einstellungen durch:

Ausgänge: 1st Receive PDO 0x1600

Allgemein

Name: 1st Receive PDO mapping

- Index: 0x1600

Flags

Alles deaktiviert

Richtung

- RxPdo (Ausgang): aktiviert

Ausschließen

Bitte diese Einstellungen beachten, da ansonsten die PDO-Mappings nicht zeitgleich aktiviert werden können!

1601: deaktiviert1602: deaktiviert1603: deaktiviert

Einträge

Name	Index	Bitlänge
Control word	0x6040:00	16Bit
Target position	0x607A:00	32Bit
Target velocity	0x60FF:00	32Bit
Modes of operation	0x6060:00	8Bit
		8Bit
Touch probe function	0x60B8:00	16Bit

Schließen Sie den Dialog "PDO bearbeiten" mit [OK].

7. Wählen Sie das Mapping "2nd Receice PDO mapping" an und klicken Sie auf [Bearbeiten]. Führen Sie folgende Einstellungen durch:

Ausgänge: 2nd Receive PDO 0x1601

Allgemein

- Name: 2nd Receive PDO mapping

- Index: 0x1601

Flags

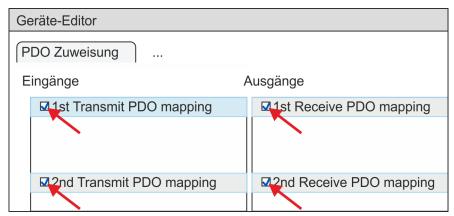
Alles deaktiviert

Richtung

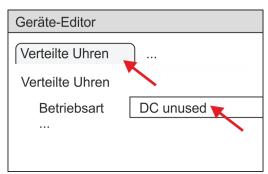
RxPdo (Ausgang): aktiviert

Ausschließen

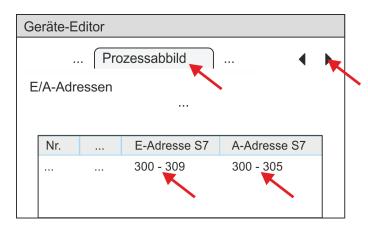
Bitte diese Einstellungen beachten, da ansonsten die PDO-Mappings nicht zeitgleich aktiviert werden können!


1600: deaktiviert1602: aktiviert1603: aktiviert

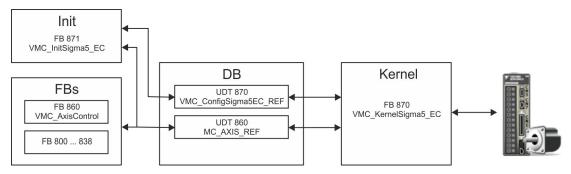
Einträge


Name	Index	Bitlänge
Profile velocity	0x6081:00	32Bit
Profile acceleration	0x6083:00	32Bit
Profile deceleration	0x6084:00	32Bit

Schließen Sie den Dialog "PDO bearbeiten" mit [OK].


8. Aktivieren Sie in PDO-Zuweisung die PDOs 1 und 2 für die Ein und Ausgänge. Alle nachfolgenden PDOs müssen deaktiviert bleiben. Sollte dies nicht möglich sein, überprüfen Sie bitte den jeweiligen PDO-Parameter "Ausschließen".

9. Wählen Sie im "Geräte-Editor" des SPEED7 EtherCAT Manager den Reiter "Verteilte Uhren" an und stellen Sie "DC unused" als "Betriebsart" ein.


- 10. Wählen Sie im "Geräte-Editor" über die Pfeiltaste den Reiter "Prozessabbild" an und notieren Sie sich für die Parameter des Bausteins FB 871 VMC_InitSigma5_EC folgende PDO-Anfangsadressen:
 - "E-Adresse S7" → "InputsStartAddressPDO"
 - "A-Adresse S7" → "OutputsStartAddressPDO"

11. Indem Sie den Dialog des *SPEED7 EtherCAT Manager* mit [X] schließen, wird die Konfiguration in das *SPEED7 Studio* übernommen.

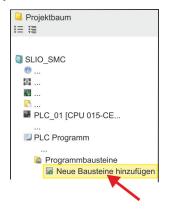
13.2.1.3.2 Anwender-Programm

Programmstruktur

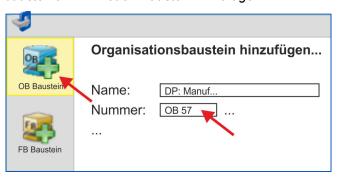
DB

Für jede Achse ist ein Datenbaustein (Achs-DB) für Konfiguration und Statusdaten anzulegen. Der Datenbaustein besteht aus folgenden Datenstrukturen:

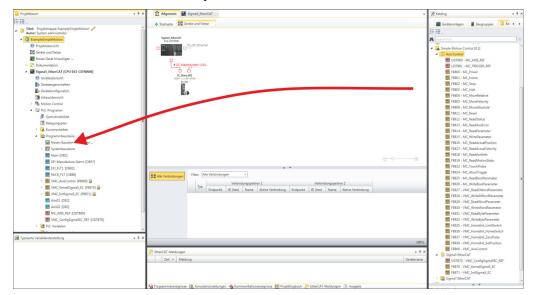
- UDT 870 VMC_ConfigSigma5EC_REF
 Die Datenstruktur beschreibt den Aufbau der Konfiguration des Antriebs.
 Spezifische Datenstruktur für Sigma-5 EtherCAT.
- UDT 860 MC_AXIS_REF


Die Datenstruktur beschreibt den Aufbau der Parameter und Statusinformationen von Antrieben.

Allgemeine Datenstruktur für alle Antriebe und Bussysteme.


- FB 871 VMC_InitSigma5_EC
 - Der Init-Baustein dient zur Konfiguration einer Achse.
 - Spezifischer Baustein für Sigma-5 EtherCAT.
 - Die Konfigurationsdaten für die Initialisierung sind im Achs-DB abzulegen.
- FB 870 VMC_KernelSigma5_EC
 - Der Kernel-Baustein kommuniziert mit dem Antrieb über das entsprechende Bussystem, verarbeitet die Benutzeraufträge und liefert Statusmeldungen zurück.
 - Spezifischer Baustein für Sigma-5 EtherCAT.
 - Der Austausch der Daten erfolgt mittels des Achs-DB.
- FB 860 VMC_AxisControl
 - Universal-Baustein für alle Antriebe und Bussysteme.
 - Unterstützt einfache Bewegungskommandos und liefert alle relevanten Statusmeldungen.
 - Der Austausch der Daten erfolgt mittels des Achs-DB.
 - Über die Instanzdaten des Bausteins können Sie zur Bewegungssteuerung und Statusabfrage eine Visualisierung anbinden.
 - Zusätzlich zum FB 860 VMC_AxisControl haben Sie die Möglichkeit PLCopen-Bausteine zu nutzen.
- FB 800 ... FB 838 PLCopen
 - Die PLCopen-Bausteine dienen zur Programmierung von Bewegungsabläufen und Statusabfragen.
 - Allgemeine Bausteine für alle Antriebe und Bussysteme.

Programmierung


Bausteine in Projekt kopieren

1. Klicken Sie im *Projektbaum* innerhalb der CPU unter "PLC-Programm", "Programmbausteine" auf "Neuen Baustein hinzufügen".

- → Das Dialogfenster "Baustein hinzufügen" öffnet sich.
- 2. Wählen Sie den Bausteintyp "OB Baustein" und fügen Sie nacheinander OB 57, OB 82 und OB 86 Ihrem Projekt hinzu.

- 3. Öffnen Sie im "Katalog" unter "Bausteine" "Simple Motion Control" und ziehen Sie per Drag&Drop folgende Bausteine in "Programmbausteine" des Projektbaums:
 - Sigma-5 EtherCAT:
 - UDT 870 VMC_ConfigSigma5EC_REF
 - FB 870 VMC_KernelSigma5_EC
 - FB 871 VMC_InitSigma5_EC
 - Axis Control
 - UDT 860 MC AXIS REF
 - Bausteine für die gewünschten Bewegungsabläufe

Achs-DB anlegen

- 1. Fügen Sie Ihrem Projekt einen neuen DB als Achs-DB hinzu. Klicken Sie hierzu im Projektbaum innerhalb der CPU unter "PLC-Programm", "Programmbausteine" auf "Neuen Baustein hinzufügen", wählen Sie den Bausteintyp "DB Baustein" und vergeben Sie diesem den Namen "Axis01". Die DB-Nr. können Sie frei wählen wie z.B. DB 10.
 - Der Baustein wird angelegt und geöffnet.
- 2. Legen Sie in "Axis01" die Variable "Config" vom Typ UDT 870 an. Dies sind spezifische Achs-Konfigurationsdaten.
 - Legen Sie in "Axis01" die Variable "Axis" vom Typ UDT 860 an. Während des Betriebs werden hier alle Betriebsdaten der Achse abgelegt.

•

Axis01 [DB10] Bausteinstruktur

Adr	Name	Datentyp	
	Config	UDT	[870]
	Axis	UDT	[860]

OB₁

Konfiguration der Achse

Öffnen Sie den OB 1 und programmieren Sie folgende FB-Aufrufe mit zugehörigen DBs:

FB 871 - VMC_InitSigma5_EC, DB 871 → "FB 871 - VMC_InitSigma5_EC - Sigma-5 EtherCAT Initialisierung"...Seite 322

Geben Sie unter *InputsStartAddressPDO* bzw. *OutputsStartAddressPDO* die Adresse aus dem *SPEED7 EtherCAT Manager* an. *→* 299

```
→ CALL
       "VMC InitSigma5 EC" , "DI InitSgm5ETC01"
                        :="InitS5EC1_Enable"
  Enable
  LogicalAddress
                        :=300
  InputsStartAddressPDO :=300 (EtherCAT-Man.: E-Adresse S7)
  OutputsStartAddressPDO:=300 (EtherCAT-Man.: A-Adresse S7)
  EncoderType
  EncoderResolutionBits :=20
                       :=1.048576e+006
  FactorPosition
  FactorVelocity
                       :=1.048576e+006
  FactorAcceleration :=1.048576e+002
  OffsetPosition
                      :=0.000000e+000
  MaxVelocityApp
                      :=5.000000e+001
 MaxAccelerationApp :=1.000000e+002
                      :=1.000000e+002
 MaxDecelerationApp
                       :=6.000000e+001
 MaxVelocityDrive
 MaxAccelerationDrive :=1.500000e+002
 MaxDecelerationDrive :=1.500000e+002
  MaxPosition
                       :=1.048500e+003
  MinPosition
                       :=-1.048514e+003
  EnableMaxPosition
                       :=TRUE
  EnableMinPosition
                       :=TRUE
  MinUserPosition
                        :="InitS5EC1 MinUserPos"
  MaxUserPosition
                        :="InitS5EC1 MaxUserPos"
                        :="InitS5EC1_Valid"
:="InitS5EC1_Error"
  Valid
  Error
                        :="InitS5EC1 ErrorID"
  ErrorID
                        :="Axis01".Config
  Config
                        :="Axis01".Axis
  Axis
```

Kernel für Achse beschalten

Der Kernel verarbeitet die Benutzerkommandos und gibt sie entsprechend aufbereitet an den Antrieb über das jeweilige Bussystem weiter.

```
FB 870 - VMC_KernelSigma5_EC, DB 870 → "FB 870 - VMC_KernelSigma5_EC - Sigma-5 EtherCAT Kernel"...Seite 321
```

```
→ CALL "VMC_KernelSigma5_EC" , "DI_KernelSgm5ETC01"
Init :="KernelS5EC1_Init"
Config:="Axis01".Config
Axis :="Axis01".Axis
```

Baustein für Bewegungsabläufe beschalten

Zur Vereinfachung soll hier die Beschaltung des FB 860 - VMC_AxisControl gezeigt werden. Dieser Universalbaustein unterstützt einfache Bewegungskommandos und liefert Statusmeldungen zurück. Die Ein- und Ausgänge können Sie individuell beschalten. Bitte geben Sie unter "Axis" die Referenz zu den entsprechenden Achsdaten im Achs-DB an.

FB 860 - VMC_AxisControl, DB 860 → "FB 860 - VMC_AxisControl - Control-Baustein Achskontrolle"...Seite 659

```
"VMC AxisControl" , "DI AxisControl01"
AxisEnable :="AxCtrl1_AxisEnable"
AxisReset :="AxCtrl1_AxisReset"
HomeExecute
                       :="AxCtrl1 HomeExecute"
HomePosition :="AxCtrl1_HomePosition"
StopExecute :="AxCtrl1_StopExecute"
MvVelocityExecute:="AxCtrl1 MvVelExecute"
MvRelativeExecute:="AxCtrl1 MvRelExecute"
MvAbsoluteExecute:="AxCtrl1 MvAbsExecute"
PositionDistance := "AxCtrl1 PositionDistance"
Velocity :="AxCtrl1_Velocity"

Acceleration :="AxCtrl1_Acceleration"

Deceleration :="AxCtrl1_Deceleration"

JogPositive :="AxCtrl1_JogPositive"

JogNegative :="AxCtrl1_JogNegative"

JogVelocity :="AxCtrl1_JogVelocity"

JogNegative :="AxCtrl1_JogVelocity"
JogAcceleration :="AxCtrl1_JogAcceleration"
JogDeceleration :="AxCtrl1_JogDeceleration"
AxisReady :="AxCtrl1_AxisReady"
AxisEnabled :="AxCtrl1_AxisEnabled"
AxisError :="AxCtrl1_AxisError"
AxisErrorID :="AxCtrl1_AxisErrorID"
DriveWarning :="AxCtrl1_DriveWarning"
DriveError :="AxCtrl1_DriveError"
DriveErrorID :="AxCtrl1_DriveErrorID"
IsHomed :="AxCtrl1_IsHomed"
ModeOfOperation :="AxCtrl1_ModeOfOperation"
PLCopenState :="AxCtrl1_PLCopenState"
ActualPosition :="AxCtrl1_ActualPosition"
ActualVelocity :="AxCtrll_ActualVelocity"
:="AxCtrl1_CmdBusy"

CmdAborted :="AxCtrl1_CmdAborted"

CmdError :="AxCtrl1_CmdFrror"
CmdErrorID :="AxCtrl1_CmdErrorID"
DirectionPositive:="AxCtrl1 DirectionPos"
DirectionNegative:="AxCtrl1 DirectionNeg"
SWLimitMinActive :="AxCtrll SWLimitMinActive"
SWLimitMaxActive :="AxCtrl1 SWLimitMaxActive"
HWLimitMinActive :="AxCtrl1 HWLimitMinActive"
HWLimitMaxActive :="AxCtrl1 HWLimitMaxActive"
Axis
                          :="Axis01".Axis
```


Für komplexe Bewegungsaufgaben können Sie die PLCopen-Bausteine verwenden. Hier müssen Sie ebenfalls unter Axis die Referenz zu den Achsdaten im Achs-DB angeben.

Ihr Projekt beinhaltet nun folgende Bausteine:

- OB 1 Main
- OB 57 DP Manufacturer Alarm
- OB 82 I/O FLT1
- OB 86 Rack FLT
- FB 860 VMC AxisControl mit Instanz-DB
- FB 870 VMC_KernelSigma5_EC mit Instanz-DB
- FB 871 VMC_InitSigma5_EC mit Instanz-DB
- UDT 860 MC Axis REF
- UDT 870 VMC_ConfigSigma5EC_REF

Zeitlicher Ablauf

1. Wählen Sie "Projekt → Alles übersetzen" und übertragen Sie das Projekt in Ihre CPU.

Näheres zur Übertragung Ihres Projekt finden Sie in der Onlinehilfe zum *SPEED7 Studio*.

⇒ Sie können jetzt Ihre Applikation in Betrieb nehmen.

VORSICHT

Bitte beachten Sie immer die Sicherheitshinweise zu ihrem Antrieb, insbesondere bei der Inbetriebnahme!

- **2.** Bevor eine Achse gesteuert werden kann, muss diese initialisiert werden. Rufen Sie hierzu den *Init*-Baustein FB 871 VMC_InitSigma5_EC mit *Enable* = TRUE auf.
 - → Der Ausgang Valid meldet TRUE zurück. Im Fehlerfall können Sie durch Auswertung der ErrorID den Fehler ermitteln.

Den *Init*-Baustein müssen Sie erneut aufrufen, wenn Sie einen neuen Achs-DB laden oder Parameter am *Init*-Baustein geändert wurden.

Fahren Sie erst fort, wenn der Init-Baustein keinen Fehler meldet!

- 3. Stellen Sie sicher, dass der *Kernel-*Baustein FB 870 VMC_KernelSigma5_EC zyklisch aufgerufen wird. Auf diese Weise werden Steuersignale an den Antrieb übergeben und Statusmeldungen übermittelt.
- **4.** Programmieren Sie Ihre Applikation mit dem FB 860 VMC_AxisControl oder mit den PLCopen Bausteinen.

Steuerung des Antriebs über HMI

Sie haben die Möglichkeit über ein HMI Ihren Antrieb zu steuern. Hierzu gibt es für Movicon eine vorgefertigte Symbolbibliothek für den Zugriff auf den VMC_AxisControl Funktionsbaustein. — "Antrieb über HMI steuern"... Seite 714

13.2.1.4 Einsatz im Siemens SIMATIC Manager

13.2.1.4.1 Voraussetzung

Übersicht

- Bitte verwenden Sie für die Projektierung den Siemens SIMATIC Manager ab V 5.5 SP2.
- Die Projektierung der System SLIO CPU erfolgt im Siemens SIMATIC Manager in Form des virtuellen PROFINET IO Devices "... SLIO CPU". Das "... SLIO System" ist mittels GSDML im Hardware-Katalog zu installieren.
- Die Projektierung des EtherCAT-Masters erfolgt im Siemens SIMATIC Manager in Form des virtuellen PROFINET IO Devices "EtherCAT-Netzwerk". Das "EtherCAT-Netzwerk" ist mittels GSDML im Hardware-Katalog zu installieren.
- Das "EtherCAT-Netzwerk" kann mit dem SPEED7 EtherCAT Manager konfiguriert werden.
- Für die Projektierung des Antriebs im *SPEED7 EtherCAT Manager* ist die Installation der zugehörigen ESI-Datei erforderlich.

IO Device "... SLIO System" installieren

Die Installation des PROFINET IO Devices "... SLIO CPU" im Hardware-Katalog erfolgt nach folgender Vorgehensweise:

- **1.** Gehen Sie in das "Download Center" von www.yaskawa.eu.com.
- 2. Laden Sie unter "GSDML SLIO" die Konfigurationsdatei für Ihre CPU.
- 3. Extrahieren Sie die Datei in Ihr Arbeitsverzeichnis.
- 4. Starten Sie den Hardware-Konfigurator von Siemens.
- 5. Schließen Sie alle Projekte.
- **6.** ▶ Gehen Sie auf "Extras → GSD-Dateien installieren".
- 7. Navigieren Sie in Ihr Arbeitsverzeichnis und installieren Sie die entsprechende GSDML-Datei.
 - Nach der Installation finden Sie das entsprechende PROFINET IO Device unter "PROFINET IO → Weitere Feldgeräte → I/O → ... SLIO System".

IO Device EtherCAT-Netzwerk installieren

Die Installation des PROFINET IO Devices "EtherCAT-Netzwerk" im Hardware-Katalog erfolgt nach folgender Vorgehensweise:

- 1. Gehen Sie in das "Download Center" von www.yaskawa.eu.com.
- 2. Laden Sie unter "GSDML EtherCAT" die GSDML-Datei für Ihren EtherCAT-Master.
- **3.** Extrahieren Sie die Dateien in Ihr Arbeitsverzeichnis.
- 4. Starten Sie den Hardware-Konfigurator von Siemens.
- 5. Schließen Sie alle Projekte.
- **6.** Gehen Sie auf "Extras → GSD-Dateien installieren".
- 7. Navigieren Sie in Ihr Arbeitsverzeichnis und installieren Sie die entsprechende GSDML-Datei.
 - Nach der Installation finden Sie das "EtherCAT-Netzwerk" unter "PROFINET IO
 → Weitere Feldgeräte → I/O → ... EtherCAT System".

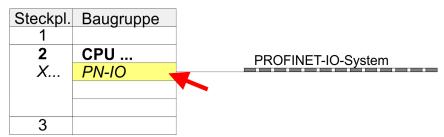
SPEED7 EtherCAT Manager installieren

Die Konfiguration des PROFINET IO Devices "EtherCAT-Netzwerk" erfolgt mit dem SPEED7 EtherCAT Manager von Yaskawa. Sie finden diesen im "Download Center" von www.yaskawa.eu.com unter "EtherCAT Manager".

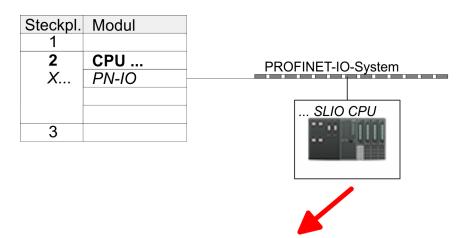
Die Installation erfolgt nach folgender Vorgehensweise:

- 1. Schließen Sie den Siemens SIMATIC Manager.
- **2.** Gehen Sie in das "Download Center" von www.yaskawa.eu.com

- 3. Laden Sie den EtherCAT Manager und entpacken Sie diesen auf Ihren PC.
- **4.** Zur Installation starten Sie die Datei EtherCATManager_v... .exe.
- 5. Wählen Sie die Sprache für die Installation aus.
- **6.** Stimmen Sie dem Lizenzvertrag zu.
- 7. Wählen Sie das Installationsverzeichnis und starten Sie die Installation.
- 8. Nach der Installation müssen Sie Ihren PC neu starten
 - → Der SPEED7 EtherCAT Manager ist installiert und kann jetzt über das Kontextmenü des Siemens SIMATIC Manager aufgerufen werden.

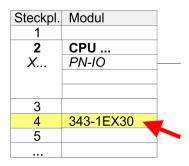

13.2.1.4.2 Hardware-Konfiguration

CPU im Projekt anlegen

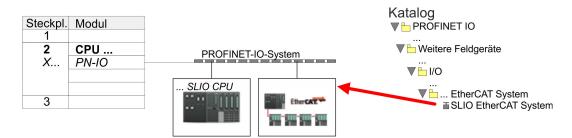

Steckp	Baugruppe
1	
2	CPU 315-2 PN/DP
X1	MPI/DP
X2	PN-IO
X2	Port 1
X2	Port 2
3	

Um kompatibel mit dem Siemens SIMATIC Manager zu sein, sind folgende Schritte durchzuführen:

- 1. Starten Sie den Hardware-Konfigurator von Siemens mit einem neuen Projekt.
- 2. Fügen Sie aus dem Hardware-Katalog eine Profilschiene ein.
- 3. Platzieren Sie auf "Slot"-Nummer 2 die CPU 315-2 PN/DP (6ES7 315-2EH14 V3.2).
- 4. Über das Submodul "X1 MPI/DP" projektieren und vernetzen Sie den integrierten PROFIBUS-DP-Master (Buchse X3).
- Über das Submodul "X2 PN-IO" projektieren Sie den EtherCAT-Master als virtuelles PROFINET-Netzwerk.
- **6.** Klicken Sie auf das Submodul "PN-IO" der CPU.
- 7. ▶ Wählen Sie "Kontextmenü → PROFINET IO-System einfügen".


- **8.** Legen Sie mit [Neu] ein neues Subnetz an und vergeben Sie gültige IP-Adress-Daten
- 9. Klicken Sie auf das Submodul "PN-IO" der CPU und öffnen Sie mit "Kontextmenü → Objekteigenschaften" den Eigenschafts-Dialog.
- 10. Geben Sie unter "Allgemein" einen "Gerätenamen" an. Der Gerätename muss eindeutig am Ethernet-Subnetz sein.

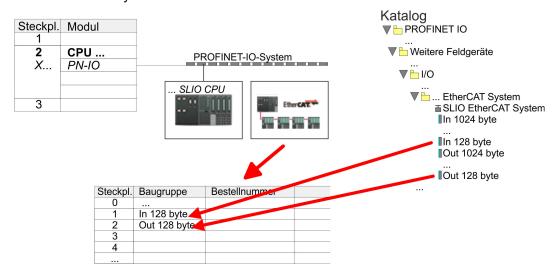
Steckpl.	Baugruppe	Bestellnummer	
0	SLIO CPU	015	
X2	015		
1			
2			
3			


- 11. Navigieren Sie im Hardware-Katalog in das Verzeichnis "PROFINET IO → Weitere Feldgeräte → I/O → ... SLIO System" und binden Sie das IO-Device "015-CEFNR00 CPU" an Ihr PROFINET-System an.
 - ➡ In der Steckplatzübersicht des PROFINET-IO-Device "... SLIO CPU" ist auf Steckplatz 0 die CPU bereits vorplatziert. Ab Steckplatz 1 können Sie Ihre System SLIO Module platzieren.

Ethernet-PG/OP-Kanal parametrieren

- 1. Platzieren Sie für den Ethernet-PG/OP-Kanal auf Steckplatz 4 den Siemens CP 343-1 (SIMATIC 300 \ CP 300 \ Industrial Ethernet \CP 343-1 \ 6GK7 343-1EX30 0XE0 V3.0).
- Öffnen Sie durch Doppelklick auf den CP 343-1EX30 den Eigenschaften-Dialog und geben Sie für den CP unter "Eigenschaften" IP-Adress-Daten an. Gültige IP-Adress-Parameter erhalten Sie von Ihrem Systemadministrator.
- 3. Ordnen Sie den CP einem "Subnetz" zu. Ohne Zuordnung werden die IP-Adress-Daten nicht übernommen!

"EtherCAT-Netzwerk" einfügen

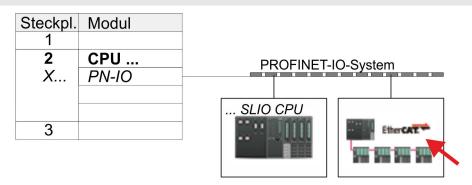


1. Navigieren Sie im Hardware-Katalog in das Verzeichnis "PROFINET IO → Weitere Feldgeräte → I/O → ... EtherCAT System" und binden Sie das IO Device "SLIO EtherCAT System" an Ihr PROFINET-System an.

2. Klicken Sie auf das eingefügte IO Device "EtherCAT-Netzwerk" und definieren Sie die Bereiche für Ein- und Ausgabe, indem Sie den entsprechenden "Out"- bzw. "In"-Bereich auf einen Steckplatz ziehen.

Legen Sie folgende Bereiche an:

- In 128Byte
- Out 128Byte


3. Wählen Sie "Station → Speichern und übersetzen"

Sigma-5 EtherCAT Antrieb konfigurieren

Die Konfiguration des Antriebs erfolgt im SPEED7 EtherCAT Manager.

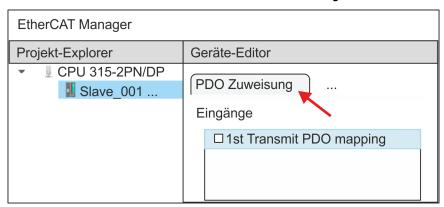
Vor dem Aufruf des SPEED7 EtherCAT Manager müssen Sie immer Ihr Projekt mit "Station → Speichern und übersetzen" speichern.

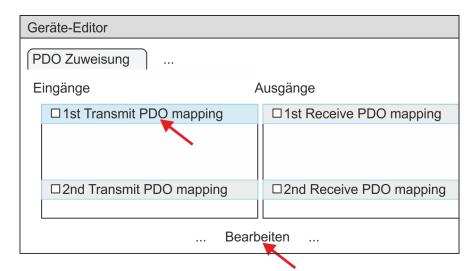
- 1. ► Klicken Sie auf das eingefügtes IO Device "EtherCAT-Netzwerk" und wählen Sie "Kontextmenü → Device Tool starten → SPEED7 EtherCAT Manager".
 - → Der SPEED7 EtherCAT Manager wird gestartet. Hier können Sie die EtherCAT-Kommunikation zu Ihrem Sigma-5 Antrieb konfigurieren.

Näheres zum Einsatz des *SPEED7 EtherCAT Manager* finden Sie im zugehörigen Handbuch bzw. in der Onlinehilfe.

- 2. Damit der Sigma-5 EtherCAT Antrieb im SPEED7 EtherCAT Manager konfiguriert werden kann, ist die entsprechende ESI-Datei zu installieren. Die ESI-Datei für den Sigma-5 EtherCAT Antrieb finden Sie unter www.yaskawa.eu.com im "Download Center". Laden Sie die zu Ihrem Antrieb passende ESI-Datei herunter. Entpacken Sie diese falls erforderlich.
- **4.** Klicken Sie im "ESI-Manager" auf [Datei hinzufügen] und wählen Sie Ihre ESI-Datei aus. Mit [Öffnen] wird die ESI-Datei im SPEED7 EtherCAT Manager installiert.
- 5. ▶ Schließen Sie den "ESI-Manager".
 - → Ihr Sigma-5 EtherCAT Antrieb steht Ihnen nun zur Konfiguration zur Verfügung.

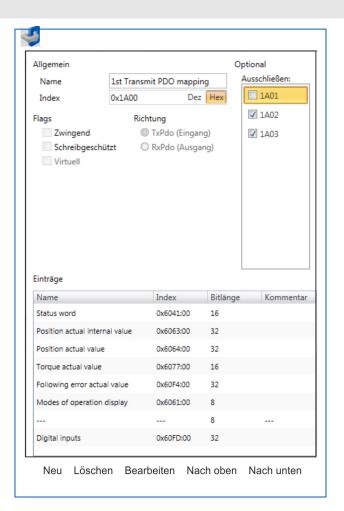
- 6. Klicken Sie im EtherCAT Manager auf ihre CPU und öffnen Sie über "Kontextmenü → Slave anhängen" das Dialogfenster zum Hinzufügen eines EtherCAT-Slave.
 - → Das Dialogfenster zur Auswahl eines EtherCAT-Slave wird geöffnet.
- 7. Wählen Sie Ihren Sigma-5 EtherCAT Antrieb und bestätigen Sie Ihre Auswahl mit [OK].
 - → Der Sigma-5 EtherCAT Antrieb wird an den Master angebunden und kann nun konfiguriert werden.


8. ▶


PDOs können Sie nur im "Experten-Modus" bearbeiten! Ansonsten werden die Schaltflächen ausgeblendet. Durch Aktivierung des "Experten-Modus" können Sie in die erweiterte Bearbeitung umschalten.

Aktivieren Sie den *Experten-Modus* durch Aktivierung von "Ansicht → Experte".

9. Klicken Sie im SPEED7 EtherCAT Manager auf den Sigma-5 EtherCAT Slave und wählen Sie im "Geräte-Editor" den Reiter "PDO-Zuweisung" an.


➡ Dieser Dialog zeigt eine Auflistung aller PDOs.

Durch Anwahl des entsprechenden PDO-Mappings können Sie mit [Bearbeiten] die PDOs bearbeiten. Wählen Sie das Mapping "1st Transmit PDO mapping" an und klicken Sie auf [Bearbeiten].

Bitte beachten Sie, dass aufgrund der Voreinstellung manche PDOs nicht bearbeitet werden können. Durch Deaktivierung bereits aktivierter PDOs können Sie die Bearbeitung von gesperrten PDOs frei geben.

➡ Es öffnet sich der Dialog "PDO bearbeiten". Bitte überprüfen Sie hier die aufgeführten PDO-Einstellungen und passen Sie diese ggf. an. Bitte berücksichtigen Sie hierbei auch die Reihenfolge der "Einträge" und ergänzen Sie diese entsprechend.

Für die Bearbeitung der "Einträge" stehen folgende Funktionen zur Verfügung:

- Neu
 - Hiermit können Sie in einem Dialogfenster einen neuen Eintrag anlegen, indem Sie aus dem "CoE-Objektverzeichnis" den entsprechenden Eintrag auswählen und Ihre Einstellungen vornehmen. Mit [OK] wird der Eintrag übernommen und in der Liste der Einträge aufgeführt.
- Löschen
 - Hiermit können Sie den angewählte Eintrag löschen.
- Bearbeiten
 - Hiermit können Sie allgemeinen Daten eines Eintrags bearbeiten.
- Nach oben/unten
 - Hiermit können Sie den angewählten Eintrag in der List nach oben bzw. nach unten bewegen.
- 11. Führen Sie folgende Einstellungen durch:

Eingänge: 1st Transmit PDO 0x1A00

- Allgemein
 - Name: 1st Transmit PDO mapping
 - Index: 0x1A00
- Flags
 - Alles deaktiviert
- Richtung
 - TxPdo (Eingang): aktiviert
- Ausschließen

Bitte diese Einstellungen beachten, da ansonsten die PDO-Mappings nicht zeitgleich aktiviert werden können!

- 1A01: deaktiviert
- Einträge

Name	Index	Bitlänge
Status word	0x6041:00	16Bit
Position actual internal value	0x6063:00	32Bit
Position actual value	0x6064:00	32Bit
Torque actual value	0x6077:00	16Bit
Following error actual value	0x60F4:00	32Bit
Modes of operation display	0x6061:00	8Bit
		8Bit
Digital inputs	0x60FD:00	32Bit

Schließen Sie den Dialog "PDO bearbeiten" mit [OK].

12. Wählen Sie das Mapping "2nd Transmit PDO mapping" an und klicken Sie auf [Bearbeiten]. Führen Sie folgende Einstellungen durch:

Eingänge: 2nd Transmit PDO 0x1A01

- Allgemein
 - Name: 2nd Transmit PDO mapping
 - Index: 0x1A01
- Flags
 - Alles deaktiviert
- Richtung
 - TxPdo (Eingang): aktiviert
- Ausschließen

Bitte diese Einstellungen beachten, da ansonsten die PDO-Mappings nicht zeitgleich aktiviert werden können!

- 1A00: deaktiviert1A02: deaktiviert1A03: deaktiviert
- Einträge

Name	Index	Bitlänge
Touch probe status	0x60B9:00	16Bit
Touch probe 1 position value	0x60BA:00	32Bit
Touch probe 2 position value	0x60BC:00	32Bit
Velocity actual value	0x606C:00	32Bit

Schließen Sie den Dialog "PDO bearbeiten" mit [OK].

Wählen Sie das Mapping "1st Receive PDO mapping" an und klicken Sie auf [Bearbeiten]. Führen Sie folgende Einstellungen durch:

Ausgänge: 1st Receive PDO 0x1600

- Allgemein
 - Name: 1st Receive PDO mapping
 - Index: 0x1600
- Flags
 - Alles deaktiviert
- Richtung
 - RxPdo (Ausgang): aktiviert
- Ausschließen

Bitte diese Einstellungen beachten, da ansonsten die PDO-Mappings nicht zeitgleich aktiviert werden können!

1601: deaktiviert1602: deaktiviert1603: deaktiviert

Einträge

Name	Index	Bitlänge
Control word	0x6040:00	16 Bit
Target position	0x607A:00	32 Bit
Target velocity	0x60FF:00	32 Bit
Modes of operation	0x6060:00	8 Bit
		8 Bit
Touch probe function	0x60B8:00	16 Bit

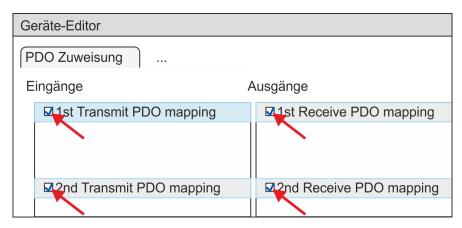
Schließen Sie den Dialog "PDO bearbeiten" mit [OK].

14. Wählen Sie das Mapping "2nd Receive PDO mapping" an und klicken Sie auf [Bearbeiten]. Führen Sie folgende Einstellungen durch:

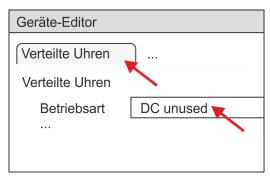
Ausgänge: 2nd Receive PDO 0x1601

- Allgemein
 - Name: 2nd Receive PDO mapping
 - Index: 0x1601
- Flags
 - Alles deaktiviert
- Richtung
 - RxPdo (Ausgang): aktiviert
- Ausschließen

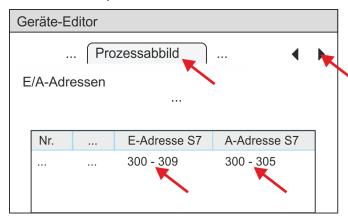
Bitte diese Einstellungen beachten, da ansonsten die PDO-Mappings nicht zeitgleich aktiviert werden können!


1600: deaktiviert1602: aktiviert1603: aktiviert

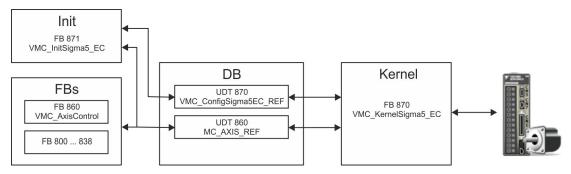
Einträge


Name	Index	Bitlänge
Profile velocity	0x6081:00	32Bit
Profile acceleration	0x6083:00	32Bit
Profile deceleration	0x6084:00	32Bit

Schließen Sie den Dialog "PDO bearbeiten" mit [OK].


Aktivieren Sie in PDO-Zuweisung die PDOs 1 und 2 für die Ein und Ausgänge. Alle nachfolgenden PDOs müssen deaktiviert bleiben. Sollte dies nicht möglich sein, überprüfen Sie bitte den jeweiligen PDO-Parameter "Ausschließen".

Mählen Sie im "Geräte-Editor" des SPEED7 EtherCAT Manager den Reiter "Verteilte Uhren" an und stellen Sie "DC unused" als "Betriebsart" ein.


- Wählen Sie im "Geräte-Editor" über die Pfeiltaste den Reiter "Prozessabbild" an und notieren Sie sich für die Parameter des Bausteins FB 871 VMC_InitSigma5_EC folgende PDO-Anfangsadressen:
 - "E-Adresse S7" → "InputsStartAddressPDO"
 - "A-Adresse S7" → "OutputsStartAddressPDO"

- Indem Sie den Dialog des SPEED7 EtherCAT Manager mit [X] schließen, wird die Konfiguration in die Projektierung übernommen. Sie können Ihre EtherCAT-Konfiguration jederzeit im SPEED7 EtherCAT Manager wieder bearbeiten, da die Konfiguration in Ihrem Projekt gespeichert wird.
- 19. Speichern und übersetzen Sie Ihre Konfiguration

13.2.1.4.3 Anwender-Programm

Programmstruktur

DB

Für jede Achse ist ein Datenbaustein (Achs-DB) für Konfiguration und Statusdaten anzulegen. Der Datenbaustein besteht aus folgenden Datenstrukturen:

- UDT 870 VMC_ConfigSigma5EC_REF
 Die Datenstruktur beschreibt den Aufbau der Konfiguration des Antriebs.
 Spezifische Datenstruktur für Sigma-5 EtherCAT.
- UDT 860 MC_AXIS_REF

Die Datenstruktur beschreibt den Aufbau der Parameter und Statusinformationen von Antrieben.

Allgemeine Datenstruktur für alle Antriebe und Bussysteme.

- FB 871 VMC_InitSigma5_EC
 - Der Init-Baustein dient zur Konfiguration einer Achse.
 - Spezifischer Baustein für Sigma-5 EtherCAT.
 - Die Konfigurationsdaten für die Initialisierung sind im Achs-DB abzulegen.
- FB 870 VMC_KernelSigma5_EC
 - Der Kernel-Baustein kommuniziert mit dem Antrieb über das entsprechende Bussystem, verarbeitet die Benutzeraufträge und liefert Statusmeldungen zurück.
 - Spezifischer Baustein für Sigma-5 EtherCAT.
 - Der Austausch der Daten erfolgt mittels des Achs-DB.
- FB 860 VMC_AxisControl
 - Universal-Baustein für alle Antriebe und Bussysteme.
 - Unterstützt einfache Bewegungskommandos und liefert alle relevanten Statusmeldungen.
 - Der Austausch der Daten erfolgt mittels des Achs-DB.
 - Über die Instanzdaten des Bausteins können Sie zur Bewegungssteuerung und Statusabfrage eine Visualisierung anbinden.
 - Zusätzlich zum FB 860 VMC_AxisControl haben Sie die Möglichkeit PLCopen-Bausteine zu nutzen.
- FB 800 ... FB 838 PLCopen
 - Die PLCopen-Bausteine dienen zur Programmierung von Bewegungsabläufen und Statusabfragen.
 - Allgemeine Bausteine für alle Antriebe und Bussysteme.

Programmierung

Bibliothek einbinden

- 1. Gehen Sie in das "Download Center" von www.yaskawa.eu.com.
- 2. Laden Sie aus dem Downloadbereich unter "Conrols Library" die Simple Motion Control Library.
- 3. ▶ Öffnen Sie mit "Datei → Dearchivieren" das Dialogfenster zur Auswahl der ZIP-Datei.
- 4. Wählen Sie die entsprechende ZIP-Datei an und klicken Sie auf [Öffnen].
- Geben Sie ein Zielverzeichnis an, in dem die Bausteine abzulegen sind und starten Sie den Entpackvorgang mit [OK].

Bausteine in Projekt kopieren

- Öffnen Sie die Bibliothek nach dem Entpackvorgang und ziehen Sie per Drag&Drop folgende Bausteine in "Bausteine" Ihres Projekts:
 - Sigma-5 EtherCAT:
 - UDT 870 VMC_ConfigSigma5EC_REF
 - FB 870 VMC_KernelSigma5_EC
 - FB 871 VMC InitSigma5 EC
 - Axis Control
 - UDT 860 MC AXIS REF
 - Bausteine für die gewünschten Bewegungsabläufe

Alarm-OBs anlegen

- 1. Klicken Sie in Ihrem Projekt auf "Bausteine" und wählen Sie "Kontextmenü → Neues Objekt einfügen → Organisationsbaustein".
 - ▶ Das Dialogfenster "Eigenschaften Organistionsbaustein" öffnet sich.
- 2. Fügen Sie nacheinander OB 57, OB 82 und OB 86 Ihrem Projekt hinzu.

Achs-DB anlegen

1. Klicken Sie in Ihrem Projekt auf "Bausteine" und wählen Sie "Kontextmenü → Neues Objekt einfügen → Datenbaustein".

Geben Sie folgende Parameter an:

- Name und Typ
 - Die DB-Nr. als "Name" können Sie frei wählen wie z.B. DB 10.
 - Stellen Sie "Global-DB" als "Typ" ein.
- Symbolischer Name
 - Geben Sie "Axis01" an.

Bestätigen Sie Ihre Eingaben mit [OK].

- Der Baustein wird angelegt.
- 2. Diffnen Sie DB 10 "Axis01" durch Doppelklick.
 - Legen Sie in "Axis01" die Variable "Config" vom Typ UDT 870 an. Dies sind spezifische Achs-Konfigurationsdaten.
 - Legen Sie in "Axis01" die Variable "Axis" vom Typ UDT 860 an. Während des Betriebs werden hier alle Betriebsdaten der Achse abgelegt.

DB10

Adresse	Name	Тур	
		Struct	
	Config	"VMC_ConfigSigma5EC_REF"	
	Axis	"MC_AXIS_REF	
		END_STRUCT	

OB₁

Konfiguration der Achse

Öffnen Sie den OB 1 und programmieren Sie folgende FB-Aufrufe mit zugehörigen DBs:

```
FB 871 - VMC_InitSigma5_EC, DB 871 → "FB 871 - VMC_InitSigma5_EC - Sigma-5 EtherCAT Initialisierung"...Seite 322
```

Geben Sie unter *InputsStartAddressPDO* bzw. *OutputsStartAddressPDO* die Adresse aus dem *SPEED7 EtherCAT Manager* an. → 315

```
→ CALL
       "VMC InitSigma5 EC" , "DI InitSgm5ETC01"
 Enable
                       :="InitS5EC1 Enable"
 LogicalAddress
                       :=300
  InputsStartAddressPDO :=300 (EtherCAT-Man.: E-Adresse S7)
  OutputsStartAddressPDO:=300 (EtherCAT-Man.: A-Adresse S7)
 EncoderType
 EncoderResolutionBits :=20
                       :=1.048576e+006
  FactorPosition
 FactorVelocity
                       :=1.048576e+006
 FactorAcceleration :=1.048576e+002
                      :=0.000000e+000
 OffsetPosition
 MaxVelocityApp
                      :=5.000000e+001
 MaxAccelerationApp
                      :=1.000000e+002
 MaxDecelerationApp :=1.000000e+002
 MaxVelocityDrive
                      :=6.000000e+001
 MaxAccelerationDrive :=1.500000e+002
 MaxDecelerationDrive :=1.500000e+002
 MaxPosition
                       :=1.048500e+003
                      :=-1.048514e+003
 MinPosition
 EnableMaxPosition :=TRUE
 EnableMinPosition
                       :=TRUE
 MinUserPosition
                       :="InitS5EC1 MinUserPos"
 MaxUserPosition
                       :="InitS5EC1 MaxUserPos"
 Valid
                       :="InitS5EC1_Valid"
 Error
                       :="InitS5EC1 Error"
                       :="InitS5EC1 ErrorID"
 ErrorID
                       :="Axis01".Config
  Config
 Axis
                       :="Axis01".Axis
```

Kernel für Achse beschalten

Der *Kernel* verarbeitet die Benutzerkommandos und gibt sie entsprechend aufbereitet an den Antrieb über das jeweilige Bussystem weiter.

```
FB 870 - VMC_KernelSigma5_EC, DB 870 → "FB 870 - VMC_KernelSigma5_EC - Sigma-5 EtherCAT Kernel"...Seite 321
```

```
→ CALL "VMC_KernelSigma5_EC" , "DI_KernelSgm5ETC01"
Init :="KernelS5EC1_Init"
Config:="Axis01".Config
Axis :="Axis01".Axis
```

Baustein für Bewegungsabläufe beschalten

Zur Vereinfachung soll hier die Beschaltung des FB 860 - VMC_AxisControl gezeigt werden. Dieser Universalbaustein unterstützt einfache Bewegungskommandos und liefert Statusmeldungen zurück. Die Ein- und Ausgänge können Sie individuell beschalten. Bitte geben Sie unter "Axis" die Referenz zu den entsprechenden Achsdaten im Achs-DB an.

FB 860 - VMC_AxisControl, DB 860 → "FB 860 - VMC_AxisControl - Control-Baustein Achskontrolle"... Seite 659

```
→ CALL "VMC AxisControl" , "DI AxisControl01"
  AxisEnable :="AxCtrl1_AxisEnable"
AxisReset :="AxCtrl1_AxisReset"
HomeExecute :="AxCtrl1_HomeExecute"
HomePosition :="AxCtrl1_HomePosition"
StopExecute :="AxCtrl1_StopExecute"
   MvVelocityExecute:="AxCtrl1 MvVelExecute"
   MvRelativeExecute:="AxCtrl1 MvRelExecute"
   MvAbsoluteExecute:="AxCtrl1 MvAbsExecute"
   PositionDistance := "AxCtrl1 PositionDistance"
   Velocity :="AxCtrll Velocity"
  Acceleration :="AxCtrl1_Acceleration"
Deceleration :="AxCtrl1_Deceleration"
JogPositive :="AxCtrl1_JogPositive"
JogNegative :="AxCtrl1_JogNegative"
JogVelocity :="AxCtrl1_JogVelocity"
   JogAcceleration :="AxCtrl1 JogAcceleration"
   JogDeceleration :="AxCtrl1 JogDeceleration"
  IsHomed :="AxCtrl1_IsHomed"

ModeOfOperation :="AxCtrl1_ModeOfOperation"

PLCopenState :="AxCtrl1_PLCopenState"

ActualPosition :="AxCtrl1_ActualPosition"

ActualVelocity :="AxCtrl1_ActualVelocity"

CmdDone :="AxCtrl1_CmdDone"
  CmdDone :="AxCtrl1_CmdDone"

CmdBusy :="AxCtrl1_CmdBusy"

CmdAborted :="AxCtrl1_CmdAborted"

CmdError :="AxCtrl1_CmdError"

CmdErrorID :="AxCtrl1_CmdErrorID"
   DirectionPositive:="AxCtrl1 DirectionPos"
   DirectionNegative:="AxCtrl1 DirectionNeg"
   SWLimitMinActive := "AxCtrl1 SWLimitMinActive"
   SWLimitMaxActive := "AxCtrl1 SWLimitMaxActive"
   HWLimitMinActive :="AxCtrl1 HWLimitMinActive"
   HWLimitMaxActive :="AxCtrl1 HWLimitMaxActive"
   Axis
                               :="Axis01".Axis
```


Für komplexe Bewegungsaufgaben können Sie die PLCopen-Bausteine verwenden. Hier müssen Sie ebenfalls unter Axis die Referenz zu den Achsdaten im Achs-DB angeben.

Ihr Projekt beinhaltet nun folgende Bausteine:

- OB 1 Main
- OB 57 DP Manufacturer Alarm
- OB 82 I/O FLT1
- OB 86 Rack FLT
- FB 860 VMC_AxisControl mit Instanz-DB
- FB 870 VMC KernelSigma5 EC mit Instanz-DB
- FB 871 VMC InitSigma5 EC mit Instanz-DB

- UDT 860 MC_Axis_REF
- UDT 870 VMC ConfigSigma5EC REF

Zeitlicher Ablauf

1. Wechseln Sie in den Siemens SIMATIC Manager und übertragen Sie Ihr Projekt in die CPU.

Die Übertragung kann ausschließlich aus dem Siemens SIMATIC Manager erfolgen - nicht Hardware-Konfigurator!

Da Slave- und Modulparameter mittels SDO-Zugriff bzw. SDO-Init-Kommando übertragen werden, bleibt die Parametrierung solange bestehen, bis ein Power-Cycle durchgeführt wird oder neue Parameter für die gleichen SDO-Objekte übertragen werden.

Beim Urlöschen werden Slave- und Modul-Parameter nicht zurückgesetzt!

Sie können jetzt Ihre Applikation in Betrieb nehmen.

VORSICHT

Bitte beachten Sie immer die Sicherheitshinweise zu ihrem Antrieb, insbesondere bei der Inbetriebnahme!

- **2.** Bevor eine Achse gesteuert werden kann, muss diese initialisiert werden. Rufen Sie hierzu den *Init*-Baustein FB 871 VMC InitSigma5 EC mit *Enable* = TRUE auf.
 - → Der Ausgang Valid meldet TRUE zurück. Im Fehlerfall können Sie durch Auswertung der ErrorID den Fehler ermitteln.

Den *Init*-Baustein müssen Sie erneut aufrufen, wenn Sie einen neuen Achs-DB laden oder Parameter am *Init*-Baustein geändert wurden.

Fahren Sie erst fort, wenn der Init-Baustein keinen Fehler meldet!

- 3. Stellen Sie sicher, dass der *Kernel-*Baustein FB 870 VMC_KernelSigma5_EC zyklisch aufgerufen wird. Auf diese Weise werden Steuersignale an den Antrieb übergeben und Statusmeldungen übermittelt.
- **4.** Programmieren Sie Ihre Applikation mit dem FB 860 VMC_AxisControl oder mit den PLCopen Bausteinen.

Steuerung des Antriebs über HMI

Sie haben die Möglichkeit über ein HMI Ihren Antrieb zu steuern. Hierzu gibt es für Movicon eine vorgefertigte Symbolbibliothek für den Zugriff auf den VMC_AxisControl Funktionsbaustein. — "Antrieb über HMI steuern"...Seite 714

13.2.1.4.4 Projekt kopieren

Vorgehensweise

Im Beispiel wird die Station "Source" kopiert und als "Target" gespeichert.

- <u>1.</u> Öffnen Sie die Hardware-Konfiguration der "Source"-CPU und starten Sie hier den SPEED7 EtherCAT Manager.
- 2. Speichern Sie im *SPEED7 EtherCAT Manager* über *"Datei → Speichern unter"* die Konfiguration in Ihrem Arbeitsverzeichnis.
- 3. Schließen Sie den SPEED7 EtherCAT Manager und den Hardware-Konfigurator wieder.

- **4.** Kopieren Sie die Station "Source" mit Strg+C und fügen Sie diese mit Strg+V als "Target" in Ihr Projekt ein.
- **5.** Wechseln Sie in den "Baustein"-Ordner der "Target"-CPU löschen Sie die "Systemdaten".
- 6. → Öffnen Sie die Hardware-Konfiguration der "Target"-CPU. Passen Sie die IP-Adressdaten an oder vernetzen Sie die CPU bzw. den CP neu.

Vor dem Aufruf des SPEED7 EtherCAT Manager müssen Sie immer Ihr Projekt mit "Station → Speichern und übersetzen" speichern.

- 7. ▶ Speichern Sie Ihr Projekt mit "Station → Speichern und übersetzen.".
- **9.** Laden Sie mit "Datei → Öffnen" die Konfiguration aus Ihrem Arbeitsverzeichnis.
- 10. ▶ Schließen Sie den SPEED7 EtherCAT Manager wieder.
- 11. Speichern und übersetzen Sie Ihre Konfiguration.

13.2.1.5 Antriebsspezifische Bausteine

Die PLCopen-Bausteine zur Achskontrolle finden Sie hier: → "Bausteine zur Achskontrolle"...Seite 656

13.2.1.5.1 UDT 870 - VMC_ConfigSigma5EC_REF - Sigma-5 EtherCAT Datenstruktur Achskonfiguration

Dies ist eine benutzerdefinierte Datenstruktur, die Informationen zu den Konfigurationsdaten beinhaltet. Die UDT ist speziell angepasst an die Verwendung eines Sigma-5-Antriebs, welcher über EtherCAT angebunden ist.

13.2.1.5.2 FB 870 - VMC_KernelSigma5_EC - Sigma-5 EtherCAT Kernel

Beschreibung

Dieser Baustein setzt die Antriebskommandos für eine *Sigma-5* Achse über EtherCAT um und kommuniziert mit dem Antrieb. Je *Sigma-5* Achse ist eine Instanz dieses FBs zyklisch aufzurufen.

ĭ

Bitte beachten Sie, dass dieser Baustein intern den SFB 238 aufruft.

Im SPEED7 Studio wird dieser Baustein automatisch in Ihr Projekt eingefügt.

Im Siemens SIMATIC Manager müssen Sie den SFB 238 aus der Motion Control Library in Ihr Projekt kopieren.

Parameter	Deklaration	Datentyp	Beschreibung
Init	INPUT	BOOL	Mit einer Flanke 0-1 wird der Baustein intern zurückgesetzt. Hierbei werden bestehende Bewegungskommandos abgebrochen und der Baustein wird initialisiert.
Config	IN_OUT	UDT870	Datenstruktur zur Übergabe von achsabhängigen Konfigurationsdaten an den <i>AxisKernel</i> .

Parameter	Deklaration	Datentyp	Beschreibung
Axis	IN_OUT	MC_AXIS_REF	Datenstruktur zur Übergabe von achsabhängigen Informationen an <i>AxisKernel</i> und PLCopen-Bausteine.

13.2.1.5.3 FB 871 - VMC_InitSigma5_EC - Sigma-5 EtherCAT Initialisierung

Beschreibung

Dieser Baustein dient zur Konfiguration der Achse. Der Baustein ist speziell angepasst an die Verwendung eines *Sigma-5*-Antriebs, welcher über EtherCAT angebunden ist.

Parameter	Deklaration	Datentyp	Beschreibung
Enable	INPUT	BOOL	Freigabe der Initialisierung
LogicalAddress	INPUT	INT	Startadresse der PDO-Eingangsdaten
InputsStartAddressPDO	INPUT	INT	Startadresse der Eingabe-PDOs
OutputsStartAddressPDO	INPUT	INT	Startadresse der Ausgabe-PDOs
EncoderType	INPUT	INT	Encoder-Typ 1: Absolut-Encoder 2: Inkremental-Encoder
EncoderResolutionBits	INPUT	INT	Anzahl der Bits, die einer Geber-Umdrehung entsprechen. Default: 20
FactorPosition	INPUT	REAL	Faktor zur Umrechnung der Position von Benutzereinheiten [u] in Antriebseinheiten [Inkremente] und zurück.
			Es gilt: p _[Inkremente] = p _[u] x FactorPosition
			Bitte berücksichten sie auch den Faktor, welchen Sie am Antrieb über die Objekte 0x2701:1 und 0x2701:2 vorgeben können. Dieser sollte 1 sein.
FactorVelocity	INPUT	REAL	Faktor zur Umrechnung der Geschwindigkeit von Benutzereinheiten [u/s] in Antriebseinheiten [Inkremente/s] und zurück.
			Es gilt: v _[Inkremente/s] = v _[u/s] x FactorVelocity
			Bitte berücksichten sie auch den Faktor, welchen Sie am Antrieb über die Objekte 0x2702:1 und 0x2702:2 vorgeben können. Dieser sollte 1 sein.
FactorAcceleration	INPUT	REAL	Faktor zur Umrechnung der Beschleunigung von Benutzereinheiten [u/s²] in Antriebseinheiten [10 -4 x Inkremente/s²] und zurück.
			Es gilt: 10^{-4} x $a_{[Inkremente/s_2]} = a_{[u/s_2]}$ x FactorAcceleration
			Bitte berücksichten sie auch den Faktor, welchen Sie am Antrieb über die Objekte 0x2703:1 und 0x2703:2 vorgeben können. Dieser sollte 1 sein.
OffsetPosition	INPUT	REAL	Offset für die Nullposition [u].
MaxVelocityApp	INPUT	REAL	Maximale Geschwindigkeit der Applikation [u/s].
			Die Kommandoeingaben werden vor Ausführung auf den Maximalwert überprüft.
MaxAccelerationApp	INPUT	REAL	Maximale Beschleunigung der Applikation [u/s²].
			Die Kommandoeingaben werden vor Ausführung auf den Maximalwert überprüft.

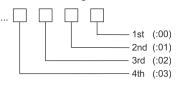
Parameter	Deklaration	Datentyp	Beschreibung
MaxDecelerationApp	INPUT	REAL	Maximale Verzögerung der Applikation [u/s²].
			Die Kommandoeingaben werden vor Ausführung auf den Maximalwert überprüft.
MaxPosition	INPUT	REAL	Maximale Position für die Überwachung der Softwarelimits [u].
MinPosition	INPUT	REAL	Minimale Position für die Überwachung der Softwarelimits [u].
EnableMaxPosition	INPUT	BOOL	Überwachung maximale Position
			TRUE: Aktivierung der Überwachung der maximalen Position.
EnableMinPosition	INPUT	BOOL	Überwachung minimale Position
			TRUE: Aktivierung der Überwachung der minimalen Position.
MinUserPosition	OUTPUT	REAL	Minimale Benutzerposition basierend auf dem minimalen Encoder Wert von 0x80000000 und dem <i>Factor-Position</i> [u].
MaxUserPosition	OUTPUT	REAL	Maximale Benutzerposition basierend auf dem maximalen Encoder Wert von 0x7FFFFFFF und dem <i>Factor-Position</i> [u].
Valid	OUTPUT	BOOL	Initialisierung
			■ TRUE: Initialisierung ist gültig.
Error	OUTPUT	BOOL	■ Fehler
			 TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter ErrorID entnommen werden. Die Achse wird gesperrt.
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen
			→ "ErrorID - Zusätzliche Fehlerinformati- onen"Seite 739
Config	IN_OUT	UDT870	Datenstruktur zur Übergabe von achsabhängigen Konfigurationsdaten an den <i>AxisKernel</i> .
Axis	IN_OUT	MC_AXIS_REF	Datenstruktur zur Übergabe von achsabhängigen Informationen an <i>AxisKernel</i> und PLCopen-Bausteine.

13.2.2 Einsatz Sigma-7S EtherCAT

13.2.2.1 Übersicht

Einsatz des Doppelachs-Antriebs → "Einsatz Sigma-7W EtherCAT"...Seite 360

Voraussetzung


- SPEED7 Studio ab V1.6.1
- Siemens SIMATIC Manager ab V 5.5 SP2 & SPEED7 EtherCAT Manager & Simple Motion Control Library
- CPU mit EtherCAT-Master wie z.B. CPU 015-CEFNR00
- Sigma-7S-Antrieb mit EtherCAT-Optionskarte

Schritte der Projektierung

- 1. Parameter am Antrieb einstellen
 - Die Einstellung der Parameter hat mit dem Softwaretool Sigma Win+ zu erfolgen.
- 2. Hardwarekonfiguration im SPEED7 Studio oder Siemens SIMATIC Manager
 - Projektierung einer CPU mit EtherCAT-Master-Funktionalität.
 - Projektierung eines Sigma-7S EtherCAT-Antriebs.
 - Projektierung der EtherCAT-Anbindung über SPEED7 EtherCAT Manager.
- 3. Programmierung im SPEED7 Studio oder Siemens SIMATIC Manager
 - Init-Baustein zur Konfiguration der Achse beschalten.
 - Kernel-Baustein zur Kommunikation mit der Achse beschalten.
 - Bausteine für die Bewegungsabläufe beschalten.
 - → "Demo-Projekte"...Seite 288

13.2.2.2 Parameter am Antrieb einstellen

Parameter-Digits

VORSICHT

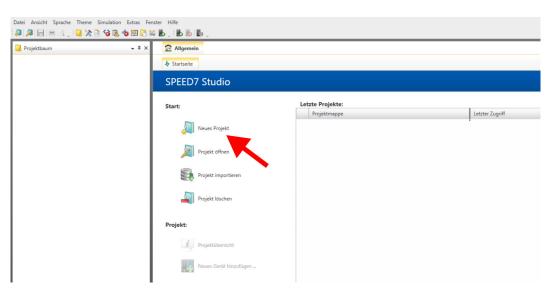
Vor der Erstinbetriebnahme müssen Sie Ihren Antrieb mit dem Softwaretool *Sigma Win+* an Ihre Applikation anpassen! Näheres hierzu finden Sie im Handbuch zu ihrem Antrieb.

Zur Abstimmung auf die *Simple Motion Control Library* sind folgende Parameter über *Sigma Win+* einzustellen:

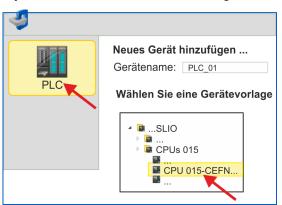
Sigma-7S (24Bit Encoder)

Servopack Para- meter	Adresse:Digit	Name	Wert
Pn205	(2205h)	Multiturn Limit Setting	65535
Pn20E	(220Eh)	ElectronicGear Ratio (Numerator)	16
Pn210	(2210h)	Electronic Gear Ratio (Denominator)	1
PnB02	(2701h:01)	Position User Unit (Numerator)	1
PnB04	(2701h:02)	Position User Unit (Denominator)	1
PnB06	(2702h:01)	Velocity User Unit (Numerator)	1
PnB08	(2702h:02)	Velocity User Unit (Denominator)	1
PnB0A	(2703h:01)	Acceleration User Unit (Numerator)	1
PnB0C	(2703h:02)	Acceleration User Unit (Denominator)	1

Bitte beachten Sie, dass Sie gemäß ihren Anforderungen die entsprechende Fahrtrichtung für Ihren Antrieb freigeben. Verwenden Sie hierzu die Parameter Pn50A (P-OT) bzw. Pn50B (N-OT) in Sigma Win+.


13.2.2.3 Einsatz im SPEED7 Studio

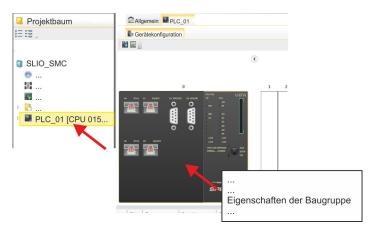
13.2.2.3.1 Hardware-Konfiguration


CPU im Projekt anlegen

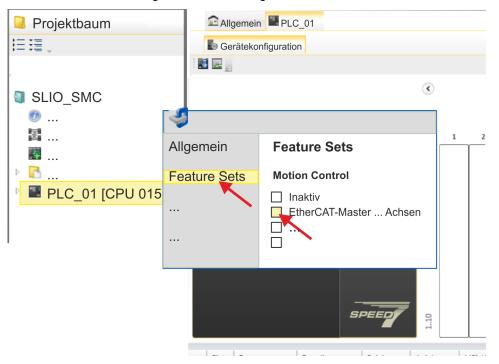
Bitte verwenden Sie für die Projektierung das SPEED7 Studio ab V1.6.1.

1. Starten Sie das SPEED7 Studio.

- **2.** Erstellen sie auf der Startseite mit "Neues Projekt" ein neues Projekt und vergeben Sie einen "Projektnamen".
 - ➡ Ein neues Projekt wird angelegt und in die Sicht "Geräte und Netze" gewechselt.
- 3. Klicken Sie im Projektbaum auf "Neues Gerät hinzufügen ...".



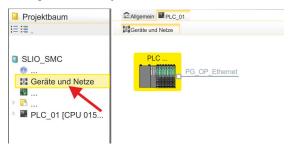
- **4.** Wählen Sie unter den "Gerätevorlagen" eine CPU mit EtherCAT-Master-Funktionalität wie z.B. die CPU 015-CEFNR00 und klicken Sie auf [OK].
 - Die CPU wird in "Geräte und Netze" eingefügt und die "Gerätekonfiguration" geöffnet.


Motion-Control-Funktionen aktivieren

Sofern bei Ihrer CPU die EtherCAT-Master-Funktionalität noch nicht aktiviert ist, erfolgt die Aktivierung nach folgenden Vorgehensweise:

- 1. Klicken Sie in der "Gerätekonfiguration" auf die CPU und wählen Sie "Kontextmenü Eigenschaften der Baugruppe".
 - ⇒ Es öffnet sich der Eigenschaften-Dialog der CPU.

- 2. Klicken Sie auf "Feature Sets" und aktivieren Sie unter "Motion Control" einen der Parameter "EtherCAT-Master ... Achsen". Die Anzahl der Achsen ist in diesem Beispiel nicht relevant.
- 3. Bestätigen Sie Ihre Angaben mit [OK].
 - ➡ Die Motion-Control-Funktionen steht Ihnen nun in Ihrem Projekt zur Verfügung.



VORSICHT

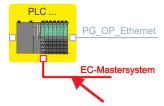
Bitte beachten Sie, dass bei jeder Änderung der Feature-Set-Einstellungen systembedingt das EtherCAT-Feldbus-System zusammen mit der Motion-Control-Konfiguration aus Ihrem Projekt gelöscht werden!

Ethernet-PG/OP-Kanal parametrieren

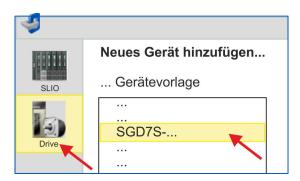
- 1. Klicken Sie im Projektbaum auf "Geräte und Netze".
 - ⇒ Sie erhalten eine grafische Objekt-Ansicht Ihrer CPU.

- 2. Klicken Sie auf das Netzwerk "PG_OP_Ethernet".
- 3. ▶ Wählen Sie "Kontextmenü → Eigenschaften der Schnittstelle".
 - ➡ Es öffnet sich ein Dialogfenster. Hier können Sie IP-Adressdaten für Ihren Ethernet-PG/OP-Kanal angeben. Gültige IP-Adress-Parameter erhalten Sie von Ihrem Systemadministrator.
- 4. Bestätigen Sie Ihre Eingabe mit [OK].
 - → Die IP-Adressdaten werden in Ihr Projekt übernommen und in "Geräte und Netze" unter "Lokale Baugruppen" aufgelistet.

Nach der Übertragung Ihres Projekts ist Ihre CPU über die angegebenen IP-Adressdaten via Ethernet-PG/OP-Kanal erreichbar.

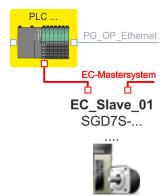

ESI-Datei installieren

Damit der *Sigma-7* EtherCAT Antrieb im *SPEED7 EtherCAT Manager* konfiguriert werden kann, muss die entsprechende ESI-Datei installiert sein. In der Regel wird das *SPEED7 Studio* mit aktuellen ESI-Dateien ausgeliefert und Sie können diesen Teil überspringen. Sollte Ihre ESI-Datei veraltet sein, finden Sie die aktuellste ESI-Datei für den *Sigma-7* EtherCAT Antrieb unter www.yaskawa.eu.com im *"Download Center"*.


- 1. Laden Sie die zu Ihrem Antrieb passende ESI-Datei herunter. Entpacken Sie diese falls erforderlich.
- 2. Gehen Sie in Ihr SPEED7 Studio.
- 3. ▶ Öffnen Sie mit "Extras → Gerätebeschreibungsdatei installieren (EtherCAT ESI)" das zugehörige Dialogfenster.
- **4.** Geben Sie unter "Quellpfad" die ESI-Datei an und installieren Sie diese mit [Installieren].
 - Die Geräte der ESI-Datei steht Ihnen nun zur Verfügung.

Sigma-7S Singleachs-Antrieb hinzufügen

- 1. Klicken Sie im Projektbaum auf "Geräte und Netze".
- **2.** Klicken Sie hier auf "EC-Mastersystem" und wählen sie "Kontextmenü → Neues Gerät hinzufügen".



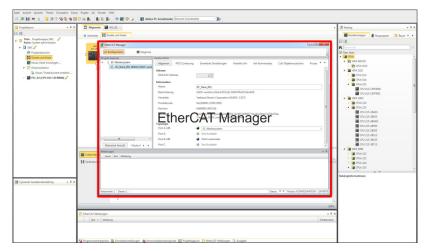
➡ Es öffnet sich die Gerätevorlage zur Auswahl eines EtherCAT-Devices.

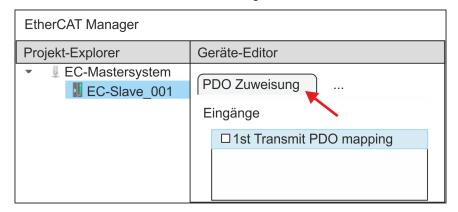
- 3. Wählen Sie Ihren Sigma-7 Antrieb aus:
 - SGD7S-xxxAA0...
 - SGD7S-xxxDA0...
 - SGD7S-xxxxA0...

Bestätigen Sie Ihre Angaben mit [OK]. Sollte Ihr Antrieb nicht vorhanden sein, müssen Sie die entsprechende ESI-Datei wie weiter oben beschrieben installieren.

→ Der Sigma-7 Antrieb wird an Ihr EC-Mastersystem angebunden.

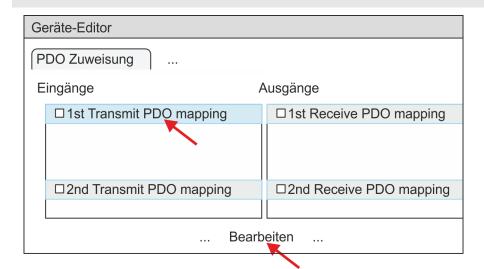
Sigma-7S Singleachs-Antrieb konfigurieren

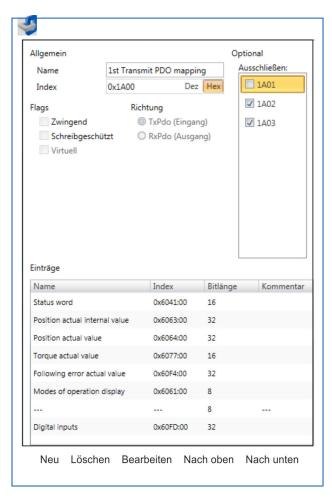

1. Nlicken Sie auf "EC-Mastersystem" und wählen sie "Kontextmenü → Eigenschaft des Busystems (Experte)".


PDOs können Sie nur im "Experten-Modus" bearbeiten! Ansonsten werden die Schaltflächen ausgeblendet.

→ Der SPEED7 EtherCAT Manager wird gestartet. Hier können Sie die EtherCAT-Kommunikation zu Ihrem Sigma-7 Antrieb konfigurieren.

Näheres zum Einsatz des SPEED7 EtherCAT Manager finden Sie in der Onlinehilfe zum SPEED7 Studio.


2. Klicken Sie im SPEED7 EtherCAT Manager auf den Slave und wählen Sie im "Geräte-Editor" den Reiter "PDO-Zuweisung" an.


➡ Dieser Dialog zeigt eine Auflistung aller PDOs.

3. Durch Anwahl des entsprechenden PDO-Mappings können Sie mit [Bearbeiten] die PDOs bearbeiten. Wählen Sie das Mapping "1st Transmit PDO mapping" an und klicken Sie auf [Bearbeiten].

Bitte beachten Sie, dass aufgrund der Voreinstellung manche PDOs nicht bearbeitet werden können. Durch Deaktivierung bereits aktivierter PDOs können Sie die Bearbeitung von gesperrten PDOs frei geben.

➡ Es öffnet sich der Dialog "PDO bearbeiten". Bitte überprüfen Sie hier die aufgeführten PDO-Einstellungen und passen Sie diese ggf. an. Bitte berücksichtigen Sie hierbei auch die Reihenfolge der "Einträge" und ergänzen Sie diese entsprechend.

Für die Bearbeitung der "Einträge" stehen folgende Funktionen zur Verfügung:

■ Neu

 Hiermit können Sie in einem Dialogfenster einen neuen Eintrag anlegen, indem Sie aus dem "CoE-Objektverzeichnis" den entsprechenden Eintrag auswählen und Ihre Einstellungen vornehmen. Mit [OK] wird der Eintrag übernommen und in der Liste der Einträge aufgeführt.

Löschen

Hiermit können Sie den angewählte Eintrag löschen.

Bearbeiten

- Hiermit können Sie allgemeinen Daten eines Eintrags bearbeiten.

Nach oben/unten

 Hiermit können Sie den angewählten Eintrag in der Liste nach oben bzw. nach unten bewegen

4. Führen Sie folgende Einstellungen durch:

Eingänge: 1st Transmit PDO 0x1A00

Allgemein

- Name: 1st Transmit PDO mapping

Index: 0x1A00

Flags

Alles deaktiviert

Richtung

- TxPdo (Eingang): aktiviert

Ausschließen

Bitte diese Einstellungen beachten, da ansonsten die PDO-Mappings nicht zeitgleich aktiviert werden können!

- 1A01: deaktiviert

Einträge

Name	Index	Bitlänge
Status word	0x6041:00	16Bit
Position actual internal value	0x6063:00	32Bit
Position actual value	0x6064:00	32Bit
Torque actual value	0x6077:00	16Bit
Following error actual value	0x60F4:00	32Bit
Modes of operation display	0x6061:00	8Bit
		8Bit
Digital inputs	0x60FD:00	32Bit

Schließen Sie den Dialog "PDO bearbeiten" mit [OK].

5. Wählen Sie das Mapping "2nd Transmit PDO mapping" an und klicken Sie auf [Bearbeiten]. Führen Sie folgende Einstellungen durch:

Eingänge: 2nd Transmit PDO 0x1A01

Allgemein

- Name: 2nd Transmit PDO mapping

Index: 0x1A01

■ Flags

- Alles deaktiviert

Richtung

TxPdo (Eingang): aktiviert

Ausschließen

Bitte diese Einstellungen beachten, da ansonsten die PDO-Mappings nicht zeitgleich aktiviert werden können!

1A00: deaktiviert1A02: deaktiviert1A03: deaktiviert

Einträge

Name	Index	Bitlänge
Touch probe status	0x60B9:00	16Bit
Touch probe 1 position value	0x60BA:00	32Bit
Touch probe 2 position value	0x60BC:00	32Bit
Velocity actual value	0x606C:00	32Bit

Schließen Sie den Dialog "PDO bearbeiten" mit [OK].

6. Wählen Sie das Mapping "1st Receive PDO mapping" an und klicken Sie auf [Bearbeiten]. Führen Sie folgende Einstellungen durch:

Ausgänge: 1st Receive PDO 0x1600

Allgemein

Name: 1st Receive PDO mapping

Index: 0x1600

Flags

Alles deaktiviert

Richtung

- RxPdo (Ausgang): aktiviert

Ausschließen

Bitte diese Einstellungen beachten, da ansonsten die PDO-Mappings nicht zeitgleich aktiviert werden können!

1601: deaktiviert1602: deaktiviert1603: deaktiviert

Einträge

Name	Index	Bitlänge
Control word	0x6040:00	16Bit
Target position	0x607A:00	32Bit
Target velocity	0x60FF:00	32Bit
Modes of operation	0x6060:00	8Bit
		8Bit
Touch probe function	0x60B8:00	16Bit

Schließen Sie den Dialog "PDO bearbeiten" mit [OK].

7. Wählen Sie das Mapping "2nd Receice PDO mapping" an und klicken Sie auf [Bearbeiten]. Führen Sie folgende Einstellungen durch:

Ausgänge: 2nd Receive PDO 0x1601

Allgemein

- Name: 2nd Receive PDO mapping

- Index: 0x1601

Flags

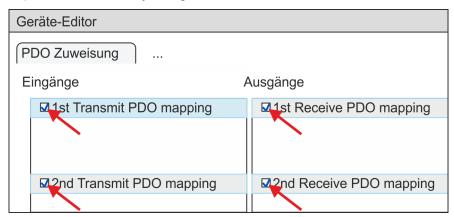
Alles deaktiviert

Richtung

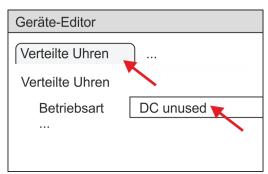
RxPdo (Ausgang): aktiviert

Ausschließen

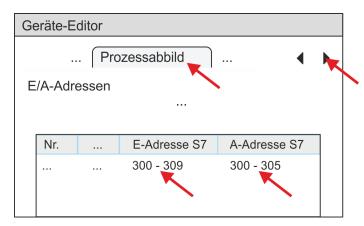
Bitte diese Einstellungen beachten, da ansonsten die PDO-Mappings nicht zeitgleich aktiviert werden können!

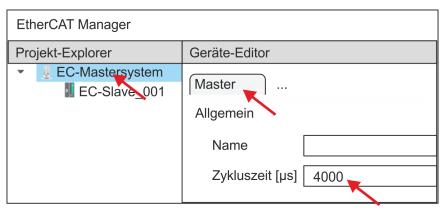

1600: deaktiviert1602: aktiviert1603: aktiviert

Einträge

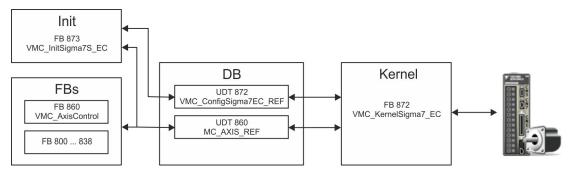

Name	Index	Bitlänge
Profile velocity	0x6081:00	32Bit
Profile acceleration	0x6083:00	32Bit
Profile deceleration	0x6084:00	32Bit

Schließen Sie den Dialog "PDO bearbeiten" mit [OK].


8. Aktivieren Sie in PDO-Zuweisung die PDOs 1 und 2 für die Ein und Ausgänge. Alle nachfolgenden PDOs müssen deaktiviert bleiben. Sollte dies nicht möglich sein, überprüfen Sie bitte den jeweiligen PDO-Parameter "Ausschließen".


9. Wählen Sie im "Geräte-Editor" des SPEED7 EtherCAT Manager den Reiter "Verteilte Uhren" an und stellen Sie "DC unused" als "Betriebsart" ein.

- <u>10.</u> Wählen Sie im "Geräte-Editor" über die Pfeiltaste den Reiter "Prozessabbild" an und notieren Sie sich für die Parameter des Bausteins FB 873 VMC_InitSigma7S_EC folgende PDO-Anfangsadressen:
 - "E-Adresse S7" → "InputsStartAddressPDO"
 - "A-Adresse S7" → "OutputsStartAddressPDO"


11. Klicken Sie im SPEED7 EtherCAT Manager auf "EC-Mastersystem" und wählen Sie im "Geräte-Editor" den Reiter "Master" an.

- → Stellen Sie für Sigma-7S (400V) Antriebe (SGD7S-xxxDA0... und SGD7S-xxxxA0...) eine Zykluszeit von mindestens 4ms ein. Ansonsten lassen Sie den Wert bei 1ms.
- 12. Indem Sie den Dialog des SPEED7 EtherCAT Manager mit [X] schließen, wird die Konfiguration in das SPEED7 Studio übernommen.

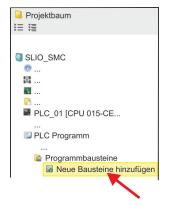
13.2.2.3.2 Anwender-Programm

Programmstruktur

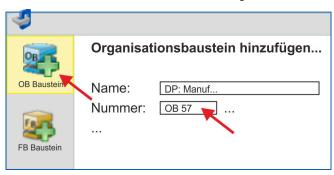
DB

Für jede Achse ist ein Datenbaustein (Achs-DB) für Konfiguration und Statusdaten anzulegen. Der Datenbaustein besteht aus folgenden Datenstrukturen:

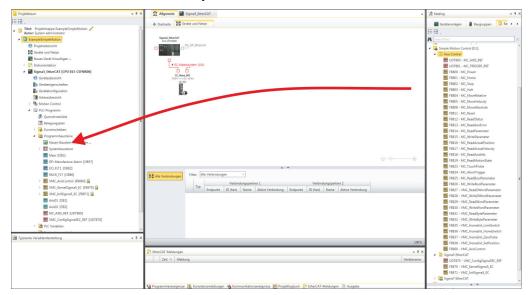
- UDT 872 VMC_ConfigSigma7EC_REF
 Die Datenstruktur beschreibt den Aufbau der Konfiguration des Antriebs.
 Spezifische Datenstruktur für Sigma-7 EtherCAT.
- UDT 860 MC_AXIS_REF


Die Datenstruktur beschreibt den Aufbau der Parameter und Statusinformationen von Antrieben.

Allgemeine Datenstruktur für alle Antriebe und Bussysteme.


- FB 873 VMC_InitSigma7S_EC
 - Der Init-Baustein dient zur Konfiguration einer Achse.
 - Spezifischer Baustein für Sigma-7S EtherCAT.
 - Die Konfigurationsdaten für die Initialisierung sind im Achs-DB abzulegen.
- FB 872 VMC_KernelSigma7_EC
 - Der Kernel-Baustein kommuniziert mit dem Antrieb über das entsprechende Bussystem, verarbeitet die Benutzeraufträge und liefert Statusmeldungen zurück.
 - Spezifischer Baustein für Sigma-7 EtherCAT.
 - Der Austausch der Daten erfolgt mittels des Achs-DB.
- FB 860 VMC_AxisControl
 - Universal-Baustein für alle Antriebe und Bussysteme.
 - Unterstützt einfache Bewegungskommandos und liefert alle relevanten Statusmeldungen.
 - Der Austausch der Daten erfolgt mittels des Achs-DB.
 - Über die Instanzdaten des Bausteins können Sie zur Bewegungssteuerung und Statusabfrage eine Visualisierung anbinden.
 - Zusätzlich zum FB 860 VMC_AxisControl haben Sie die Möglichkeit PLCopen-Bausteine zu nutzen.
- FB 800 ... FB 838 PLCopen
 - Die PLCopen-Bausteine dienen zur Programmierung von Bewegungsabläufen und Statusabfragen.
 - Allgemeine Bausteine für alle Antriebe und Bussysteme.

Programmierung


Bausteine in Projekt kopieren

1. Klicken Sie im *Projektbaum* innerhalb der CPU unter "PLC-Programm", "Programmbausteine" auf "Neuen Baustein hinzufügen".

- → Das Dialogfenster "Baustein hinzufügen" öffnet sich.
- 2. Wählen Sie den Bausteintyp "OB Baustein" und fügen Sie nacheinander OB 57, OB 82 und OB 86 Ihrem Projekt hinzu.

- 3. Öffnen Sie im "Katalog" unter "Bausteine" "Simple Motion Control" und ziehen Sie per Drag&Drop folgende Bausteine in "Programmbausteine" des Projektbaums:
 - Sigma-7 EtherCAT:
 - UDT 872 VMC ConfigSigma7EC REF
 - FB 872 VMC KernelSigma7 EC
 - FB 873 VMC InitSigma7S EC
 - Axis Control
 - UDT 860 MC AXIS REF
 - Bausteine für die gewünschten Bewegungsabläufe

Achs-DB anlegen

- 1. Fügen Sie Ihrem Projekt einen neuen DB als Achs-DB hinzu. Klicken Sie hierzu im Projektbaum innerhalb der CPU unter "PLC-Programm", "Programmbausteine" auf "Neuen Baustein hinzufügen", wählen Sie den Bausteintyp "DB Baustein" und vergeben Sie diesem den Namen "Axis01". Die DB-Nr. können Sie frei wählen wie z.B. DB10.
 - Der Baustein wird angelegt und geöffnet.

- 2. Legen Sie in "Axis01" die Variable "Config" vom Typ UDT 872 an. Dies sind spezifische Achs-Konfigurationsdaten.
 - Legen Sie in "Axis01" die Variable "Axis" vom Typ UDT 860 an. Während des Betriebs werden hier alle Betriebsdaten der Achse abgelegt.

•

Axis01 [DB10]
Bausteinstruktur

Adr	Name	Datentyp	
	Config	UDT	[872]
	Axis	UDT	[860]

OB₁

Konfiguration der Achse

Öffnen Sie den OB 1 und programmieren Sie folgende FB-Aufrufe mit zugehörigen DBs:

```
FB 873 - VMC_InitSigma7S_EC, DB 873 → "FB 873 - VMC_InitSigma7S_EC - Sigma-7S EtherCAT Initialisierung"...Seite 359
```

Geben Sie unter *InputsStartAddressPDO* bzw. *OutputsStartAddressPDO* die Adresse aus dem *SPEED7 EtherCAT Manager* an. → 335

```
"VMC InitSigma7S EC" , "DI InitSgm7SETC01"
→ CALL
                       :="InitS7SEC1_Enable"
 Enable
 LogicalAddress
                       :=300
  InputsStartAddressPDO :=300 (EtherCAT-Man.: E-Adresse S7)
  OutputsStartAddressPDO:=300 (EtherCAT-Man.: A-Adresse S7)
 EncoderType
                      :=1
 EncoderResolutionBits :=20
 FactorPosition :=1.048576e+006
 FactorVelocity
                      :=1.048576e+006
 FactorAcceleration :=1.048576e+002
  OffsetPosition
                      :=0.000000e+000
 MaxVelocityApp
                      :=5.000000e+001
 MaxAccelerationApp :=1.000000e+002
 MaxDecelerationApp :=1.000000e+002
 MaxVelocityDrive
                      :=6.000000e+001
 MaxAccelerationDrive :=1.500000e+002
 MaxDecelerationDrive :=1.500000e+002
                      :=1.048500e+003
 MaxPosition
 MinPosition
                      :=-1.048514e+003
 EnableMaxPosition
                      :=TRUE
 EnableMinPosition
                      :=TRUE
 MinUserPosition
                       :="InitS7SEC1 MinUserPos"
 MaxUserPosition
                       :="InitS7SEC1_MaxUserPos"
                       :="InitS7SEC1_Valid"
 Valid
                       :="InitS7SEC1_Error"
 Error
 ErrorID
                       :="InitS7SEC1 ErrorID"
                       :="Axis01".Config
  Config
                       :="Axis01".Axis
 Axis
```

Kernel für Achse beschalten

Der *Kernel* verarbeitet die Benutzerkommandos und gibt sie entsprechend aufbereitet an den Antrieb über das jeweilige Bussystem weiter.

```
FB 872 - VMC_KernelSigma7_EC, DB 872 → "FB 872 - VMC_KernelSigma7_EC - Sigma-7 EtherCAT Kernel"...Seite 358

→ CALL "VMC_KernelSigma7_EC" , "DI_KernelSgm5ETC01"
```

```
→ CALL "VMC_KernelSigma/_EC", "DI_KernelSgm5ETC01"
Init :="KernelS7SEC1_Init"
Config:="Axis01".Config
Axis :="Axis01".Axis
```

Baustein für Bewegungsabläufe beschalten

Zur Vereinfachung soll hier die Beschaltung des FB 860 - VMC_AxisControl gezeigt werden. Dieser Universalbaustein unterstützt einfache Bewegungskommandos und liefert Statusmeldungen zurück. Die Ein- und Ausgänge können Sie individuell beschalten. Bitte geben Sie unter "Axis" die Referenz zu den entsprechenden Achsdaten im Achs-DB an.

FB 860 - VMC_AxisControl, DB 860 → "FB 860 - VMC_AxisControl - Control-Baustein Achskontrolle"... Seite 659

```
→ CALL "VMC AxisControl" , "DI AxisControl01"
  AxisEnable :="AxCtrll_AxisEnable"
AxisReset :="AxCtrll_AxisReset"
                            :="AxCtrl1 AxisReset"
  AxisReset :="AxCtrll_AxisReset"

HomeExecute :="AxCtrll_HomeExecute"

HomePosition :="AxCtrll_HomePosition"

StopExecute :="AxCtrll_StopExecute"
   MvVelocityExecute:="AxCtrl1 MvVelExecute"
   MvRelativeExecute:="AxCtrl1 MvRelExecute"
   MvAbsoluteExecute:="AxCtrl1 MvAbsExecute"
   PositionDistance := "AxCtrl1 PositionDistance"
  Velocity :="AxCtrl1_Velocity"

Acceleration :="AxCtrl1_Acceleration"

Deceleration :="AxCtrl1_Deceleration"

JogPositive :="AxCtrl1_JogPositive"

JogNegative :="AxCtrl1_JogNegative"

JogVelocity :="AxCtrl1_JogVelocity"
   JogAcceleration :="AxCtrl1_JogAcceleration"
   JogDeceleration :="AxCtrl1_JogDeceleration"
  IsHomed :="AxCtrl1_IsHomed"
ModeOfOperation :="AxCtrl1_ModeOfOperation"
  PLCopenState :="AxCtrl1_PLCopenState"
ActualPosition :="AxCtrl1_ActualPosition"
ActualVelocity :="AxCtrl1_ActualVelocity"
  CmdDone :="AxCtrl1_CmdDone"
CmdBusy :="AxCtrl1_CmdBusy"
CmdAborted :="AxCtrl1_CmdAborted"
CmdError :="AxCtrl1_CmdError"
CmdErrorID :="AxCtrl1_CmdErrorID"
   DirectionPositive:="AxCtrl1 DirectionPos"
   DirectionNegative:="AxCtrl1 DirectionNeg"
   SWLimitMinActive := "AxCtrl1 SWLimitMinActive"
   SWLimitMaxActive := "AxCtrl1 SWLimitMaxActive"
   HWLimitMinActive :="AxCtrl1 HWLimitMinActive"
   HWLimitMaxActive :="AxCtrl1 HWLimitMaxActive"
                             :="Axis01".Axis
   Axis
```


Für komplexe Bewegungsaufgaben können Sie die PLCopen-Bausteine verwenden. Hier müssen Sie ebenfalls unter Axis die Referenz zu den Achsdaten im Achs-DB angeben.

Ihr Projekt beinhaltet nun folgende Bausteine:

- OB 1 Main
- OB 57 DP Manufacturer Alarm
- OB 82 I/O FLT1
- OB 86 Rack_FLT

- FB 860 VMC_AxisControl mit Instanz-DB
- FB 872 VMC KernelSigma7 EC mit Instanz-DB
- FB 873 VMC_InitSigma7S_EC mit Instanz-DB
- UDT 860 MC Axis REF
- UDT 872 VMC ConfigSigma7EC REF

Zeitlicher Ablauf

1. ▶ Wählen Sie "Projekt → Alles übersetzen" und übertragen Sie das Projekt in Ihre CPU.

Näheres zur Übertragung Ihres Projekt finden Sie in der Onlinehilfe zum SPEED7 Studio.

➡ Sie können jetzt Ihre Applikation in Betrieb nehmen.

VORSICHT

Bitte beachten Sie immer die Sicherheitshinweise zu ihrem Antrieb, insbesondere bei der Inbetriebnahme!

- Bevor eine Achse gesteuert werden kann, muss diese initialisiert werden. Rufen Sie hierzu den *Init*-Baustein FB 873 VMC_InitSigma7S_EC mit *Enable* = TRUE auf.
 - → Der Ausgang Valid meldet TRUE zurück. Im Fehlerfall können Sie durch Auswertung der ErrorID den Fehler ermitteln.

Den *Init*-Baustein müssen Sie erneut aufrufen, wenn Sie einen neuen Achs-DB laden oder Parameter am *Init*-Baustein geändert wurden.

Fahren Sie erst fort, wenn der Init-Baustein keinen Fehler meldet!

- 3. Stellen Sie sicher, dass der *Kernel-*Baustein FB 872 VMC_KernelSigma7_EC zyklisch aufgerufen wird. Auf diese Weise werden Steuersignale an den Antrieb übergeben und Statusmeldungen übermittelt.
- 4. Programmieren Sie Ihre Applikation mit dem FB 860 VMC_AxisControl oder mit den PLCopen Bausteinen.

Steuerung des Antriebs über HMI

Sie haben die Möglichkeit über ein HMI Ihren Antrieb zu steuern. Hierzu gibt es für Movicon eine vorgefertigte Symbolbibliothek für den Zugriff auf den VMC_AxisControl Funktionsbaustein. — "Antrieb über HMI steuern"... Seite 714

13.2.2.4 Einsatz im Siemens SIMATIC Manager

13.2.2.4.1 Voraussetzung

Übersicht

- Bitte verwenden Sie für die Projektierung den Siemens SIMATIC Manager ab V 5.5 SP2.
- Die Projektierung der System SLIO CPU erfolgt im Siemens SIMATIC Manager in Form des virtuellen PROFINET IO Devices "... SLIO CPU". Das "... SLIO System" ist mittels GSDML im Hardware-Katalog zu installieren.
- Die Projektierung des EtherCAT-Masters erfolgt im Siemens SIMATIC Manager in Form des virtuellen PROFINET IO Devices "EtherCAT-Netzwerk". Das "EtherCAT-Netzwerk" ist mittels GSDML im Hardware-Katalog zu installieren.
- Das "EtherCAT-Netzwerk" kann mit dem SPEED7 EtherCAT Manager konfiguriert werden.
- Für die Projektierung des Antriebs im *SPEED7 EtherCAT Manager* ist die Installation der zugehörigen ESI-Datei erforderlich.

IO Device "... SLIO System" installieren

Die Installation des PROFINET IO Devices "... SLIO CPU" im Hardware-Katalog erfolgt nach folgender Vorgehensweise:

- 1. Gehen Sie in das "Download Center" von www.yaskawa.eu.com.
- 2. Laden Sie unter "GSDML SLIO" die Konfigurationsdatei für Ihre CPU.
- 3. Extrahieren Sie die Datei in Ihr Arbeitsverzeichnis.
- 4. Starten Sie den Hardware-Konfigurator von Siemens.
- 5. Schließen Sie alle Projekte.
- **6.** ▶ Gehen Sie auf "Extras → GSD-Dateien installieren".
- 7. Navigieren Sie in Ihr Arbeitsverzeichnis und installieren Sie die entsprechende GSDML-Datei.
 - Nach der Installation finden Sie das entsprechende PROFINET IO Device unter "PROFINET IO → Weitere Feldgeräte → I/O → ... SLIO System".

IO Device EtherCAT-Netzwerk installieren

Die Installation des PROFINET IO Devices "EtherCAT-Netzwerk" im Hardware-Katalog erfolgt nach folgender Vorgehensweise:

- 1. Gehen Sie in das "Download Center" von www.yaskawa.eu.com.
- 2. Laden Sie unter "GSDML EtherCAT" die GSDML-Datei für Ihren EtherCAT-Master.
- **3.** Extrahieren Sie die Dateien in Ihr Arbeitsverzeichnis.
- 4. Starten Sie den Hardware-Konfigurator von Siemens.
- 5. Schließen Sie alle Projekte.
- **6.** Gehen Sie auf "Extras → GSD-Dateien installieren".
- 7. Navigieren Sie in Ihr Arbeitsverzeichnis und installieren Sie die entsprechende GSDML-Datei.
 - Nach der Installation finden Sie das "EtherCAT-Netzwerk" unter "PROFINET IO
 → Weitere Feldgeräte → I/O → ... EtherCAT System".

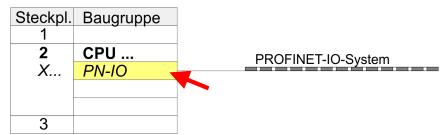
SPEED7 EtherCAT Manager installieren

Die Konfiguration des PROFINET IO Devices "EtherCAT-Netzwerk" erfolgt mit dem SPEED7 EtherCAT Manager von Yaskawa. Sie finden diesen im "Download Center" von www.yaskawa.eu.com unter "EtherCAT Manager".

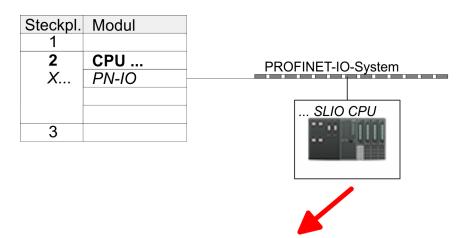
Die Installation erfolgt nach folgender Vorgehensweise:

- 1. Schließen Sie den Siemens SIMATIC Manager.
- 2. Gehen Sie in das "Download Center" von www.yaskawa.eu.com

- 3. Laden Sie den EtherCAT Manager und entpacken Sie diesen auf Ihren PC.
- **4.** ▶ Zur Installation starten Sie die Datei EtherCATManager_v... .exe.
- 5. Wählen Sie die Sprache für die Installation aus.
- **6.** Stimmen Sie dem Lizenzvertrag zu.
- 7. Wählen Sie das Installationsverzeichnis und starten Sie die Installation.
- 8. Nach der Installation müssen Sie Ihren PC neu starten
 - → Der SPEED7 EtherCAT Manager ist installiert und kann jetzt über das Kontextmenü des Siemens SIMATIC Manager aufgerufen werden.


13.2.2.4.2 Hardware-Konfiguration

CPU im Projekt anlegen

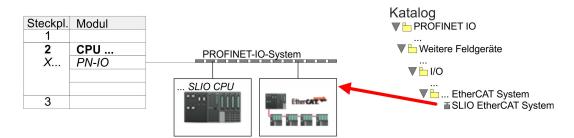

Steckp	Baugruppe
1	
2	CPU 315-2 PN/DP
X1	MPI/DP
X2	PN-IO
X2	Port 1
X2	Port 2
3	

Um kompatibel mit dem Siemens SIMATIC Manager zu sein, sind folgende Schritte durchzuführen:

- 1. Starten Sie den Hardware-Konfigurator von Siemens mit einem neuen Projekt.
- 2. Fügen Sie aus dem Hardware-Katalog eine Profilschiene ein.
- 3. Platzieren Sie auf "Slot"-Nummer 2 die CPU 315-2 PN/DP (6ES7 315-2EH14 V3.2).
- <u>4.</u> Über das Submodul "X1 MPI/DP" projektieren und vernetzen Sie den integrierten PROFIBUS-DP-Master (Buchse X3).
- Über das Submodul "X2 PN-IO" projektieren Sie den EtherCAT-Master als virtuelles PROFINET-Netzwerk.
- **6.** Klicken Sie auf das Submodul "PN-IO" der CPU.
- 7. ▶ Wählen Sie "Kontextmenü → PROFINET IO-System einfügen".

- **8.** Legen Sie mit [Neu] ein neues Subnetz an und vergeben Sie gültige IP-Adress-Daten
- 9. Klicken Sie auf das Submodul "PN-IO" der CPU und öffnen Sie mit "Kontextmenü → Objekteigenschaften" den Eigenschafts-Dialog.
- 10. Geben Sie unter "Allgemein" einen "Gerätenamen" an. Der Gerätename muss eindeutig am Ethernet-Subnetz sein.

Steckpl.	Baugruppe	Bestellnummer	
0	SLIO CPU	015	
X2	015		
1			
2			
3			

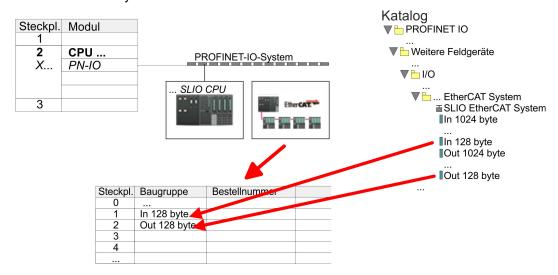

- 11. Navigieren Sie im Hardware-Katalog in das Verzeichnis "PROFINET IO → Weitere Feldgeräte → I/O → ... SLIO System" und binden Sie das IO-Device "015-CEFNR00 CPU" an Ihr PROFINET-System an.
 - ➡ In der Steckplatzübersicht des PROFINET-IO-Device "... SLIO CPU" ist auf Steckplatz 0 die CPU bereits vorplatziert. Ab Steckplatz 1 können Sie Ihre System SLIO Module platzieren.

Ethernet-PG/OP-Kanal parametrieren

Steckpl.	Modul	
1		
2	CPU	
X	PN-IO	
3		
4	343-1EX30 -	
5		

- 1. Platzieren Sie für den Ethernet-PG/OP-Kanal auf Steckplatz 4 den Siemens CP 343-1 (SIMATIC 300 \ CP 300 \ Industrial Ethernet \CP 343-1 \ 6GK7 343-1EX30 0XE0 V3.0).
- Öffnen Sie durch Doppelklick auf den CP 343-1EX30 den Eigenschaften-Dialog und geben Sie für den CP unter "Eigenschaften" IP-Adress-Daten an. Gültige IP-Adress-Parameter erhalten Sie von Ihrem Systemadministrator.
- 3. Ordnen Sie den CP einem "Subnetz" zu. Ohne Zuordnung werden die IP-Adress-Daten nicht übernommen!

"EtherCAT-Netzwerk" einfügen

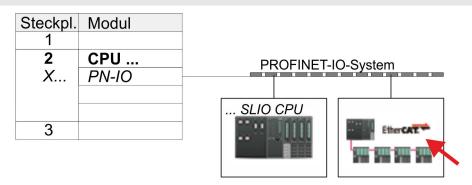


1. Navigieren Sie im Hardware-Katalog in das Verzeichnis "PROFINET IO → Weitere Feldgeräte → I/O → ... EtherCAT System" und binden Sie das IO Device "SLIO EtherCAT System" an Ihr PROFINET-System an.

2. Klicken Sie auf das eingefügte IO Device "EtherCAT-Netzwerk" und definieren Sie die Bereiche für Ein- und Ausgabe, indem Sie den entsprechenden "Out"- bzw. "In"-Bereich auf einen Steckplatz ziehen.

Legen Sie folgende Bereiche an:

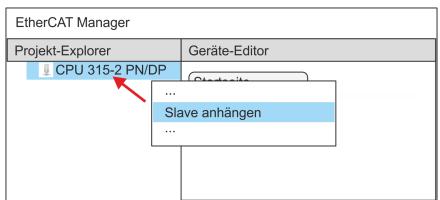
- In 128Byte
- Out 128Byte


3. Wählen Sie "Station → Speichern und übersetzen"

Sigma-7S EtherCAT Antrieb konfigurieren

Die Konfiguration des Antriebs erfolgt im SPEED7 EtherCAT Manager.

Vor dem Aufruf des SPEED7 EtherCAT Manager müssen Sie immer Ihr Projekt mit "Station → Speichern und übersetzen" speichern.

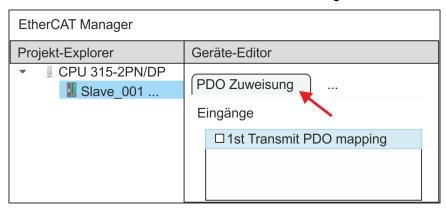


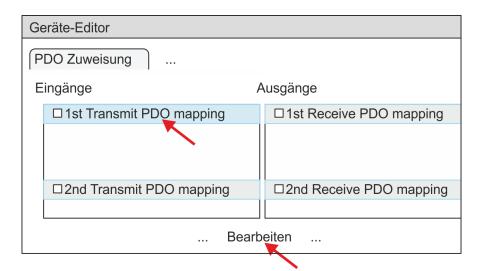
- 1. ► Klicken Sie auf das eingefügtes IO Device "EtherCAT-Netzwerk" und wählen Sie "Kontextmenü → Device Tool starten → SPEED7 EtherCAT Manager".
 - → Der SPEED7 EtherCAT Manager wird gestartet. Hier können Sie die EtherCAT-Kommunikation zu Ihrem Sigma-7S Antrieb konfigurieren.

Näheres zum Einsatz des *SPEED7 EtherCAT Manager* finden Sie im zugehörigen Handbuch bzw. in der Onlinehilfe.

- 2. Damit der Sigma-7S EtherCAT Antrieb im SPEED7 EtherCAT Manager konfiguriert werden kann, ist die entsprechende ESI-Datei zu installieren. Die ESI-Datei für den Sigma-7S EtherCAT Antrieb finden Sie unter www.yaskawa.eu.com im "Download Center". Laden Sie die zu Ihrem Antrieb passende ESI-Datei herunter. Entpacken Sie diese falls erforderlich.
- **4.** Klicken Sie im "ESI-Manager" auf [Datei hinzufügen] und wählen Sie Ihre ESI-Datei aus. Mit [Öffnen] wird die ESI-Datei im SPEED7 EtherCAT Manager installiert.
- 5. Schließen Sie den "ESI-Manager".
 - ➡ Ihr Sigma-7S EtherCAT Antrieb steht Ihnen nun zur Konfiguration zur Verfügung.

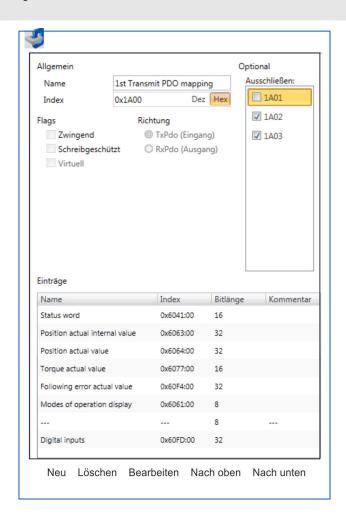
- 6. Klicken Sie im EtherCAT Manager auf ihre CPU und öffnen Sie über "Kontextmenü → Slave anhängen" das Dialogfenster zum Hinzufügen eines EtherCAT-Slave.
 - → Das Dialogfenster zur Auswahl eines EtherCAT-Slave wird geöffnet.
- 7. Wählen Sie Ihren *Sigma-7S* EtherCAT Antrieb und bestätigen Sie Ihre Auswahl mit [OK].
 - → Der Sigma-7S EtherCAT Antrieb wird an den Master angebunden und kann nun konfiguriert werden.


8. ▶


PDOs können Sie nur im "Experten-Modus" bearbeiten! Ansonsten werden die Schaltflächen ausgeblendet. Durch Aktivierung des "Experten-Modus" können Sie in die erweiterte Bearbeitung umschalten.

Aktivieren Sie den *Experten-Modus* durch Aktivierung von "Ansicht → Experte".

9. Klicken Sie im SPEED7 EtherCAT Manager auf den Sigma-7S EtherCAT Slave und wählen Sie im "Geräte-Editor" den Reiter "PDO-Zuweisung" an.


→ Dieser Dialog zeigt eine Auflistung aller PDOs.

Durch Anwahl des entsprechenden PDO-Mappings können Sie mit [Bearbeiten] die PDOs bearbeiten. Wählen Sie das Mapping "1st Transmit PDO mapping" an und klicken Sie auf [Bearbeiten].

Bitte beachten Sie, dass aufgrund der Voreinstellung manche PDOs nicht bearbeitet werden können. Durch Deaktivierung bereits aktivierter PDOs können Sie die Bearbeitung von gesperrten PDOs frei geben.

➡ Es öffnet sich der Dialog "PDO bearbeiten". Bitte überprüfen Sie hier die aufgeführten PDO-Einstellungen und passen Sie diese ggf. an. Bitte berücksichtigen Sie hierbei auch die Reihenfolge der "Einträge" und ergänzen Sie diese entsprechend.

Für die Bearbeitung der "Einträge" stehen folgende Funktionen zur Verfügung:

- Neu
 - Hiermit können Sie in einem Dialogfenster einen neuen Eintrag anlegen, indem Sie aus dem "CoE-Objektverzeichnis" den entsprechenden Eintrag auswählen und Ihre Einstellungen vornehmen. Mit [OK] wird der Eintrag übernommen und in der Liste der Einträge aufgeführt.
- Löschen
 - Hiermit können Sie den angewählte Eintrag löschen.
- Bearbeiten
 - Hiermit können Sie allgemeinen Daten eines Eintrags bearbeiten.
- Nach oben/unten
 - Hiermit können Sie den angewählten Eintrag in der List nach oben bzw. nach unten bewegen.
- 11. Führen Sie folgende Einstellungen durch:

Eingänge: 1st Transmit PDO 0x1A00

- Allgemein
 - Name: 1st Transmit PDO mapping
 - Index: 0x1A00
- Flags
 - Alles deaktiviert
- Richtung
 - TxPdo (Eingang): aktiviert
- Ausschließen

Bitte diese Einstellungen beachten, da ansonsten die PDO-Mappings nicht zeitgleich aktiviert werden können!

- 1A01: deaktiviert
- Einträge

Name	Index	Bitlänge
Status word	0x6041:00	16Bit
Position actual internal value	0x6063:00	32Bit
Position actual value	0x6064:00	32Bit
Torque actual value	0x6077:00	16Bit
Following error actual value	0x60F4:00	32Bit
Modes of operation display	0x6061:00	8Bit
		8Bit
Digital inputs	0x60FD:00	32Bit

Schließen Sie den Dialog "PDO bearbeiten" mit [OK].

12. Wählen Sie das Mapping "2nd Transmit PDO mapping" an und klicken Sie auf [Bearbeiten]. Führen Sie folgende Einstellungen durch:

Eingänge: 2nd Transmit PDO 0x1A01

- Allgemein
 - Name: 2nd Transmit PDO mapping
 - Index: 0x1A01
- Flags
 - Alles deaktiviert
- Richtung
 - TxPdo (Eingang): aktiviert
- Ausschließen

Bitte diese Einstellungen beachten, da ansonsten die PDO-Mappings nicht zeitgleich aktiviert werden können!

- 1A00: deaktiviert1A02: deaktiviert1A03: deaktiviert
- Einträge

Name	Index	Bitlänge
Touch probe status	0x60B9:00	16Bit
Touch probe 1 position value	0x60BA:00	32Bit
Touch probe 2 position value	0x60BC:00	32Bit
Velocity actual value	0x606C:00	32Bit

Schließen Sie den Dialog "PDO bearbeiten" mit [OK].

Wählen Sie das Mapping "1st Receive PDO mapping" an und klicken Sie auf [Bearbeiten]. Führen Sie folgende Einstellungen durch:

Ausgänge: 1st Receive PDO 0x1600

- Allgemein
 - Name: 1st Receive PDO mapping
 - Index: 0x1600
- Flags
 - Alles deaktiviert
- Richtung
 - RxPdo (Ausgang): aktiviert
- Ausschließen

Bitte diese Einstellungen beachten, da ansonsten die PDO-Mappings nicht zeitgleich aktiviert werden können!

- 1601: deaktiviert1602: deaktiviert1603: deaktiviert
- Einträge

Name	Index	Bitlänge
Control word	0x6040:00	16 Bit
Target position	0x607A:00	32 Bit
Target velocity	0x60FF:00	32 Bit
Modes of operation	0x6060:00	8 Bit
		8 Bit
Touch probe function	0x60B8:00	16 Bit

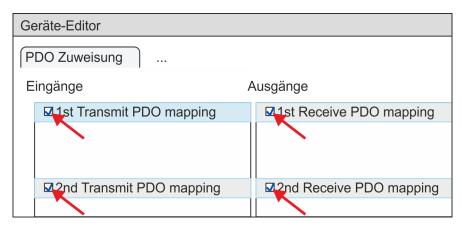
Schließen Sie den Dialog "PDO bearbeiten" mit [OK].

14. Wählen Sie das Mapping "2nd Receive PDO mapping" an und klicken Sie auf [Bearbeiten]. Führen Sie folgende Einstellungen durch:

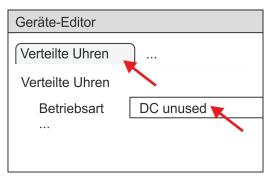
Ausgänge: 2nd Receive PDO 0x1601

- Allgemein
 - Name: 2nd Receive PDO mapping
 - Index: 0x1601
- Flags
 - Alles deaktiviert
- Richtung
 - RxPdo (Ausgang): aktiviert
- Ausschließen

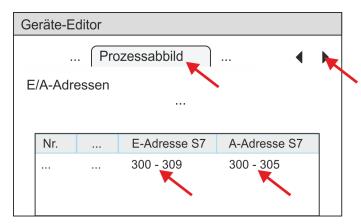
Bitte diese Einstellungen beachten, da ansonsten die PDO-Mappings nicht zeitgleich aktiviert werden können!

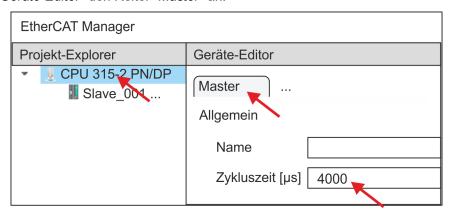

1600: deaktiviert1602: aktiviert1603: aktiviert

Einträge

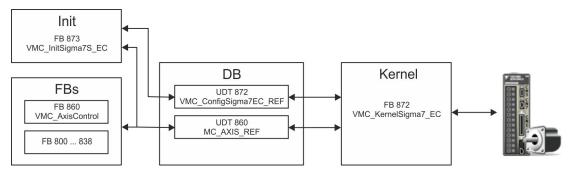

Name	Index	Bitlänge
Profile velocity	0x6081:00	32Bit
Profile acceleration	0x6083:00	32Bit
Profile deceleration	0x6084:00	32Bit

Schließen Sie den Dialog "PDO bearbeiten" mit [OK].


Aktivieren Sie in PDO-Zuweisung die PDOs 1 und 2 für die Ein und Ausgänge. Alle nachfolgenden PDOs müssen deaktiviert bleiben. Sollte dies nicht möglich sein, überprüfen Sie bitte den jeweiligen PDO-Parameter "Ausschließen".


16. Wählen Sie im "Geräte-Editor" des SPEED7 EtherCAT Manager den Reiter "Verteilte Uhren" an und stellen Sie "DC unused" als "Betriebsart" ein.

- Wählen Sie im "Geräte-Editor" über die Pfeiltaste den Reiter "Prozessabbild" an und notieren Sie sich für die Parameter des Bausteins FB 873 VMC_InitSigma7S_EC folgende PDO-Anfangsadressen:
 - "E-Adresse S7" → "InputsStartAddressPDO"
 - "A-Adresse S7" → "OutputsStartAddressPDO"


18. Klicken Sie im SPEED7 EtherCAT Manager auf ihre CPU und wählen Sie im "Geräte-Editor" den Reiter "Master" an.

- → Stellen Sie für Sigma-7S (400V) Antriebe (SGD7S-xxxDA0... und SGD7S-xxxxA0...) eine Zykluszeit von mindestens 4ms ein. Ansonsten lassen Sie den Wert bei 1ms.
- 19. Indem Sie den Dialog des SPEED7 EtherCAT Manager mit [X] schließen, wird die Konfiguration in die Projektierung übernommen. Sie können Ihre EtherCAT-Konfiguration jederzeit im SPEED7 EtherCAT Manager wieder bearbeiten, da die Konfiguration in Ihrem Projekt gespeichert wird.
- 20. Speichern und übersetzen Sie Ihre Konfiguration.

13.2.2.4.3 Anwender-Programm

Programmstruktur

DB

Für jede Achse ist ein Datenbaustein (Achs-DB) für Konfiguration und Statusdaten anzulegen. Der Datenbaustein besteht aus folgenden Datenstrukturen:

- UDT 872 VMC_ConfigSigma7EC_REF
 Die Datenstruktur beschreibt den Aufbau der Konfiguration des Antriebs.
 Spezifische Datenstruktur für Sigma-7 EtherCAT.
- UDT 860 MC_AXIS_REF

Die Datenstruktur beschreibt den Aufbau der Parameter und Statusinformationen von Antrieben.

Allgemeine Datenstruktur für alle Antriebe und Bussysteme.

- FB 873 VMC_InitSigma7S_EC
 - Der *Init*-Baustein dient zur Konfiguration einer Achse.
 - Spezifischer Baustein für Sigma-7S EtherCAT.
 - Die Konfigurationsdaten für die Initialisierung sind im Achs-DB abzulegen.
- FB 872 VMC_KernelSigma7_EC
 - Der Kernel-Baustein kommuniziert mit dem Antrieb über das entsprechende Bussystem, verarbeitet die Benutzeraufträge und liefert Statusmeldungen zurück.
 - Spezifischer Baustein für Sigma-7 EtherCAT.
 - Der Austausch der Daten erfolgt mittels des Achs-DB.
- FB 860 VMC_AxisControl
 - Universal-Baustein für alle Antriebe und Bussysteme.
 - Unterstützt einfache Bewegungskommandos und liefert alle relevanten Statusmeldungen.
 - Der Austausch der Daten erfolgt mittels des Achs-DB.
 - Über die Instanzdaten des Bausteins können Sie zur Bewegungssteuerung und Statusabfrage eine Visualisierung anbinden.
 - Zusätzlich zum FB 860 VMC_AxisControl haben Sie die Möglichkeit PLCopen-Bausteine zu nutzen.
- FB 800 ... FB 838 PLCopen
 - Die PLCopen-Bausteine dienen zur Programmierung von Bewegungsabläufen und Statusabfragen.
 - Allgemeine Bausteine für alle Antriebe und Bussysteme.

Programmierung

Bibliothek einbinden

- 1. Gehen Sie in das "Download Center" von www.yaskawa.eu.com.
- 2. Laden Sie unter "Controls Library" die Simple Motion Control Library.
- 3. ▶ Öffnen Sie mit "Datei → Dearchivieren" das Dialogfenster zur Auswahl der ZIP-Datei.
- **4.** Wählen Sie die entsprechende ZIP-Datei an und klicken Sie auf [Öffnen].
- Geben Sie ein Zielverzeichnis an, in dem die Bausteine abzulegen sind und starten Sie den Entpackvorgang mit [OK].

Bausteine in Projekt kopieren

- Öffnen Sie die Bibliothek nach dem Entpackvorgang und ziehen Sie per Drag&Drop folgende Bausteine in "Bausteine" Ihres Projekts:
 - Sigma-7S EtherCAT:
 - UDT 872 VMC_ConfigSigma7EC_REF
 - FB 872 VMC KernelSigma7 EC
 - FB 873 VMC_InitSigma7S_EC
 - Axis Control
 - UDT 860 MC AXIS REF
 - Bausteine für die gewünschten Bewegungsabläufe

Alarm-OBs anlegen

- 1. Klicken Sie in Ihrem Projekt auf "Bausteine" und wählen Sie "Kontextmenü → Neues Objekt einfügen → Organisationsbaustein".
 - → Das Dialogfenster "Eigenschaften Organistionsbaustein" öffnet sich.
- 2. Fügen Sie nacheinander OB 57, OB 82 und OB 86 Ihrem Projekt hinzu.

Achs-DB anlegen

1. Klicken Sie in Ihrem Projekt auf "Bausteine" und wählen Sie "Kontextmenü → Neues Objekt einfügen → Datenbaustein".

Geben Sie folgende Parameter an:

- Name und Typ
 - Die DB-Nr. als "Name" können Sie frei wählen wie z.B. DB10.
 - Stellen Sie "Global-DB" als "Typ" ein.
- Symbolischer Name
 - Geben Sie "Axis01" an.

Bestätigen Sie Ihre Eingaben mit [OK].

- Der Baustein wird angelegt.
- 2. Diffnen Sie DB10 "Axis01" durch Doppelklick.
 - Legen Sie in "Axis01" die Variable "Config" vom Typ UDT 872 an. Dies sind spezifische Achs-Konfigurationsdaten.
 - Legen Sie in "Axis01" die Variable "Axis" vom Typ UDT 860 an. Während des Betriebs werden hier alle Betriebsdaten der Achse abgelegt.

DB10

Adresse	Name	Тур	
		Struct	
	Config	"VMC_ConfigSigma7EC_REF"	
	Axis	"MC_AXIS_REF	
		END STRUCT	

OB₁

Konfiguration der Achse

Öffnen Sie den OB 1 und programmieren Sie folgende FB-Aufrufe mit zugehörigen DBs:

```
FB 873 - VMC_InitSigma7S_EC, DB 873 → "FB 873 - VMC_InitSigma7S_EC - Sigma-7S EtherCAT Initialisierung"...Seite 359
```

Geben Sie unter *InputsStartAddressPDO* bzw. *OutputsStartAddressPDO* die Adresse aus dem *SPEED7 EtherCAT Manager* an. → 352

```
→ CALL
       "VMC InitSigma7S EC" , "DI InitSgm7SETC01"
 Enable
                       :="InitS7SEC1 Enable"
 LogicalAddress
                       :=300
  InputsStartAddressPDO :=300 (EtherCAT-Man.: E-Adresse S7)
  OutputsStartAddressPDO:=300 (EtherCAT-Man.: A-Adresse S7)
 EncoderType
 EncoderResolutionBits :=20
                       :=1.048576e+006
 FactorPosition
                      :=1.048576e+006
 FactorVelocity
 FactorAcceleration :=1.048576e+002
 OffsetPosition
                      :=0.000000e+000
 MaxVelocityApp
                      :=5.000000e+001
 MaxAccelerationApp :=1.000000e+002
 MaxDecelerationApp :=1.000000e+002
                      :=6.000000e+001
 MaxVelocityDrive
 MaxAccelerationDrive :=1.500000e+002
 MaxDecelerationDrive :=1.500000e+002
 MaxPosition
                      :=1.048500e+003
 MinPosition
                      :=-1.048514e+003
 EnableMaxPosition :=TRUE
 EnableMinPosition
                       :=TRUE
 MinUserPosition
                       :="InitS5EC1 MinUserPos"
 MaxUserPosition
                       :="InitS5EC1 MaxUserPos"
 Valid
                       :="InitS5EC1_Valid"
 Error
                       :="InitS5EC1 Error"
 ErrorID
                       :="InitS5EC1 ErrorID"
                       :="Axis01".Config
  Config
 Axis
                       :="Axis01".Axis
```

Kernel für Achse beschalten

Der *Kernel* verarbeitet die Benutzerkommandos und gibt sie entsprechend aufbereitet an den Antrieb über das jeweilige Bussystem weiter.

```
FB 872 - VMC_KernelSigma7_EC, DB 872 → "FB 872 - VMC_KernelSigma7_EC - Sigma-7 EtherCAT Kernel"...Seite 358
```

```
→ CALL "VMC_KernelSigma7_EC" , "DI_KernelSgm7ETC01"
Init :="KernelS7EC1_Init"
Config:="Axis01".Config
Axis :="Axis01".Axis
```

Baustein für Bewegungsabläufe beschalten

Zur Vereinfachung soll hier die Beschaltung des FB 860 - VMC_AxisControl gezeigt werden. Dieser Universalbaustein unterstützt einfache Bewegungskommandos und liefert Statusmeldungen zurück. Die Ein- und Ausgänge können Sie individuell beschalten. Bitte geben Sie unter "Axis" die Referenz zu den entsprechenden Achsdaten im Achs-DB an.

FB 860 - VMC_AxisControl, DB 860 → "FB 860 - VMC_AxisControl - Control-Baustein Achskontrolle"... Seite 659

```
→ CALL "VMC AxisControl" , "DI AxisControl01"
  AxisEnable :="AxCtrl1_AxisEnable"
AxisReset :="AxCtrl1_AxisReset"
HomeExecute :="AxCtrl1_HomeExecute"
HomePosition :="AxCtrl1_HomePosition"
StopExecute :="AxCtrl1_StopExecute"
  MvVelocityExecute:="AxCtrl1 MvVelExecute"
  MvRelativeExecute:="AxCtrl1 MvRelExecute"
  MvAbsoluteExecute:="AxCtrl1 MvAbsExecute"
  PositionDistance := "AxCtrl1 PositionDistance"
  Velocity :="AxCtrl1_Velocity"
  Acceleration :="AxCtrl1_Acceleration"
Deceleration :="AxCtrl1_Acceleration"
JogPositive :="AxCtrl1_Deceleration"
JogNegative :="AxCtrl1_JogPositive"
JogNegative :="AxCtrl1_JogNegative"
JogVelocity :="AxCtrl1_JogVelocity"
  JogAcceleration :="AxCtrl1 JogAcceleration"
  JogDeceleration :="AxCtrl1 JogDeceleration"
  :="AxCtrl1_IsHomed"
  DirectionPositive:="AxCtrl1 DirectionPos"
  DirectionNegative:="AxCtrl1 DirectionNeg"
  SWLimitMinActive := "AxCtrl1 SWLimitMinActive"
  SWLimitMaxActive := "AxCtrl1 SWLimitMaxActive"
  HWLimitMinActive :="AxCtrl1 HWLimitMinActive"
  HWLimitMaxActive :="AxCtrl1 HWLimitMaxActive"
  Axis
                        :="Axis01".Axis
```


Für komplexe Bewegungsaufgaben können Sie die PLCopen-Bausteine verwenden. Hier müssen Sie ebenfalls unter Axis die Referenz zu den Achsdaten im Achs-DB angeben.

Ihr Projekt beinhaltet nun folgende Bausteine:

- OB 1 Main
- OB 57 DP Manufacturer Alarm
- OB 82 I/O FLT1
- OB 86 Rack_FLT
- FB 860 VMC_AxisControl mit Instanz-DB
- FB 872 VMC KernelSigma7 EC mit Instanz-DB
- FB 873 VMC InitSigma7S EC mit Instanz-DB

- UDT 860 MC_Axis_REF
- UDT 872 VMC_ConfigSigma7EC_REF

Zeitlicher Ablauf

1. Wechseln Sie in den Siemens SIMATIC Manager und übertragen Sie Ihr Projekt in die CPU.

Die Übertragung kann ausschließlich aus dem Siemens SIMATIC Manager erfolgen - nicht Hardware-Konfigurator!

Da Slave- und Modulparameter mittels SDO-Zugriff bzw. SDO-Init-Kommando übertragen werden, bleibt die Parametrierung solange bestehen, bis ein Power-Cycle durchgeführt wird oder neue Parameter für die gleichen SDO-Objekte übertragen werden.

Beim Urlöschen werden Slave- und Modul-Parameter nicht zurückgesetzt!

➡ Sie k\u00f6nnen jetzt Ihre Applikation in Betrieb nehmen.

VORSICHT

Bitte beachten Sie immer die Sicherheitshinweise zu ihrem Antrieb, insbesondere bei der Inbetriebnahme!

- **2.** Bevor eine Achse gesteuert werden kann, muss diese initialisiert werden. Rufen Sie hierzu den *Init*-Baustein FB 873 VMC InitSigma7S EC mit *Enable* = TRUE auf.
 - → Der Ausgang Valid meldet TRUE zurück. Im Fehlerfall können Sie durch Auswertung der ErrorID den Fehler ermitteln.

Den *Init*-Baustein müssen Sie erneut aufrufen, wenn Sie einen neuen Achs-DB laden oder Parameter am *Init*-Baustein geändert wurden.

Fahren Sie erst fort, wenn der Init-Baustein keinen Fehler meldet!

- 3. Stellen Sie sicher, dass der *Kernel-*Baustein FB 872 VMC_KernelSigma7_EC zyklisch aufgerufen wird. Auf diese Weise werden Steuersignale an den Antrieb übergeben und Statusmeldungen übermittelt.
- **4.** Programmieren Sie Ihre Applikation mit dem FB 860 VMC_AxisControl oder mit den PLCopen Bausteinen.

Steuerung des Antriebs über HMI

Sie haben die Möglichkeit über ein HMI Ihren Antrieb zu steuern. Hierzu gibt es für Movicon eine vorgefertigte Symbolbibliothek für den Zugriff auf den VMC_AxisControl Funktionsbaustein. — "Antrieb über HMI steuern"... Seite 714

13.2.2.4.4 Projekt kopieren

Vorgehensweise

Im Beispiel wird die Station "Source" kopiert und als "Target" gespeichert.

- 1. Öffnen Sie die Hardware-Konfiguration der "Source"-CPU und starten Sie hier den SPEED7 EtherCAT Manager.
- 2. Speichern Sie im SPEED7 EtherCAT Manager über "Datei → Speichern unter" die Konfiguration in Ihrem Arbeitsverzeichnis.
- 3. Schließen Sie den SPEED7 EtherCAT Manager und den Hardware-Konfigurator wieder.

- **4.** Kopieren Sie die Station "Source" mit Strg+C und fügen Sie diese mit Strg+V als "Target" in Ihr Projekt ein.
- **5.** Wechseln Sie in den "Baustein"-Ordner der "Target"-CPU löschen Sie die "Systemdaten".
- <u>6.</u> Öffnen Sie die Hardware-Konfiguration der "Target"-CPU. Passen Sie die IP-Adressdaten an oder vernetzen Sie die CPU bzw. den CP neu.

Vor dem Aufruf des SPEED7 EtherCAT Manager müssen Sie immer Ihr Projekt mit "Station → Speichern und übersetzen" speichern.

- 7. ▶ Speichern Sie Ihr Projekt mit "Station → Speichern und übersetzen.".
- 8. Öffnen Sie den SPEED7 EtherCAT Manager.
- **9.** Laden Sie mit "Datei → Öffnen" die Konfiguration aus Ihrem Arbeitsverzeichnis.
- 10. ▶ Schließen Sie den SPEED7 EtherCAT Manager wieder.
- 11. Speichern und übersetzen Sie Ihre Konfiguration.

13.2.2.5 Antriebsspezifische Bausteine

Die PLCopen-Bausteine zur Achskontrolle finden Sie hier: → "Bausteine zur Achskontrolle"...Seite 656

13.2.2.5.1 UDT 872 - VMC_ConfigSigma7EC_REF - Sigma-7 EtherCAT Datenstruktur Achskonfiguration

Dies ist eine benutzerdefinierte Datenstruktur, die Informationen zu den Konfigurationsdaten beinhaltet. Die UDT ist speziell angepasst an die Verwendung eines Sigma-7-Antriebs, welcher über EtherCAT angebunden ist.

13.2.2.5.2 FB 872 - VMC_KernelSigma7_EC - Sigma-7 EtherCAT Kernel

Beschreibung

Dieser Baustein setzt die Antriebskommandos für eine *Sigma-7* Achse über EtherCAT um und kommuniziert mit dem Antrieb. Je *Sigma-7* Achse ist eine Instanz dieses FBs zyklisch aufzurufen.

ĭ

Bitte beachten Sie, dass dieser Baustein intern den SFB 238 aufruft.

Im SPEED7 Studio wird dieser Baustein automatisch in Ihr Projekt eingefügt.

Im Siemens SIMATIC Manager müssen Sie den SFB 238 aus der Motion Control Library in Ihr Projekt kopieren.

Parameter	Deklaration	Datentyp	Beschreibung
Init	INPUT	BOOL	Mit einer Flanke 0-1 wird der Baustein intern zurückgesetzt. Hierbei werden bestehende Bewegungskommandos abgebrochen und der Baustein wird initialisiert.
Config	IN_OUT	UDT872	Datenstruktur zur Übergabe von achsabhängigen Konfigurationsdaten an den <i>AxisKernel</i> .

Parameter	Deklaration	Datentyp	Beschreibung
Axis	IN_OUT	MC_AXIS_REF	Datenstruktur zur Übergabe von achsabhängigen Informationen an <i>AxisKernel</i> und PLCopen-Bausteine.

13.2.2.5.3 FB 873 - VMC_InitSigma7S_EC - Sigma-7S EtherCAT Initialisierung

Beschreibung

Dieser Baustein dient zur Konfiguration der Achse. Der Baustein ist speziell angepasst an die Verwendung eines *Sigma-7-*Antriebs, welcher über EtherCAT angebunden ist.

Parameter	Deklaration	Datentyp	Beschreibung
Enable	INPUT	BOOL	Freigabe der Initialisierung
LogicalAddress	INPUT	INT	Startadresse der PDO-Eingangsdaten
InputsStartAddressPDO	INPUT	INT	Startadresse der Eingabe-PDOs
OutputsStartAddressPDO	INPUT	INT	Startadresse der Ausgabe-PDOs
EncoderType	INPUT	INT	Encoder-Typ
			■ 1: Absolut-Encoder
			2: Inkremental-Encoder
EncoderResolutionBits	INPUT	INT	Anzahl der Bits, die einer Geber-Umdrehung entsprechen. Default: 20
FactorPosition	INPUT	REAL	Faktor zur Umrechnung der Position von Benutzereinheiten [u] in Antriebseinheiten [Inkremente] und zurück.
			Es gilt: p[Inkremente] = p[u] x FactorPosition
			Bitte berücksichten sie auch den Faktor, welchen Sie am Antrieb über die Objekte 0x2701:1 und 0x2701:2 vorgeben können. Dieser sollte 1 sein.
FactorVelocity	INPUT	REAL	Faktor zur Umrechnung der Geschwindigkeit von Benutzereinheiten [u/s] in Antriebseinheiten [Inkremente/s] und zurück.
			Es gilt: v _[Inkremente/s] = v _[u/s] x FactorVelocity
			Bitte berücksichten sie auch den Faktor, welchen Sie am Antrieb über die Objekte 0x2702:1 und 0x2702:2 vorgeben können. Dieser sollte 1 sein.
FactorAcceleration	INPUT	REAL	Faktor zur Umrechnung der Beschleunigung von Benutzereinheiten [u/s²] in Antriebseinheiten [10 -4 x Inkremente/s²] und zurück.
			Es gilt: 10 -4 x a _[Inkremente/s2] = a _[u/s2] x FactorAcceleration
			Bitte berücksichten sie auch den Faktor, welchen Sie am Antrieb über die Objekte 0x2703:1 und 0x2703:2 vorgeben können. Dieser sollte 1 sein.
OffsetPosition	INPUT	REAL	Offset für die Nullposition [u].
MaxVelocityApp	INPUT	REAL	Maximale Geschwindigkeit der Applikation [u/s].
			Die Kommandoeingaben werden vor Ausführung auf den Maximalwert überprüft.
MaxAccelerationApp	INPUT	REAL	Maximale Beschleunigung der Applikation [u/s²].
			Die Kommandoeingaben werden vor Ausführung auf den Maximalwert überprüft.

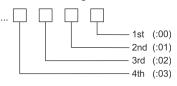
Parameter	Deklaration	Datentyp	Beschreibung
MaxDecelerationApp	INPUT	REAL	Maximale Verzögerung der Applikation [u/s²].
			Die Kommandoeingaben werden vor Ausführung auf den Maximalwert überprüft.
MaxPosition	INPUT	REAL	Maximale Position für die Überwachung der Softwarelimits [u].
MinPosition	INPUT	REAL	Minimale Position für die Überwachung der Softwarelimits [u].
EnableMaxPosition	INPUT	BOOL	Überwachung maximale Position
			■ TRUE: Aktivierung der Überwachung der maximalen Position.
EnableMinPosition	INPUT	BOOL	Überwachung minimale Position
			■ TRUE: Aktivierung der Überwachung der minimalen Position.
MinUserPosition	OUTPUT	REAL	Minimale Benutzerposition basierend auf dem minimalen Encoder Wert von 0x80000000 und dem <i>Factor-Position</i> [u].
MaxUserPosition	OUTPUT	REAL	Maximale Benutzerposition basierend auf dem maximalen Encoder Wert von 0x7FFFFFFF und dem <i>Factor-Position</i> [u].
Valid	OUTPUT	BOOL	Initialisierung
			■ TRUE: Initialisierung ist gültig.
Error	OUTPUT	BOOL	■ Fehler
			 TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter ErrorID entnommen werden. Die Achse wird gesperrt.
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen
			→ "ErrorID - Zusätzliche Fehlerinformati- onen"Seite 739
Config	IN_OUT	UDT872	Datenstruktur zur Übergabe von achsabhängigen Konfigurationsdaten an den <i>AxisKernel</i> .
Axis	IN_OUT	MC_AXIS_REF	Datenstruktur zur Übergabe von achsabhängigen Informationen an <i>AxisKernel</i> und PLCopen-Bausteine.

13.2.3 Einsatz Sigma-7W EtherCAT

13.2.3.1 Übersicht

Einsatz des Singelachs-Antriebs → "Einsatz Sigma-7S EtherCAT"...Seite 323

Voraussetzung


- SPEED7 Studio ab V1.6.1
- Siemens SIMATIC Manager ab V 5.5 SP2 & SPEED7 EtherCAT Manager & Simple Motion Control Library
- CPU mit EtherCAT-Master wie z.B. CPU 015-CEFNR00
- Sigma-7W Doppelachs-Antrieb mit EtherCAT-Optionskarte

Schritte der Projektierung

- 1. Parameter am Antrieb einstellen
 - Die Einstellung der Parameter hat mit dem Softwaretool Sigma Win+ zu erfolgen.
- 2. Hardwarekonfiguration im SPEED7 Studio oder Siemens SIMATIC Manager
 - Projektierung einer CPU mit EtherCAT-Master-Funktionalität.
 - Projektierung der Sigma-7W EtherCAT Doppelachsen.
 - Projektierung der EtherCAT-Anbindung über SPEED7 EtherCAT Manager.
- 3. Programmierung im SPEED7 Studio oder Siemens SIMATIC Manager
 - Init-Baustein zur Konfiguration der Doppel-Achsen beschalten.
 - Kernel-Baustein zur Kommunikation mit je einer Achse beschalten.
 - Bausteine für die Bewegungsabläufe beschalten.
 - → "Demo-Projekte"...Seite 288

13.2.3.2 Parameter am Antrieb einstellen

Parameter-Digits

VORSICHT

Vor der Erstinbetriebnahme müssen Sie Ihren Antrieb mit dem Softwaretool *Sigma Win+* an Ihre Applikation anpassen! Näheres hierzu finden Sie im Handbuch zu ihrem Antrieb.

Zur Abstimmung auf die *Simple Motion Control Library* sind folgende Parameter über *Sigma Win+* einzustellen:

Achse 1 - Module 1 (24Bit Encoder)

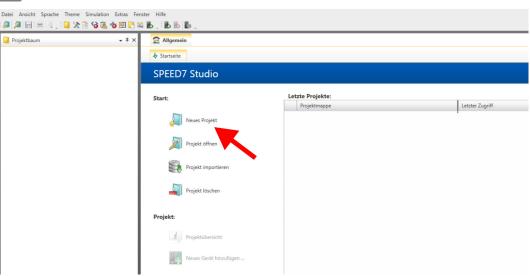
Servopack Parameter	Adresse:Digit	Name	Wert
Pn205	(2205h)	Multiturn Limit Setting	65535
Pn20E	(220Eh)	Electronic Gear Ratio (Numerator)	16
Pn210	(2210h)	Electronic Gear Ratio (Denominator)	1
PnB02	(2701h:01)	Position User Unit (Numerator)	1
PnB04	(2701h:02)	Position User Unit (Denominator)	1
PnB06	(2702h:01)	Velocity User Unit (Numerator)	1
PnB08	(2702h:02)	Velocity User Unit (Denominator)	1
PnB0A	(2703h:01)	Acceleration User Unit (Numerator)	1
PnB0C	(2703h:02)	Acceleration User Unit (Denominator)	1

Achse 2 - Module 2 (24Bit Encoder)

Servopack Parameter	Adresse:Digit	Name	Wert
Pn205	(2A05h)	Multiturn Limit Setting	65535
Pn20E	(2A0Eh)	Electronic Gear Ratio (Numerator)	16
Pn210	(2A10h)	Electronic Gear Ratio (Denominator)	1
PnB02	(2F01h:01)	Position User Unit (Numerator)	1
PnB04	(2F01h:02)	Position User Unit (Denominator)	1
PnB06	(2F02h:01)	Velocity User Unit (Numerator)	1

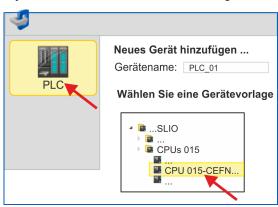
Servopack Parameter	Adresse:Digit	Name	Wert
PnB08	(2F02h:02)	Velocity User Unit (Denominator)	1
PnB0A	(2F03h:01)	Acceleration User Unit (Numerator)	1
PnB0C	(2F03h:02)	Acceleration User Unit (Denominator)	1

Bitte beachten Sie, dass Sie gemäß ihren Anforderungen die entsprechende Fahrtrichtung für Ihren Antrieb freigeben. Verwenden Sie hierzu die Parameter Pn50A (P-OT) bzw. Pn50B (N-OT) in Sigma Win+.


13.2.3.3 Einsatz im SPEED7 Studio

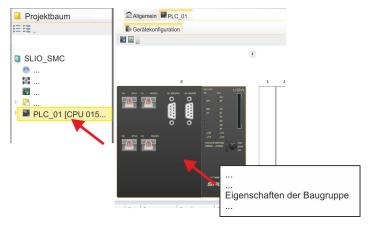
13.2.3.3.1 Hardware-Konfiguration

CPU im Projekt anlegen

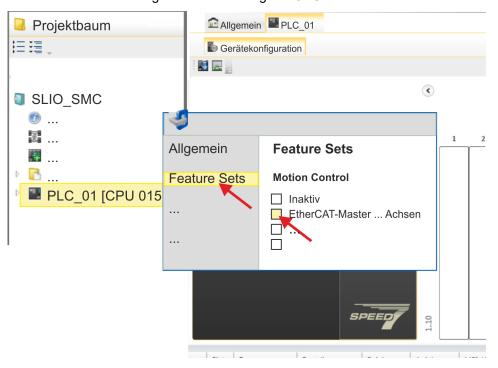

Bitte verwenden Sie für die Projektierung das SPEED7 Studio ab V1.6.1.

1. Starten Sie das SPEED7 Studio.

- **2.** Erstellen sie auf der Startseite mit "Neues Projekt" ein neues Projekt und vergeben Sie einen "Projektnamen".
 - ⇒ Ein neues Projekt wird angelegt und in die Sicht "Geräte und Netze" gewechselt.
- 3. Klicken Sie im Projektbaum auf "Neues Gerät hinzufügen ...".



➡ Es öffnet sich ein Dialog für die Geräteauswahl.


- **4.** Wählen Sie unter den "Gerätevorlagen" eine CPU mit EtherCAT-Master-Funktionalität wie z.B. die CPU 015-CEFNR00 und klicken Sie auf [OK].
 - Die CPU wird in "Geräte und Netze" eingefügt und die "Gerätekonfiguration" geöffnet.

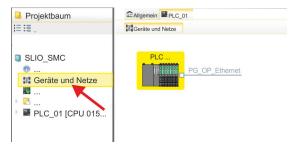
Motion-Control-Funktionen aktivieren

Sofern bei Ihrer CPU die EtherCAT-Master-Funktionalität noch nicht aktiviert ist, erfolgt die Aktivierung nach folgenden Vorgehensweise:

- 1. Klicken Sie in der "Gerätekonfiguration" auf die CPU und wählen Sie "Kontextmenü Eigenschaften der Baugruppe".
 - ⇒ Es öffnet sich der Eigenschaften-Dialog der CPU.

2. Klicken Sie auf "Feature Sets" und aktivieren Sie unter "Motion Control" einen der Parameter "EtherCAT-Master ... Achsen". Die Anzahl der Achsen ist in diesem Beispiel nicht relevant.

- 3. Bestätigen Sie Ihre Angaben mit [OK].
 - → Die Motion-Control-Funktionen steht Ihnen nun in Ihrem Projekt zur Verfügung.



VORSICHT

Bitte beachten Sie, dass bei jeder Änderung der Feature-Set-Einstellungen systembedingt das EtherCAT-Feldbus-System zusammen mit der Motion-Control-Konfiguration aus Ihrem Projekt gelöscht werden!

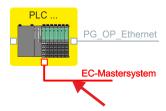
Ethernet-PG/OP-Kanal parametrieren

- 1. Klicken Sie im Projektbaum auf "Geräte und Netze".
 - ➡ Sie erhalten eine grafische Objekt-Ansicht Ihrer CPU.

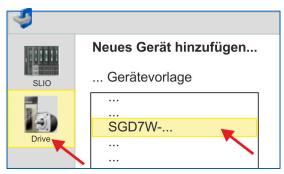
- 2. Klicken Sie auf das Netzwerk "PG_OP_Ethernet".
- 3. ▶ Wählen Sie "Kontextmenü → Eigenschaften der Schnittstelle".
 - ➡ Es öffnet sich ein Dialogfenster. Hier können Sie IP-Adressdaten für Ihren Ethernet-PG/OP-Kanal angeben. Gültige IP-Adress-Parameter erhalten Sie von Ihrem Systemadministrator.
- 4. Bestätigen Sie Ihre Eingabe mit [OK].
 - → Die IP-Adressdaten werden in Ihr Projekt übernommen und in "Geräte und Netze" unter "Lokale Baugruppen" aufgelistet.

Nach der Übertragung Ihres Projekts ist Ihre CPU über die angegebenen IP-Adressdaten via Ethernet-PG/OP-Kanal erreichbar.

ESI-Datei installieren


Damit der *Sigma-7* EtherCAT Antrieb im *SPEED7 EtherCAT Manager* konfiguriert werden kann, muss die entsprechende ESI-Datei installiert sein. In der Regel wird das *SPEED7 Studio* mit aktuellen ESI-Dateien ausgeliefert und Sie können diesen Teil überspringen. Sollte Ihre ESI-Datei veraltet sein, finden Sie die aktuellste ESI-Datei für den *Sigma-7* EtherCAT Antrieb unter www.yaskawa.eu.com im *"Download Center"*.

- 1. Laden Sie die zu Ihrem Antrieb passende ESI-Datei herunter. Entpacken Sie diese falls erforderlich.
- 2. Gehen Sie in Ihr SPEED7 Studio.
- 3. Öffnen Sie mit "Extras → Gerätebeschreibungsdatei installieren (EtherCAT ESI)" das zugehörige Dialogfenster.
- **4.** Geben Sie unter "Quellpfad" die ESI-Datei an und installieren Sie diese mit [Installieren].
 - → Die Geräte der ESI-Datei steht Ihnen nun zur Verfügung.


Sigma-7W Doppelachs-Antrieb hinzufügen

1. Klicken Sie im Projektbaum auf "Geräte und Netze".

2. Klicken Sie hier auf "EC-Mastersystem" und wählen sie "Kontextmenü → Neues Gerät hinzufügen".

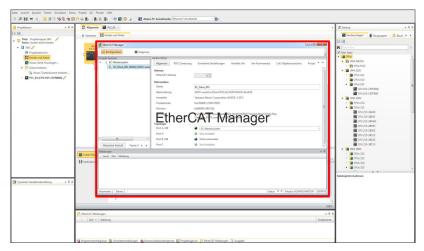
⇒ Es öffnet sich die Gerätevorlage zur Auswahl eines EtherCAT-Devices.

- 3. Wählen Sie Ihren Sigma-7W Doppelachs-Antrieb aus:
 - SGD7W-xxxxA0...

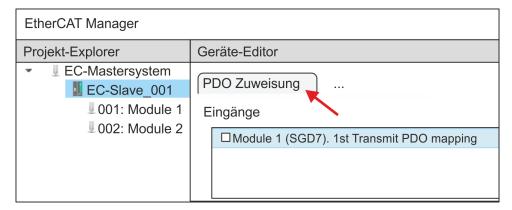
Bestätigen Sie Ihre Angaben mit [OK]. Sollte Ihr Antrieb nicht vorhanden sein, müssen Sie die entsprechende ESI-Datei wie weiter oben beschrieben installieren.

→ Der Sigma-7W Doppelachs-Antrieb wird an Ihr EC-Mastersystem angebunden.

Sigma-7W Doppelachs-Antrieb konfigurieren

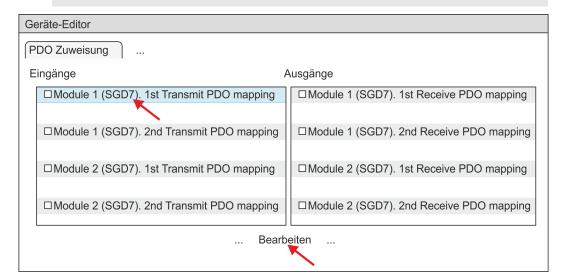


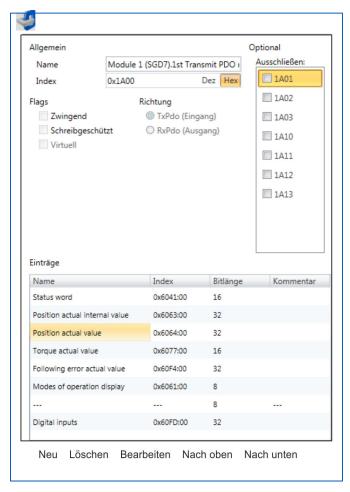
1. ▶ Klicken Sie auf "EC-Mastersystem" und wählen sie "Kontextmenü → Eigenschaft des Busystems (Experte)".


PDOs können Sie nur im "Experten-Modus" bearbeiten! Ansonsten werden die Schaltflächen ausgeblendet.

→ Der SPEED7 EtherCAT Manager wird gestartet. Hier können Sie die EtherCAT-Kommunikation zu Ihrem Sigma-7W Doppelachs-Antrieb konfigurieren.

Näheres zum Einsatz des SPEED7 EtherCAT Manager finden Sie in der Onlinehilfe zum SPEED7 Studio.


2. Klicken Sie im SPEED7 EtherCAT Manager auf den Slave und wählen Sie im "Geräte-Editor" den Reiter "PDO-Zuweisung" an.


→ Dieser Dialog zeigt eine Auflistung aller PDOs für "Module 1" (Achse 1) und "Module 2" (Achse 2).

Durch Anwahl des entsprechenden PDO-Mappings können Sie mit [Bearbeiten] die PDOs bearbeiten. Wählen Sie das Mapping "Module 1 (SGD7). 1st Transmit PDO mapping" an und klicken Sie auf [Bearbeiten].

Bitte beachten Sie, dass aufgrund der Voreinstellung manche PDOs nicht bearbeitet werden können. Durch Deaktivierung bereits aktivierter PDOs können Sie die Bearbeitung von gesperrten PDOs frei geben.

➡ Es öffnet sich der Dialog "PDO bearbeiten". Bitte überprüfen Sie hier die aufgeführten PDO-Einstellungen und passen Sie diese ggf. an. Bitte berücksichtigen Sie hierbei auch die Reihenfolge der "Einträge" und ergänzen Sie diese entsprechend.

Für die Bearbeitung der "Einträge" stehen folgende Funktionen zur Verfügung:

■ Neu

 Hiermit können Sie in einem Dialogfenster einen neuen Eintrag anlegen, indem Sie aus dem "CoE-Objektverzeichnis" den entsprechenden Eintrag auswählen und Ihre Einstellungen vornehmen. Mit [OK] wird der Eintrag übernommen und in der Liste der Einträge aufgeführt.

Löschen

Hiermit können Sie den angewählte Eintrag löschen.

Bearbeiten

- Hiermit können Sie allgemeinen Daten eines Eintrags bearbeiten.

Nach oben/unten

 Hiermit können Sie den angewählten Eintrag in der Liste nach oben bzw. nach unten bewegen.

4. Führen Sie für die Transmit PDOs folgende Einstellungen durch:

Eingänge: 1st Transmit PDO

Module 1 (SGD7). 1st Transmit PDO mapping	Module 2 (SGD7). 1st Transmit PDO mapping		
Name: Module 1 (SGD7). 1st Transmit PDO mapping	Name: Module 2 (SGD7). 1st Transmit PDO mapping		
Index: 0x1A00	Index: 0x1A10		
Flags: Alles deaktiviert			
Richtung: TxPdo (Eingang): aktiviert			
Ausschließen: 1A01: deaktiviert 1A11: deaktiviert			
Bitte diese Einstellungen beachten, da ansonsten die PDO-Mappings nicht zeitgleich aktiviert werden können!			

Einträge	Modul 1 (Achse 1)	Modul 2 (Achse 2)	Bitlänge
Name	Index	Index	
Status word	0x6041:00	0x6841:00	16Bit
Position actual internal value	0x6063:00	0x6863:00	32Bit
Position actual value	0x6064:00	0x6864:00	32Bit
Torque actual value	0x6077:00	0x6877:00	16Bit
Following error actual value	0x60F4:00	0x68F4:00	32Bit
Modes of operation display	0x6061:00	0x6861:00	8Bit
			8Bit
Digital inputs	0x60FD:00	0x68FD:00	32Bit

Eingänge: 2nd Transmit PDO

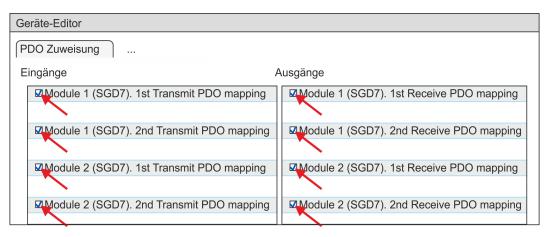
Module 1 (SGD7). 2nd Transmit PDO mapping	Module 2 (SGD7). 2st Transmit PDO mapping		
Name: Module 1 (SGD7). 2nd Transmit PDO mapping	Name: Module 2 (SGD7). 2st Transmit PDO mapping		
Index: 0x1A01	Index: 0x1A11		
Flags: Alles deaktiviert			
Richtung: TxPdo (Eingang): aktiviert			
Ausschließen: 1A00, 1A02, 1A03: deaktiviert	1A10, 1A12, 1A13: deaktiviert		
Bitte diese Einstellungen beachten, da ansonsten die PDO-Mappings nicht zeitgleich aktiviert werden können!			

Einträge	Modul 1 (Achse 1)	Modul 2 (Achse 2)	Bitlänge
Name	Index	Index	
Touch probe status	0x60B9:00	0x68B9:00	16Bit
Touch probe 1 position value	0x60BA:00	0x68BA:00	32Bit
Touch probe 2 position value	0x60BC:00	0x68BC:00	32Bit
Velocity actual value	0x606C:00	0x686C:00	32Bit

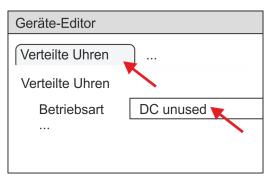
5. Führen Sie für die Receive PDOs folgende Einstellungen durch:

Ausgänge: 1st Receive PDO

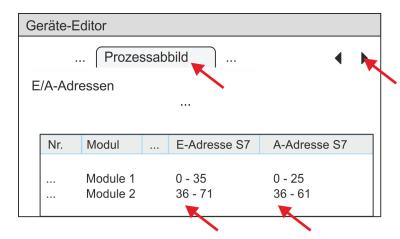
Module 1 (SGD7). 1st Receive PDO	Module 2 (SGD7). 1st Receive PDO			
Name: Module 1 (SGD7). 1st Receive PDO mapping	Name: Module 2 (SGD7). 1st Receive PDO mapping			
Index: 0x1600	Index: 0x1610			
Flags: Alles deaktiviert				
Richtung: RxPdo (Ausgang): aktiviert				
Ausschließen: 1601, 1602, 1603: deaktiviert 1611, 1612, 1613: deaktiviert				
Bitte diese Einstellungen beachten, da ansonsten die PDO-Mappings nicht zeitgleich aktiviert werden können!				

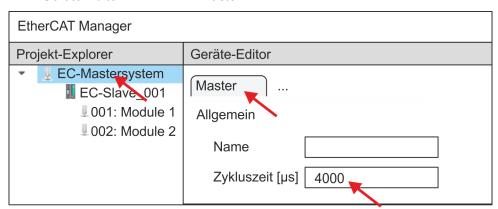

Einträge	Modul 1 (Achse 1)	Modul 2 (Achse 2)	Bitlänge
Name	Index	Index	
Control word	0x6040:00	0x6840:00	16Bit
Target position	0x607A:00	0x687A:00	32Bit
Target velocity	0x60FF:00	0x68FF:00	32Bit
Modes of operation	0x6060:00	0x6860:00	8Bit
			8Bit
Touch probe function	0x60B8:00	0x68B8:00	16Bit

Ausgänge: 2nd Receive PDO

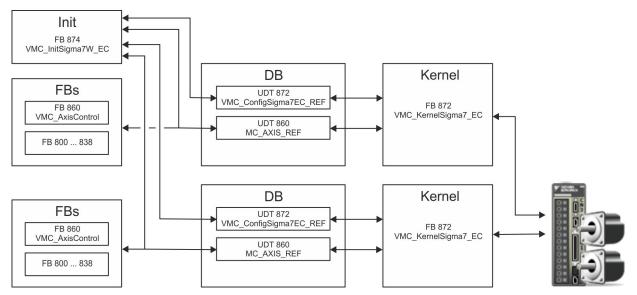

Module 1 (SGD7). 2nd Receive PDO	Module 2 (SGD7). 2nd Receive PDO			
Name: Module 1 (SGD7). 2nd Receive PDO mapping	Name: Module 2 (SGD7). 2nd Receive PDO mapping			
Index: 0x1601	Index: 0x1611			
Flags: Alles deaktiviert				
Richtung: RxPdo (Ausgang): aktiviert				
Ausschließen: 1600, 1602, 1603: deaktiviert 1610, 1612, 1613: deaktiviert				
Bitte diese Einstellungen beachten, da ansonsten die PDO-Mappings nicht zeitgleich aktiviert werden können!				

Einträge	Modul 1 (Achse 1)	Modul 2 (Achse 2)	Bitlänge
Name	Index	Index	
Profile velocity	0x6081:00	0x6881:00	32Bit
Profile acceleration	0x6083:00	0x6883:00	32Bit
Profile deceleration	0x6084:00	0x6884:00	32Bit


^{6.} Aktivieren Sie für "Module 1" und "Module 2" in PDO-Zuweisung die PDOs 1 und 2 für die Ein- und Ausgänge. Alle nachfolgenden PDOs müssen deaktiviert bleiben. Sollte dies nicht möglich sein, überprüfen Sie bitte den jeweiligen PDO-Parameter "Ausschließen".


7. Wählen Sie im "Geräte-Editor" des SPEED7 EtherCAT Manager den Reiter "Verteilte Uhren" an und stellen Sie "DC unused" als "Betriebsart" ein.

- Wählen Sie im "Geräte-Editor" über die Pfeiltaste den Reiter "Prozessabbild" an und notieren Sie sich für die Parameter des Bausteins FB 874 VMC_InitSigma7W_EC folgende PDO-Anfangsadressen:
 - Module 1: "E-Adresse S7" → "M1_PdoInputs" (hier 0)
 - Module 2: "E-Adresse S7" → "M2_PdoInputs" (hier 36)
 - Module 1: "A-Adresse S7" → "M1_PdoOutputs" (hier 0)
 - Module 2: "A-Adresse S7" → "M2_PdoOutputs" (hier 36)


9. Klicken Sie im SPEED7 EtherCAT Manager auf "EC-Mastersystem" und wählen Sie im "Geräte-Editor" den Reiter "Master" an.

- ➡ Stellen Sie für Sigma-7W (400V) Antriebe eine Zykluszeit von mindestens 4ms ein.
- 10. Indem Sie den Dialog des *SPEED7 EtherCAT Manager* mit [X] schließen, wird die Konfiguration in das *SPEED7 Studio* übernommen.

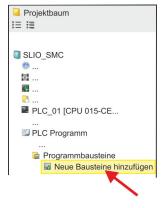
13.2.3.3.2 Anwender-Programm

Programmstruktur

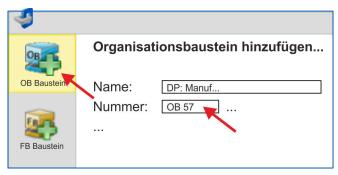
DB

Für jede Achse ist ein Datenbaustein (Achs-DB) für Konfiguration und Statusdaten anzulegen. Der Datenbaustein besteht aus folgenden Datenstrukturen:

- UDT 872 VMC_ConfigSigma7EC_REF
 Die Datenstruktur beschreibt den Aufbau der Konfiguration des Antriebs.
 Spezifische Datenstruktur für Sigma-7 EtherCAT.
- UDT 860 MC_AXIS_REF

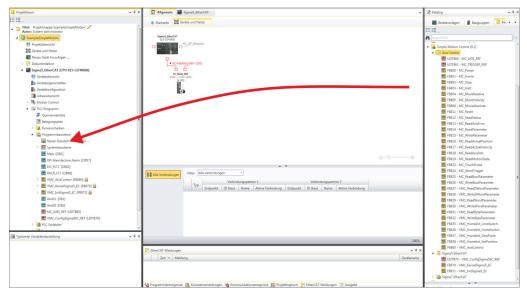

Die Datenstruktur beschreibt den Aufbau der Parameter und Statusinformationen von Antrieben.

Allgemeine Datenstruktur für alle Antriebe und Bussysteme.


- FB 874 VMC_InitSigma7W_EC
 - Der Init-Baustein dient zur Konfiguration des Doppelachs-Antriebs.
 - Spezifischer Baustein für Sigma-7W EtherCAT.
 - Die Konfigurationsdaten für die Initialisierung sind im Achs-DB abzulegen.
- FB 872 VMC KernelSigma7 EC
 - Der Kernel-Baustein kommuniziert mit dem Antrieb über das entsprechende Bussystem, verarbeitet die Benutzeraufträge und liefert Statusmeldungen zurück.
 - Je Achse ist der FB 872 VMC_KernelSigma7_EC aufzurufen.
 - Spezifischer Baustein für Sigma-7 EtherCAT.
 - Der Austausch der Daten erfolgt mittels des Achs-DB.
- FB 860 VMC AxisControl
 - Universal-Baustein f
 ür alle Antriebe und Bussysteme.
 - Je Achse ist der FB 860 VMC_AxisControl aufzurufen.
 - Unterstützt einfache Bewegungskommandos und liefert alle relevanten Statusmeldungen.
 - Der Austausch der Daten erfolgt mittels des Achs-DB.
 - Über die Instanzdaten des Bausteins können Sie zur Bewegungssteuerung und Statusabfrage eine Visualisierung anbinden.
 - Zusätzlich zum FB 860 VMC_AxisControl haben Sie die Möglichkeit PLCopen-Bausteine zu nutzen.
- FB 800 ... FB 838 PLCopen
 - Die PLCopen-Bausteine dienen zur Programmierung von Bewegungsabläufen und Statusabfragen.
 - Je Achse sind die PLCopen-Bausteine aufzurufen.

Programmierung

Bausteine in Projekt kopieren



1. Klicken Sie im *Projektbaum* innerhalb der CPU unter "*PLC-Programm*", "*Programmbausteine*" auf "*Neuen Baustein hinzufügen*".

Das Dialogfenster "Baustein hinzufügen" öffnet sich.

2. Wählen Sie den Bausteintyp "OB Baustein" und fügen Sie nacheinander OB 57, OB 82 und OB 86 Ihrem Projekt hinzu.

- 3. Öffnen Sie im "Katalog" unter "Bausteine" "Simple Motion Control" und ziehen Sie per Drag&Drop folgende Bausteine in "Programmbausteine" des Projektbaums:
 - Sigma-7 EtherCAT:
 - UDT 872 VMC_ConfigSigma7EC_REF
 - FB 872 VMC_KernelSigma7_EC
 - FB 874 VMC_InitSigma7W_EC
 - Axis Control
 - UDT 860 MC AXIS REF
 - Bausteine für die gewünschten Bewegungsabläufe

Achs-DB für "Module 1" anlegen

- 1. Fügen Sie Ihrem Projekt einen neuen DB als Achs-DB hinzu. Klicken Sie hierzu im Projektbaum innerhalb der CPU unter "PLC-Programm", "Programmbausteine" auf "Neuen Baustein hinzufügen", wählen Sie den Bausteintyp "DB Baustein" und vergeben Sie diesem den Namen "Axis01". Die DB-Nr. können Sie frei wählen wie z.B. DB 10.
 - → Der Baustein wird angelegt und geöffnet.
- 2. Legen Sie in "Axis01" die Variable "Config" vom Typ UDT 872 an. Dies sind spezifische Achs-Konfigurationsdaten.
 - Legen Sie in "Axis01" die Variable "Axis" vom Typ UDT 860 an. Während des Betriebs werden hier alle Betriebsdaten der Achse abgelegt.

•

Axis01 [DB10]
Bausteinstruktur

	Adr	Name	Datentyp	
		Config	UDT	[872]
		Axis	UDT	[860]
1				

Achs-DB für "Module 2" anlegen

- Fügen Sie Ihrem Projekt einen weiteren DB als *Achs-DB* hinzu und vergeben Sie diesem den Namen "Axis02". Die DB-Nr. können Sie frei wählen wie z.B. DB 11.
 - → Der Baustein wird angelegt und geöffnet.

- **2.** Legen Sie in "Axis02" die Variable "Config" vom Typ UDT 872 an. Dies sind spezifische Achs-Konfigurationsdaten.
 - Legen Sie in "Axis02" die Variable "Axis" vom Typ UDT 860 an. Während des Betriebs werden hier alle Betriebsdaten der Achse abgelegt.

•

Axis02 [DB11] Bausteinstruktur

	ne Datentyp	
Con	fig UDT	[872]
Axis	UDT	[860]

OB 1

Konfiguration der Doppelachse

Öffnen Sie den OB 1 und programmieren Sie folgende FB-Aufrufe mit zugehörigen DBs:

```
FB 874 - VMC_InitSigma7W_EC, DB 874 → "FB 874 - VMC_InitSigma7W_EC - Sigma-7W EtherCAT Initialisierung"...Seite 397
```

Geben Sie unter M1/M2_PdoInputs bzw. M1/M2_PdoOutputs die Adresse aus dem SPEED7 EtherCAT Manager für die entsprechende Achse an. → 372

```
"VMC InitSigma7W EC" , "DI InitSgm7WETC01"
→ CALL
 Enable
                        :=TRUE
 LogicalAddress
                        :=0
 M1 PdoInputs
                        :=0 (EtherCAT-Manager
                            Module1: E-Adresse S7)
 M1 PdoOutputs
                        :=0 (EtherCAT-Manager
                            Module1: A-Adresse S7)
 M1 EncoderType
                        :=2
 M1 EncoderResolutionBits :=20
 M1 FactorPosition :=1.048576e+006
 M1 MaxDecelerationApp :=1.000000e+002
                       :=6.000000e+001
 M1 MaxVelocityDrive
 M1 MaxAccelerationDrive :=1.500000e+002
 M1_MaxDecelerationDrive :=1.500000e+002
 M1_MaxPosition :=1.048500e+003
                       :=-1.048514e+003
 M1 MinPosition
 M1 EnableMaxPosition
                       :=TRUE
 M1 EnableMinPosition
                       :=TRUE
 M2 PdoInputs
                        :=36 (EtherCAT-Manager
                            Module2: E-Adresse S7)
 M2 PdoOutputs
                        :=36 (EtherCAT-Manager
                            Module2: A-Adresse S7)
 M2 EncoderType
                        :=2
 M2 EncoderResolutionBits :=20
 M2_FactorPosition :=1.048576e+006
 M2 FactorVelocity
                       :=1.048576e+006
 M2 FactorAcceleration :=1.048576e+002
 M2_OffsetPosition :=0.000000e+000
 M2 MaxVelocityApp
                      :=5.000000e+001
 M2 MaxAccelerationApp :=1.000000e+002
 M2 MaxDecelerationApp
                      :=1.000000e+002
```

```
:=6.000000e+001
M2 MaxVelocityDrive
M2_MaxAccelerationDrive :=1.500000e+002
M2_MaxDecelerationDrive :=1.500000e+002
M2_MaxPosition :=1.048500e+003
M2 MinPosition
                           :=-1.048514e+003
M2_EnableMaxPosition
M2_EnableMinPosition
M1_MinUserPosition
                           :=TRUE
                           :=TRUE
M1 MinUserPosition
                           :=-1000.0
M1 MaxUserPosition
                           :=1000.0
M2 MinUserPosition
                          :=-1000.0
M2 MaxUserPosition
                          :=1000.0
Valid
                           :="InitS7WEC1 Valid"
                           :="InitS7WEC1 Error"
Error
                           :="InitS7WEC1 ErrorID"
ErrorID
                           :="Axis01".Config
M1 Config
                           :="Axis01".Axis
M1 Axis
                            :="Axis02".Config
M2 Config
M2 Axis
                            :="Axis02".Axis
```

Kernel für die jeweilige Achse beschalten

Der *Kernel* verarbeitet die Benutzerkommandos und gibt sie entsprechend aufbereitet an den Antrieb über das jeweilige Bussystem weiter.

```
FB 872 - VMC_KernelSigma7_EC, DB 872 für Achse 1
FB 872 - VMC_KernelSigma7_EC, DB 1872 für Achse 2 → "FB 872 - VMC_Kernel-Sigma7_EC - Sigma-7 EtherCAT Kernel"...Seite 358
```

```
→ CALL "VMC_KernelSigma7_EC", DB 872
Init :="KernelS7WEC1_Init"
Config:="Axis01".Config
Axis :="Axis01".Axis

CALL "VMC_KernelSigma7_EC", DB 1872
Init :="KernelS7WEC2_Init"
Config:="Axis02".Config
Axis :="Axis02".Axis
```

Baustein für Bewegungsabläufe beschalten

Zur Vereinfachung soll hier die Beschaltung des FB 860 - VMC_AxisControl gezeigt werden. Dieser Universalbaustein unterstützt einfache Bewegungskommandos und liefert Statusmeldungen zurück. Die Ein- und Ausgänge können Sie individuell beschalten. Bitte geben Sie unter "Axis" die Referenz zu den entsprechenden Achsdaten im Achs-DB an.

FB 860 - VMC_AxisControl, DB 860 → "FB 860 - VMC_AxisControl - Control-Baustein Achskontrolle"...Seite 659

```
→ CALL "VMC_AxisControl" , "DI_AxisControl01"
AxisEnable :="AxCtrl1_AxisEnable"
AxisReset :="AxCtrl1_AxisReset"
HomeExecute :="AxCtrl1_HomeExecute"
HomePosition :="AxCtrl1_HomePosition"
StopExecute :="AxCtrl1_StopExecute"
MvVelocityExecute:="AxCtrl1_MvVelExecute"
MvRelativeExecute:="AxCtrl1_MvRelExecute"
MvAbsoluteExecute:="AxCtrl1_MvAbsExecute"
PositionDistance :="AxCtrl1_PositionDistance"
Velocity :="AxCtrl1_PositionDistance"
Velocity :="AxCtrl1_Acceleration"
Deceleration :="AxCtrl1_Deceleration"
JogPositive :="AxCtrl1_JogPositive"
JogNegative :="AxCtrl1_JogNegative"
JogNegative :="AxCtrl1_JogNegative"
JogNeceleration :="AxCtrl1_JogNeceleration"
JogDeceleration :="AxCtrl1_JogDeceleration"
AxisReady :="AxCtrl1_AxisReady"
AxisEnabled :="AxCtrl1_AxisEnabled"
AxisError :="AxCtrl1_AxisError"
AxisErrorID :="AxCtrl1_AxisErrorID"
```

```
DriveWarning
                  :="AxCtrl1_DriveWarning"
                 :="AxCtrl1_DriveError"
:="AxCtrl1_DriveErrorID"
DriveError
DriveErrorID
IsHomed :="AxCtrl1_IsHomed"
ModeOfOperation :="AxCtrl1_ModeOfOperation"
                 :="AxCtrl1 PLCopenState"
PLCopenState
ActualPosition
                 :="AxCtrl1 ActualPosition"
ActualVelocity :="AxCtrll_ActualVelocity"
                 :="AxCtrl1 CmdDone"
CmdDone
CmdBusy
                 :="AxCtrl1 CmdBusy"
                 :="AxCtrl1 CmdAborted"
CmdAborted
                :="AxCtrl1 CmdError"
CmdError
CmdErrorID
                 :="AxCtrl1 CmdErrorID"
DirectionPositive:="AxCtrl1 DirectionPos"
DirectionNegative:="AxCtrl1 DirectionNeg"
SWLimitMinActive :="AxCtrl1 SWLimitMinActive"
SWLimitMaxActive :="AxCtrl1 SWLimitMaxActive"
HWLimitMinActive :="AxCtrl1_HWLimitMinActive"
HWLimitMaxActive :="AxCtrl1 HWLimitMaxActive"
                  :="Axis...".Axis
Axis
```

Geben Sie unter Axis für die Achse 1 "Axis01" und für die Achse 2 "Axis02" an.

Für komplexe Bewegungsaufgaben können Sie die PLCopen-Bausteine verwenden. Hier müssen Sie ebenfalls unter Axis die Referenz zu den Achsdaten im Achs-DB angeben.

Ihr Projekt beinhaltet nun folgende Bausteine:

- OB 1 Main
- OB 57 DP Manufacturer Alarm
- OB 82 I/O FLT1
- OB 86 Rack FLT
- FB 860 VMC AxisControl mit Instanz-DB
- FB 872 VMC_KernelSigma7_EC mit Instanz-DB
- FB 874 VMC_InitSigma7W_EC mit Instanz-DB
- UDT 860 MC Axis REF
- UDT 872 VMC_ConfigSigma7EC_REF

Zeitlicher Ablauf

1. Wählen Sie "Projekt → Alles übersetzen" und übertragen Sie das Projekt in Ihre CPU.

Näheres zur Übertragung Ihres Projekt finden Sie in der Onlinehilfe zum *SPEED7 Studio*.

⇒ Sie können jetzt Ihre Applikation in Betrieb nehmen.

VORSICHT

Bitte beachten Sie immer die Sicherheitshinweise zu ihrem Antrieb, insbesondere bei der Inbetriebnahme!

- **2.** Bevor der Doppelachs-Antrieb gesteuert werden kann, muss diese initialisiert werden. Rufen Sie hierzu den *Init*-Baustein FB 874 VMC_InitSigma7W_EC mit *Enable* = TRUE auf.
 - → Der Ausgang Valid meldet TRUE zurück. Im Fehlerfall können Sie durch Auswertung der ErrorID den Fehler ermitteln.

Den *Init*-Baustein müssen Sie erneut aufrufen, wenn Sie einen neuen Achs-DB laden oder Parameter am *Init*-Baustein geändert wurden.

Fahren Sie erst fort, wenn der Init-Baustein keinen Fehler meldet!

- 3. Stellen Sie sicher, dass für jede Achse der *Kernel*-Baustein FB 872 VMC_Kernel-Sigma7_EC zyklisch aufgerufen wird. Auf diese Weise werden Steuersignale an den Antrieb übergeben und Statusmeldungen übermittelt.
- **4.** Programmieren Sie für jede Achse Ihre Applikation mit dem FB 860 VMC_Axis-Control oder mit den PLCopen Bausteinen.

Steuerung des Antriebs über HMI

Sie haben die Möglichkeit über ein HMI Ihren Antrieb zu steuern. Hierzu gibt es für Movicon eine vorgefertigte Symbolbibliothek für den Zugriff auf den VMC_AxisControl Funktionsbaustein.

"Antrieb über HMI steuern"...Seite 714

13.2.3.4 Einsatz im Siemens SIMATIC Manager

13.2.3.4.1 Voraussetzung

Übersicht

- Bitte verwenden Sie für die Projektierung den Siemens SIMATIC Manager ab V 5.5 SP2.
- Die Projektierung der System SLIO CPU erfolgt im Siemens SIMATIC Manager in Form des virtuellen PROFINET IO Devices "... SLIO CPU". Das "... SLIO System" ist mittels GSDML im Hardware-Katalog zu installieren.
- Die Projektierung des EtherCAT-Masters erfolgt im Siemens SIMATIC Manager in Form des virtuellen PROFINET IO Devices "EtherCAT-Netzwerk". Das "EtherCAT-Netzwerk" ist mittels GSDML im Hardware-Katalog zu installieren.
- Das "EtherCAT-Netzwerk" kann mit dem SPEED7 EtherCAT Manager konfiguriert werden.
- Für die Projektierung des Antriebs im SPEED7 EtherCAT Manager ist die Installation der zugehörigen ESI-Datei erforderlich.

IO Device "... SLIO System" installieren

Die Installation des PROFINET IO Devices "... SLIO CPU" im Hardware-Katalog erfolgt nach folgender Vorgehensweise:

- **1.** Gehen Sie in das "Download Center" von www.yaskawa.eu.com.
- 2. Laden Sie unter "GSDML SLIO" die Konfigurationsdatei für Ihre CPU.
- 3. Extrahieren Sie die Datei in Ihr Arbeitsverzeichnis.
- **4.** Starten Sie den Hardware-Konfigurator von Siemens.
- 5. Schließen Sie alle Projekte.
- **6.** ▶ Gehen Sie auf "Extras → GSD-Dateien installieren".
- 7. Navigieren Sie in Ihr Arbeitsverzeichnis und installieren Sie die entsprechende GSDML-Datei.
 - Nach der Installation finden Sie das entsprechende PROFINET IO Device unter "PROFINET IO → Weitere Feldgeräte → I/O → ... SLIO System".

IO Device EtherCAT-Netzwerk installieren

Die Installation des PROFINET IO Devices "EtherCAT-Netzwerk" im Hardware-Katalog erfolgt nach folgender Vorgehensweise:

- 1. Gehen Sie in das "Download Center" von www.yaskawa.eu.com.
- 2. Laden Sie unter "GSDML EtherCAT" die GSDML-Datei für Ihren EtherCAT-Master.
- 3. Extrahieren Sie die Dateien in Ihr Arbeitsverzeichnis.
- 4. Starten Sie den Hardware-Konfigurator von Siemens.
- 5. Schließen Sie alle Projekte.
- **6.** ▶ Gehen Sie auf "Extras → GSD-Dateien installieren".
- 7. Navigieren Sie in Ihr Arbeitsverzeichnis und installieren Sie die entsprechende GSDML-Datei.
 - Nach der Installation finden Sie das "EtherCAT-Netzwerk" unter "PROFINET IO → Weitere Feldgeräte → I/O → ... EtherCAT System".

SPEED7 EtherCAT Manager installieren

Die Konfiguration des PROFINET IO Devices "EtherCAT-Netzwerk" erfolgt mit dem SPEED7 EtherCAT Manager von Yaskawa. Sie finden diesen im "Download Center" von www.yaskawa.eu.com unter "EtherCAT Manager".

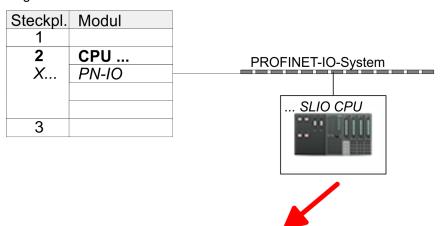
Die Installation erfolgt nach folgender Vorgehensweise:

- 1. Schließen Sie den Siemens SIMATIC Manager.
- 2. Gehen Sie in das "Download Center" von www.yaskawa.eu.com
- 3. Laden Sie den EtherCAT Manager und entpacken Sie diesen auf Ihren PC.
- **4.** Zur Installation starten Sie die Datei EtherCATManager_v... .exe.
- 5. Wählen Sie die Sprache für die Installation aus.
- 6. Stimmen Sie dem Lizenzvertrag zu.
- 7. Wählen Sie das Installationsverzeichnis und starten Sie die Installation.
- 8. Nach der Installation müssen Sie Ihren PC neu starten
 - Der SPEED7 EtherCAT Manager ist installiert und kann jetzt über das Kontextmenü des Siemens SIMATIC Manager aufgerufen werden.

13.2.3.4.2 Hardware-Konfiguration

CPU im Projekt anlegen

Steckp	Baugruppe
1	
2	CPU 315-2 PN/DP
X1	MPI/DP
X2	PN-IO
X2	Port 1
X2	Port 2
3	


Um kompatibel mit dem Siemens SIMATIC Manager zu sein, sind folgende Schritte durchzuführen:

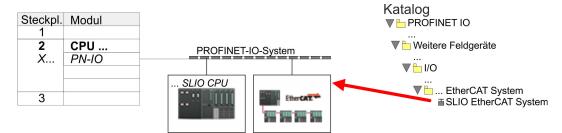
- 1. Starten Sie den Hardware-Konfigurator von Siemens mit einem neuen Projekt.
- 2. Fügen Sie aus dem Hardware-Katalog eine Profilschiene ein.
- 3. Platzieren Sie auf "Slot"-Nummer 2 die CPU 315-2 PN/DP (6ES7 315-2EH14 V3.2).
- <u>4.</u> Uber das Submodul "X1 MPI/DP" projektieren und vernetzen Sie den integrierten PROFIBUS-DP-Master (Buchse X3).
- Über das Submodul "X2 PN-IO" projektieren Sie den EtherCAT-Master als virtuelles PROFINET-Netzwerk.

- 6. Klicken Sie auf das Submodul "PN-IO" der CPU.
- 7. Wählen Sie "Kontextmenü → PROFINET IO-System einfügen".

- **8.** Legen Sie mit [Neu] ein neues Subnetz an und vergeben Sie gültige IP-Adress-Daten
- 9. ► Klicken Sie auf das Submodul "PN-IO" der CPU und öffnen Sie mit "Kontextmenü → Objekteigenschaften" den Eigenschafts-Dialog.
- 10. Geben Sie unter "Allgemein" einen "Gerätenamen" an. Der Gerätename muss eindeutig am Ethernet-Subnetz sein.

Steckpl.	Baugruppe	Bestellnummer	
0	SLIO CPU	015	
X2	015		
1			
2			
3			

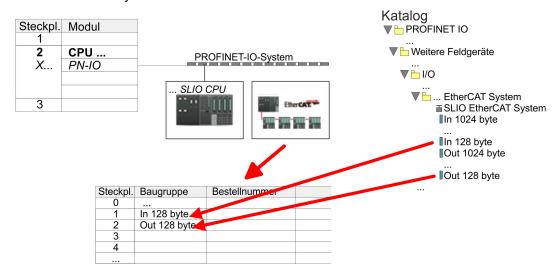
- 11. Navigieren Sie im Hardware-Katalog in das Verzeichnis "PROFINET IO → Weitere Feldgeräte → I/O → ... SLIO System" und binden Sie das IO-Device "015-CEFNR00 CPU" an Ihr PROFINET-System an.
 - ➡ In der Steckplatzübersicht des PROFINET-IO-Device "... SLIO CPU" ist auf Steckplatz 0 die CPU bereits vorplatziert. Ab Steckplatz 1 können Sie Ihre System SLIO Module platzieren.


Ethernet-PG/OP-Kanal parametrieren

Platzieren Sie für den Ethernet-PG/OP-Kanal auf Steckplatz 4 den Siemens CP 343-1 (SIMATIC 300 \ CP 300 \ Industrial Ethernet \CP 343-1 \ 6GK7 343-1EX30 0XE0 V3.0).

Steckpl.	Modul	
1		
2	CPU	
X	PN-IO	
3		
4	343-1EX30	
5		

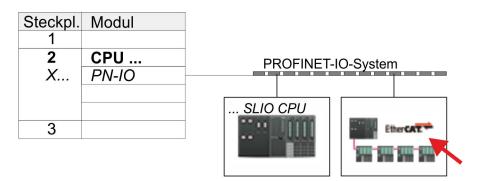
- Öffnen Sie durch Doppelklick auf den CP 343-1EX30 den Eigenschaften-Dialog und geben Sie für den CP unter "Eigenschaften" IP-Adress-Daten an. Gültige IP-Adress-Parameter erhalten Sie von Ihrem Systemadministrator.
- 3. Ordnen Sie den CP einem "Subnetz" zu. Ohne Zuordnung werden die IP-Adress-Daten nicht übernommen!


"EtherCAT-Netzwerk" einfügen

- 1. Navigieren Sie im Hardware-Katalog in das Verzeichnis "PROFINET IO → Weitere Feldgeräte → I/O → ... EtherCAT System" und binden Sie das IO Device "SLIO EtherCAT System" an Ihr PROFINET-System an.
- Klicken Sie auf das eingefügte IO Device "EtherCAT-Netzwerk" und definieren Sie die Bereiche für Ein- und Ausgabe, indem Sie den entsprechenden "Out"- bzw. "In"-Bereich auf einen Steckplatz ziehen.

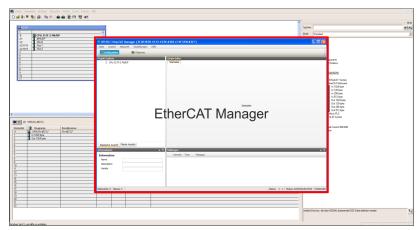
Legen Sie folgende Bereiche an:

- In 128Byte
- Out 128Byte



3. ▶ Wählen Sie "Station → Speichern und übersetzen"

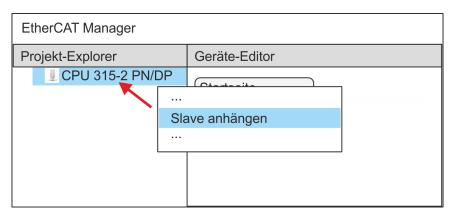
Sigma-7W EtherCAT Doppelachs-Antrieb konfigurieren Die Konfiguration des Doppelachs-Antriebs erfolgt im SPEED7 EtherCAT Manager.


 $^{\circ}$

Vor dem Aufruf des SPEED7 EtherCAT Manager müssen Sie immer Ihr Projekt mit "Station → Speichern und übersetzen" speichern.

- 1. Klicken Sie auf das eingefügtes IO Device "EtherCAT-Netzwerk" und wählen Sie "Kontextmenü → Device Tool starten → SPEED7 EtherCAT Manager".
 - → Der SPEED7 EtherCAT Manager wird gestartet. Hier können Sie die EtherCAT-Kommunikation zu Ihrem Sigma-7W EtherCAT Doppelachs-Antrieb konfigurieren.

Näheres zum Einsatz des *SPEED7 EtherCAT Manager* finden Sie im zugehörigen Handbuch bzw. in der Onlinehilfe.



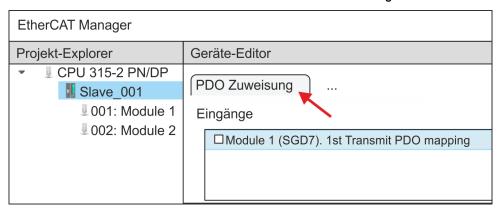
- 2. Damit der Sigma-7W EtherCAT Doppelachs-Antrieb im SPEED7 EtherCAT

 Manager konfiguriert werden kann, ist die entsprechende ESI-Datei zu installieren.

 Die ESI-Datei für den Sigma-7W EtherCAT Doppelachs-Antrieb finden Sie unter

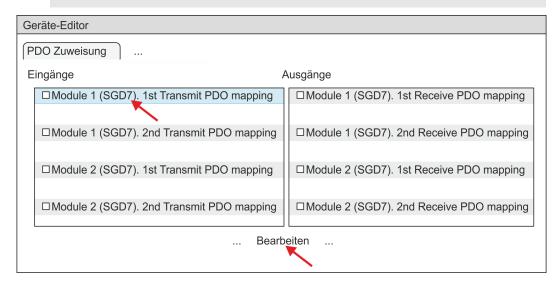
 www.yaskawa.eu.com im "Download Center". Laden Sie die zu Ihrem Antrieb passende ESI-Datei herunter. Entpacken Sie diese falls erforderlich.
- 3. Öffnen Sie im *SPEED7 EtherCAT Manager* über *"Datei → ESI-Verwaltung"* das Dialogfenster *"ESI-Manager"*.
- 4. Klicken Sie im "ESI-Manager" auf [Datei hinzufügen] und wählen Sie Ihre ESI-Datei aus. Mit [Öffnen] wird die ESI-Datei im SPEED7 EtherCAT Manager installiert.
- 5. Schließen Sie den "ESI-Manager".
 - ➡ Ihr Sigma-7W EtherCAT Doppelachs-Antrieb steht Ihnen nun zur Konfiguration zur Verfügung.

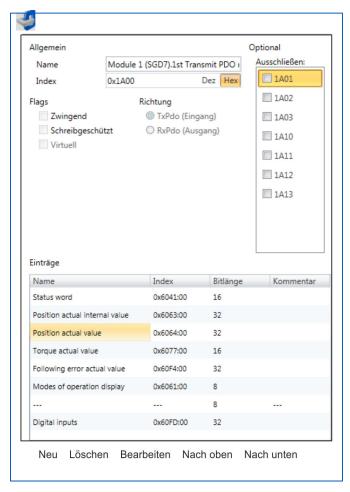
- 6. ► Klicken Sie im EtherCAT Manager auf ihre CPU und öffnen Sie über "Kontextmenü" → Slave anhängen" das Dialogfenster zum Hinzufügen eines EtherCAT-Slave.
 - Das Dialogfenster zur Auswahl eines EtherCAT-Slave wird geöffnet.
- 7. Wählen Sie Ihren Sigma-7W EtherCAT Doppelachs-Antrieb und bestätigen Sie Ihre Auswahl mit [OK].
 - → Der Sigma-7W EtherCAT Doppelachs-Antrieb wird an den Master angebunden und kann nun konfiguriert werden.


8.___

PDOs können Sie nur im "Experten-Modus" bearbeiten! Ansonsten werden die Schaltflächen ausgeblendet. Durch Aktivierung des "Experten-Modus" können Sie in die erweiterte Bearbeitung umschalten.

Aktivieren Sie den Experten-Modus durch Aktivierung von "Ansicht → Experte".


9. Klicken Sie im SPEED7 EtherCAT Manager auf den Sigma-7W EtherCAT Slave und wählen Sie im "Geräte-Editor" den Reiter "PDO-Zuweisung" an.


➡ Dieser Dialog zeigt eine Auflistung aller PDOs.

10. Durch Anwahl des entsprechenden PDO-Mappings können Sie mit [Bearbeiten] die PDOs bearbeiten. Wählen Sie das Mapping "Module 1 (SGD7). 1st Transmit PDO mapping" an und klicken Sie auf [Bearbeiten].

Bitte beachten Sie, dass aufgrund der Voreinstellung manche PDOs nicht bearbeitet werden können. Durch Deaktivierung bereits aktivierter PDOs können Sie die Bearbeitung von gesperrten PDOs frei geben.

➡ Es öffnet sich der Dialog "PDO bearbeiten". Bitte überprüfen Sie hier die aufgeführten PDO-Einstellungen und passen Sie diese ggf. an. Bitte berücksichtigen Sie hierbei auch die Reihenfolge der "Einträge" und ergänzen Sie diese entsprechend.

Für die Bearbeitung der "Einträge" stehen folgende Funktionen zur Verfügung:

■ Neu

 Hiermit können Sie in einem Dialogfenster einen neuen Eintrag anlegen, indem Sie aus dem "CoE-Objektverzeichnis" den entsprechenden Eintrag auswählen und Ihre Einstellungen vornehmen. Mit [OK] wird der Eintrag übernommen und in der Liste der Einträge aufgeführt.

Löschen

Hiermit können Sie den angewählte Eintrag löschen.

Bearbeiten

- Hiermit können Sie allgemeinen Daten eines Eintrags bearbeiten.

Nach oben/unten

 Hiermit können Sie den angewählten Eintrag in der Liste nach oben bzw. nach unten bewegen.

11. Führen Sie für die Transmit PDOs folgende Einstellungen durch:

Eingänge: 1st Transmit PDO

Module 1 (SGD7). 1st Transmit PDO mapping	Module 2 (SGD7). 1st Transmit PDO mapping	
Name: Module 1 (SGD7). 1st Transmit PDO mapping	Name: Module 2 (SGD7). 1st Transmit PDO mapping	
Index: 0x1A00	Index: 0x1A10	
Flags: Alles deaktiviert		
Richtung: TxPdo (Eingang): aktiviert		
Ausschließen: 1A01: deaktiviert	1A11: deaktiviert	
Bitte diese Einstellungen beachten, da ansonsten die PDO-Mappings nicht zeitgleich aktiviert werden können!		

Einträge	Modul 1 (Achse 1)	Modul 2 (Achse 2)	Bitlänge
Name	Index	Index	
Status word	0x6041:00	0x6841:00	16Bit
Position actual internal value	0x6063:00	0x6863:00	32Bit
Position actual value	0x6064:00	0x6864:00	32Bit
Torque actual value	0x6077:00	0x6877:00	16Bit
Following error actual value	0x60F4:00	0x68F4:00	32Bit
Modes of operation display	0x6061:00	0x6861:00	8Bit
			8Bit
Digital inputs	0x60FD:00	0x68FD:00	32Bit

Eingänge: 2nd Transmit PDO

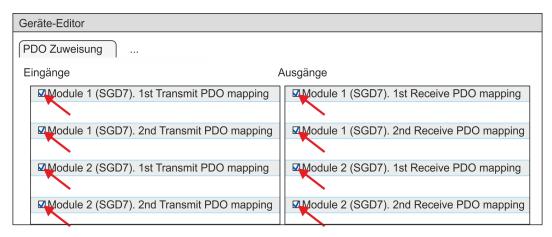
Module 1 (SGD7). 2nd Transmit PDO mapping	Module 2 (SGD7). 2st Transmit PDO mapping	
Name: Module 1 (SGD7). 2nd Transmit PDO mapping	Name: Module 2 (SGD7). 2st Transmit PDO mapping	
Index: 0x1A01	Index: 0x1A11	
Flags: Alles deaktiviert		
Richtung: TxPdo (Eingang): aktiviert		
Ausschließen: 1A00, 1A02, 1A03: deaktiviert	1A10, 1A12, 1A13: deaktiviert	
Bitte diese Einstellungen beachten, da ansonsten die PDO-Mappings nicht zeitgleich aktiviert werden können!		

Einträge	Modul 1 (Achse 1)	Modul 2 (Achse 2)	Bitlänge
Name	Index	Index	
Touch probe status	0x60B9:00	0x68B9:00	16Bit
Touch probe 1 position value	0x60BA:00	0x68BA:00	32Bit
Touch probe 2 position value	0x60BC:00	0x68BC:00	32Bit
Velocity actual value	0x606C:00	0x686C:00	32Bit

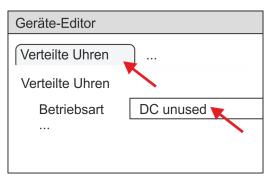
12. Führen Sie für die Receive PDOs folgende Einstellungen durch:

Ausgänge: 1st Receive PDO

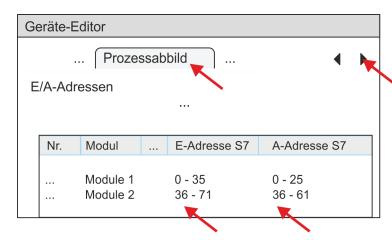
Module 1 (SGD7). 1st Receive PDO	Module 2 (SGD7). 1st Receive PDO	
Name: Module 1 (SGD7). 1st Receive PDO mapping	Name: Module 2 (SGD7). 1st Receive PDO mapping	
Index: 0x1600	Index: 0x1610	
Flags: Alles deaktiviert		
Richtung: RxPdo (Ausgang): aktiviert		
Ausschließen: 1601, 1602, 1603: deaktiviert	1611, 1612, 1613: deaktiviert	
Bitte diese Einstellungen beachten, da ansonsten die PDO-Mappings nicht zeitgleich aktiviert werden können!		

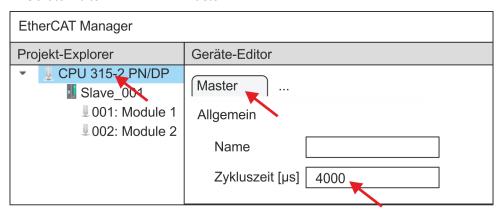

Einträge	Modul 1 (Achse 1)	Modul 2 (Achse 2)	Bitlänge
Name	Index	Index	
Control word	0x6040:00	0x6840:00	16Bit
Target position	0x607A:00	0x687A:00	32Bit
Target velocity	0x60FF:00	0x68FF:00	32Bit
Modes of operation	0x6060:00	0x6860:00	8Bit
			8Bit
Touch probe function	0x60B8:00	0x68B8:00	16Bit

Ausgänge: 2nd Receive PDO

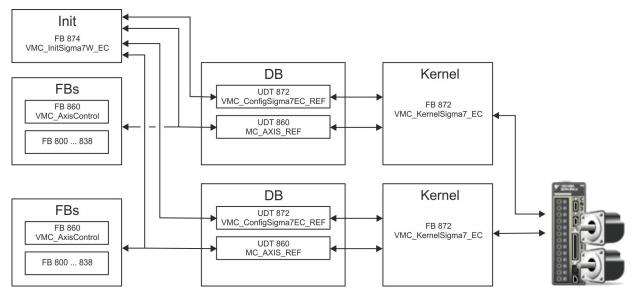

Module 1 (SGD7). 2nd Receive PDO	Module 2 (SGD7). 2nd Receive PDO	
Name: Module 1 (SGD7). 2nd Receive PDO mapping	Name: Module 2 (SGD7). 2nd Receive PDO mapping	
Index: 0x1601	Index: 0x1611	
Flags: Alles deaktiviert		
Richtung: RxPdo (Ausgang): aktiviert		
Ausschließen: 1600, 1602, 1603: deaktiviert	1610, 1612, 1613: deaktiviert	
Bitte diese Einstellungen beachten, da ansonsten die PDO-Mappings nicht zeitgleich aktiviert werden können!		

Einträge	Modul 1 (Achse 1)	Modul 2 (Achse 2)	Bitlänge
Name	Index	Index	
Profile velocity	0x6081:00	0x6881:00	32Bit
Profile acceleration	0x6083:00	0x6883:00	32Bit
Profile deceleration	0x6084:00	0x6884:00	32Bit


Aktivieren Sie für "Module 1" und "Module 2" in PDO-Zuweisung die PDOs 1 und 2 für die Ein- und Ausgänge. Alle nachfolgenden PDOs müssen deaktiviert bleiben. Sollte dies nicht möglich sein, überprüfen Sie bitte den jeweiligen PDO-Parameter "Ausschließen".


14. Wählen Sie im "Geräte-Editor" des SPEED7 EtherCAT Manager den Reiter "Verteilte Uhren" an und stellen Sie "DC unused" als "Betriebsart" ein.

- Wählen Sie im "Geräte-Editor" über die Pfeiltaste den Reiter "Prozessabbild" an und notieren Sie sich für die Parameter des Bausteins FB 874 VMC_InitSigma7W_EC folgende PDO-Anfangsadressen:
 - Module 1: "E-Adresse S7" → "M1_PdoInputs" (hier 0)
 - Module 2: "E-Adresse S7" → "M2_PdoInputs" (hier 36)
 - Module 1: "A-Adresse S7" → "M1_PdoOutputs" (hier 0)
 - Module 2: "A-Adresse S7" → "M2_PdoOutputs" (hier 36)


16. Klicken Sie im SPEED7 EtherCAT Manager auf Ihre CPU und wählen Sie im "Geräte-Editor" den Reiter "Master" an.

- ⇒ Stellen Sie für Sigma-7W (400V) Antriebe eine Zykluszeit von mindestens 4ms ein.
- 17. Indem Sie den Dialog des SPEED7 EtherCAT Manager mit [X] schließen, wird die Konfiguration in die Projektierung übernommen. Sie können Ihre EtherCAT-Konfiguration jederzeit im SPEED7 EtherCAT Manager wieder bearbeiten, da die Konfiguration in Ihrem Projekt gespeichert wird.
- **18.** ▶ Speichern und übersetzen Sie Ihre Konfiguration.

13.2.3.4.3 Anwender-Programm

Programmstruktur

DB

Für jede Achse ist ein Datenbaustein (Achs-DB) für Konfiguration und Statusdaten anzulegen. Der Datenbaustein besteht aus folgenden Datenstrukturen:

- UDT 872 VMC_ConfigSigma7EC_REF
 Die Datenstruktur beschreibt den Aufbau der Konfiguration des Antriebs.
 Spezifische Datenstruktur für Sigma-7 EtherCAT.
- UDT 860 MC AXIS REF

Die Datenstruktur beschreibt den Aufbau der Parameter und Statusinformationen von Antrieben.

Allgemeine Datenstruktur für alle Antriebe und Bussysteme.

- FB 874 VMC_InitSigma7W_EC
 - Der *Init*-Baustein dient zur Konfiguration des Doppelachs-Antriebs.
 - Spezifischer Baustein für Sigma-7W EtherCAT.
 - Die Konfigurationsdaten für die Initialisierung sind im Achs-DB abzulegen.
- FB 872 VMC KernelSigma7 EC
 - Der Kernel-Baustein kommuniziert mit dem Antrieb über das entsprechende Bussystem, verarbeitet die Benutzeraufträge und liefert Statusmeldungen zurück.
 - Je Achse ist der FB 872 VMC_KernelSigma7_EC aufzurufen.
 - Spezifischer Baustein für Sigma-7 EtherCAT.
 - Der Austausch der Daten erfolgt mittels des Achs-DB.
- FB 860 VMC AxisControl
 - Universal-Baustein für alle Antriebe und Bussysteme.
 - Je Achse ist der FB 860 VMC_AxisControl aufzurufen.
 - Unterstützt einfache Bewegungskommandos und liefert alle relevanten Statusmeldungen.
 - Der Austausch der Daten erfolgt mittels des Achs-DB.
 - Über die Instanzdaten des Bausteins können Sie zur Bewegungssteuerung und Statusabfrage eine Visualisierung anbinden.
 - Zusätzlich zum FB 860 VMC_AxisControl haben Sie die Möglichkeit PLCopen-Bausteine zu nutzen.

- FB 800 ... FB 838 PLCopen
 - Die PLCopen-Bausteine dienen zur Programmierung von Bewegungsabläufen und Statusabfragen.
 - Je Achse sind die PLCopen-Bausteine aufzurufen.

Programmierung

Bibliothek einbinden

- 1. ▶ Gehen Sie in das "Download Center" von www.yaskawa.eu.com.
- 2. Laden Sie unter "Controls Library" die Simple Motion Control Library.
- 3. → Öffnen Sie mit "Datei → Dearchivieren" das Dialogfenster zur Auswahl der ZIP-Datei.
- **4.** Wählen Sie die entsprechende ZIP-Datei an und klicken Sie auf [Öffnen].
- **5.** Geben Sie ein Zielverzeichnis an, in dem die Bausteine abzulegen sind und starten Sie den Entpackvorgang mit [OK].

Bausteine in Projekt kopieren

- Öffnen Sie die Bibliothek nach dem Entpackvorgang und ziehen Sie per Drag&Drop folgende Bausteine in "Bausteine" Ihres Projekts:
 - Sigma-7W EtherCAT:
 - UDT 872 VMC_ConfigSigma7EC_REF
 - FB 872 VMC_KernelSigma7_EC
 - FB 874 VMC_InitSigma7W_EC
 - Axis Control
 - UDT 860 MC_AXIS_REF
 - Bausteine für die gewünschten Bewegungsabläufe

Alarm-OBs anlegen

- 1. Klicken Sie in Ihrem Projekt auf "Bausteine" und wählen Sie "Kontextmenü → Neues Objekt einfügen → Organisationsbaustein".
 - → Das Dialogfenster "Eigenschaften Organistionsbaustein" öffnet sich.
- 2. Fügen Sie nacheinander OB 57, OB 82 und OB 86 Ihrem Projekt hinzu.

Achs-DB für "Module 1" anlegen

1. ► Klicken Sie in Ihrem Projekt auf "Bausteine" und wählen Sie "Kontextmenü → Neues Objekt einfügen → Datenbaustein".

Geben Sie folgende Parameter an:

- Name und Typ
 - Die DB-Nr. als "Name" können Sie frei wählen wie z.B. DB 10.
 - Stellen Sie "Global-DB" als "Typ" ein.
- Symbolischer Name
 - Geben Sie "Axis01" an.

Bestätigen Sie Ihre Eingaben mit [OK].

Der Baustein wird angelegt.

- - Legen Sie in "Axis01" die Variable "Config" vom Typ UDT 872 an. Dies sind spezifische Achs-Konfigurationsdaten.
 - Legen Sie in "Axis01" die Variable "Axis" vom Typ UDT 860 an. Während des Betriebs werden hier alle Betriebsdaten der Achse abgelegt.

•

DB10

Adresse	Name	Тур	
		Struct	
	Config	"VMC_ConfigSigma7EC_REF"	
	Axis	"MC_AXIS_REF	
		END STRUCT	

Achs-DB für "Module 2" anlegen

- 1. Fügen Sie Ihrem Projekt einen weiteren DB als *Achs-DB* hinzu und vergeben Sie diesem den Namen "Axis02". Die DB-Nr. können Sie frei wählen wie z.B. DB11.
 - Der Baustein wird angelegt.
- - Legen Sie in "Axis02" die Variable "Config" vom Typ UDT 872 an. Dies sind spezifische Achs-Konfigurationsdaten.
 - Legen Sie in "Axis02" die Variable "Axis" vom Typ UDT 860 an. Während des Betriebs werden hier alle Betriebsdaten der Achse abgelegt.

-

DB 11

Adresse	Name	Тур	
		Struct	
	Config	"VMC_ConfigSigma7EC_REF"	
	Axis	"MC_AXIS_REF	
		END STRUCT	

OB₁

Konfiguration der Doppelachse

Öffnen Sie den OB 1 und programmieren Sie folgende FB-Aufrufe mit zugehörigen DBs:

FB 874 - VMC_InitSigma7W_EC, DB 874 → "FB 874 - VMC_InitSigma7W_EC - Sigma-7W EtherCAT Initialisierung"...Seite 397

Geben Sie unter M1/M2_PdoInputs bzw. M1/M2_PdoOutputs die Adresse aus dem SPEED7 EtherCAT Manager für die entsprechende Achse an. → 389

```
"VMC InitSigma7W EC" , "DI InitSgm7WETC01"
→ CALL
 Enable
                          :=TRUE
 LogicalAddress
                           :=0
 M1 PdoInputs
                           :=0 (EtherCAT-Manager
                               Module1: E-Adresse S7)
                           :=0 (EtherCAT-Manager
 M1 PdoOutputs
                               Module1: A-Adresse S7)
 M1 EncoderType
                          :=2
 M1 EncoderResolutionBits :=20
 M1_FactorPosition :=1.048576e+006
 M1_FactorVelocity
                          :=1.048576e+006
    FactorAcceleration
                          :=1.048576e+002
 M1 OffsetPosition
                          :=0.000000e+000
 M1 MaxVelocityApp
                           :=5.000000e+001
```

```
:=1.000000e+002
 M1 MaxAccelerationApp
 M1_MaxDecelerationApp
                                                                              :=1.000000e+002
         MaxVelocityDrive
                                                                              :=6.000000e+001
 M1_MaxAccelerationDrive :=1.500000e+002
 M1_MaxDecelerationDrive :=1.500000e+002
M1_EnableMaxPosition
M1_EnableMinPosition
                                                                             :=TRUE
                                                                              :=TRUE
 M2 PdoInputs
                                                                              :=36 (EtherCAT-Manager
                                                                                              Module2: E-Adresse S7)
 M2 PdoOutputs
                                                                               :=36 (EtherCAT-Manager
                                                                                              Module2: A-Adresse S7)
 M2_EncoderType
                                                                              :=2
 M2 EncoderResolutionBits :=20
M2_MaxDecelerationDrive :=1.500000e+002
        __MaxPosition
M2_MaxPosition
M2_MinPosition
M2_EnableMaxPosition
M2_EnableMinPosition
M1_MinUserPosition
M1_MinUserPositio
                                                                              :=1.048500e+003
                                                                              :=-1.048514e+003
                                                                       :=-1000.0
:=1000.0
 M2 MinUserPosition
 M2 MaxUserPosition
 Valid
                                                                           :="InitS7WEC1 Valid"
 Error
                                                                            :="InitS7WEC1 Error"
                                                                              :="InitS7WEC1 ErrorID"
 ErrorID
                                                                              :="Axis01".Config
 M1 Config
                                                                              :="Axis01".Axis
 M1 Axis
                                                                              :="Axis02".Config
 M2 Config
                                                                               :="Axis02".Axis
 M2 Axis
```

Kernel für die jeweilige Achse beschalten

Der Kernel verarbeitet die Benutzerkommandos und gibt sie entsprechend aufbereitet an den Antrieb über das jeweilige Bussystem weiter.

```
FB 872 - VMC_KernelSigma7_EC, DB 872 für Achse 1
```

FB 872 - VMC_KernelSigma7_EC, DB 1872 für Achse 2→ "FB 872 - VMC_Kernel-Sigma7_EC - Sigma-7 EtherCAT Kernel"...Seite 358

```
→ CALL "VMC_KernelSigma7_EC", DB 872
Init :="KernelS7WEC1_Init"
Config:="Axis01".Config
Axis :="Axis01".Axis

CALL "VMC_KernelSigma7_EC", DB 1872
Init :="KernelS7WEC2_Init"
Config:="Axis02".Config
Axis :="Axis02".Axis
```

Baustein für Bewegungsabläufe beschalten Zur Vereinfachung soll hier die Beschaltung des FB 860 - VMC_AxisControl gezeigt werden. Dieser Universalbaustein unterstützt einfache Bewegungskommandos und liefert Statusmeldungen zurück. Die Ein- und Ausgänge können Sie individuell beschalten. Bitte geben Sie unter "Axis" die Referenz zu den entsprechenden Achsdaten im Achs-DB an.

FB 860 - VMC_AxisControl, DB 860 → "FB 860 - VMC_AxisControl - Control-Baustein Achskontrolle"... Seite 659

```
→ CALL "VMC AxisControl" , "DI AxisControl01"
  AxisEnable :="AxCtrl1_AxisEnable"
AxisReset :="AxCtrl1_AxisReset"
HomeExecute :="AxCtrl1_HomeExecute"
HomePosition :="AxCtrl1_HomePosition"
StopExecute :="AxCtrl1_StopExecute"
  MvVelocityExecute:="AxCtrl1 MvVelExecute"
  MvRelativeExecute:="AxCtrl1 MvRelExecute"
  MvAbsoluteExecute:="AxCtrl1 MvAbsExecute"
  PositionDistance := "AxCtrl1 PositionDistance"
  Velocity :="AxCtrl1_Velocity"
  Acceleration :="AxCtrl1_Acceleration"
Deceleration :="AxCtrl1_Acceleration"
JogPositive :="AxCtrl1_Deceleration"
JogNegative :="AxCtrl1_JogPositive"
JogNegative :="AxCtrl1_JogNegative"
JogVelocity :="AxCtrl1_JogVelocity"
  JogAcceleration :="AxCtrl1 JogAcceleration"
  JogDeceleration :="AxCtrl1 JogDeceleration"
  :="AxCtrl1_IsHomed"
  DirectionPositive:="AxCtrl1 DirectionPos"
  DirectionNegative:="AxCtrl1 DirectionNeg"
  SWLimitMinActive := "AxCtrl1 SWLimitMinActive"
  SWLimitMaxActive := "AxCtrl1 SWLimitMaxActive"
  HWLimitMinActive :="AxCtrl1 HWLimitMinActive"
  HWLimitMaxActive := "AxCtrl1 HWLimitMaxActive"
  Axis
                        :="Axis...".Axis
```

Geben Sie unter Axis für die Achse 1 "Axis01" und für die Achse 2 "Axis02" an.

Für komplexe Bewegungsaufgaben können Sie die PLCopen-Bausteine verwenden. Hier müssen Sie ebenfalls unter Axis die Referenz zu den Achsdaten im Achs-DB angeben.

Ihr Projekt beinhaltet nun folgende Bausteine:

- OB 1 Main
- OB 57 DP Manufacturer Alarm
- OB 82 I/O FLT1
- OB 86 Rack_FLT
- FB 860 VMC_AxisControl mit Instanz-DB
- FB 872 VMC_KernelSigma7_EC mit Instanz-DB

- FB 874 VMC_InitSigma7W_EC mit Instanz-DB
- UDT 860 MC Axis REF
- UDT 872 VMC_ConfigSigma7EC_REF

Zeitlicher Ablauf

1. Wechseln Sie in den Siemens SIMATIC Manager und übertragen Sie Ihr Projekt in die CPU.

Die Übertragung kann ausschließlich aus dem Siemens SIMATIC Manager erfolgen - nicht Hardware-Konfigurator!

Da Slave- und Modulparameter mittels SDO-Zugriff bzw. SDO-Init-Kommando übertragen werden, bleibt die Parametrierung solange bestehen, bis ein Power-Cycle durchgeführt wird oder neue Parameter für die gleichen SDO-Objekte übertragen werden.

Beim Urlöschen werden Slave- und Modul-Parameter nicht zurückgesetzt!

➡ Sie k\u00f6nnen jetzt Ihre Applikation in Betrieb nehmen.

VORSICHT

Bitte beachten Sie immer die Sicherheitshinweise zu ihrem Antrieb, insbesondere bei der Inbetriebnahme!

- Bevor der Doppelachs-Antrieb gesteuert werden kann, muss diese initialisiert werden. Rufen Sie hierzu den *Init*-Baustein FB 874 VMC_InitSigma7W_EC mit Enable = TRUE auf.
 - → Der Ausgang *Valid* meldet TRUE zurück. Im Fehlerfall können Sie durch Auswertung der *ErrorID* den Fehler ermitteln.

Den *Init*-Baustein müssen Sie erneut aufrufen, wenn Sie einen neuen Achs-DB laden oder Parameter am *Init*-Baustein geändert wurden.

Fahren Sie erst fort, wenn der Init-Baustein keinen Fehler meldet!

- 3. Stellen Sie sicher, dass für jede Achse der *Kernel*-Baustein FB 872 VMC_Kernel-Sigma7_EC zyklisch aufgerufen wird. Auf diese Weise werden Steuersignale an den Antrieb übergeben und Statusmeldungen übermittelt.
- 4. Programmieren Sie für jede Achse Ihre Applikation mit dem FB 860 VMC_Axis-Control oder mit den PLCopen Bausteinen.

Steuerung des Antriebs über HMI

Sie haben die Möglichkeit über ein HMI Ihren Antrieb zu steuern. Hierzu gibt es für Movicon eine vorgefertigte Symbolbibliothek für den Zugriff auf den VMC_AxisControl Funktionsbaustein.

"Antrieb über HMI steuern"...Seite 714

13.2.3.4.4 Projekt kopieren

Vorgehensweise

Im Beispiel wird die Station "Source" kopiert und als "Target" gespeichert.

- 1. Öffnen Sie die Hardware-Konfiguration der "Source"-CPU und starten Sie hier den SPEED7 EtherCAT Manager.
- <u>2.</u> Speichern Sie im *SPEED7 EtherCAT Manager* über *"Datei → Speichern unter"* die Konfiguration in Ihrem Arbeitsverzeichnis.

- 3. Schließen Sie den SPEED7 EtherCAT Manager und den Hardware-Konfigurator wieder.
- **4.** Kopieren Sie die Station "Source" mit Strg+C und fügen Sie diese mit Strg+V als "Target" in Ihr Projekt ein.
- 5. Wechseln Sie in den "Baustein"-Ordner der "Target"-CPU löschen Sie die "Systemdaten".
- **6.** Öffnen Sie die Hardware-Konfiguration der "Target"-CPU. Passen Sie die IP-Adressdaten an oder vernetzen Sie die CPU bzw. den CP neu.

Vor dem Aufruf des SPEED7 EtherCAT Manager müssen Sie immer Ihr Projekt mit "Station → Speichern und übersetzen" speichern.

- 7. ▶ Speichern Sie Ihr Projekt mit "Station → Speichern und übersetzen.".
- **9.** Laden Sie mit "Datei → Öffnen" die Konfiguration aus Ihrem Arbeitsverzeichnis.
- 10. Schließen Sie den SPEED7 EtherCAT Manager wieder.
- 11. Speichern und übersetzen Sie Ihre Konfiguration.

13.2.3.5 Antriebsspezifische Bausteine

Die PLCopen-Bausteine zur Achskontrolle finden Sie hier: → "Bausteine zur Achskontrolle"...Seite 656

13.2.3.5.1 UDT 872 - VMC_ConfigSigma7EC_REF - Sigma-7 EtherCAT Datenstruktur Achskonfiguration

Dies ist eine benutzerdefinierte Datenstruktur, die Informationen zu den Konfigurationsdaten beinhaltet. Die UDT ist speziell angepasst an die Verwendung eines *Sigma-7*-Antriebs, welcher über EtherCAT angebunden ist.

13.2.3.5.2 FB 872 - VMC_KernelSigma7_EC - Sigma-7 EtherCAT Kernel

Beschreibung

Dieser Baustein setzt die Antriebskommandos für eine *Sigma-7* Achse über EtherCAT um und kommuniziert mit dem Antrieb. Je *Sigma-7* Achse ist eine Instanz dieses FBs zyklisch aufzurufen.

Bitte beachten Sie, dass dieser Baustein intern den SFB 238 aufruft.

Im SPEED7 Studio wird dieser Baustein automatisch in Ihr Projekt eingefügt.

Im Siemens SIMATIC Manager müssen Sie den SFB 238 aus der Motion Control Library in Ihr Projekt kopieren.

Parameter	Deklaration	Datentyp	Beschreibung
Init	INPUT	BOOL	Mit einer Flanke 0-1 wird der Baustein intern zurückgesetzt. Hierbei werden bestehende Bewegungskommandos abgebrochen und der Baustein wird initialisiert.

Einsatz Sigma-5/7 EtherCAT > Einsatz Sigma-7W EtherCAT

Parameter	Deklaration	Datentyp	Beschreibung
Config	IN_OUT	UDT872	Datenstruktur zur Übergabe von achsabhängigen Konfigurationsdaten an den <i>AxisKernel</i> .
Axis	IN_OUT	MC_AXIS_REF	Datenstruktur zur Übergabe von achsabhängigen Informationen an <i>AxisKernel</i> und PLCopen-Bausteine.

13.2.3.5.3 FB 874 - VMC_InitSigma7W_EC - Sigma-7W EtherCAT Initialisierung

Beschreibung

Dieser Baustein dient zur Konfiguration der Doppelachse eines *Sigma-7W-*Antriebs. Der Baustein ist speziell angepasst an die Verwendung eines *Sigma-7W-*Antriebs, welcher über EtherCAT angebunden ist.

Parameter	Deklaration	Datentyp	Beschreibung
Enable	INPUT	BOOL	Freigabe der Initialisierung
LogicalAddress	INPUT	INT	Startadresse der PDO-Eingangsdaten
M1_PdoInputs	INPUT	INT	Startadresse der Eingabe-PDOs für Achse 1
M1_PdoOutputs	INPUT	INT	Startadresse der Ausgabe-PDOs für Achse 1
M1_EncoderType	INPUT	INT	Encoder-Typ von Achse 1
			1: Absolut-Encoder2: Inkremental-Encoder
M1_EncoderResolutionBits	INPUT	INT	Anzahl der Bits, die einer Geber-Umdrehung von Achse 1 entsprechen. Default: 20
M1_FactorPosition	INPUT	REAL	Faktor zur Umrechnung der Position von Benutzereinheiten [u] in Antriebseinheiten [Inkremente] und zurück von Achse 1.
			Es gilt: p[Inkremente] = p[u] x FactorPosition
			Bitte berücksichten sie auch den Faktor, welchen Sie am Antrieb über die Objekte 0x2701:1 und 0x2701:2 vorgeben können. Dieser sollte 1 sein.
M1_FactorVelocity	INPUT	REAL	Faktor zur Umrechnung der Geschwindigkeit von Benutzereinheiten [u/s] in Antriebseinheiten [Inkremente/s] und zurück von Achse 1.
			Es gilt: $v_{[Inkremente/s]} = v_{[u/s]} \times FactorVelocity$
			Bitte berücksichten sie auch den Faktor, welchen Sie am Antrieb über die Objekte 0x2702:1 und 0x2702:2 vorgeben können. Dieser sollte 1 sein.
M1_FactorAcceleration	INPUT	REAL	Faktor zur Umrechnung der Beschleunigung von Benutzereinheiten [u/s²] in Antriebseinheiten [10 -4 x Inkremente/s²] und zurück von Achse 1.
			Es gilt: 10^{-4} x $a_{[Inkremente/s_2]} = a_{[u/s_2]}$ x FactorAcceleration
			Bitte berücksichten sie auch den Faktor, welchen Sie am Antrieb über die Objekte 0x2703:1 und 0x2703:2 vorgeben können. Dieser sollte 1 sein.
M1_OffsetPosition	INPUT	REAL	Offset für die Nullposition von Achse 1 [u].

Einsatz Sigma-5/7 EtherCAT > Einsatz Sigma-7W EtherCAT

Parameter	Deklaration	Datentyp	Beschreibung
M1_MaxVelocityApp	INPUT	REAL	Maximale Geschwindigkeit der Applikation von Achse 1 [u/s].
			Die Kommandoeingaben werden vor Ausführung auf den Maximalwert überprüft.
M1_MaxAccelerationApp	INPUT	REAL	Maximale Beschleunigung der Applikation von Achse 1 [u/s²].
			Die Kommandoeingaben werden vor Ausführung auf den Maximalwert überprüft.
M1_MaxDecelerationApp	INPUT	REAL	Maximale Verzögerung der Applikation von Achse 1 [u/s²].
			Die Kommandoeingaben werden vor Ausführung auf den Maximalwert überprüft.
M1_MaxPosition	INPUT	REAL	Maximale Position für die Überwachung der Softwarelimits von Achse 1 [u].
M1_MinPosition	INPUT	REAL	Minimale Position für die Überwachung der Softwarelimits von Achse 1 [u].
M1_EnableMaxPosition	INPUT	BOOL	Überwachung maximale Position von Achse 1
			TRUE: Aktivierung der Überwachung der maximalen Position.
M1_EnableMinPosition	INPUT	BOOL	Überwachung minimale Position von Achse 1
			TRUE: Aktivierung der Überwachung der minimalen Position.
M2_PdoInputs	INPUT	INT	Startadresse der Eingabe-PDOs für Achse 2
M2_PdoOutputs	INPUT	INT	Startadresse der Ausgabe-PDOs für Achse 2
M2_EncoderType	INPUT	INT	Encoder-Typ von Achse 2
			■ 1: Absolut-Encoder
			2: Inkremental-Encoder
M2_EncoderResolutionBits	INPUT	INT	Anzahl der Bits, die einer Geber-Umdrehung von Achse 2 entsprechen. Default: 20
M2_FactorPosition	INPUT	REAL	Faktor zur Umrechnung der Position von Benutzereinheiten [u] in Antriebseinheiten [Inkremente] und zurück von Achse 2.
			Es gilt: p _[Inkremente] = p _[u] x FactorPosition
			Bitte berücksichten sie auch den Faktor, welchen Sie am Antrieb über die Objekte 0x2701:1 und 0x2701:2 vorgeben können. Dieser sollte 1 sein.
M2_FactorVelocity	INPUT	REAL	Faktor zur Umrechnung der Geschwindigkeit von Benutzereinheiten [u/s] in Antriebseinheiten [Inkremente/s] und zurück von Achse 2.
			Es gilt: v _[Inkremente/s] = v _[u/s] x <i>FactorVelocity</i>
			Bitte berücksichten sie auch den Faktor, welchen Sie am Antrieb über die Objekte 0x2702:1 und 0x2702:2 vorgeben können. Dieser sollte 1 sein.

Einsatz Sigma-5/7 EtherCAT > Einsatz Sigma-7W EtherCAT

M2_FactorAcceleration MPUT REAL Faktor zur Umrechnung der Beschleunigung von Benutzereinheiten [u/s²] in Antriebseinheiten [u/s²] in Maximale Beschwindigkeit der Applikation von Achse 2 [u/s²] in Maximale Beschleunigung der Applikation von Achse 2 [u/s²] in Maximale Beschleunigung der Applikation von Achse 2 [u/s²] in Maximale Postilion [u/s²]	Parameter	Deklaration	Datentyp	Beschreibung
Bitte berücksichten sie auch den Faktor, welchen Sie am Antrieb über die Objekte 0x2703:1 und 0x2703:2 vorgeben können. Dieser sollte 1 sein. M2_OffsetPosition INPUT REAL Offset für die Nullposition von Achse 2 [u]. M2_MaxVelocityApp INPUT REAL Maximale Geschwindigkeit der Applikation von Achse 2 [u/s]. Die Kommandoeingaben werden vor Ausführung auf den Maximalwert überprüft. M2_MaxAccelerationApp INPUT REAL Maximale Beschleunigung der Applikation von Achse 2 [u/s²]. Die Kommandoeingaben werden vor Ausführung auf den Maximalwert überprüft. M2_MaxDecelerationApp INPUT REAL Maximale Verzögerung der Applikation von Achse 2 [u/s²]. Die Kommandoeingaben werden vor Ausführung auf den Maximalwert überprüft. M2_MaxPosition INPUT REAL Maximale Verzögerung der Applikation von Achse 2 [u/s²]. M2_Miniposition INPUT REAL Maximale Position für die Überwachung der Softwarelimits von Achse 2 [u]. M2_EnableMaxPosition INPUT BOOL Überwachung maximale Position von Achse 2 [u]. M2_EnableMinPosition INPUT BOOL Überwachung maximale Position von Achse 2 [u]. M1_Miniposition INPUT BOOL Überwachung minimale Position von Achse 2 [u]. M1_Miniposition INPUT BOOL Überwachung minimale Position von Achse 2 [u]. M1_Miniposition INPUT BOOL Überwachung minimale Position von Achse 2 [u]. M1_Miniposition INPUT REAL Minimale Benutzerposition für Achse 1 basierend auf dem minimalen Encoder Wert von 0x80000000 und dem FactorPosition [u]. M1_MaxUserPosition OUTPUT REAL Minimale Benutzerposition für Achse 1 basierend auf dem maximalen Encoder Wert von 0x7FFFFFFF und dem maximalen Encoder Wert von 0x7FFFFFFF und dem maximalen Encoder Wert von 0x7FFFFFFF und dem maximalen Encoder Wert von 0x80000000 und dem FactorPosition [u]. M2_MaxUserPosition OUTPUT REAL Maximale Benutzerposition für Achse 2 basierend auf dem maximalen Encoder Wert von 0x7FFFFFFF und dem maximalen Encoder Wert von 0x80000000 und dem FactorPosition [u].	M2_FactorAcceleration	INPUT	REAL	von Benutzereinheiten [u/s²] in Antriebseinheiten
am Antribe über die Objekte 0x2703:1 und 0x2703:2 vorgeben können. Dieser sollte 1 sein. M2_MaxVelocityApp INPUT REAL Offset für die Nullposition von Achse 2 [u]. M2_MaxVelocityApp INPUT REAL Maximale Geschwindigkeit der Applikation von Achse 2 [u/s]. Die Kommandoelingaben werden vor Ausführung auf den Maximalwert überprüft. M2_MaxAccelerationApp INPUT REAL Maximale Beschleunigung der Applikation von Achse 2 [u/s²]. Die Kommandoelingaben werden vor Ausführung auf den Maximalwert überprüft. M2_MaxDecelerationApp INPUT REAL Maximale Beschleunigung der Applikation von Achse 2 [u/s²]. Die Kommandoelingaben werden vor Ausführung auf den Maximalwert überprüft. M2_MaxDecelerationApp INPUT REAL Maximale Position für die Überwachung der Softwarelimits von Achse 2 [u]. M2_MinPosition INPUT REAL Minimale Position für die Überwachung der Softwarelimits von Achse 2 [u]. M2_EnableMaxPosition INPUT BOOL Überwachung maximale Position von Achse 2 TRUE: Aktivierung der Überwachung der maximalen Position. M1_MinUserPosition UNPUT REAL Minimale Benutzerposition für Achse 1 basierend auf dem maximalen Encoder Wert von 0x80000000 und dem FactorPosition [u]. M1_MaxUserPosition OUTPUT REAL Maximale Benutzerposition für Achse 1 basierend auf dem maximalen Encoder Wert von 0x7FFFFFFF und dem FactorPosition [u]. M2_MinUserPosition OUTPUT REAL Minimale Benutzerposition für Achse 1 basierend auf dem maximalen Encoder Wert von 0x7FFFFFFF und dem FactorPosition [u]. M2_MinUserPosition OUTPUT REAL Maximale Benutzerposition für Achse 2 basierend auf dem maximalen Encoder Wert von 0x7FFFFFFF und dem FactorPosition [u]. M2_MinuserPosition OUTPUT REAL Maximale Benutzerposition für Achse 2 basierend auf dem maximalen Encoder Wert von 0x7FFFFFFF und dem FactorPosition [u]. M2_MaxUserPosition OUTPUT REAL Maximale Benutzerposition für Achse 2 basierend auf dem FactorPosition für Achse 2 basierend auf dem FactorPosition [u].				Es gilt: 10^{-4} x $a_{[Inkremente/s_2]} = a_{[u/s_2]}$ x FactorAcceleration
M2_MaxVelocityApp INPUT REAL Maximale Geschwindigkeit der Applikation von Achse 2 [u/s]. Die Kommandoeingaben werden vor Ausführung auf den Maximale Beschleunigung der Applikation von Achse 2 [u/s²]. Maximale Beschleunigung der Applikation von Achse 2 [u/s²]. M2_MaxDecelerationApp INPUT REAL Maximale Verzögerung der Applikation von Achse 2 [u/s²]. M2_MaxDecelerationApp INPUT REAL Maximale Verzögerung der Applikation von Achse 2 [u/s²]. M2_MaxPosition INPUT REAL Maximale Position für die Überwachung der Softwarelimits von Achse 2 [u]. M2_MinPosition INPUT REAL Minimale Position für die Überwachung der Softwarelimits von Achse 2 [u]. M2_EnableMaxPosition INPUT BOOL Überwachung maximale Position von Achse 2 M2_EnableMinPosition INPUT BOOL Überwachung minimale Position von Achse 2 M1_Minimale Position INPUT BOOL Überwachung minimale Position von Achse 2 M1_Minimale Position INPUT BOOL Überwachung minimale Position von Achse 2 M1_Minimale Position OUTPUT REAL Minimale Benutzerposition für Achse 1 basierend auf dem minimalen Encoder Wert von 0x80000000 und dem FactorPosition [u]. M2_MinUserPosition OUTPUT REAL Minimale				am Antrieb über die Objekte 0x2703:1 und 0x2703:2
[u/s]. Die Kommandoeingaben werden vor Ausführung auf den Maximale Beschleunigung der Applikation von Achse 2 [u/s²]. Die Kommandoeingaben werden vor Ausführung auf den Maximale Beschleunigung der Applikation von Achse 2 [u/s²]. Die Kommandoeingaben werden vor Ausführung auf den Maximale Verzögerung der Applikation von Achse 2 [u/s²]. Die Kommandoeingaben werden vor Ausführung auf den Maximale Verzögerung der Applikation von Achse 2 [u/s²]. Die Kommandoeingaben werden vor Ausführung auf den Maximale Position für die Überwachung der Softwarelimits von Achse 2 [u]. M2_MaxPosition INPUT REAL Maximale Position für die Überwachung der Softwarelimits von Achse 2 [u]. M2_EnableMaxPosition INPUT BOOL Überwachung maximale Position von Achse 2 TRUE: Aktivierung der Überwachung der maximalen Position. M1_MinIUserPosition INPUT BOOL Überwachung minimale Position von Achse 2 TRUE: Aktivierung der Überwachung der minimalen Position. M1_MinIUserPosition OUTPUT REAL Minimale Benutzerposition für Achse 1 basierend auf dem FactorPosition [u]. M2_MinIUserPosition OUTPUT REAL Maximale Position für Achse 1 basierend auf dem FactorPosition [u]. M2_MinIUserPosition OUTPUT REAL Minimale Benutzerposition für Achse 1 basierend auf dem FactorPosition [u]. M2_MinIUserPosition OUTPUT REAL Minimale Benutzerposition für Achse 2 basierend auf dem FactorPosition [u]. M2_MinIUserPosition OUTPUT REAL Minimale Benutzerposition für Achse 2 basierend auf dem FactorPosition [u]. M2_MaxUserPosition OUTPUT REAL Maximale Benutzerposition für Achse 2 basierend auf dem FactorPosition [u]. Maximale Renutzerposition für Achse 2 basierend auf dem FactorPosition [u].	M2_OffsetPosition	INPUT	REAL	Offset für die Nullposition von Achse 2 [u].
den Maximalwert überprüft.	M2_MaxVelocityApp	INPUT	REAL	
[u/s²]. Die Kommandoeingaben werden vor Ausführung auf den Maximalwert überprüft.				
M2_MaxDecelerationApp	M2_MaxAccelerationApp	INPUT	REAL	
[u/s²]. Die Kommandoeingaben werden vor Ausführung auf den Maximalwert überprüft. M2_MaxPosition INPUT REAL Maximale Position für die Überwachung der Softwarelimits von Achse 2 [u]. M2_MinPosition INPUT REAL Minimale Position für die Überwachung der Softwarelimits von Achse 2 [u]. M2_EnableMaxPosition INPUT BOOL Überwachung maximale Position von Achse 2 TRUE: Aktivierung der Überwachung der maximalen Position. M2_EnableMinPosition INPUT BOOL Überwachung minimale Position von Achse 2 TRUE: Aktivierung der Überwachung der minimalen Position. M1_MinUserPosition OUTPUT REAL Minimale Benutzerposition für Achse 1 basierend auf dem minimalen Encoder Wert von 0x80000000 und dem FactorPosition [u]. M1_MaxUserPosition OUTPUT REAL Minimale Benutzerposition für Achse 1 basierend auf dem maximalen Encoder Wert von 0x7FFFFFFF und dem FactorPosition [u]. M2_MinUserPosition OUTPUT REAL Minimale Benutzerposition für Achse 2 basierend auf dem minimalen Encoder Wert von 0x80000000 und dem FactorPosition [u]. M2_MinUserPosition OUTPUT REAL Minimale Benutzerposition für Achse 2 basierend auf dem minimalen Encoder Wert von 0x80000000 und dem FactorPosition [u]. M2_MaxUserPosition OUTPUT REAL Minimale Benutzerposition für Achse 2 basierend auf dem minimalen Encoder Wert von 0x80000000 und dem FactorPosition [u]. M2_MaxUserPosition OUTPUT REAL Minimale Benutzerposition für Achse 2 basierend auf dem minimalen Encoder Wert von 0x80000000 und dem FactorPosition [u]. Valid OUTPUT BOOL Initialisierung				
den Maximalwert überprüft.	M2_MaxDecelerationApp	INPUT	REAL	
mits von Achse 2 [u]. M2_MinPosition INPUT REAL Minimale Position für die Überwachung der Softwarelimits von Achse 2 [u]. M2_EnableMaxPosition INPUT BOOL Überwachung maximale Position von Achse 2 TRUE: Aktivierung der Überwachung der maximalen Position. M2_EnableMinPosition INPUT BOOL Überwachung minimale Position von Achse 2 TRUE: Aktivierung der Überwachung der minimalen Position. M1_MinUserPosition OUTPUT REAL Minimale Benutzerposition für Achse 1 basierend auf dem minimalen Encoder Wert von 0x80000000 und dem FactorPosition [u]. M1_MaxUserPosition OUTPUT REAL Maximale Benutzerposition für Achse 1 basierend auf dem maximalen Encoder Wert von 0x7FFFFFFF und dem FactorPosition [u]. M2_MinUserPosition OUTPUT REAL Minimale Benutzerposition für Achse 2 basierend auf dem minimalen Encoder Wert von 0x80000000 und dem FactorPosition [u]. M2_MaxUserPosition OUTPUT REAL Maximale Benutzerposition für Achse 2 basierend auf dem minimalen Encoder Wert von 0x80000000 und dem FactorPosition [u]. M2_MaxUserPosition OUTPUT REAL Maximale Benutzerposition für Achse 2 basierend auf dem maximalen Encoder Wert von 0x7FFFFFFF und dem FactorPosition [u]. Valid OUTPUT BOOL Initialisierung				
mits von Achse 2 [u]. M2_EnableMaxPosition INPUT BOOL Überwachung maximale Position von Achse 2 TRUE: Aktivierung der Überwachung der maximalen Position. M2_EnableMinPosition INPUT BOOL Überwachung minimale Position von Achse 2 TRUE: Aktivierung der Überwachung der minimalen Position. M1_MinUserPosition OUTPUT REAL Minimale Benutzerposition für Achse 1 basierend auf dem minimalen Encoder Wert von 0x80000000 und dem FactorPosition [u]. M1_MaxUserPosition OUTPUT REAL Maximale Benutzerposition für Achse 1 basierend auf dem maximalen Encoder Wert von 0x7FFFFFFF und dem FactorPosition [u]. M2_MinUserPosition OUTPUT REAL Minimale Benutzerposition für Achse 2 basierend auf dem minimalen Encoder Wert von 0x80000000 und dem FactorPosition [u]. M2_MaxUserPosition OUTPUT REAL Maximale Benutzerposition für Achse 2 basierend auf dem minimalen Encoder Wert von 0x80000000 und dem FactorPosition [u]. M2_MaxUserPosition OUTPUT REAL Maximale Benutzerposition für Achse 2 basierend auf dem maximalen Encoder Wert von 0x7FFFFFFF und dem FactorPosition [u]. Valid OUTPUT BOOL Initialisierung	M2_MaxPosition	INPUT	REAL	
TRUE: Aktivierung der Überwachung der maximalen Position. M2_EnableMinPosition INPUT BOOL Überwachung minimale Position von Achse 2 ■ TRUE: Aktivierung der Überwachung der minimalen Position. M1_MinUserPosition OUTPUT REAL Minimale Benutzerposition für Achse 1 basierend auf dem minimalen Encoder Wert von 0x80000000 und dem FactorPosition [u]. M1_MaxUserPosition OUTPUT REAL Maximale Benutzerposition für Achse 1 basierend auf dem maximalen Encoder Wert von 0x7FFFFFFF und dem FactorPosition [u]. M2_MinUserPosition OUTPUT REAL Minimale Benutzerposition für Achse 2 basierend auf dem minimalen Encoder Wert von 0x80000000 und dem FactorPosition [u]. M2_MaxUserPosition OUTPUT REAL Maximale Benutzerposition für Achse 2 basierend auf dem minimalen Encoder Wert von 0x80000000 und dem FactorPosition [u]. M2_MaxUserPosition OUTPUT BOOL Initialisierung	M2_MinPosition	INPUT	REAL	
Position. M2_EnableMinPosition INPUT BOOL Überwachung minimale Position von Achse 2 ■ TRUE: Aktivierung der Überwachung der minimalen Position. M1_MinUserPosition OUTPUT REAL Minimale Benutzerposition für Achse 1 basierend auf dem minimalen Encoder Wert von 0x80000000 und dem FactorPosition [u]. M1_MaxUserPosition OUTPUT REAL Maximale Benutzerposition für Achse 1 basierend auf dem maximalen Encoder Wert von 0x7FFFFFFF und dem FactorPosition [u]. M2_MinUserPosition OUTPUT REAL Minimale Benutzerposition für Achse 2 basierend auf dem minimalen Encoder Wert von 0x80000000 und dem FactorPosition [u]. M2_MaxUserPosition OUTPUT REAL Maximale Benutzerposition für Achse 2 basierend auf dem maximalen Encoder Wert von 0x7FFFFFFF und dem FactorPosition [u]. Valid OUTPUT BOOL Initialisierung	M2_EnableMaxPosition	INPUT	BOOL	Überwachung maximale Position von Achse 2
TRUE: Aktivierung der Überwachung der minimalen Position. M1_MinUserPosition OUTPUT REAL Minimale Benutzerposition für Achse 1 basierend auf dem minimalen Encoder Wert von 0x80000000 und dem FactorPosition [u]. M1_MaxUserPosition OUTPUT REAL Maximale Benutzerposition für Achse 1 basierend auf dem maximalen Encoder Wert von 0x7FFFFFFF und dem FactorPosition [u]. M2_MinUserPosition OUTPUT REAL Minimale Benutzerposition für Achse 2 basierend auf dem minimalen Encoder Wert von 0x80000000 und dem FactorPosition [u]. M2_MaxUserPosition OUTPUT REAL Maximale Benutzerposition für Achse 2 basierend auf dem maximalen Encoder Wert von 0x7FFFFFFF und dem FactorPosition [u]. Valid OUTPUT BOOL Initialisierung				
Position. M1_MinUserPosition OUTPUT REAL Minimale Benutzerposition für Achse 1 basierend auf dem minimalen Encoder Wert von 0x80000000 und dem FactorPosition [u]. M1_MaxUserPosition OUTPUT REAL Maximale Benutzerposition für Achse 1 basierend auf dem maximalen Encoder Wert von 0x7FFFFFFF und dem FactorPosition [u]. M2_MinUserPosition OUTPUT REAL Minimale Benutzerposition für Achse 2 basierend auf dem minimalen Encoder Wert von 0x80000000 und dem FactorPosition [u]. M2_MaxUserPosition OUTPUT REAL Maximale Benutzerposition für Achse 2 basierend auf dem maximalen Encoder Wert von 0x7FFFFFFF und dem FactorPosition [u]. Valid OUTPUT BOOL Initialisierung	M2_EnableMinPosition	INPUT	BOOL	Überwachung minimale Position von Achse 2
dem minimalen Encoder Wert von 0x80000000 und dem FactorPosition [u]. M1_MaxUserPosition OUTPUT REAL Maximale Benutzerposition für Achse 1 basierend auf dem maximalen Encoder Wert von 0x7FFFFFFF und dem FactorPosition [u]. M2_MinUserPosition OUTPUT REAL Minimale Benutzerposition für Achse 2 basierend auf dem minimalen Encoder Wert von 0x80000000 und dem FactorPosition [u]. M2_MaxUserPosition OUTPUT REAL Maximale Benutzerposition für Achse 2 basierend auf dem maximalen Encoder Wert von 0x7FFFFFFF und dem FactorPosition [u]. Valid OUTPUT BOOL Initialisierung				
dem maximalen Encoder Wert von 0x7FFFFFFF und dem FactorPosition [u]. M2_MinUserPosition OUTPUT REAL Minimale Benutzerposition für Achse 2 basierend auf dem minimalen Encoder Wert von 0x80000000 und dem FactorPosition [u]. M2_MaxUserPosition OUTPUT REAL Maximale Benutzerposition für Achse 2 basierend auf dem maximalen Encoder Wert von 0x7FFFFFFF und dem FactorPosition [u]. Valid OUTPUT BOOL Initialisierung	M1_MinUserPosition	OUTPUT	REAL	dem minimalen Encoder Wert von 0x80000000 und
dem minimalen Encoder Wert von 0x80000000 und dem FactorPosition [u]. M2_MaxUserPosition OUTPUT REAL Maximale Benutzerposition für Achse 2 basierend auf dem maximalen Encoder Wert von 0x7FFFFFF und dem FactorPosition [u]. Valid OUTPUT BOOL Initialisierung	M1_MaxUserPosition	OUTPUT	REAL	dem maximalen Encoder Wert von 0x7FFFFFFF und
dem maximalen Encoder Wert von 0x7FFFFFF und dem <i>FactorPosition</i> [u]. Valid OUTPUT BOOL Initialisierung	M2_MinUserPosition	OUTPUT	REAL	dem minimalen Encoder Wert von 0x80000000 und
	M2_MaxUserPosition	OUTPUT	REAL	dem maximalen Encoder Wert von 0x7FFFFFF und
	Valid	OUTPUT	BOOL	

Parameter	Deklaration	Datentyp	Beschreibung
Error	OUTPUT	BOOL	 Fehler TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter ErrorID entnommen werden. Die Achse wird gesperrt.
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen
			→ "ErrorID - Zusätzliche Fehlerinformati- onen"Seite 739
M1_Config	IN_OUT	UDT872	Datenstruktur zur Übergabe von achsabhängigen Konfigurationsdaten an den <i>AxisKernel</i> für Achse 1.
M1_Axis	IN_OUT	MC_AXIS_REF	Datenstruktur zur Übergabe von achsabhängigen Informationen an <i>AxisKernel</i> und PLCopen-Bausteine für Achse 1.
M2_Config	IN_OUT	UDT872	Datenstruktur zur Übergabe von achsabhängigen Konfigurationsdaten an den <i>AxisKernel</i> für Achse 2.
M2_Axis	IN_OUT	MC_AXIS_REF	Datenstruktur zur Übergabe von achsabhängigen Informationen an <i>AxisKernel</i> und PLCopen-Bausteine für Achse 2.

13.3 Einsatz Sigma-5/7 PROFINET

13.3.1 Einsatz Sigma-5 PROFINET

13.3.1.1 Übersicht

Voraussetzung

Für den Einsatz in CPUs von Yaskawa

- SPEED7 Studio ab V1.8 oder Siemens SIMATIC Manager ab V5.5 SP2 oder TIA Portal V14
- Simple Motion Control Library
 - SPEED7 Studio ab V1.8: Simple Motion Control Library ist bereits integriert
 - SIMATIC Manager ab V5.5 SP2: SMC_S7_V0041.zip
 - Siemens TIA Portal V14: SMC TIA V0027.zip
- CPU mit PROFINET-IO-Controller wie z.B. CPU 015-CEFPR01
- Sigma-5-Antrieb mit PROFINET-Optionskarte

Für den Einsatz in S7-300 CPUs von Siemens.

- Siemens SIMATIC Manager ab V5.5 SP2 oder TIA Portal V14
- Simple Motion Control Library
 - SIMATIC Manager ab V5.5 SP2: SMC_S7_V0041.zip
 - Siemens TIA Portal V14: SMC_TIA_V0027.zip
- Siemens CPU mit PROFINET-IO-Controller
- Sigma-5-Antrieb mit PROFINET-Optionskarte

Für den Einsatz in S7-1200 und S7-1500 CPUs von Siemens.

- Siemens TIA Portal V15
- Simple Motion Control Library
 - Siemens TIA Portal V15: SMC_TIA_1x00_V0003.zip
- Siemens CPU S7-1200 mit FW V4.2 bzw. S7-1500 mit FW V2.5 mit PROFINET-IO-Controller
- *Sigma-5*-Antrieb mit PROFINET-Optionskarte

Schritte der Projektierung

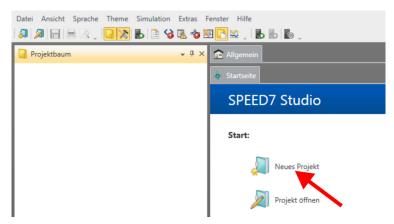
- 1. Parameter am Antrieb über Drehschalter der Sigma-5-Optionskarte einstellen.
- **2.** Hardwarekonfiguration im *SPEED7 Studio*, Siemens SIMATIC Manager oder TIA Portal.
 - Projektierung einer CPU mit PROFINET-IO-Controller.
 - Projektierung eines Sigma-5 PROFINET-Antriebs.
- 3. Programmierung im SPEED7 Studio, Siemens SIMATIC Manager oder TIA Portal.
 - Init-Baustein zur Konfiguration der Achse beschalten.
 - Kernel-Baustein zur Kommunikation mit der Achse beschalten.
 - Bausteine für die Bewegungsabläufe beschalten.
 - ¬"Demo-Projekte"...Seite 288

13.3.1.2 Parameter am Antrieb einstellen

Parameter Sigma-5

Vor der Erstinbetriebnahme müssen Sie die PROFINET-Options-Karte des Sigma-5 Antriebs auf "Telegramm 100 (all OP modes)" einstellen. Hierzu befindet sich auf der Frontseite der Optionskarte der Drehschalter "S12". Drehen Sie diesen auf die Position "E". Weitere Einstellungen sind für die PROFINET-Kommunikation nicht erforderlich.

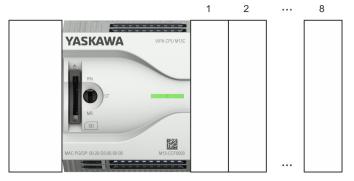
Bitte beachten Sie, dass Sie gemäß ihren Anforderungen die entsprechende Fahrtrichtung für Ihren Antrieb freigeben. Verwenden Sie hierzu die Parameter Pn50A (P-OT) bzw. Pn50B (N-OT) in Sigma Win+.


13.3.1.3 Einsatz im SPEED7 Studio

13.3.1.3.1 Hardware-Konfiguration System MICRO

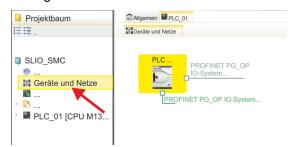
CPU im Projekt anlegen

Bitte verwenden Sie für die Projektierung das SPEED7 Studio ab V1.8


1. Starten Sie das SPEED7 Studio.

- **2.** Erstellen sie auf der Startseite mit "Neues Projekt" ein neues Projekt und vergeben Sie einen "Projektnamen".
 - ➡ Ein neues Projekt wird angelegt und in die Sicht "Geräte und Netze" gewechselt.

- 3. Klicken Sie im Projektbaum auf "Neues Gerät hinzufügen ...".
 - Es öffnet sich ein Dialog für die Geräteauswahl.
- Wählen Sie unter den "Gerätevorlagen" die System MICRO CPU M13-CCF0000 V2.4.... und klicken Sie auf [OK].
 - Die CPU wird in "Geräte und Netze" eingefügt und die "Gerätekonfiguration" geöffnet.



Gerätekonfiguration

Slot	Baugruppe	 	
0	CPU M13-CCF0000		
-X2	MPI-Schnittstelle		
-X3	PROFINET PG_OP IO-System		

Ethernet-PG/OP-Kanal parametrieren

- 1. Klicken Sie im Projektbaum auf "Geräte und Netze".
 - ➡ Sie erhalten eine grafische Objekt-Ansicht Ihrer CPU. Hierbei werden beide Schnittstellen des PROFINET bzw. Ethernet-PG/OP Kanal Switch unter identischem Namen aufgeführt.

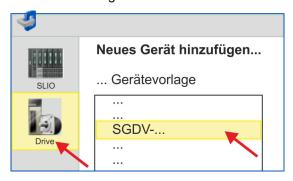
- 2. Klicken Sie auf eins der Netzwerke "PROFINET PG OP Ethernet IO-System ...".
- 3. ▶ Wählen Sie "Kontextmenü → Eigenschaften der Schnittstelle".
 - ⇒ Es öffnet sich ein Dialogfenster. Hier können Sie IP-Adressdaten für Ihren Ethernet-PG/OP-Kanal angeben. Gültige IP-Adress-Parameter erhalten Sie von Ihrem Systemadministrator.
- 4. Bestätigen Sie Ihre Eingabe mit [OK].
 - → Die IP-Adressdaten werden in Ihr Projekt übernommen und in "Geräte und Netze" unter "Lokale Baugruppen" aufgelistet.

Nach der Übertragung Ihres Projekts ist Ihre CPU über die angegebenen IP-Adressdaten via Ethernet-PG/OP-Kanal erreichbar.

GSDML-Datei installieren

Damit der Sigma-5 PROFINET Antrieb im SPEED7 Studio konfiguriert werden kann, muss die entsprechende GSDML-Datei installiert sein. In der Regel wird das SPEED7 Studio mit aktuellen GSDML-Dateien ausgeliefert und Sie können diesen Teil überspringen. Sollte Ihre GSDML-Datei veraltet sein, finden Sie die aktuellste GSDML-Datei für den Sigma-5 PROFINET Antrieb unter www.yaskawa.eu.com im "Download Center".

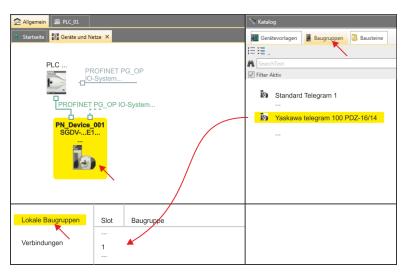
- 1. Laden Sie die zu Ihrem Antrieb passende GSDML-Datei herunter. Entpacken Sie diese falls erforderlich.
- 2. Gehen Sie in Ihr SPEED7 Studio.
- 3. → Öffnen Sie mit "Extras → Gerätebeschreibungsdatei installieren (PROFINET GSDML)" das zugehörige Dialogfenster.
- **4.** Geben Sie unter "Quellpfad" die GSDML-Datei an und installieren Sie diese mit [Installieren].
 - Die Geräte der GSDML-Datei steht Ihnen nun zur Verfügung.


Sigma-5 Antrieb hinzufügen

Bei der Konfiguration ist für jede Achse ein Sigma-5 PROFINET-IO-Device zu konfigurieren.

- 1. Klicken Sie im Projektbaum auf "Geräte und Netze".
- 2. Klicken Sie auf "PROFINET PG_OP_Ethernet IO-System ..." und wählen sie "Kontextmenü → Neues Gerät hinzufügen".

⇒ Es öffnet sich die Gerätevorlage zur Auswahl eines PROFINET-Devices.



- 3. ▶ Wählen Sie Ihren Sigma-5 Antrieb aus:
 - SGDV-xxxxE1...

Bestätigen Sie Ihre Angaben mit [OK]. Sollte Ihr Antrieb nicht vorhanden sein, müssen Sie die entsprechende GSDML-Datei wie weiter oben beschrieben installieren.

- ▶ Der Sigma-5 Antrieb wird an Ihren PROFINET-IO-Controller angebunden.
- 4. Klicken Sie auf den Sigma-5 Antrieb.

- 5. Wählen Sie unter "Katalog" den Reiter "Baugruppen" an.
 - → Die Telegramme für den Sigma-5 Antrieb werden aufgelistet.
- **6.** Wählen Sie "Yaskawa telegram 100 PZD..." und ziehen Sie dieses unter "Lokale Baugruppen" auf "Slot 1".
 - → Telegram 100 wird mit den entsprechenden Untergruppen eingefügt.

Die Verbindung zwischen den Achsen in der Hardware-Konfiguration und Ihrem Anwenderprogramm erfolgt durch Angabe folgender Moduleigenschaften in den Aufrufparametern des FB 891 - VMC InitSigma_PN:

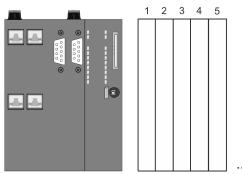
- Moduleeigenschaft "Parameter Access Point": Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
 - FB 891 VMC InitSigma_PN: ParaAccessPointAddress:
 Angabe der Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
- Moduleeigenschaft"YASKAWA Telegram PZD...": Jeweilige Startadresse des Ein-/Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "InputsStartAddress":
 Angabe der Startadresse des Eingabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "OutputsStartAddress":
 Angabe der Startadresse des Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "LogicalAddress":
 Angabe des kleineren Werts der Startadressen des Ein-/Ausgabe-Adressbereichs.
- Anwenderprogramm → 411
- FB 891 VMC InitSigma_PN → 514

Beispiel Hardware-Konfiguration

Slot	Baugruppe	 E-Adr.	A-Adr.	Diagnoseadresse
0	SGDV-OCB03A	2045		2045
X1	PN-IO	2039		2039
X1 P1	Port 1	2038		2038
X1 P2	Port 2	2037		2037
1	DO with YASKAWA telegr.100,	2036		2036
	PZD-16/14			
1.1	Parameter Access Point	2036		2036
1.2	YASKAWA telegram, PZD-16/14	0-27	0-31	2036

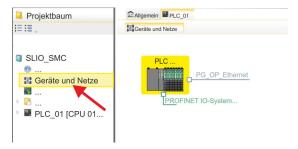
13.3.1.3.2 Hardware-Konfiguration System SLIO


CPU im Projekt anlegen


Bitte verwenden Sie für die Projektierung das SPEED7 Studio ab V1.8

1. Starten Sie das SPEED7 Studio.

- **2.** Erstellen sie auf der Startseite mit *"Neues Projekt"* ein neues Projekt und vergeben Sie einen *"Projektnamen"*.
 - ⇒ Ein neues Projekt wird angelegt und in die Sicht "Geräte und Netze" gewechselt.
- 3. Klicken Sie im Projektbaum auf "Neues Gerät hinzufügen ...".
 - ➡ Es öffnet sich ein Dialog für die Geräteauswahl.
- Wählen Sie unter den "Gerätevorlagen" Ihre PROFINET-CPU wie z.B. die CPU 015-CEFPR01 und klicken Sie auf [OK].
 - → Die CPU wird in "Geräte und Netze" eingefügt und die "Gerätekonfiguration" geöffnet.



Gerätekonfiguration

Slot	Baugruppe	 	 •••
0	CPU 015-CEFPR01		
-X1	PG_OP_Ethernet		
-X3	MPI-Schnittstelle		
-X4	PROFINET-IO-System		

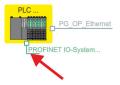
Ethernet-PG/OP-Kanal parametrieren

- 1. Klicken Sie im *Projektbaum* auf "Geräte und Netze".
 - ⇒ Sie erhalten eine grafische Objekt-Ansicht Ihrer CPU.

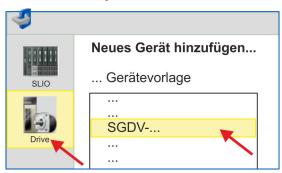
- 2. Klicken Sie auf das Netzwerk "PG_OP_Ethernet".
- 3. ▶ Wählen Sie "Kontextmenü → Eigenschaften der Schnittstelle".
 - ➡ Es öffnet sich ein Dialogfenster. Hier können Sie IP-Adressdaten für Ihren Ethernet-PG/OP-Kanal angeben. Gültige IP-Adress-Parameter erhalten Sie von Ihrem Systemadministrator.
- 4. Bestätigen Sie Ihre Eingabe mit [OK].
 - → Die IP-Adressdaten werden in Ihr Projekt übernommen und in "Geräte und Netze" unter "Lokale Baugruppen" aufgelistet.

Nach der Übertragung Ihres Projekts ist Ihre CPU über die angegebenen IP-Adressdaten via Ethernet-PG/OP-Kanal erreichbar.

GSDML-Datei installieren


Damit der Sigma-5 PROFINET Antrieb im SPEED7 Studio konfiguriert werden kann, muss die entsprechende GSDML-Datei installiert sein. In der Regel wird das SPEED7 Studio mit aktuellen GSDML-Dateien ausgeliefert und Sie können diesen Teil überspringen. Sollte Ihre GSDML-Datei veraltet sein, finden Sie die aktuellste GSDML-Datei für den Sigma-5 PROFINET Antrieb unter www.yaskawa.eu.com im "Download Center".

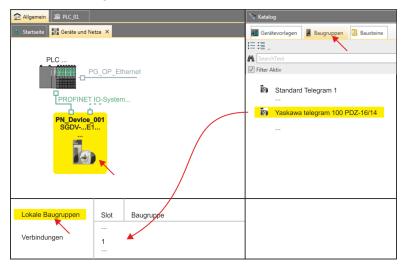
- 1. Laden Sie die zu Ihrem Antrieb passende GSDML-Datei herunter. Entpacken Sie diese falls erforderlich.
- 2. Gehen Sie in Ihr SPEED7 Studio.
- 3. Öffnen Sie mit "Extras → Gerätebeschreibungsdatei installieren (PROFINET GSDML)" das zugehörige Dialogfenster.
- **4.** Geben Sie unter "Quellpfad" die GSDML-Datei an und installieren Sie diese mit [Installieren].
 - Die Geräte der GSDML-Datei steht Ihnen nun zur Verfügung.


Sigma-5 Antrieb hinzufügen

1. Klicken Sie im Projektbaum auf "Geräte und Netze".

2. ► Klicken Sie auf "PROFINET IO-System ..." und wählen sie "Kontextmenü → Neues Gerät hinzufügen".

⇒ Es öffnet sich die Gerätevorlage zur Auswahl eines PROFINET-Devices.



- 3. Wählen Sie Ihren Sigma-5 Antrieb aus:
 - SGDV-xxxxE1...

Bestätigen Sie Ihre Angaben mit [OK]. Sollte Ihr Antrieb nicht vorhanden sein, müssen Sie die entsprechende GSDML-Datei wie weiter oben beschrieben installieren.

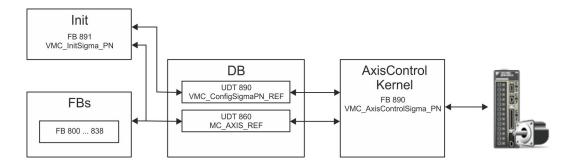
- → Der Sigma-5 Antrieb wird an Ihren PROFINET-IO-Controller angebunden.
- 4. Klicken Sie auf den Sigma-5 Antrieb

- 5. Wählen Sie unter "Katalog" den Reiter "Baugruppen" an.
 - → Die Telegramme für den Sigma-5 Antrieb werden aufgelistet.

- 6. Wählen Sie "Yaskawa telegram 100 PZD..." und ziehen Sie dieses unter "Lokale Baugruppen" auf "Slot 1".
 - → Telegram 100 wird mit den entsprechenden Untergruppen eingefügt.

 $\tilde{\mathbb{I}}$

Die Verbindung zwischen den Achsen in der Hardware-Konfiguration und Ihrem Anwenderprogramm erfolgt durch Angabe folgender Moduleigenschaften in den Aufrufparametern des FB 891 - VMC InitSigma_PN:


- Moduleeigenschaft "Parameter Access Point": Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
 - FB 891 VMC InitSigma_PN: ParaAccessPointAddress:
 Angabe der Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
- Moduleeigenschaft"YASKAWA Telegram PZD...":
 Jeweilige Startadresse des Ein-/Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "InputsStartAddress":
 Angabe der Startadresse des Eingabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "OutputsStartAddress":
 Angabe der Startadresse des Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "LogicalAddress":
 Angabe des kleineren Werts der Startadressen des Ein-/Ausgabe-Adressbereichs.
- Anwenderprogramm → 411
- FB 891 VMC InitSigma_PN → 514

Beispiel Hardware-Konfiguration

Slot	Baugruppe	 E-Adr.	A-Adr.	Diagnoseadresse
0	SGDV-OCB03A	2045		2045
X1	PN-IO	2039		2039
X1 P1	Port 1	2038		2038
X1 P2	Port 2	2037		2037
1	DO with YASKAWA telegr.100,	2036		2036
	PZD-16/14			
1.1	Parameter Access Point	2036		2036
1.2	YASKAWA telegram, PZD-16/14	0-27	0-31	2036

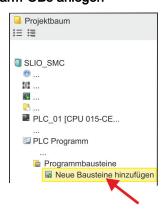
13.3.1.3.3 Anwender-Programm

Programmstruktur

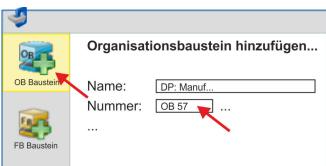
DB

Für jede Achse ist ein Datenbaustein (Achs-DB) für Konfiguration und Statusdaten anzulegen. Der Datenbaustein besteht aus folgenden Datenstrukturen:

- UDT 890 VMC_ConfigSigmaPN_REF
 Die Datenstruktur beschreibt den Aufbau der Konfiguration des Antriebs.
 Spezifische Datenstruktur für Sigma-5/7 PROFINET.
- UDT 860 MC_AXIS_REF

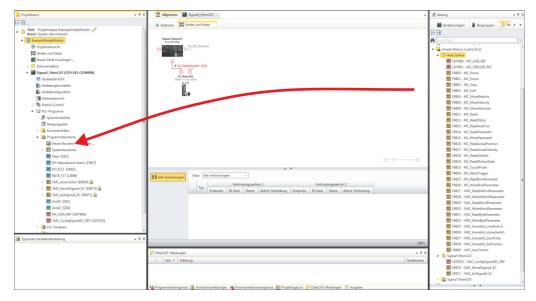

Die Datenstruktur beschreibt den Aufbau der Parameter und Statusinformationen von Antrieben.

Allgemeine Datenstruktur für alle Antriebe und Bussysteme.


- FB 891 VMC InitSigma PN
 - Der Init-Baustein dient zur Konfiguration einer Achse.
 - Spezifischer Baustein für Sigma-5/7 PROFINET.
 - Die Konfigurationsdaten für die Initialisierung sind im Achs-DB abzulegen.
- FB 890 VMC AxisControlSigma PN
 - Spezifischer Baustein für Sigma-5/7 PROFINET.
 - Dieser Baustein ist eine Kombination aus einem Kernel und einem AxisControl Baustein und kommuniziert über PROFINET mit dem Antrieb, verarbeitet die Benutzeranforderungen und gibt Statusmeldungen zurück.
 - Unterstützt einfache Bewegungskommandos und liefert alle relevanten Statusmeldungen.
 - Der Austausch der Daten erfolgt mittels des Achs-DB.
 - Über die Instanzdaten des Bausteins k\u00f6nnen Sie zur Bewegungssteuerung und Statusabfrage eine Visualisierung anbinden.
 - Zusätzlich zum FB 890 VMC_AxisControlSigma_PN, haben Sie die Möglichkeit PLCopen-Bausteine zu nutzen.
- FB 800 ... FB 838 PLCopen
 - Die PLCopen-Bausteine dienen zur Programmierung von Bewegungsabläufen und Statusabfragen.
 - Allgemeine Bausteine für alle Antriebe und Bussysteme.

Programmierung

Alarm-OBs anlegen



1. Klicken Sie im *Projektbaum* innerhalb der CPU unter "PLC-Programm", "Programmbausteine" auf "Neuen Baustein hinzufügen".

- → Das Dialogfenster "Baustein hinzufügen" öffnet sich.
- **2.** Wählen Sie den Bausteintyp "OB Baustein" und fügen Sie nacheinander OB 57, OB 82 und OB 86 Ihrem Projekt hinzu.

Bausteine in Projekt kopieren

- Öffnen Sie im "Katalog" unter "Bausteine" "Simple Motion Control" und ziehen Sie per Drag&Drop folgende Bausteine in "Programmbausteine" des Projektbaums:
 - Sigma PROFINET:
 - UDT 890 VMC_ConfigSigmaPN_REF → "UDT 890 VMC_ConfigSigmaPN_REF Sigma-5/7 PROFINET Datenstruktur Achskonfiguration"...Seite 510
 - FB 890 VMC_AxisControlSigma_PN → "FB 890 VMC_Axis-ControlSigma_PN - Control-Baustein Achskontrolle für Sigma-5/7 PROFINET"...Seite 510
 - FB 891 VMC_InitSigma_PN → "FB 891 VMC_InitSigma_PN Sigma-5/7 PROFINET Initialisierung"...Seite 514
 - Axis Control
 - UDT 860 MC_AXIS_REF → "UDT 860 MC_AXIS_REF Datenstruktur Achsdaten"...Seite 659
 - FB 860 VMC_AxisControl → "FB 860 VMC_AxisControl Control-Baustein Achskontrolle"...Seite 659

Achs-DB anlegen

- Fügen Sie Ihrem Projekt einen neuen DB als Achs-DB hinzu. Klicken Sie hierzu im Projektbaum innerhalb der CPU unter "PLC-Programm", "Programmbausteine" auf "Neuen Baustein hinzufügen", wählen Sie den Bausteintyp "DB Baustein" und vergeben Sie diesem den Namen "Axis01". Die DB-Nr. können Sie frei wählen wie z.B. DB 10.
 - → Der Baustein wird angelegt und geöffnet.
- Legen Sie in "Axis01" die Variable "Config" vom Typ UDT 890 an. Dies sind spezifische Achs-Konfigurationsdaten.
 - Legen Sie in "Axis01" die Variable "Axis" vom Typ UDT 860 an. Während des Betriebs werden hier alle Betriebsdaten der Achse abgelegt.

•

Axis01 [DB10] Bausteinstruktur

Adr	Name	Datentyp	
	Config	UDT	[890]
	Axis	UDT	[860]

OB 1 - Konfiguration der Achsen

Öffnen Sie den OB 1 und programmieren Sie folgende FB-Aufrufe mit zugehörigen DBs: FB 891 - VMC_InitSigma_PN, DB 891

Die Verbindung zwischen den Achsen in der Hardware-Konfiguration und Ihrem Anwenderprogramm erfolgt durch Angabe folgender Moduleigenschaften in den Aufrufparametern des FB 891 - VMC InitSigma_PN:

- Moduleeigenschaft "Parameter Access Point": Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
 - FB 891 VMC InitSigma_PN: ParaAccessPointAddress:
 Angabe der Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
- Moduleeigenschaft"YASKAWA Telegram PZD...":
 Jeweilige Startadresse des Ein-/Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "InputsStartAddress":
 Angabe der Startadresse des Eingabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "OutputsStartAddress":
 Angabe der Startadresse des Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "LogicalAddress":
 Angabe des kleineren Werts der Startadressen des Ein-/Ausgabe-Adressbereichs.
- Hardware-Konfiguration → 401
- FB 891 VMC InitSigma PN → 514

Beispiel Hardware-Konfiguration

Slot	Baugruppe	 E-Adr.	A-Adr.	Diagnoseadresse
0	SGDV-OCB03A	2045		2045
X1	PN-IO	2039		2039
X1 P1	Port 1	2038		2038
X1 P2	Port 2	2037		2037
1	DO with YASKAWA telegr.100,	2036		2036
	PZD-16/14			
1.1	Parameter Access Point	2036		2036
1.2	YASKAWA telegram, PZD-16/14	0-27	0-31	2036

Beispielaufruf

```
CALL "VMC InitSigma PN" , "VMC InitSigma PN 1"
               :="InitS5PN1_Enable"
Enable
LogicalAddress
                     :=0 //HW config: Smallest IO addr.
ParaAccessPointAddress:=2036 //HW config: Diag addr.
InputsStartAddress :=0 //HW config: Telegr. 100 start I addr.
OutputsStartAddress := 0 //HW config: Telegr. 100 start O addr.
EncoderType
                     :=1
EncoderResolutionBits :=20
FactorPosition
                     :=1.048576e+006
FactorVelocity
                     :=1.048576e+006
FactorAcceleration
                     :=1.048576e+006
OffsetPosition
                     :=0.000000e+000
MaxVelocityApp
                     :=5.000000e+001
MaxAccelerationApp
                     :=1.000000e+002
MaxDecelerationApp
                     :=1.000000e+002
MaxVelocityDrive
                     :=6.000000e+001
```

```
MaxPosition
                      :=1.048500e+003
MinPosition
                      :=-1.048514e+003
EnableMaxPosition
                      :=TRUE
EnableMinPosition
                      :=TRUE
                      :="InitS5PN1 MinUserPos"
MinUserPosition
                      :="InitS5PN1 MaxUserPos"
MaxUserPosition
                      :="InitS5PN1_Valid"
Valid
                      :="InitS5PN1 Error"
Error
                      :="InitS5PN1 ErrorID"
ErrorID
Config
                      :="Axis01".Config
                      :="Axis01".Axis
Axis
```

AxisControl verbinden

FB 890 - VMC_AxisControlSigma_PN, DB 890 → "FB 890 - VMC_AxisControlSigma_PN - Control-Baustein Achskontrolle für Sigma-5/7 PROFINET"...Seite 510

Der Baustein verarbeitet die Benutzerkommandos und gibt sie entsprechend aufbereitet an den Antrieb über PROFINET weiter.

```
CALL "VMC AxisControlSigma PN" , "DI AxisControlSigmaPN01"
AxisEnable :="AxCtrll_AxisEnable"
                               :="AxCtrl1 AxisReset"
AxisReset
                              :="AxCtrl1 HomeExecute"
HomeExecute
HomePosition :="AxCtrl1_HomePosition"
StopExecute :="AxCtrl1_StopExecute"
MvVelocityExecute:="AxCtrl1 MvVelExecute"
MvRelativeExecute:="AxCtrl1 MvRelExecute"
MvAbsoluteExecute:="AxCtrl1 MvAbsExecute"
PositionDistance := "AxCtrl1 PositionDistance"
Direction :="AxCtrl1_Direction"
Velocity :="AxCtrl1_Velocity"
Velocity :="AxCtrl1_Velocity"

Acceleration :="AxCtrl1_Acceleration"

Deceleration :="AxCtrl1_Deceleration"

JogPositive :="AxCtrl1_JogPositive"

JogNegative :="AxCtrl1_JogNegative"

JogVelocity :="AxCtrl1_JogVelocity"

JogAcceleration :="AxCtrl1_JogAcceleration"

TogDeceleration :="AxCtrl1_JogDeceleration"
Velocity
                              :="AxCtrl1 Velocity"
 JogDeceleration :="AxCtrl1_JogDeceleration"
JogDeceleration

AxisReady

AxisEnabled

AxisError

AxisErrorID

DriveWarning

DriveError

DriveError

DriveErrorID

IsHomed

ModeOfOperation

PLODENSTATE

= "AxCtrll JogDeceleration"

:="AxCtrll AxisReady"

:="AxCtrll AxisEnabled"

:="AxCtrll AxisErrorID"

:="AxCtrll DriveWarning"

:="AxCtrll DriveErrorID"

:="AxCtrll DriveErrorID"

:="AxCtrll DriveErrorID"

:="AxCtrll IsHomed"

:="AxCtrll IsHomed"

:="AxCtrll ModeOfOperation"

:="AxCtrll PLODENSTATE"
PLCopenState :="AxCtrl1_PLCopenState"
ActualPosition :="AxCtrl1_ActualPosition"
ActualVelocity :="AxCtrll ActualVelocity"
CmdDone :="AxCtrl1_CmdDone"
CmdBusy :="AxCtrl1_CmdBusy"
CmdAborted :="AxCtrl1_CmdAborted"
CmdError :="AxCtrl1_CmdError"
CmdErrorID :="AxCtrl1_CmdErrorID"
DirectionPositive:="AxCtrl1 DirectionPos"
DirectionNegative:="AxCtrl1_DirectionNeg"
SWLimitMinActive :="AxCtrl1_SWLimitMinActive"
SWLimitMaxActive :="AxCtrl1 SWLimitMaxActive"
HWLimitMinActive :="AxCtrl1 HWLimitMinActive"
HWLimitMaxActive :="AxCtrl1 HWLimitMaxActive"
                                 :="Axis01".Axis
Axis
```


Für komplexe Bewegungsaufgaben können Sie die PLCopen-Bausteine verwenden. Hier müssen Sie ebenfalls unter Axis die Referenz zu den Achsdaten im Achs-DB angeben.

Ihr Projekt beinhaltet nun folgende Bausteine:

- OB 1 Main
- OB 57 DP Manufacturer Alarm
- OB 82 I/O FLT1
- OB 86 Rack FLT
- FB 890 VMC AxisControlSigma PN mit Instanz-DB
- FB 891 VMC_InitSigma_PN mit Instanz-DB
- UDT 860 MC Axis REF
- UDT 890 VMC ConfigSigmaPN REF

Zeitlicher Ablauf

- 1. Wählen Sie "Projekt → Alles übersetzen" und übertragen Sie das Projekt in Ihre
 - → Sie können jetzt Ihre Applikation in Betrieb nehmen.

VORSICHT

Bitte beachten Sie immer die Sicherheitshinweise zu ihrem Antrieb, insbesondere bei der Inbetriebnahme!

- **2.** Bevor eine Achse gesteuert werden kann, muss diese initialisiert werden. Rufen Sie hierzu den *Init* Baustein FB 891 VMC InitSigma PN mit *Enable* = TRUE auf.
 - ▶ Der Ausgang Valid meldet TRUE zurück. Im Fehlerfall können Sie durch Auswertung der ErrorID den Fehler ermitteln.

Den *Init*-Baustein müssen Sie erneut aufrufen, wenn Sie einen neuen Achs-DB laden oder Parameter am *Init*-Baustein geändert wurden.

Fahren Sie erst fort, wenn der Init-Baustein keinen Fehler meldet!

3. Programmieren Sie Ihre Applikation mit dem FB 890 - VMC_AxisControlSigma_PN oder mit den PLCopen Bausteinen.

13.3.1.4 Einsatz im Siemens SIMATIC Manager

13.3.1.4.1 Hardware-Konfiguration System MICRO bzw. SLIO

Voraussetzung

Übersicht

- Bitte verwenden Sie für die Projektierung den Siemens SIMATIC Manager ab V5.5 SP2
- Die Projektierung der System MICRO bzw. SLIO CPU erfolgt im Siemens SIMATIC Manager in Form eines virtuellen PROFINET IO Devices.
 - Das PROFINET IO Device ist mittels GSDML im Hardware-Katalog zu installieren.
- Damit der PROFINET Antrieb im Siemens SIMATIC Manager konfiguriert werden kann, muss die entsprechende GSDML-Datei installiert sein.

GSDML-Datei für System MICRO bzw. SLIO installieren

Die Installation des PROFINET-IO-Device im Hardware-Katalog erfolgt nach folgender Vorgehensweise:

- 1. Gehen Sie in das "Download Center" von www.yaskawa.eu.com.
- 2. Laden Sie unter "GSDML SLIO" die Konfigurationsdatei f
 ür Ihre System MICRO bzw. SLIO CPU.
- 3. Extrahieren Sie die Datei in Ihr Arbeitsverzeichnis.
- 4. Starten Sie den Hardware-Konfigurator von Siemens.
- 5. Schließen Sie alle Projekte.
- **6.** ▶ Gehen Sie auf "Extras → GSD-Dateien installieren".
- 7. Navigieren Sie in Ihr Arbeitsverzeichnis und installieren Sie die entsprechende GSDML-Datei.
 - Nach der Installation finden Sie das entsprechende PROFINET IO Device unter "PROFINET IO → Weitere Feldgeräte → I/O".

Von Yaskawa gibt es folgende PROFINET-IO-Devices:

- System MICRO: "... Micro PLC"
- System SLIO: "... System SLIO"

GSDML-Datei für Sigma-5 PROFINET Antrieb installieren

Die GSDML-Datei für den *Sigma-5* PROFINET Antrieb finden Sie auf www.yaskawa.eu.com im "Download Center".

Bitte verwenden Sie folgende GSDML:

■ GSDML-V2.3-Yaskawa-SGDV-OCB03A-20140228.xml

Die Installation erfolgt nach folgender Vorgehensweise:

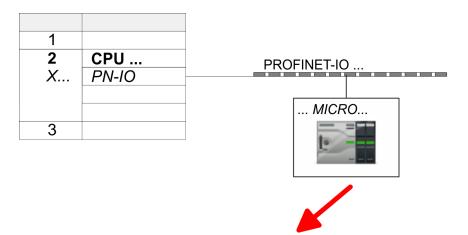
- 1. ▶ Laden Sie die zu Ihrem Antrieb passende GSDML-Datei herunter.
- 2. Extrahieren Sie die Datei in Ihr Arbeitsverzeichnis.
- 3. Starten Sie den Hardware-Konfigurator von Siemens.
- 4. Schließen Sie alle Projekte.
- **5.** ▶ Gehen Sie auf "Extras → GSD-Dateien installieren".
- 6. Navigieren Sie in Ihr Arbeitsverzeichnis und installieren Sie die entsprechende GSDML-Datei.
 - Nach der Installation finden Sie das PROFINET IO Device für den Sigma-5 Antrieb unter "PROFINET IO → Weitere Feldgeräte → Drives → Yaskawa Drives".

CPU im Projekt anlegen

Um kompatibel mit dem Siemens SIMATIC Manager zu sein, sind folgende Schritte durchzuführen:

- 1. Starten Sie den Hardware-Konfigurator von Siemens mit einem neuen Projekt.
- 2. Fügen Sie aus dem Hardware-Katalog eine Profilschiene ein.

3. Platzieren Sie auf "Slot"-Nummer 2 abhängig von der eingesetzten CPU von Yaskawa, folgende CPU von Siemens:


Yaskawa CPU	zu projektieren als SIMATIC S7-300 >
M13-CCF0000 ab V2.4.12	CPU 314C-2 PN/DP (6ES7 314-6EH04-0AB0 V3.3)
013-CCF0R00 ab V2.4.12	CPU 314C-2 PN/DP (6ES7 314-6EH04-0AB0 V3.3)
014-CEF0R01 ab V2.4.12	CPU 315-2 PN/DP (6ES7 315-2EH14-0AB0 V3.2)
015-CEFNR00 ab V2.4.16	CPU 315-2 PN/DP (6ES7 315-2EH14-0AB0 V3.2)
015-CEFPR01 ab V2.4.12	CPU 315-2 PN/DP (6ES7 315-2EH14-0AB0 V3.2)
017-CEFPR00 ab V2.4.12	CPU 317-2PN/DP (6ES7 317-2EK14-0AB0 V3.2)

- Die CPU wird auf der Profilschiene eingefügt wie z.B. für das System MICRO die CPU 314C-2 PN/DP.
- 1. Klicken Sie auf das Submodul "PN-IO" der CPU.
- 2. ▶ Wählen Sie "Kontextmenü → PROFINET IO-System einfügen".

- 3. Legen Sie mit [Neu] ein neues Subnetz an und vergeben Sie gültige IP-Adress-Daten
- **4.** ► Klicken Sie auf das Submodul "PN-IO" der CPU und öffnen Sie mit "Kontextmenü → Objekteigenschaften" den Eigenschafts-Dialog.
- **5.** Geben Sie unter "Allgemein" einen "Gerätenamen" an. Der Gerätename muss eindeutig am Ethernet-Subnetz sein.

Anbindung CPU als PROFINET-IO-Device

0	MICRO	M13-CCF0000
X2	M13-CCF0000	
1		
2		
3		

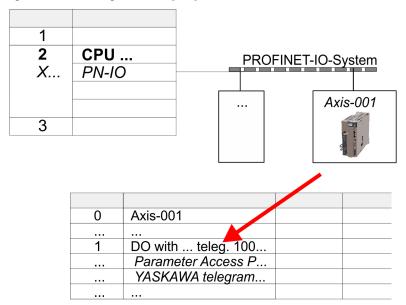
6. Navigieren Sie im Hardware-Katalog in das Verzeichnis "PROFINET IO → Weitere Feldgeräte → I/O" und binden Sie z.B. für System MICRO das IO-Device "M13-CCF0000" an Ihr PROFINET-System an.

Von Yaskawa gibt es folgende PROFINET-IO-Devices:

- System MICRO: "... Micro PLC"
- System SLIO: "... System SLIO"
- ➡ In der Steckplatzübersicht des PROFINET-IO-Device "... MICRO CPU" ist auf Steckplatz 0 die CPU bereits vorplatziert.

Ethernet-PG/OP-Kanal parametrieren

Steckpl.	Modul	
1		
2	CPU	
<i>X</i>	PN-IO	
3		
4	343-1EX30 🚤	
5		


- 1. Platzieren Sie für den Ethernet-PG/OP-Kanal auf Steckplatz 4 den Siemens CP 343-1 (SIMATIC 300 \ CP 300 \ Industrial Ethernet \CP 343-1 \ 6GK7 343-1EX30 0XE0 V3.0).
- Öffnen Sie durch Doppelklick auf den CP 343-1EX30 den Eigenschaften-Dialog und geben Sie für den CP unter "Eigenschaften" IP-Adress-Daten an. Gültige IP-Adress-Parameter erhalten Sie von Ihrem Systemadministrator.
- 3. Ordnen Sie den CP einem "Subnetz" zu. Ohne Zuordnung werden die IP-Adress-Daten nicht übernommen!

Sigma-5 PROFINET Antrieb einfügen und konfigurieren

Bei der Konfiguration ist für jede Achse ein Sigma-5 PROFINET-IO-Device zu konfigurieren.

- 1. Wählen Sie Ihren Sigma-5 PROFINET Antrieb "SGDV-xxxxE1..." aus dem Hardware-Katalog und ziehen Sie ihn auf das "PROFINET-IO-System".
 - → Der Sigma-5 PROFINET Antrieb wird an den IO-Controller angebunden und kann nun konfiguriert werden.
- 2. ► Klicken Sie auf das Sigma-5 IO-Device und öffnen Sie mit "Kontextmenü → Objekteigenschaften" den Eigenschaftsdialog.
- 3. ▶ Vergeben Sie einen passendenden "Gerätenamen" wie Axis-001.

4. Bestätigen Sie Ihre Eingaben mit [OK].

- 5. Blenden Sie im Hardware-Katalog die Komponenten des Sigma-5 PROFINET Antriebs "SGDV-xxxxE1..." ein und ziehen Sie die Komponente "DO with YASKAWA telegr. 100..." auf Slot 1 des Sigma-5 PROFINET Antriebs.
 - → Telegram 100 wird mit den entsprechenden Untergruppen eingefügt.

Die Verbindung zwischen den Achsen in der Hardware-Konfiguration und Ihrem Anwenderprogramm erfolgt durch Angabe folgender Moduleigenschaften in den Aufrufparametern des FB 891 - VMC InitSigma PN:

- Moduleeigenschaft "Parameter Access Point": Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
 - FB 891 VMC InitSigma_PN: ParaAccessPointAddress:
 Angabe der Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
- Moduleeigenschaft"YASKAWA Telegram PZD...":
 Jeweilige Startadresse des Ein-/Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "InputsStartAddress":
 Angabe der Startadresse des Eingabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "OutputsStartAddress":
 Angabe der Startadresse des Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "LogicalAddress":
 Angabe des kleineren Werts der Startadressen des Ein-/Ausgabe-Adressbereichs.
- Anwenderprogramm → 427
- FB 891 VMC InitSigma_PN → 514

Beispiel Hardware-Konfiguration

Steck- platz	Baugruppe	•••	E-Adr.	A-Adr.	Diagnoseadresse
0	SGDV-OCB03A				2037
X1	PN-IO				2036
X1 P1	Port 1				2035
X1 P2	Port 2				2034
1	DO with YASKAWA telegr.100, PZD-16/14				2033
1.1	Parameter Access Point				2033
1.2	YASKAWA telegram, PZD-16/14		284-311	288-319	

13.3.1.4.2 Hardware-Konfiguration System 300S

Voraussetzung

- Bitte verwenden Sie für die Projektierung den Siemens SIMATIC Manager ab V5.5 SP2.
- Damit der PROFINET Antrieb im Siemens SIMATIC Manager konfiguriert werden kann, muss die entsprechende GSDML-Datei installiert sein.
- Die Bausteine können Sie bei folgenden CPUs einsetzen:
 - System 300S CPU 315-4PN43
 - System 300S CPU 315-4PN23
 - System 300S CPU 317-4PN23
- Die Projektierung der System 300S PROFINET CPU erfolgt im Siemens SIMATIC Manager als entsprechende Siemens CPU.
 - Die CPUs 315-4PNxx sind als Siemens CPU 315-2 PN/DP (6ES7 315-2EH14-0AB0 V3.2) zu projektieren.
 - Die CPU 317-4PN23 ist als Siemens CPU 317-2 PN/DP (6ES7 317-2EK14-0AB0 V3.2) zu projektieren.

GSDML-Datei für *Sigma-5* PROFINET Antrieb installieren

Die GSDML-Datei für den Sigma-5 PROFINET Antrieb finden Sie auf www.yaskawa.eu.com im "Download Center".

Bitte verwenden Sie folgende GSDML:

GSDML-V2.3-Yaskawa-SGDV-OCB03A-20140228.xml

Die Installation erfolgt nach folgender Vorgehensweise:

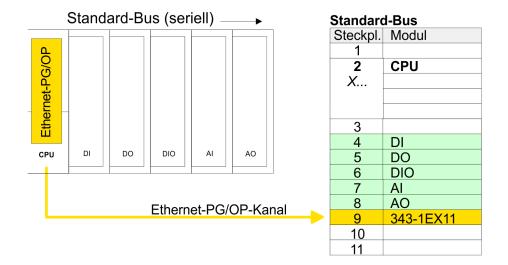
- 1. Laden Sie die zu Ihrem Antrieb passende GSDML-Datei herunter.
- 2. Extrahieren Sie die Datei in Ihr Arbeitsverzeichnis.
- **3.** Starten Sie den Hardware-Konfigurator von Siemens.
- 4. Schließen Sie alle Projekte.
- **5.** ▶ Gehen Sie auf "Extras → GSD-Dateien installieren".
- 6. Navigieren Sie in Ihr Arbeitsverzeichnis und installieren Sie die entsprechende GSDML-Datei.
 - Nach der Installation finden Sie das PROFINET IO Device für den Sigma-5 Antrieb unter "PROFINET IO → Weitere Feldgeräte → Drives → Yaskawa Drives".

CPU im Projekt anlegen

Steckp	Baugruppe
1	
2	CPU 315-2 PN/DP
X1	MPI/DP
X2	PN-IO
X2	Port 1
X2	Port 2
3	

Um kompatibel mit dem Siemens SIMATIC Manager zu sein, sind folgende Schritte durchzuführen:

- 1. Starten Sie den Hardware-Konfigurator von Siemens mit einem neuen Projekt.
- 2. Fügen Sie aus dem Hardware-Katalog eine Profilschiene ein.
- 3. Platzieren Sie auf "Slot"-Nummer 2 für die CPU 315PN die Siemens CPU 315-2 PN/DP (6ES7 315-2EH14-0AB0 V3.2) und für die CPU 317PN die Siemens CPU 317-2 PN/DP (6ES7 317-2EK14-0AB0 V3.2).
- 4. Klicken Sie auf das Submodul "PN-IO" der CPU.
- 5. Wählen Sie "Kontextmenü → PROFINET IO-System einfügen".

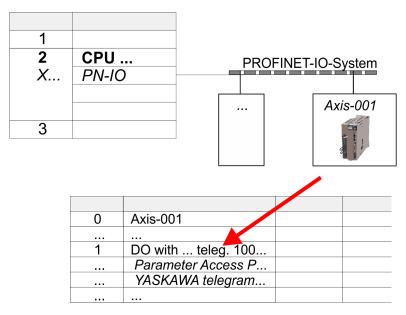

Steckpl.	Baugruppe	
1		
2	CPU	PROFINET-IO-System
X	PN-IO	TITOTINE 1-10-bystem
3		

- 6. Legen Sie mit [Neu] ein neues Subnetz an.
- 7. Klicken Sie auf das Submodul "PN-IO" der CPU und öffnen Sie mit "Kontextmenü → Objekteigenschaften" den Eigenschafts-Dialog.
- **8.** Geben Sie unter "Allgemein" einen "Gerätenamen" an. Der Gerätename muss eindeutig am Ethernet-Subnetz sein.

Ethernet-PG/OP-Kanal parametrieren

Die CPU hat einen Ethernet-PG/OP-Kanal integriert. Über diesen Kanal können Sie Ihre CPU programmieren und fernwarten.

- 1. Projektieren Sie die Module am Standard-Bus.
- 2. Für den Ethernet-PG/OP-Kanal ist <u>immer</u> unterhalb der reell gesteckten Module ein Siemens CP 343-1 (SIMATIC 300 \ CP 300 \ Industrial Ethernet \CP 343-1 \ 6GK7 343-1EX11 0XE0) zu platzieren.
- 3. Offfnen Sie durch Doppelklick auf den CP 343-1EX11 den Eigenschaften-Dialog und geben Sie für den CP unter "Eigenschaften" die IP-Adress-Daten aus der Urtaufe an
- 4. Ordnen Sie den CP einem "Subnetz" zu. Ohne Zuordnung werden die IP-Adress-Daten nicht übernommen!
- 5. Übertragen Sie Ihr Projekt in Ihre CPU
 - → Die IP-Adress-Daten werden in Ihr Projekt übernommen.



Näheres zur Urtaufe und zum Einsatz des Ethernet-PG/OP-Kanals finden Sie im Handbuch zu Ihrer CPU.

Sigma-5 PROFINET Antrieb einfügen und konfigurieren

Bei der Konfiguration ist für jede Achse ein *Sigma-5* PROFINET-IO-Device zu konfigurieren.

- 1. Wählen Sie Ihren Sigma-5 PROFINET Antrieb "SGDV-xxxxE1..." aus dem Hardware-Katalog und ziehen Sie ihn auf das "PROFINET-IO-System".
 - → Der Sigma-5 PROFINET Antrieb wird an den IO-Controller angebunden und kann nun konfiguriert werden.
- Klicken Sie auf das Sigma-5 IO-Device und öffnen Sie mit "Kontextmenü
 → Objekteigenschaften" den Eigenschaftsdialog.
- 3. Vergeben Sie einen passendenden "Gerätenamen" wie Axis-001.
- 4. Bestätigen Sie Ihre Eingaben mit [OK].

- 5. Blenden Sie im Hardware-Katalog die Komponenten des *Sigma-5* PROFINET Antriebs "SGDV-xxxxE1..." ein und ziehen Sie die Komponente "DO with YASKAWA telegr. 100..." auf Slot 1 des *Sigma-5* PROFINET Antriebs.
 - → Telegram 100 wird mit den entsprechenden Untergruppen eingefügt.

Die Verbindung zwischen den Achsen in der Hardware-Konfiguration und Ihrem Anwenderprogramm erfolgt durch Angabe folgender Moduleigenschaften in den Aufrufparametern des FB 891 - VMC InitSigma_PN:

- Moduleeigenschaft "Parameter Access Point": Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
 - FB 891 VMC InitSigma_PN: ParaAccessPointAddress:
 Angabe der Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
- Moduleeigenschaft"YASKAWA Telegram PZD...":
 Jeweilige Startadresse des Ein-/Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "InputsStartAddress":
 Angabe der Startadresse des Eingabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "OutputsStartAddress":
 Angabe der Startadresse des Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "LogicalAddress":
 Angabe des kleineren Werts der Startadressen des Ein-/Ausgabe-Adressbereichs.
- Anwenderprogramm → 427
- FB 891 VMC InitSigma PN → 514

Beispiel Hardware-Konfiguration

Steck- platz	Baugruppe	•••	E-Adr.	A-Adr.	Diagnoseadresse
0	SGDV-OCB03A				2037
X1	PN-IO				2036
X1 P1	Port 1				2035
X1 P2	Port 2				2034
1	DO with YASKAWA telegr.100, PZD-16/14				2033
1.1	Parameter Access Point				2033
1.2	YASKAWA telegram, PZD-16/14		284-311	288-319	

13.3.1.4.3 Hardware-Konfiguration Siemens S7-300

Voraussetzung

- Bitte verwenden Sie für die Projektierung den Siemens SIMATIC Manager ab V5.5 SP2.
- Damit der PROFINET Antrieb im Siemens SIMATIC Manager konfiguriert werden kann, muss die entsprechende GSDML-Datei installiert sein.
- Die Bausteine können Sie bei allen aktuellen Siemens S7-300 CPUs einsetzen, welche einen PROFINET-IO-Controller besitzen:

GSDML-Datei für *Sigma-5* PROFINET Antrieb installieren

Die GSDML-Datei für den Sigma-5 PROFINET Antrieb finden Sie auf www.yaskawa.eu.com im "Download Center".

Bitte verwenden Sie folgende GSDML:

GSDML-V2.3-Yaskawa-SGDV-OCB03A-20140228.xml

Die Installation erfolgt nach folgender Vorgehensweise:

- 1. Laden Sie die zu Ihrem Antrieb passende GSDML-Datei herunter.
- 2. Extrahieren Sie die Datei in Ihr Arbeitsverzeichnis.
- 3. Starten Sie den Hardware-Konfigurator von Siemens.
- 4. Schließen Sie alle Projekte.
- **5.** ▶ Gehen Sie auf "Extras → GSD-Dateien installieren".
- 6. Navigieren Sie in Ihr Arbeitsverzeichnis und installieren Sie die entsprechende GSDML-Datei.
 - Nach der Installation finden Sie das PROFINET IO Device für den Sigma-5 Antrieb unter "PROFINET IO → Weitere Feldgeräte → Drives → Yaskawa Drives".

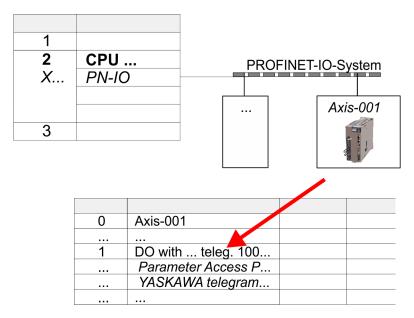
CPU im Projekt anlegen

Steckp	Baugruppe
1	
2	CPU 315-2 PN/DP
X1	MPI/DP
X2	PN-IO
X2	Port 1
X2	Port 2
3	

Im Siemens SIMATIC Manager sind folgende Schritte durchzuführen:

1. Starten Sie den Hardware-Konfigurator von Siemens mit einem neuen Projekt.

- 2. Fügen Sie aus dem Hardware-Katalog eine Profilschiene ein.
- Wählen Sie im Hardware-Katalog die entsprechende Siemens S7-300 CPU, welche einen PROFINET-IO-Controller besitzt, wie z.B. die Siemens CPU 315-2 PN/DP (6ES7 315-2EH14-0AB0 V3.2). Platzieren Sie diese auf "Slot"-Nummer 2.
- 4. Klicken Sie auf das Submodul "PN-IO" der CPU.
- 5. ▶ Wählen Sie "Kontextmenü → PROFINET IO-System einfügen".


Steckpl.	Baugruppe	
1		
2	CPU	PROFINET-IO-System
X	PN-IO	T NOT INC. 140-Oystelli
3		

- 6. Legen Sie mit [Neu] ein neues Subnetz an.
- 7. Klicken Sie auf das Submodul "PN-IO" der CPU und öffnen Sie mit "Kontextmenü → Objekteigenschaften" den Eigenschafts-Dialog.
- **8.** Geben Sie unter "Allgemein" einen "Gerätenamen" an. Der Gerätename muss eindeutig am Ethernet-Subnetz sein.

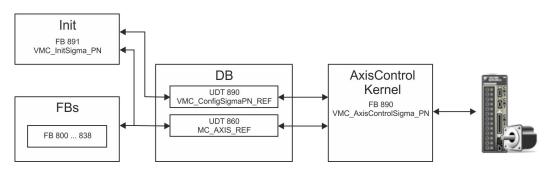
Sigma-5 PROFINET Antrieb einfügen und konfigurieren

Bei der Konfiguration ist für jede Achse ein Sigma-5 PROFINET-IO-Device zu konfigurieren.

- 1. Wählen Sie Ihren Sigma-5 PROFINET Antrieb "SGDV-xxxxE1..." aus dem Hardware-Katalog und ziehen Sie ihn auf das "PROFINET-IO-System".
 - → Der Sigma-5 PROFINET Antrieb wird an den IO-Controller angebunden und kann nun konfiguriert werden.
- **2.** Klicken Sie auf das *Sigma-5* IO-Device und öffnen Sie mit *"Kontextmenü* → *Objekteigenschaften"* den Eigenschaftsdialog.
- 3. ▶ Vergeben Sie einen passendenden "Gerätenamen" wie Axis-001.
- 4. Bestätigen Sie Ihre Eingaben mit [OK].

- 5. Blenden Sie im Hardware-Katalog die Komponenten des *Sigma-5* PROFINET Antriebs "SGDV-xxxxE1..." ein und ziehen Sie die Komponente "DO with YASKAWA telegr. 100..." auf Slot 1 des *Sigma-5* PROFINET Antriebs.
 - → Telegram 100 wird mit den entsprechenden Untergruppen eingefügt.

Die Verbindung zwischen den Achsen in der Hardware-Konfiguration und Ihrem Anwenderprogramm erfolgt durch Angabe folgender Moduleigenschaften in den Aufrufparametern des FB 891 - VMC InitSigma_PN:


- Moduleeigenschaft "Parameter Access Point": Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
 - FB 891 VMC InitSigma_PN: ParaAccessPointAddress:
 Angabe der Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
- Moduleeigenschaft"YASKAWA Telegram PZD...":
 Jeweilige Startadresse des Ein-/Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "InputsStartAddress":
 Angabe der Startadresse des Eingabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "OutputsStartAddress":
 Angabe der Startadresse des Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "LogicalAddress":
 Angabe des kleineren Werts der Startadressen des Ein-/Ausgabe-Adressbereichs.
- Anwenderprogramm → 427
- FB 891 VMC InitSigma PN → 514

Beispiel Hardware-Konfiguration

Steck- platz	Baugruppe	 E-Adr.	A-Adr.	Diagnoseadresse
0	SGDV-OCB03A			2037
X1	PN-IO			2036
X1 P1	Port 1			2035
X1 P2	Port 2			2034
1	DO with YASKAWA telegr.100, PZD-16/14			2033
1.1	Parameter Access Point			2033
1.2	YASKAWA telegram, PZD-16/14	284-311	288-319	

13.3.1.4.4 Anwender-Programm

Programmstruktur

DB

Für jede Achse ist ein Datenbaustein (Achs-DB) für Konfiguration und Statusdaten anzulegen. Der Datenbaustein besteht aus folgenden Datenstrukturen:

- UDT 890 VMC_ConfigSigmaPN_REF
 Die Datenstruktur beschreibt den Aufbau der Konfiguration des Antriebs.
 Spezifische Datenstruktur für Sigma-5/7 PROFINET.
- UDT 860 MC AXIS REF

Die Datenstruktur beschreibt den Aufbau der Parameter und Statusinformationen von Antrieben.

Allgemeine Datenstruktur für alle Antriebe und Bussysteme.

- FB 891 VMC_InitSigma_PN
 - Der Init-Baustein dient zur Konfiguration einer Achse.
 - Spezifischer Baustein für Sigma-5/7 PROFINET.
 - Die Konfigurationsdaten für die Initialisierung sind im Achs-DB abzulegen.
- FB 890 VMC_AxisControlSigma_PN
 - Spezifischer Baustein für Sigma-5/7 PROFINET.
 - Dieser Baustein ist eine Kombination aus einem Kernel und einem AxisControl Baustein und kommuniziert über PROFINET mit dem Antrieb, verarbeitet die Benutzeranforderungen und gibt Statusmeldungen zurück.
 - Unterstützt einfache Bewegungskommandos und liefert alle relevanten Statusmeldungen
 - Der Austausch der Daten erfolgt mittels des Achs-DB.

- Über die Instanzdaten des Bausteins können Sie zur Bewegungssteuerung und Statusabfrage eine Visualisierung anbinden.
- Zusätzlich zum FB 890 VMC_AxisControlSigma_PN, haben Sie die Möglichkeit PLCopen-Bausteine zu nutzen.
- FB 800 ... FB 838 PLCopen
 - Die PLCopen-Bausteine dienen zur Programmierung von Bewegungsabläufen und Statusabfragen.
 - Allgemeine Bausteine für alle Antriebe und Bussysteme.

Programmierung

Bibliothek einbinden

- 1. Gehen Sie in das "Download Center" von www.yaskawa.eu.com.
- **2.** Laden Sie aus dem Downloadbereich unter "Controls Library" die Simple Motion Control Library.
- 3. → Öffnen Sie mit "Datei → Dearchivieren" das Dialogfenster zur Auswahl der ZIP-Datei.
- **4.** Wählen Sie die entsprechende ZIP-Datei an und klicken Sie auf [Öffnen].
- **5.** Geben Sie ein Zielverzeichnis an, in dem die Bausteine abzulegen sind und starten Sie den Entpackvorgang mit [OK].

Alarm-OBs anlegen

- 1. Klicken Sie in Ihrem Projekt auf "Bausteine" und wählen Sie "Kontextmenü → Neues Objekt einfügen → Organisationsbaustein".
 - → Das Dialogfenster "Eigenschaften Organistionsbaustein" öffnet sich.
- 2. Fügen Sie nacheinander OB 57, OB 82 und OB 86 Ihrem Projekt hinzu.

Bausteine in Projekt kopieren

- Öffnen Sie die Bibliothek nach dem Entpackvorgang und ziehen Sie per Drag&Drop folgende Bausteine in "Bausteine" Ihres Projekts:
 - Sigma PROFINET:
 - UDT 890 VMC_ConfigSigmaPN_REF → "UDT 890 VMC_ConfigSigmaPN_REF Sigma-5/7 PROFINET Datenstruktur Achskonfiguration"...Seite 510
 - FB 890 VMC_AxisControlSigma_PN → "FB 890 VMC_Axis-ControlSigma_PN - Control-Baustein Achskontrolle für Sigma-5/7 PROFINET"...Seite 510
 - FB 891 VMC_InitSigma_PN → "FB 891 VMC_InitSigma_PN Sigma-5/7 PROFINET Initialisierung"... Seite 514
 - Axis Control
 - UDT 860 MC_AXIS_REF → "UDT 860 MC_AXIS_REF Datenstruktur Achsdaten"...Seite 659
 - FB 860 VMC_AxisControl → "FB 860 VMC_AxisControl Control-Baustein Achskontrolle"...Seite 659

Achs-DB anlegen

1. Klicken Sie in Ihrem Projekt auf "Bausteine" und wählen Sie "Kontextmenü → Neues Objekt einfügen → Datenbaustein".

Geben Sie folgende Parameter an:

- Name und Typ
 - Die DB-Nr. als "Name" können Sie frei wählen wie z.B. DB 10.
 - Stellen Sie "Global-DB" als "Typ" ein.
- Symbolischer Name
 - Geben Sie "Axis01" an.

Bestätigen Sie Ihre Eingaben mit [OK].

- Der Baustein wird angelegt.
- - Legen Sie in "Axis01" die Variable "Config" vom Typ UDT 890 an. Dies sind spezifische Achs-Konfigurationsdaten.
 - Legen Sie in "Axis01" die Variable "Axis" vom Typ UDT 860 an. Während des Betriebs werden hier alle Betriebsdaten der Achse abgelegt.

=

DB10

Adresse	Name	Тур	
		Struct	
	Config	"VMC_ConfigSigmaPN_REF"	
	Axis	"MC_AXIS_REF	
		END_STRUCT	

OB 1 - Konfiguration der Achsen

Öffnen Sie den OB 1 und programmieren Sie folgende FB-Aufrufe mit zugehörigen DBs: FB 891 - VMC_InitSigma_PN, DB 891

Die Verbindung zwischen den Achsen in der Hardware-Konfiguration und Ihrem Anwenderprogramm erfolgt durch Angabe folgender Moduleigenschaften in den Aufrufparametern des FB 891 - VMC InitSigma_PN:

- Moduleeigenschaft "Parameter Access Point": Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
 - FB 891 VMC InitSigma_PN: ParaAccessPointAddress:
 Angabe der Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
- Moduleeigenschaft"YASKAWA Telegram PZD...":
 Jeweilige Startadresse des Ein-/Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "InputsStartAddress":
 Angabe der Startadresse des Eingabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "OutputsStartAddress":
 Angabe der Startadresse des Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "LogicalAddress":
 Angabe des kleineren Werts der Startadressen des Ein-/Ausgabe-Adressbereichs.
- Hardware-Konfiguration → 413
- FB 891 VMC InitSigma_PN → 514

Beispiel Hardware-Konfiguration

Steck- platz	Baugruppe	 E-Adr.	A-Adr.	Diagnoseadresse
0	SGDV-OCB03A			2037
X1	PN-IO			2036
X1 P1	Port 1			2035
X1 P2	Port 2			2034
1	DO with YASKAWA telegr.100, PZD-16/14			2033
1.1	Parameter Access Point			2033
1.2	YASKAWA telegram, PZD-16/14	284-311	288-319	

Beispielaufruf

```
CALL "VMC InitSigma PN" , "VMC InitSigma PN 1"
             :="InitS5PN1_Enable"
Enable
LogicalAddress
                          :=284 //HW config: Smallest IO addr.
ParaAccessPointAdress :=2033 //HW config: Diag addr.
InputsStartAddress :=284 //HW config: Telegr. 100 start I addr.
OutputsStartAddress :=288 //HW config: Telegr. 100 start O addr.
EncoderType
                         :=1
EncoderResolutionBits :=20
FactorPosition :=1.048576e+006
ractorVelocity :=1.048576e+006
FactorAcceleration :=1.048576e+006
OffsetPosition
OffsetPosition :=0.000000e+000

MaxVelocityApp :=5.000000e+001

MaxAccelerationApp :=1.000000e+002

MaxDecelerationApp :=1.000000e+002

MaxVelocityDrive :=6.000000e+001

:=1.048500e+003
MaxPosition
                          :=1.048500e+003
MinPosition
                          :=-1.048514e+003
EnableMaxPosition
                         :=TRUE
                         :=TRUE
EnableMinPosition
                         :="InitS5PN1 MinUserPos"
MinUserPosition
                         :="InitS5PN1 MaxUserPos"
MaxUserPosition
                          :="InitS5PN1 Valid"
Valid
                          :="InitS5PN1 Error"
Error
ErrorID
                          :="InitS5PN1 ErrorID"
Config
                          :="Axis01".Config
Axis
                           :="Axis01".Axis
```

AxisControl verbinden

FB 890 - VMC_AxisControlSigma_PN, DB 890 → "FB 890 - VMC_AxisControlSigma_PN - Control-Baustein Achskontrolle für Sigma-5/7 PROFINET"...Seite 510

Der Baustein verarbeitet die Benutzerkommandos und gibt sie entsprechend aufbereitet an den Antrieb über PROFINET weiter.

```
CALL "VMC_AxisControlSigma_PN", "DI_AxisControlSigmaPN01"
AxisEnable :="AxCtrl1_AxisEnable"
AxisReset :="AxCtrl1_AxisReset"
HomeExecute :="AxCtrl1_HomeExecute"
HomePosition :="AxCtrl1_HomePosition"
StopExecute :="AxCtrl1_StopExecute"
MvVelocityExecute:="AxCtrl1_MvVelExecute"
MvRelativeExecute:="AxCtrl1_MvRelExecute"
MvAbsoluteExecute:="AxCtrl1_MvAbsExecute"
PositionDistance :="AxCtrl1_PositionDistance"
Direction :="AxCtrl1_Direction"
```

```
Velocity
                              :="AxCtrl1_Velocity"
Acceleration
Deceleration
                             :="AxCtrl1_Acceleration"
                              :="AxCtrl1_Deceleration"
JogPositive
JogNegative
JogVelocity
                             :="AxCtrl1_JogPositive"
:="AxCtrl1_JogNegative"
:="AxCtrl1_JogVelocity"
 JogAcceleration :="AxCtrl1 JogAcceleration"
 JogDeceleration :="AxCtrl1 JogDeceleration"
AxisReady :="AxCtrl1_AxisReady"
AxisEnabled :="AxCtrl1_AxisEnabled"
AxisReady
AxisEnabled
AxisError
AxisErrorID
DriveWarning
DriveError
DriveErrorID

="AxCtrl1_DriveErrorID"
="AxCtrl1_IsHomed"
ModeOfOperation :="AxCtrl1 ModeOfOperation"
PLCopenState :="AxCtrl1 PLCopenState"
ActualPosition :="AxCtrl1_ActualPosition"
ActualVelocity :="AxCtrl1_ActualVelocity"
CmdDone :="AxCtrl1_CmdDone"
CmdBusy :="AxCtrl1_CmdBusy"
CmdAborted :="AxCtrl1_CmdAborted"
CmdError :="AxCtrl1_CmdError"
CmdErrorID :="AxCtrl1_CmdErrorID"
DirectionPositive:="AxCtrll_DirectionPos"
DirectionNegative:="AxCtrll_DirectionNeg"
SWLimitMinActive :="AxCtrl1_SWLimitMinActive"
SWLimitMaxActive :="AxCtrl1_SWLimitMaxActive"
HWLimitMinActive :="AxCtrl1_HWLimitMinActive"
HWLimitMaxActive :="AxCtrl1 HWLimitMaxActive"
                              :="Axis01".Axis
Axis
```

i

Für komplexe Bewegungsaufgaben können Sie die PLCopen-Bausteine verwenden. Hier müssen Sie ebenfalls unter Axis die Referenz zu den Achsdaten im Achs-DB angeben.

Ihr Projekt beinhaltet nun folgende Bausteine:

- OB 1 Main
- OB 57 DP Manufacturer Alarm
- OB 82 I/O FLT1
- OB 86 Rack_FLT
- FB 890 VMC_AxisControlSigma_PN mit Instanz-DB
- FB 891 VMC_InitSigma_PN mit Instanz-DB
- UDT 860 MC_Axis_REF
- UDT 890 VMC_ConfigSigmaPN_REF

Zeitlicher Ablauf

- Mählen Sie "Projekt → Alles übersetzen" und übertragen Sie das Projekt in Ihre CPU.
 - ➡ Sie können jetzt Ihre Applikation in Betrieb nehmen.

VORSICHT

Bitte beachten Sie immer die Sicherheitshinweise zu ihrem Antrieb, insbesondere bei der Inbetriebnahme!

- **2.** Bevor eine Achse gesteuert werden kann, muss diese initialisiert werden. Rufen Sie hierzu den *Init* Baustein FB 891 VMC_InitSigma_PN mit *Enable* = TRUE auf.
 - → Der Ausgang Valid meldet TRUE zurück. Im Fehlerfall können Sie durch Auswertung der ErrorID den Fehler ermitteln.

Den *Init*-Baustein müssen Sie erneut aufrufen, wenn Sie einen neuen Achs-DB laden oder Parameter am *Init*-Baustein geändert wurden.

Fahren Sie erst fort, wenn der Init-Baustein keinen Fehler meldet!

3. Programmieren Sie Ihre Applikation mit dem FB 890 - VMC_AxisControlSigma_PN oder mit den PLCopen Bausteinen.

13.3.1.5 Einsatz im Siemens TIA Portal - Yaskawa CPUs bzw. Siemens S7-300 CPUs

13.3.1.5.1 Hardware-Konfiguration System MICRO bzw. SLIO

Voraussetzung

Übersicht

- Bitte verwenden Sie für die Projektierung das Siemens TIA Portal ab V14.
- Die Projektierung der System MICRO bzw. SLIO CPU erfolgt im Siemens TIA Portal in Form eines virtuellen PROFINET IO Devices.
 - Das PROFINET IO Device ist mittels GSDML im Hardware-Katalog zu installieren.
- Damit der PROFINET Antrieb im Siemens TIA Portal konfiguriert werden kann, muss die entsprechende GSDML-Datei installiert sein.

GSDML-Datei für System MICRO bzw. SLIO installieren

Die Installation des PROFINET-IO-Device im Hardware-Katalog erfolgt nach folgender Vorgehensweise:

- 1. Gehen Sie in das "Download Center" von www.yaskawa.eu.com.
- **2.** Laden Sie unter "GSDML" die Konfigurationsdatei für Ihre System MICRO bzw. SLIO CPU.
- 3. Extrahieren Sie die Datei in Ihr Arbeitsverzeichnis.
- 4. Starten Sie das Siemens TIA Portal.
- 5. Schließen Sie alle Projekte.
- **6.** ▶ Wechseln Sie in die *Projektansicht*.
- 7. ▶ Gehen Sie auf "Extras → Gerätebeschreibungsdatei (GSD) installieren".
- 8. Navigieren Sie in Ihr Arbeitsverzeichnis und installieren Sie die entsprechende GSDML-Datei.
 - Nach der Installation wird der Hardware-Katalog aktualisiert und das Siemens TIA Portal beendet. Nach einem Neustart des Siemens TIA Portals finden Sie das entsprechende PROFINET-IO-Device unter "Weitere Feldgeräte → PROFINET IO → I/O → VIPA ...".

Von Yaskawa gibt es folgende PROFINET-IO-Devices:

- System MICRO: "... Micro PLC"
- System SLIO: "... System SLIO"

Damit die Komponenten von Yaskawa angezeigt werden können, müssen Sie im Hardware-Katalog bei "Filter" den Haken entfernen.

GSDML-Datei für Sigma-5 PROFINET Antrieb installieren

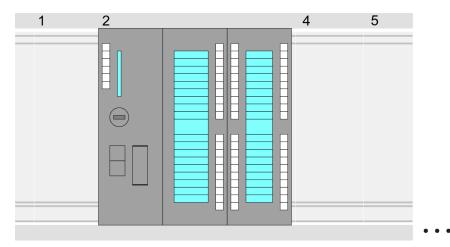
Die GSDML-Datei für den Sigma-5 PROFINET Antrieb finden Sie auf www.yaskawa.eu.com im "Download Center".

Bitte verwenden Sie folgende GSDML:

GSDML-V2.3-Yaskawa-SGDV-OCB03A-20140228.xml

Die Installation erfolgt nach folgender Vorgehensweise:

- 1. Laden Sie die zu Ihrem Antrieb passende GSDML-Datei herunter.
- 2. Extrahieren Sie die Datei in Ihr Arbeitsverzeichnis.
- 3. Starten Sie das Siemens TIA Portal.
- 4. Schließen Sie alle Projekte.
- 5. Gehen Sie auf "Extras → Gerätebeschreibungsdatei (GSD) installieren".
- 6. Navigieren Sie in Ihr Arbeitsverzeichnis und installieren Sie die entsprechende GSDML-Datei.
 - Nach der Installation finden Sie das PROFINET IO Device für den Sigma-5 Antrieb unter "Weitere Feldgeräte → PROFINET IO → Drives → Yaskawa ...".


CPU im Projekt anlegen

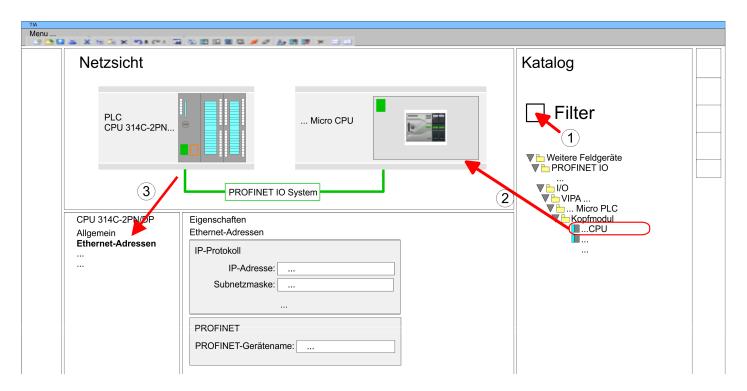
Um kompatibel mit dem Siemens TIA Portal zu sein, sind folgende Schritte durchzuführen:

- 1. Starten Sie das Siemens TIA Portal mit einem neuen Projekt.
- 2. Wechseln Sie in die Projektansicht.
- 3. Klicken Sie in der Projektnavigation auf "Neues Gerät hinzufügen".
- **4.** Wählen Sie, abhängig von der eingesetzten CPU von Yaskawa, folgende CPU von Siemens aus:

Yaskawa CPU	zu projektieren als SIMATIC S7-300 >
M13-CCF0000 ab V2.4.12	CPU 314C-2 PN/DP (6ES7 314-6EH04-0AB0 V3.3)
013-CCF0R00 ab V2.4.12	CPU 314C-2 PN/DP (6ES7 314-6EH04-0AB0 V3.3)
014-CEF0R01 ab V2.4.12	CPU 315-2 PN/DP (6ES7 315-2EH14-0AB0 V3.2)
015-CEFNR00 ab V2.4.16	CPU 315-2 PN/DP (6ES7 315-2EH14-0AB0 V3.2)
015-CEFPR01 ab V2.4.12	CPU 315-2 PN/DP (6ES7 315-2EH14-0AB0 V3.2)
017-CEFPR00 ab V2.4.12	CPU 317-2PN/DP (6ES7 317-2EK14-0AB0 V3.2)

→ Die CPU wird mit einer Profilschiene eingefügt wie z.B. für das System MICRO die CPU 314C-2 PN/DP.

Geräteübersicht:


Baugruppe	 Steckplatz	 Тур	
PLC	2	CPU 314C-2PN/DP	
MPI-Schnittstelle	2 X1	MPI/DP-Schnittstelle	
PROFINET- Schnitt	2 X2	PROFINET-Schnittstelle	
DI24/DO16	2 5	DI24/DO16	
AI5/AO2	2 6	AI5/AO2	
Zählen	27	Zählen	

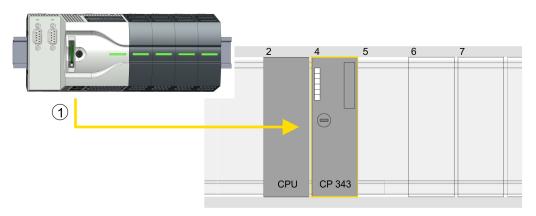
Anbindung CPU als PROFINET-IO-Device

- 1. Wechseln Sie im *Projektbereich* in die "Netzsicht".
- 2. Navigieren Sie im Hardware-Katalog zu "Weitere Feldgeräte → PROFINET IO → I/O → VIPA ..." und binden Sie das Slave-System an die CPU an, indem Sie dies aus dem Hardware-Katalog in die Netzsicht ziehen und dieses über PROFINET an die CPU anbinden.

Von Yaskawa gibt es folgende PROFINET-IO-Devices:

- System MICRO: "... Micro PLC"
- System SLIO: "... System SLIO"
- 3. Klicken Sie in der *Netzsicht* auf den PROFINET-Teil der Siemens CPU und geben Sie in *"Eigenschaften"* unter *"Ethernet-Adressen"* im Bereich *"IP-Protokoll"* gültige IP-Adressdaten an.
- **4.** Geben Sie unter "PROFINET" einen "PROFINET Gerätenamen" an. Der Gerätename muss eindeutig am Ethernet-Subnetz sein.

- 5. Wählen Sie in der *Netzsicht* das IO-Device wie z.B. "... *MICRO PLC*" an und wechseln Sie in die *Geräteübersicht*.
 - ➡ In der Geräteübersicht des PROFINET-IO-Device "... MICRO PLC" ist auf Steckplatz 0 die CPU bereits vorplatziert. Ab Steckplatz 1 können Sie Ihre System MICRO bzw. SLIO Module platzieren.


Ethernet-PG/OP-Kanal parametrieren

Damit Sie auf die entsprechende Ethernet-Schnittstelle online zugreifen können, müssen Sie dieser durch die "Initialisierung" bzw. "Urtaufe" IP-Adress-Parameter zuweisen. Bitte beachten Sie, dass Sie die IP-Adress-Daten in Ihr Projekt für den CP 343-1 übernehmen.

Näheres zur Urtaufe und zum Einsatz des Ethernet-PG/OP-Kanals finden Sie im Handbuch zu Ihrer CPU.

- 1. Platzieren Sie für den Ethernet-PG/OP-Kanal auf Steckplatz 4 des Siemens-Systems den Siemens CP 343-1 (6GK7 343-1EX30 0XE0 V3.0).
- <u>2.</u> Öffnen Sie durch Klick auf den CP 343-1EX30 den "Eigenschaften"-Dialog und geben Sie für den CP unter *"Eigenschaften"* die IP-Adress-Daten aus der Urtaufe an.
- 3. Ordnen Sie den CP einem "Subnetz" zu. Ohne Zuordnung werden die IP-Adress-Daten nicht übernommen!
- 4. Dibertragen Sie Ihr Projekt in Ihre CPU
 - ▶ Die IP-Adress-Daten werden in Ihr Projekt übernommen. Beispielhaft wird dies nachfolgend am System MICRO gezeigt.

(1) Ethernet-PG/OP-Kanal

Geräteübersicht

Baugruppe	 Steckplatz	 Тур	
PLC	2	CPU 314C-2PN/DP	
MPI/DP-Schnittstelle	2 X1	MPI/DP-Schnittstelle	
PROFINET-Schnitt- stelle	2 X2	PROFINET-Schnittstelle	
CP 343-1	4	CP 343-1	

Sigma-5 PROFINET Antrieb einfügen und konfigurieren

Bei der Konfiguration ist für jede Achse ein *Sigma-5* PROFINET-IO-Device zu konfigurieren.

- 1. Wählen Sie Ihren Sigma-5 PROFINET Antrieb "SGDV-0CB..." aus dem Hardware-Katalog unter "Weitere Feldgeräte → PROFINET IO → Drives → Yaskawa ..." und ziehen Sie ihn auf das "PROFINET-IO-System".
 - → Der Sigma-5 PROFINET Antrieb wird an den IO-Controller angebunden und kann nun konfiguriert werden.
- **2.** Klicken Sie auf das Sigma-5 IO-Device und öffnen Sie mit "Kontextmenü → Gerätekonfiguration" die "Geräteübersicht".
- 3. Vergeben Sie einen passendenden "Gerätenamen" wie Axis-001.

4. Geräteübersicht

Baugruppe	 Steckplatz	 Тур	
Axis-001	0	SGDV-0CB03A	
PN-IO	0 X1	SGDV-0CB03A	
DO w/ Yaskawa telegr.100,PZD	1	DO w/ Yaskawa telegr.100,PZD-16/14	
Parameter Access Point	11	Parameter Access Point	
Yaskawa telegram, PZD-16/14	12	Yaskawa telegram, PZD-16/14	

Blenden Sie im Hardware-Katalog die Module des *Sigma-5* PROFINET Antriebs "SGDV-0CB..." ein und ziehen Sie die Komponente "DO w/ YASKAWA telegr.100..." auf "Steckplatz 1" des Sigma-5 PROFINET Antriebs.

→ Telegram 100 wird mit den entsprechenden Untergruppen eingefügt.

Die Verbindung zwischen den Achsen in der Hardware-Konfiguration und Ihrem Anwenderprogramm erfolgt durch Angabe folgender Moduleigenschaften in den Aufrufparametern des FB 891 - VMC InitSigma_PN:

- Moduleeigenschaft "Parameter Access Point": Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
 - FB 891 VMC InitSigma_PN: ParaAccessPointAddress:
 Angabe der Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
- Moduleeigenschaft"YASKAWA Telegram PZD...":
 Jeweilige Startadresse des Ein-/Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "InputsStartAddress":
 Angabe der Startadresse des Eingabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "OutputsStartAddress":
 Angabe der Startadresse des Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "LogicalAddress":
 Angabe des kleineren Werts der Startadressen des Ein-/Ausgabe-Adressbereichs.
- Anwenderprogramm → 444
- FB 891 VMC InitSigma_PN → 514

Beispiel Hardware-Konfiguration

Slot	Baugruppe	 E-Adr.	A-Adr.	Diagnoseadresse
0	SGDV-OCB03A			2037
X1	PN-IO			2036
X1 P1	Port 1			2035
X1 P2	Port 2			2034
1	DO with YASKAWA telegr.100,			2033
	PZD-16/14			
1.1	Parameter Access Point			2033
1.2	YASKAWA telegram, PZD-16/14	284-311	288-319	

13.3.1.5.2 Hardware-Konfiguration System 300S

Voraussetzung

Übersicht

- Bitte verwenden Sie für die Projektierung das Siemens TIA Portal ab V14.
- Damit der PROFINET Antrieb im Siemens TIA Portal konfiguriert werden kann, muss die entsprechende GSDML-Datei installiert sein.
- Die Bausteine können Sie bei folgenden CPUs einsetzen:
 - System 300S CPU 315-4PN43
 - System 300S CPU 315-4PN23
 - System 300S CPU 317-4PN23
- Die Projektierung der System 300S PROFINET CPU erfolgt im Siemens TIA Portal als entsprechende Siemens CPU.
 - Die CPUs 315-4PNxx sind als Siemens CPU 315-2 PN/DP (6ES7 315-2EH14-0AB0 V3.2) zu projektieren.
 - Die CPU 317-4PN23 ist als Siemens CPU 317-2 PN/DP (6ES7 317-2EK14-0AB0 V3.2) zu projektieren.

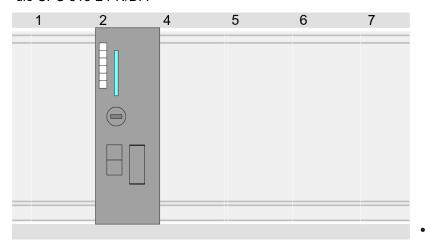
GSDML-Datei für *Sigma-5* PROFINET Antrieb installieren

Die GSDML-Datei für den *Sigma-5* PROFINET Antrieb finden Sie auf www.yaskawa.eu.com im *"Download Center"*.

Bitte verwenden Sie folgende GSDML:

GSDML-V2.3-Yaskawa-SGDV-OCB03A-20140228.xml

Die Installation erfolgt nach folgender Vorgehensweise:


- 1. Laden Sie die zu Ihrem Antrieb passende GSDML-Datei herunter.
- 2. Extrahieren Sie die Datei in Ihr Arbeitsverzeichnis.
- 3. Starten Sie das Siemens TIA Portal.
- 4. Schließen Sie alle Projekte.
- 5. ▶ Gehen Sie auf "Extras → Gerätebeschreibungsdatei (GSD) installieren".
- **6.** Navigieren Sie in Ihr Arbeitsverzeichnis und installieren Sie die entsprechende GSDML-Datei.
 - Nach der Installation finden Sie das PROFINET IO Device für den Sigma-5 Antrieb unter "Weitere Feldgeräte → PROFINET IO → Drives → Yaskawa ...".

CPU im Projekt anlegen

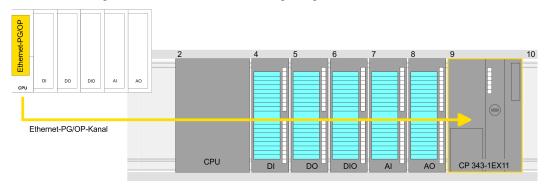
Um kompatibel mit dem Siemens TIA Portal zu sein, sind folgende Schritte durchzuführen:

1. Starten Sie das Siemens TIA Portal mit einem neuen Projekt.

- 2. Wechseln Sie in die Projektansicht.
- 3. Klicken Sie in der Projektnavigation auf "Neues Gerät hinzufügen".
- **4.** Wählen Sie, abhängig von der eingesetzten CPU von Yaskawa, folgende CPU von Siemens aus:
 - Die CPUs 315-4PNxx sind als Siemens CPU 315-2 PN/DP (6ES7 315-2EH14-0AB0 V3.2) zu projektieren.
 - Die CPU 317-4PN23 ist als Siemens CPU 317-2 PN/DP (6ES7 317-2EK14-0AB0 V3.2) zu projektieren.
 - Die CPU wird mit einer Profilschiene eingefügt wie z.B. für die CPU 315-4PN23 die CPU 315-2 PN/DP.

Geräteübersicht

Baugruppe	 Steckplatz	 Тур	
PLC	2	CPU 315-2PN/DP	
MPI/DP-Schnittstelle	2 X1	MPI/DP-Schnittstelle	
PROFINET-Schnittstelle	2 X2	PROFINET-Schnittstelle	


Ethernet-PG/OP-Kanal parametrieren

Damit Sie auf die entsprechende Ethernet-Schnittstelle online zugreifen können, müssen Sie dieser durch die "Initialisierung" bzw. "Urtaufe" IP-Adress-Parameter zuweisen. Bitte beachten Sie, dass Sie die IP-Adress-Daten in Ihr Projekt für den CP 343-1 übernehmen.

Näheres zur Urtaufe und zum Einsatz des Ethernet-PG/OP-Kanals finden Sie im Handbuch zu Ihrer CPU.

- 1. Projektieren Sie für den Ethernet-PG/OP-Kanal immer als letztes Modul nach den gesteckten System 300 Modulen einen Siemens CP 343-1 (6GK7 343-1EX11 0XE0).
- <u>2.</u> Öffnen Sie durch Klick auf den CP 343-1EX11 den "Eigenschaften"-Dialog und geben Sie für den CP unter *"Eigenschaften"* die IP-Adress-Daten aus der Urtaufe an.
- 3. Ordnen Sie den CP einem "Subnetz" zu. Ohne Zuordnung werden die IP-Adress-Daten nicht übernommen!
- 4. Dibertragen Sie Ihr Projekt in Ihre CPU
 - → Die IP-Adress-Daten werden in Ihr Projekt übernommen. Beispielhaft wird dies nachfolgend an der CPU 315-4PN23 gezeigt.

Geräteübersicht

Baugruppe	 Steckplatz	 Тур	
PLC	2	CPU 315-2PN/DP	
DI	4	DI	
DO	5	DO	
DIO	6	DIO	
Al	7	Al	
AO	8	AO	
CP 343-1	9	CP 343-1	

Sigma-5 PROFINET Antrieb einfügen und konfigurieren

Bei der Konfiguration ist für jede Achse ein Sigma-5 PROFINET-IO-Device zu konfigurieren.

- 1. Wählen Sie Ihren Sigma-5 PROFINET Antrieb "SGDV-0CB..." aus dem Hardware-Katalog unter "Weitere Feldgeräte → PROFINET IO → Drives → Yaskawa ..." und ziehen Sie ihn auf das "PROFINET-IO-System".
 - → Der Sigma-5 PROFINET Antrieb wird an den IO-Controller angebunden und kann nun konfiguriert werden.
- 2. ► Klicken Sie auf das Sigma-5 IO-Device und öffnen Sie mit "Kontextmenü → Gerätekonfiguration" die "Geräteübersicht".
- 3. ▶ Vergeben Sie einen passendenden "Gerätenamen" wie Axis-001.

4. Geräteübersicht

Baugruppe	 Steckplatz	 Тур	•••
Axis-001	0	SGDV-0CB03A	
PN-IO	0 X1	SGDV-0CB03A	
DO w/ Yaskawa telegr.100,PZD	1	DO w/ Yaskawa telegr.100,PZD-16/14	
Parameter Access Point	11	Parameter Access Point	
Yaskawa telegram, PZD-16/14	12	Yaskawa telegram, PZD-16/14	

Blenden Sie im Hardware-Katalog die Module des *Sigma-5* PROFINET Antriebs "SGDV-0CB..." ein und ziehen Sie die Komponente "DO w/ YASKAWA telegr.100..." auf "Steckplatz 1" des Sigma-5 PROFINET Antriebs.

→ Telegram 100 wird mit den entsprechenden Untergruppen eingefügt.

 \int_{1}^{∞}

Die Verbindung zwischen den Achsen in der Hardware-Konfiguration und Ihrem Anwenderprogramm erfolgt durch Angabe folgender Moduleigenschaften in den Aufrufparametern des FB 891 - VMC InitSigma_PN:

- Moduleeigenschaft "Parameter Access Point": Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
 - FB 891 VMC InitSigma_PN: ParaAccessPointAddress:
 Angabe der Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
- Moduleeigenschaft"YASKAWA Telegram PZD...":
 Jeweilige Startadresse des Ein-/Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "InputsStartAddress":
 Angabe der Startadresse des Eingabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "OutputsStartAddress":
 Angabe der Startadresse des Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "LogicalAddress":
 Angabe des kleineren Werts der Startadressen des Ein-/Ausgabe-Adressbereichs.
- Anwenderprogramm → 444
- FB 891 VMC InitSigma PN → 514

Beispiel Hardware-Konfiguration

Slot	Baugruppe	 E-Adr.	A-Adr.	Diagnoseadresse
0	SGDV-OCB03A			2037
X1	PN-IO			2036
X1 P1	Port 1			2035
X1 P2	Port 2			2034
1	DO with YASKAWA telegr.100,			2033
	PZD-16/14			
1.1	Parameter Access Point			2033
1.2	YASKAWA telegram, PZD-16/14	284-311	288-319	

13.3.1.5.3 Hardware-Konfiguration Siemens S7-300

Voraussetzung

Übersicht

- Bitte verwenden Sie für die Projektierung das Siemens TIA Portal ab V14.
- Damit der PROFINET Antrieb im Siemens TIA Portal konfiguriert werden kann, muss die entsprechende GSDML-Datei installiert sein.
- Die Bausteine k\u00f6nnen Sie bei allen aktuellen Siemens S7-300 CPUs einsetzen, welche einen PROFINET-IO-Controller besitzen.

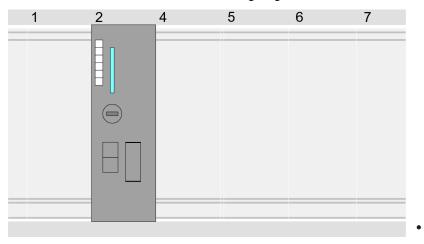
GSDML-Datei für *Sigma-5* PROFINET Antrieb installieren

Die GSDML-Datei für den Sigma-5 PROFINET Antrieb finden Sie auf www.yaskawa.eu.com im "Download Center".

Bitte verwenden Sie folgende GSDML:

GSDML-V2.3-Yaskawa-SGDV-OCB03A-20140228.xml

Die Installation erfolgt nach folgender Vorgehensweise:


1. Laden Sie die zu Ihrem Antrieb passende GSDML-Datei herunter.

- 2. Extrahieren Sie die Datei in Ihr Arbeitsverzeichnis.
- 3. Starten Sie das Siemens TIA Portal.
- 4. Schließen Sie alle Projekte.
- 5. Gehen Sie auf "Extras → Gerätebeschreibungsdatei (GSD) installieren".
- **6.** Navigieren Sie in Ihr Arbeitsverzeichnis und installieren Sie die entsprechende GSDML-Datei.
 - Nach der Installation finden Sie das PROFINET IO Device für den Sigma-5 Antrieb unter "Weitere Feldgeräte → PROFINET IO → Drives → Yaskawa ...".

CPU im Projekt anlegen

Im TIA Portal sind folgende Schritte durchzuführen:

- 1. Starten Sie das Siemens TIA Portal mit einem neuen Projekt.
- 2. Wechseln Sie in die *Projektansicht*.
- 3. Klicken Sie in der Projektnavigation auf "Neues Gerät hinzufügen".
- Wählen Sie die entsprechende Siemens S7-300 CPU, welche einen PROFINET-IO-Controller besitzt, wie z.B. die CPU 315-2 PN/DP (6ES7 315-2EH14-0AB0 V3.2).
 - Die CPU wird mit einer Profilschiene eingefügt.

Geräteübersicht

Baugruppe	 Steckplatz	 Тур	
PLC	2	CPU 315-2PN/DP	
MPI/DP-Schnittstelle	2 X1	MPI/DP-Schnittstelle	
PROFINET-Schnittstelle	2 X2	PROFINET-Schnittstelle	

Sigma-5 PROFINET Antrieb einfügen und konfigurieren

Bei der Konfiguration ist für jede Achse ein Sigma-5 PROFINET-IO-Device zu konfigurieren.

- 1. Wählen Sie Ihren Sigma-5 PROFINET Antrieb "SGDV-0CB..." aus dem Hardware-Katalog unter "Weitere Feldgeräte → PROFINET IO → Drives → Yaskawa ..." und ziehen Sie ihn auf das "PROFINET-IO-System".
 - → Der Sigma-5 PROFINET Antrieb wird an den IO-Controller angebunden und kann nun konfiguriert werden.
- 2. ► Klicken Sie auf das Sigma-5 IO-Device und öffnen Sie mit "Kontextmenü" → Gerätekonfiguration" die "Geräteübersicht".
- 3. Vergeben Sie einen passendenden "Gerätenamen" wie Axis-001.

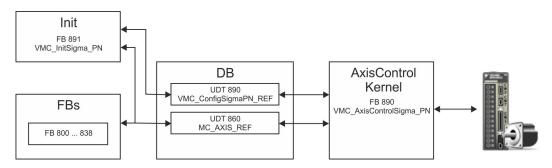
4. Geräteübersicht

Baugruppe	 Steckplatz	 Тур	
Axis-001	0	SGDV-0CB03A	
PN-IO	0 X1	SGDV-0CB03A	
DO w/ Yaskawa telegr.100,PZD	1	DO w/ Yaskawa telegr.100,PZD-16/14	
Parameter Access Point	11	Parameter Access Point	
Yaskawa telegram, PZD-16/14	12	Yaskawa telegram, PZD-16/14	

Blenden Sie im Hardware-Katalog die Module des *Sigma-5* PROFINET Antriebs "SGDV-0CB..." ein und ziehen Sie die Komponente "DO w/ YASKAWA telegr.100..." auf "Steckplatz 1" des Sigma-5 PROFINET Antriebs.

→ Telegram 100 wird mit den entsprechenden Untergruppen eingefügt.

Die Verbindung zwischen den Achsen in der Hardware-Konfiguration und Ihrem Anwenderprogramm erfolgt durch Angabe folgender Moduleigenschaften in den Aufrufparametern des FB 891 - VMC InitSigma_PN:


- Moduleeigenschaft "Parameter Access Point": Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
 - FB 891 VMC InitSigma_PN: ParaAccessPointAddress:
 Angabe der Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
- Moduleeigenschaft"YASKAWA Telegram PZD...":
 Jeweilige Startadresse des Ein-/Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "InputsStartAddress":
 Angabe der Startadresse des Eingabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "OutputsStartAddress":
 Angabe der Startadresse des Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "LogicalAddress":
 Angabe des kleineren Werts der Startadressen des Ein-/Ausgabe-Adressbereichs.
- Anwenderprogramm → 444
- FB 891 VMC InitSigma_PN → 514

Beispiel Hardware-Konfiguration

Slot	Baugruppe	 E-Adr.	A-Adr.	Diagnoseadresse
0	SGDV-OCB03A			2037
X1	PN-IO			2036
X1 P1	Port 1			2035
X1 P2	Port 2			2034
1	DO with YASKAWA telegr.100,			2033
	PZD-16/14			
1.1	Parameter Access Point			2033
1.2	YASKAWA telegram, PZD-16/14	284-311	288-319	

13.3.1.5.4 Anwender-Programm

Programmstruktur

DB

Für jede Achse ist ein Datenbaustein (Achs-DB) für Konfiguration und Statusdaten anzulegen. Der Datenbaustein besteht aus folgenden Datenstrukturen:

- UDT 890 VMC_ConfigSigmaPN_REF
 Die Datenstruktur beschreibt den Aufbau der Konfiguration des Antriebs.
 Spezifische Datenstruktur für Sigma-5/7 PROFINET.
- UDT 860 MC_AXIS_REF
 Die Datenstruktur beschreibt den Aufbau der Parameter und Statusinformationen von Antrieben.

Allgemeine Datenstruktur für alle Antriebe und Bussysteme.

- FB 891 VMC_InitSigma PN
 - Der Init-Baustein dient zur Konfiguration einer Achse.
 - Spezifischer Baustein für Sigma-5/7 PROFINET.
 - Die Konfigurationsdaten für die Initialisierung sind im Achs-DB abzulegen.
- FB 890 VMC_AxisControlSigma_PN
 - Spezifischer Baustein für Sigma-5/7 PROFINET.
 - Dieser Baustein ist eine Kombination aus einem Kernel und einem AxisControl Baustein und kommuniziert über PROFINET mit dem Antrieb, verarbeitet die Benutzeranforderungen und gibt Statusmeldungen zurück.
 - Unterstützt einfache Bewegungskommandos und liefert alle relevanten Statusmeldungen.
 - Der Austausch der Daten erfolgt mittels des Achs-DB.
 - Über die Instanzdaten des Bausteins können Sie zur Bewegungssteuerung und Statusabfrage eine Visualisierung anbinden.
 - Zusätzlich zum FB 890 VMC_AxisControlSigma_PN, haben Sie die Möglichkeit PLCopen-Bausteine zu nutzen.

- FB 800 ... FB 838 PLCopen
 - Die PLCopen-Bausteine dienen zur Programmierung von Bewegungsabläufen und Statusabfragen.
 - Allgemeine Bausteine für alle Antriebe und Bussysteme.

Programmierung

Bibliothek einbinden

- 1. Gehen Sie in das "Download Center" von www.yaskawa.eu.com.
- Laden Sie unter "Controls Library" die Simple Motion Control Library.
 Die Bibliothek liegt für die entsprechende TIA Portal Version als gepackte zip-Datei vor.
- 3. Starten Sie mit einem Doppelklick auf die Datei ...TIA_Vxx.zip ihr Unzip-Programm, entpacken Sie Dateien und Ordner in ein Arbeitsverzeichnis für das Siemens TIA Portal.
- **4.** Wechseln sie im Siemens TIA Portal in die *Projektansicht*.
- 5. Wählen Sie auf der rechten Seite die Task-Card "Bibliotheken".
- 6. Klicken Sie auf "Globale Bibliothek".
- 7. Klicken Sie innerhalb der "Globalen Bibliothek" auf die freie Fläche und wählen Sie "Kontextmenü → Bibliothek dearchivieren".
- 8. Navigieren Sie zu ihrem Arbeitsverzeichnis und laden Sie die Datei ...Simple Motion.zalxx.

Alarm-OBs anlegen

- 1. Klicken Sie auf "Projektnavigation → ...CPU... → Programmbausteine → Neuen Baustein hinzufügen".
 - ▶ Das Dialogfenster "Neuen Baustein hinzufügen" öffnet sich.
- 2. Geben Sie OB 57 an und bestätigen Sie mit [OK].
 - Der OB 57 wird angelegt.
- 3. Fügen Sie nacheinander OB 82 und OB 86 Ihrem Projekt hinzu.

Bausteine in Projekt kopieren

- Öffnen Sie die Bibliothek nach dem Entpackvorgang und ziehen Sie per Drag&Drop folgende Bausteine in "Programmbausteine" Ihres Projekts:
 - Sigma PROFINET:
 - FB 890 VMC_AxisControlSigma_PN → "FB 890 VMC_Axis-ControlSigma_PN - Control-Baustein Achskontrolle für Sigma-5/7 PROFINET"...Seite 510
 - FB 891 VMC_InitSigma_PN → "FB 891 VMC_InitSigma_PN Sigma-5/7 PROFINET Initialisierung"...Seite 514
- 2. Viehen Sie per Drag&Drop folgende Bausteine in "PLC-Datentypen" Ihres Projekts:
 - Sigma PROFINET:
 - UDT 890 VMC_ConfigSigmaPN_REF → "UDT 890 VMC_ConfigSigmaPN_REF Sigma-5/7 PROFINET Datenstruktur Achskonfiguration"...Seite 510
 - Axis Control
 - UDT 860 MC_AXIS_REF → "UDT 860 MC_AXIS_REF Datenstruktur Achsdaten"...Seite 659

Achs-DB anlegen

- 1. ► Klicken Sie auf "Projektnavigation → ...CPU... → Programmbausteine → Neuen Baustein hinzufügen".
 - → Das Dialogfenster "Baustein hinzufügen" öffnet sich.
- 2. Wählen Sie den Bausteintyp "DB Baustein" und vergeben Sie diesem den Namen "Axis01". Die DB-Nr. können Sie frei wählen wie z.B. DB 10. Geben Sie DB 10 an und legen Sie diesen als globalen DB mit [OK] an.
 - → Der Baustein wird angelegt und geöffnet.
- 3. Legen Sie in "Axis01" folgende Variablen an:
 - "Config" vom Typ UDT 890 VMC_ConfigSigmaPN_REF. Dies sind spezifische Achs-Konfigurationsdaten.
 - "Axis" vom Typ UDT 860 MC_AXIS_REF.
 Während des Betriebs werden hier alle Betriebsdaten der Achse abgelegt.

OB 1 - Konfiguration der Achsen

Öffnen Sie den OB 1 und programmieren Sie folgende FB-Aufrufe mit zugehörigen DBs: FB 891 - VMC InitSigma PN, DB 891

Die Verbindung zwischen den Achsen in der Hardware-Konfiguration und Ihrem Anwenderprogramm erfolgt durch Angabe folgender Moduleigenschaften in den Aufrufparametern des FB 891 - VMC InitSigma_PN:

- Moduleeigenschaft "Parameter Access Point": Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
 - FB 891 VMC InitSigma_PN: ParaAccessPointAddress:
 Angabe der Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
- Moduleeigenschaft"YASKAWA Telegram PZD...":
 Jeweilige Startadresse des Ein-/Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "InputsStartAddress":
 Angabe der Startadresse des Eingabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "OutputsStartAddress":
 Angabe der Startadresse des Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "LogicalAddress":
 Angabe des kleineren Werts der Startadressen des Ein-/Ausgabe-Adressbereichs.
- Hardware-Konfiguration → 430
- FB 891 VMC InitSigma PN → 514

Beispiel Hardware-Konfiguration

Slot	Baugruppe	 E-Adr.	A-Adr.	Diagnoseadresse
0	SGDV-OCB03A			2037
X1	PN-IO			2036
X1 P1	Port 1			2035
X1 P2	Port 2			2034
1	DO with YASKAWA telegr.100,			2033
	PZD-16/14			
1.1	Parameter Access Point			2033
1.2	YASKAWA telegram, PZD-16/14	284-311	288-319	

Beispielaufruf

```
CALL "VMC InitSigma PN" , "VMC_InitSigma_PN_1"
                         :="InitS5PN1_Enable"
Enable
                            :=284 //HW config: Smallest IO addr.
LogicalAddress
ParaAccessPointAddress:=2033 //HW config: Diag addr.
InputsStartAddress :=284 //HW config: Telegr. 100 start I addr.
OutputsStartAddress
                           :=288 //HW config: Telegr. 100 start O addr.
                           :=1
EncoderType
EncoderResolutionBits :=20
FactorPosition :=1.048576e+006
FactorVelocity
                          :=1.048576e+006

      MaxAccelerationApp
      :=1.000000e+002

      MaxDecelerationApp
      :=1.000000e+002

      MaxVelocityDrive
      :=6.000000e+001

      MaxPosition
      :=1.048500e+003

MaxPosition :=1.048500e+003
MinPosition :=-1.048514e+003
EnableMaxPosition :=TRUE
EnableMinPosition :=TRUE
MinUserPosition
                         :="InitS5PN1 MinUserPos"
MaxUserPosition
                          :="InitS5PN1_MaxUserPos"
Valid
                          :="InitS5PN1_Valid"
Error
                          :="InitS5PN1_Error"
ErrorID
                           :="InitS5PN1 ErrorID"
Config
                            :="Axis01".Config
Axis
                            :="Axis01".Axis
```

AxisControl verbinden

FB 890 - VMC_AxisControlSigma_PN, DB 890 → "FB 890 - VMC_AxisControlSigma_PN - Control-Baustein Achskontrolle für Sigma-5/7 PROFINET"...Seite 510

Der Baustein verarbeitet die Benutzerkommandos und gibt sie entsprechend aufbereitet an den Antrieb über PROFINET weiter.

```
CALL "VMC AxisControlSigma PN" , "DI AxisControlSigmaPN01"
AxisEnable :="AxCtrl1_AxisEnable"
AxisReset
                              :="AxCtrl1_AxisReset"
HomeExecute :="AxCtrl1_HomeExecute"
HomePosition :="AxCtrl1_HomePosition"
StopExecute :="AxCtrl1_StopExecute"
MvVelocityExecute:="AxCtrl1_MvVelExecute"
MvRelativeExecute:="AxCtrl1_MvRelExecute"
MvAbsoluteExecute:="AxCtrl1 MvAbsExecute"
PositionDistance :="AxCtrl1 PositionDistance"
PositionDistance :="AxCtrll_PositionDistance Direction :="AxCtrll_Direction"

Velocity :="AxCtrll_Velocity"

Acceleration :="AxCtrll_Acceleration"

Deceleration :="AxCtrll_Deceleration"

JogPositive :="AxCtrll_JogPositive"

JogNegative :="AxCtrll_JogNegative"

JogNegative :="AxCtrll_JogNegative"

JogNegative :="AxCtrll_JogNegative"

IngReceleration :="AyCtrll_JogNegative"
JogAcceleration :="AxCtrl1 JogAcceleration"
JogDeceleration :="AxCtrl1 JogDeceleration"
AxisReady :="AxCtrl1 AxisReady"
AxisEnabled :="AxCtrl1_AxisEnabled"
AxisError :="AxCtrl1_AxisError"
AxisErrorID :="AxCtrl1_AxisErrorID"
DriveWarning :="AxCtrl1_DriveWarning"
DriveError :="AxCtrl1_DriveError"
                             :="AxCtrl1_DriveError"
DriveError
DriveErrorID :="AxCtrl1_DriveErrorID"
 IsHomed
                              :="AxCtrl1_IsHomed"
ModeOfOperation :="AxCtrl1_ModeOfOperation"
PLCopenState
                              :="AxCtrl1 PLCopenState"
```

```
ActualPosition
                  :="AxCtrl1 ActualPosition"
ActualVelocity
                  :="AxCtrl1_ActualVelocity"
CmdDone
                  :="AxCtrl1_CmdDone"
                  :="AxCtrl1_CmdBusy"
:="AxCtrl1_CmdAborted"
:="AxCtrl1_CmdError"
CmdBusy
CmdAborted
CmdError
CmdErrorID
                  :="AxCtrl1 CmdErrorID"
DirectionPositive:="AxCtrl1 DirectionPos"
DirectionNegative:="AxCtrl1 DirectionNeg"
SWLimitMinActive :="AxCtrl1 SWLimitMinActive"
SWLimitMaxActive :="AxCtrl1 SWLimitMaxActive"
HWLimitMinActive := "AxCtrl1 HWLimitMinActive"
HWLimitMaxActive :="AxCtrl1 HWLimitMaxActive"
                  :="Axis01".Axis
Axis
```

 \int_{1}^{∞}

Für komplexe Bewegungsaufgaben können Sie die PLCopen-Bausteine verwenden. Hier müssen Sie ebenfalls unter Axis die Referenz zu den Achsdaten im Achs-DB angeben.

Ihr Projekt beinhaltet nun folgende Bausteine:

- OB 1 Main
- OB 57 DP Manufacturer Alarm
- OB 82 I/O FLT1
- OB 86 Rack FLT
- FB 890 VMC_AxisControlSigma_PN mit Instanz-DB
- FB 891 VMC_InitSigma_PN mit Instanz-DB
- UDT 860 MC Axis REF
- UDT 890 VMC_ConfigSigmaPN_REF

Zeitlicher Ablauf

- $\underline{\mathbf{1.}}$ Wählen Sie "Projekt \rightarrow Alles übersetzen" und übertragen Sie das Projekt in Ihre CPU.
 - Sie können jetzt Ihre Applikation in Betrieb nehmen.

VORSICHT

Bitte beachten Sie immer die Sicherheitshinweise zu ihrem Antrieb, insbesondere bei der Inbetriebnahme!

- **2.** Bevor eine Achse gesteuert werden kann, muss diese initialisiert werden. Rufen Sie hierzu den *Init* Baustein FB 891 VMC_InitSigma_PN mit *Enable* = TRUE auf.
 - ▶ Der Ausgang Valid meldet TRUE zurück. Im Fehlerfall können Sie durch Auswertung der ErrorID den Fehler ermitteln.

Den *Init*-Baustein müssen Sie erneut aufrufen, wenn Sie einen neuen Achs-DB laden oder Parameter am *Init*-Baustein geändert wurden.

Fahren Sie erst fort, wenn der Init-Baustein keinen Fehler meldet!

3. Programmieren Sie Ihre Applikation mit dem FB 890 - VMC_AxisControlSigma_PN oder mit den PLCopen Bausteinen.

13.3.1.6 Einsatz im Siemens TIA Portal - Siemens S7-1200 bzw. S7-1500 CPUs

13.3.1.6.1 Hardware-Konfiguration Siemens S7-1200 bzw. S7-1500

Voraussetzung

Übersicht

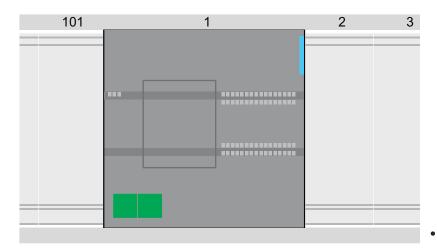
- Bitte verwenden Sie für die Projektierung das Siemens TIA Portal ab V15.
- Damit der PROFINET Antrieb im Siemens TIA Portal konfiguriert werden kann, muss die entsprechende GSDML-Datei installiert sein.
- Die Bausteine können Sie bei folgenden Siemens-CPUs einsetzen:
 - Alle Siemens S7-1200 mit FW V4.2, welche einen PROFINET-IO-Controller besitzen.
 - Alle Siemens S7-1500 mit FW V2.5, welche einen PROFINET-IO-Controller besitzen.

GSDML-Datei für Sigma-5 PROFINET Antrieb installieren

Die GSDML-Datei für den Sigma-5 PROFINET Antrieb finden Sie auf www.yaskawa.eu.com im "Download Center".

Bitte verwenden Sie folgende GSDML:

GSDML-V2.3-Yaskawa-SGDV-OCB03A-20140228.xml


Die Installation erfolgt nach folgender Vorgehensweise:

- 1. Laden Sie die zu Ihrem Antrieb passende GSDML-Datei herunter.
- 2. Extrahieren Sie die Datei in Ihr Arbeitsverzeichnis.
- 3. Starten Sie das Siemens TIA Portal.
- 4. Schließen Sie alle Projekte.
- 5. ▶ Gehen Sie auf "Extras → Gerätebeschreibungsdatei (GSD) installieren".
- **6.** Navigieren Sie in Ihr Arbeitsverzeichnis und installieren Sie die entsprechende GSDML-Datei.
 - Nach der Installation finden Sie das PROFINET IO Device für den Sigma-5 Antrieb unter "Weitere Feldgeräte → PROFINET IO → Drives → Yaskawa ...".

CPU im Projekt anlegen

Im Siemens TIA Portal sind folgende Schritte durchzuführen:

- 1. Starten Sie das Siemens TIA Portal mit einem neuen Projekt.
- 2. Wechseln Sie in die Projektansicht.
- 3. ▶ Klicken Sie in der *Projektnavigation* auf "Neues Gerät hinzufügen".
- Wählen Sie die entsprechende Siemens S7-1200 bzw. S7-1500 CPU, welche einen PROFINET-IO-Controller besitzt wie z.B. die Siemens CPU 1215C DC/DC/DC (6ES7 215-1AG40-0xB0).
 - Die CPU wird mit einer Profilschiene eingefügt.

Geräteübersicht

Baugruppe	 Steckplatz	 Тур	
	 101	 	
PLC	1	CPU 1215C DC/DC/DC	
PROFINET-Schnittstelle	1 X1	PROFINET-Schnittstelle	

Sigma-5 PROFINET Antrieb einfügen und konfigurieren

Bei der Konfiguration ist für jede Achse ein *Sigma-5* PROFINET-IO-Device zu konfigurieren.

- 1. Wählen Sie Ihren Sigma-5 PROFINET Antrieb "SGDV-0CB..." aus dem Hardware-Katalog unter "Weitere Feldgeräte → PROFINET IO → Drives → Yaskawa ..." und ziehen Sie ihn auf das "PROFINET-IO-System".
 - → Der Sigma-5 PROFINET Antrieb wird an den IO-Controller angebunden und kann nun konfiguriert werden.
- 2. ► Klicken Sie auf das Sigma-5 IO-Device und öffnen Sie mit "Kontextmenü → Gerätekonfiguration" die "Geräteübersicht".
- 3. ▶ Vergeben Sie einen passendenden "Gerätenamen" wie Axis-001.
- **4.** Blenden Sie im Hardware-Katalog die Module des *Sigma-5* PROFINET Antriebs "*SGDV-0CB...*" ein und ziehen Sie die Komponente "*DO w/ YASKAWA telegr.100...*" auf "*Steckplatz 1*" des *Sigma-5* PROFINET Antriebs.
 - → Telegram 100 wird mit den entsprechenden Untergruppen eingefügt.

Geräteübersicht

Baugruppe	 Steckplatz	 Тур	
Axis-001	0	SGDV-0CB03A	
PN-IO	0 X1	SGDV-0CB03A	
DO w/ Yaskawa telegr.100,PZD	1	DO w/ Yaskawa telegr.100,PZD-16/14	
Parameter Access Point	11	Parameter Access Point	
Yaskawa telegram, PZD-16/14	12	Yaskawa telegram, PZD-16/14	

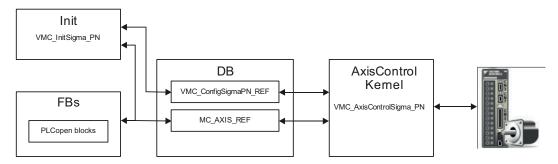
Die Verbindung zwischen den Achsen in der Hardware-Konfiguration und Ihrem Anwenderprogramm erfolgt durch Angabe folgender Moduleigenschaften in den Aufrufparametern des VMC InitSigma_PN:

Parameter für Siemens S7-1200 bzw. S7-1500 CPUs

- HW ID ParaAccessPoint
 - HW-Kennung der Hardware-Konfiguration der Achse. → 64
- HW ID Telegramm100
 - HW-Kennung des YASKAWA Telegramm 100 der Achse. → 64
- Anwenderprogramm → 451
- VMC InitSigma_PN → 514

Beispiel Hardware-Konfiguration

Geräteübersicht	Slot
SGDV-OCB03A	0
PN-IO	0 X1
DO with YASKAWA telegr.100, PZD-16/14	1
Parameter Access Point	1.1
YASKAWA telegram, PZD-16/14	1.2


Systemkonstanten	HW-Kennung
Parameter Access Point	279
DO with YASKAWA telegr.100,	278

13.3.1.6.2 Anwender-Programm

Bitte beachten Sie, dass im Siemens TIA Portal bei Einsatz der Siemens S7-1200 bzw. S7-1500 CPUs ausschließlich Bausteinnamen zum Einsatz kommen. Die Bausteinnummern werden dynamisch vergeben.

Programmstruktur

DB

Für jede Achse ist ein Datenbaustein (Achs-DB) für Konfiguration und Statusdaten anzulegen. Der Datenbaustein besteht aus folgenden Datenstrukturen:

- UDT VMC_ConfigSigmaPN_REF
 Die Datenstruktur beschreibt den Aufbau der Konfiguration des Antriebs.
 Spezifische Datenstruktur für Sigma-5/7 PROFINET.
- UDT MC_AXIS_REF

Die Datenstruktur beschreibt den Aufbau der Parameter und Statusinformationen von Antrieben.

Allgemeine Datenstruktur für alle Antriebe und Bussysteme.

- FB VMC_InitSigma_PN
 - Der Init-Baustein dient zur Konfiguration einer Achse.
 - Spezifischer Baustein für Sigma-5/7 PROFINET.
 - Die Konfigurationsdaten für die Initialisierung sind im Achs-DB abzulegen.
- FB VMC AxisControlSigma PN
 - Spezifischer Baustein für Sigma-5/7 PROFINET.
 - Dieser Baustein ist eine Kombination aus einem Kernel und einem AxisControl Baustein und kommuniziert über PROFINET mit dem Antrieb, verarbeitet die Benutzeranforderungen und gibt Statusmeldungen zurück.
 - Unterstützt einfache Bewegungskommandos und liefert alle relevanten Statusmeldungen.
 - Der Austausch der Daten erfolgt mittels des Achs-DB.
 - Über die Instanzdaten des Bausteins k\u00f6nnen Sie zur Bewegungssteuerung und Statusabfrage eine Visualisierung anbinden.
 - Zusätzlich zum VMC_AxisControlSigma_PN, haben Sie die Möglichkeit PLCopen-Bausteine zu nutzen.
- PLCopen blocks PLCopen
 - Die PLCopen-Bausteine dienen zur Programmierung von Bewegungsabläufen und Statusabfragen.
 - Allgemeine Bausteine f
 ür alle Antriebe und Bussysteme.

Programmierung

Bibliothek einbinden

- 1. Gehen Sie in das "Download Center" von www.yaskawa.eu.com.
- 2. Laden Sie unter "Controls Library" die Simple Motion Control Library.

Die Bibliothek liegt für die entsprechende TIA Portal Version als gepackte zip-Datei vor.

- 3. Starten Sie mit einem Doppelklick auf die Datei ...TIA_Vxx.zip ihr Unzip-Programm, entpacken Sie Dateien und Ordner in ein Arbeitsverzeichnis für das Siemens TIA Portal.
- 4. Wechseln sie im Siemens TIA Portal in die Projektansicht.

- 5. Wählen Sie auf der rechten Seite die Task-Card "Bibliotheken".
- 6. Klicken Sie auf "Globale Bibliothek".
- 7. ► Klicken Sie innerhalb der "Globalen Bibliothek" auf die freie Fläche und wählen Sie "Kontextmenü → Bibliothek dearchivieren".
- 8. Navigieren Sie zu ihrem Arbeitsverzeichnis und laden Sie die Datei Simple Motion Control 1200 1500.zalxx.

Bitte beachten Sie, dass im Siemens TIA Portal bei Einsatz der Siemens S7-1200 bzw. S7-1500 CPUs ausschließlich Bausteinnamen zum Einsatz kommen. Die Bausteinnummern werden dynamisch vergeben.

Bausteine in Projekt kopieren

- 1. Öffnen Sie die Bibliothek nach dem Entpackvorgang und ziehen Sie per Drag&Drop folgende Bausteine in *"Programmbausteine"* Ihres Projekts:
 - Sigma PROFINET:
 - VMC_AxisControlSigma_PN → 510
 - VMC InitSigma PN 514
- 2. Tiehen Sie per Drag&Drop folgende Bausteine in "PLC-Datentypen" Ihres Projekts:
 - Sigma PROFINET:
 - VMC ConfigSigmaPN REF 510
 - Axis Control
 - MC_AXIS_REF → 659

Achs-DB anlegen

- 1. ► Klicken Sie auf "Projektnavigation → ...CPU... → Programmbausteine → Neuen Baustein hinzufügen".
 - Das Dialogfenster "Baustein hinzufügen" öffnet sich.
- 2. Wählen Sie den Bausteintyp "DB Baustein" und vergeben Sie diesem den Namen "Axis01". Legen Sie diesen als globalen DB mit [OK] an.
 - Der Baustein wird angelegt und geöffnet.
- 3. Legen Sie in "Axis01" folgende Variablen an:
 - "Config" vom Typ VMC_ConfigSigmaPN_REF.Dies sind spezifische Achs-Konfigurationsdaten.
 - "Axis" vom Typ MC_AXIS_REF.
 Während des Betriebs werden hier alle Betriebsdaten der Achse abgelegt.

OB 1 - Konfiguration der Achsen

Öffnen Sie den OB 1 und programmieren Sie folgende Aufrufe:

VMC_InitSigma_PN

Die Verbindung zwischen den Achsen in der Hardware-Konfiguration und Ihrem Anwenderprogramm erfolgt durch Angabe folgender Moduleigenschaften in den Aufrufparametern des VMC InitSigma_PN:

Parameter für Siemens S7-1200 bzw. S7-1500 CPUs

- HW ID ParaAccessPoint
 - HW-Kennung der Hardware-Konfiguration der Achse. → 64
- HW_ID_Telegramm100
 - HW-Kennung des YASKAWA Telegramm 100 der Achse. → 64
- Hardware-Konfiguration → 448
- VMC InitSigma PN → 514

Beispiel Hardware-Konfiguration

Geräteübersicht	Slot
SGDV-OCB03A	0
PN-IO	0 X1
DO with YASKAWA telegr.100, PZD-16/14	1
Parameter Access Point	1.1
YASKAWA telegram, PZD-16/14	1.2

Systemkonstanten	HW-Kennung
Parameter Access Point	279
DO with YASKAWA telegr.100,	278

Beispielaufruf - SCL

```
"VMC InitSigma PN DB" (Enable:="InitS5PN1 Enable"
HW ID ParaAccessPoint :=279 //HW config: Axis
HW_ID_Telegramm100 :=278 //HW config: Axis
FactorPosition :=1.048576e+006
FactorVelocity :=1.048576e+006
FactorVelocity
                     :=1.048576e+006
FactorAcceleration :=1.048576e+006
OffsetPosition
                      :=0.000000e+000
MaxVelocityApp
                      :=5.000000e+001
MaxAccelerationApp
MaxDecelerationApp
                      :=1.000000e+002
                       :=1.000000e+002
MaxVelocityDrive
                       :=6.000000e+001
MaxPosition
                       :=1.048500e+003
MinPosition
                       :=-1.048514e+003
EnableMaxPosition
                       :=TRUE
EnableMinPosition
                       :=TRUE
                       :="InitS5PN1 MinUserPos"
MinUserPosition
                       :="InitS5PN1 MaxUserPos"
MaxUserPosition
                       :="InitS5PN1 Valid"
Valid
                       :="InitS5PN1 Error"
Error
ErrorID
                       :="InitS5PN1 ErrorID"
Config
                       :="Axis01".Config
Axis
                       :="Axis01".Axis);
```

AxisControl verbinden - SCL

VMC_AxisControlSigma_PN → 510

Der Baustein verarbeitet die Benutzerkommandos und gibt sie entsprechend aufbereitet an den Antrieb über PROFINET weiter.

```
"VMC AxisControlSigma PN" (AxisEnable:="AxCtrl1 AxisEnable",
AxisReset:="AxCtrl1 AxisReset",
HomeExecute :="AxCtrl1_HomeExecute",
HomePosition :="AxCtrl1_HomePosition",
StopExecute :="AxCtrl1_StopExecute",
MvVelocityExecute:="AxCtrl1_MvVelExecute",
MvRelativeExecute:="AxCtrl1 MvRelExecute",
MvAbsoluteExecute:="AxCtrl1 MvAbsExecute",
PositionDistance :="AxCtrl1 PositionDistance",
Direction :="AxCtrl1_Direction",
Velocity :="AxCtrl1_Velocity",
Velocity :="AxCtrl1_Velocity",
Acceleration :="AxCtrl1_Acceleration",
Deceleration :="AxCtrl1_Deceleration",
JogPositive :="AxCtrl1_JogPositive",
JogNegative :="AxCtrl1_JogNegative",
JogVelocity :="AxCtrl1_JogVelocity",
JogVelocity :="AxCtrl1_JogVelocity",
JogAcceleration :="AxCtrl1_JogAcceleration",
JogDeceleration := "AxCtrl1 JogDeceleration",
ModeOfOperation :="AxCtrl1_ModeOfOperation",
PLCopenState :="AxCtrll_PLCopenState",
ActualPosition :="AxCtrll_ActualPosition",
ActualVelocity :="AxCtrll_ActualVelocity",
CmdDone :="AxCtrl1_CmdDone",
CmdBusy :="AxCtrl1_CmdBusy",
CmdAborted :="AxCtrl1_CmdAborted",
CmdError :="AxCtrl1_CmdError",
CmdErrorID :="AxCtrl1_CmdErrorID",
DirectionPositive:="AxCtrl1 DirectionPos",
DirectionNegative:="AxCtrl1 DirectionNeg",
SWLimitMinActive := "AxCtrl1 SWLimitMinActive",
SWLimitMaxActive := "AxCtrl1 SWLimitMaxActive",
HWLimitMinActive := "AxCtrl1 HWLimitMinActive",
HWLimitMaxActive :="AxCtrl1 HWLimitMaxActive",
                          :="Axis01".Axis);
Axis
```


Für komplexe Bewegungsaufgaben können Sie die PLCopen-Bausteine verwenden. Hier müssen Sie ebenfalls unter Axis die Referenz zu den Achsdaten im Achs-DB angeben.

Ihr Projekt beinhaltet nun folgende Bausteine:

- OB 1 Main
- VMC_AxisControlSigma_PN mit Instanz-DB
- VMC_InitSigma_PN mit Instanz-DB
- MC_Axis_REF
- VMC ConfigSigmaPN REF

Zeitlicher Ablauf

- - ➡ Sie k\u00f6nnen jetzt Ihre Applikation in Betrieb nehmen.

VORSICHT

Bitte beachten Sie immer die Sicherheitshinweise zu ihrem Antrieb, insbesondere bei der Inbetriebnahme!

- **2.** Bevor eine Achse gesteuert werden kann, muss diese initialisiert werden. Rufen Sie hierzu den *Init* Baustein VMC_InitSigma_PN mit *Enable* = TRUE auf.
 - → Der Ausgang Valid meldet TRUE zurück. Im Fehlerfall können Sie durch Auswertung der ErrorID den Fehler ermitteln.

Den *Init*-Baustein müssen Sie erneut aufrufen, wenn Sie einen neuen Achs-DB laden oder Parameter am *Init*-Baustein geändert wurden.

Fahren Sie erst fort, wenn der Init-Baustein keinen Fehler meldet!

3. Programmieren Sie Ihre Applikation mit dem Funktionsbaustein VMC_AxisControl-Sigma_PN oder mit den PLCopen Bausteinen.

13.3.2 Einsatz Sigma-7 PROFINET

13.3.2.1 Übersicht

Voraussetzung

Für den Einsatz in CPUs von Yaskawa

- SPEED7 Studio ab V1.8 oder Siemens SIMATIC Manager ab V5.5 SP2 oder TIA Portal V14
- Simple Motion Control Library
 - SPEED7 Studio ab V1.8: Simple Motion Control Library ist bereits integriert
 - SIMATIC Manager ab V5.5 SP2: SMC_S7_V0041.zip
 - Siemens TIA Portal V14: SMC TIA V0027.zip
- CPU mit PROFINET-IO-Controller wie z.B. CPU 015-CEFPR01
- Sigma-7-Antrieb mit PROFINET-Anbindung

Für den Einsatz in S7-300 CPUs von Siemens.

- Siemens SIMATIC Manager ab V5.5 SP2 oder TIA Portal V14
- Simple Motion Control Library
 - SIMATIC Manager ab V5.5 SP2: SMC_S7_V0041.zip
 - Siemens TIA Portal V14: SMC_TIA_V0027.zip
- Siemens CPU mit PROFINET-IO-Controller
- Sigma-7-Antrieb mit PROFINET-Anbindung

Für den Einsatz in S7-1200 und S7-1500 CPUs von Siemens.

- Siemens TIA Portal V15
- Simple Motion Control Library
 - Siemens TIA Portal V15: SMC_TIA_1x00_V0003.zip
- Siemens CPU S7-1200 mit FW V4.2 bzw. S7-1500 mit FW V2.5 mit PROFINET-IO-Controller
- Sigma-7-Antrieb mit PROFINET-Anbindung

Schritte der Projektierung

- 1. Parameter am Antrieb einstellen
 - Die Einstellung der Parameter hat mit dem Softwaretool Sigma Win+ zu erfolgen.
- **2.** Hardwarekonfiguration im *SPEED7 Studio*, Siemens SIMATIC Manager oder TIA Portal.
 - Projektierung einer CPU mit PROFINET-IO-Controller.
 - Projektierung eines Sigma-7 PROFINET-Antriebs.
- 3. Programmierung im SPEED7 Studio, Siemens SIMATIC Manager oder TIA Portal.
 - Init-Baustein zur Konfiguration der Achse beschalten.
 - Kernel-Baustein zur Kommunikation mit der Achse beschalten.
 - Bausteine für die Bewegungsabläufe beschalten.
 - → "Demo-Projekte"...Seite 288

13.3.2.2 Parameter am Antrieb einstellen

Parameter Sigma-7

VORSICHT

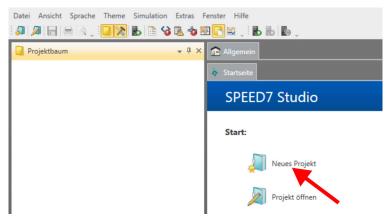
Vor der Erstinbetriebnahme müssen Sie Ihren Antrieb mit dem Softwaretool *Sigma Win*+ an Ihre Applikation anpassen! Näheres hierzu finden Sie im Handbuch zu ihrem Antrieb.

Zur Abstimmung auf die *Simple Motion Control Library* sind folgende Parameter über *Sigma Win*+ einzustellen:

Sigma-7S (24bit Encoder)

Servopack Para- meter	Adresse	Name	Wert
PnB32	606Dh	Velocity Window	1000 Velocity units
PnB34	606Eh	Velocity Window Time	50 ms
PnC20	0922h	Telegram Selection (100: General Telegram: All OP modes)	100

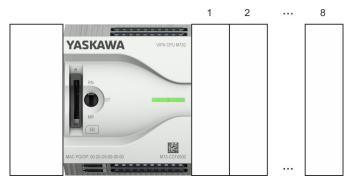
Bitte beachten Sie, dass Sie gemäß ihren Anforderungen die entsprechende Fahrtrichtung für Ihren Antrieb freigeben. Verwenden Sie hierzu die Parameter Pn50A (P-OT) bzw. Pn50B (N-OT) in Sigma Win+.


13.3.2.3 Einsatz im SPEED7 Studio

13.3.2.3.1 Hardware-Konfiguration System MICRO

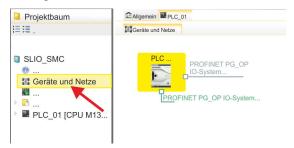
CPU im Projekt anlegen

Bitte verwenden Sie für die Projektierung das SPEED7 Studio ab V1.8


1. Starten Sie das SPEED7 Studio.

- **2.** Erstellen sie auf der Startseite mit "Neues Projekt" ein neues Projekt und vergeben Sie einen "Projektnamen".
 - ➡ Ein neues Projekt wird angelegt und in die Sicht "Geräte und Netze" gewechselt.
- 3. Klicken Sie im Projektbaum auf "Neues Gerät hinzufügen ...".
 - ➡ Es öffnet sich ein Dialog für die Geräteauswahl.

- Wählen Sie unter den "Gerätevorlagen" die System MICRO CPU M13-CCF0000 V2.4.... und klicken Sie auf [OK].
 - ➡ Die CPU wird in "Geräte und Netze" eingefügt und die "Gerätekonfiguration" geöffnet.



Gerätekonfiguration

Slot	Baugruppe	 	
0	CPU M13-CCF0000		
-X2	MPI-Schnittstelle		
-X3	PROFINET PG_OP IO-System		

Ethernet-PG/OP-Kanal parametrieren

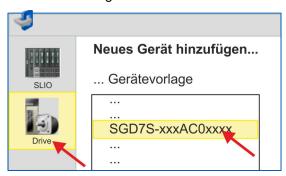
- 1. Klicken Sie im Projektbaum auf "Geräte und Netze".
 - ➡ Sie erhalten eine grafische Objekt-Ansicht Ihrer CPU. Hierbei werden beide Schnittstellen des PROFINET bzw. Ethernet-PG/OP Kanal Switch unter identischem Namen aufgeführt.

- 2. Klicken Sie auf eins der Netzwerke "PROFINET PG_OP_Ethernet IO-System ...".
- 3. ▶ Wählen Sie "Kontextmenü → Eigenschaften der Schnittstelle".
 - ➡ Es öffnet sich ein Dialogfenster. Hier können Sie IP-Adressdaten für Ihren Ethernet-PG/OP-Kanal angeben. Gültige IP-Adress-Parameter erhalten Sie von Ihrem Systemadministrator.
- **4.** Bestätigen Sie Ihre Eingabe mit [OK].
 - → Die IP-Adressdaten werden in Ihr Projekt übernommen und in "Geräte und Netze" unter "Lokale Baugruppen" aufgelistet.

Nach der Übertragung Ihres Projekts ist Ihre CPU über die angegebenen IP-Adressdaten via Ethernet-PG/OP-Kanal erreichbar.

GSDML-Datei installieren

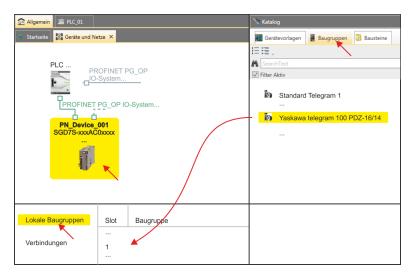
Damit der Sigma-7 PROFINET Antrieb im SPEED7 Studio konfiguriert werden kann, muss die entsprechende GSDML-Datei installiert sein. In der Regel wird das SPEED7 Studio mit aktuellen GSDML-Dateien ausgeliefert und Sie können diesen Teil überspringen. Sollte Ihre GSDML-Datei veraltet sein, finden Sie die aktuellste GSDML-Datei für den Sigma-7 PROFINET Antrieb unter www.yaskawa.eu.com im "Download Center".


- 1. Laden Sie die zu Ihrem Antrieb passende GSDML-Datei herunter. Entpacken Sie diese falls erforderlich.
- 2. Gehen Sie in Ihr SPEED7 Studio.
- **4.** Geben Sie unter "Quellpfad" die GSDML-Datei an und installieren Sie diese mit [Installieren].
 - Die Geräte der GSDML-Datei steht Ihnen nun zur Verfügung.

Sigma-7 Antrieb hinzufügen

- 1. Klicken Sie im Projektbaum auf "Geräte und Netze".
- **2.** Klicken Sie auf "PROFINET PG_OP_Ethernet IO-System ..." und wählen sie "Kontextmenü → Neues Gerät hinzufügen".

⇒ Es öffnet sich die Gerätevorlage zur Auswahl eines PROFINET-Devices.



- 3. Wählen Sie Ihren Sigma-7 Antrieb aus:
 - SGD7S-xxxAC0xxxx

Bestätigen Sie Ihre Angaben mit [OK]. Sollte Ihr Antrieb nicht vorhanden sein, müssen Sie die entsprechende GSDML-Datei wie weiter oben beschrieben installieren.

- ▶ Der Sigma-7 Antrieb wird an Ihren PROFINET-IO-Controller angebunden.
- 4. Klicken Sie auf den Sigma-7 Antrieb.

- 5. Wählen Sie unter "Katalog" den Reiter "Baugruppen" an.
 - → Die Telegramme für den Sigma-7 Antrieb werden aufgelistet.
- **6.** Wählen Sie "Yaskawa telegram 100 PZD..." und ziehen Sie dieses unter "Lokale Baugruppen" auf "Slot 1".
 - → Telegram 100 wird mit den entsprechenden Untergruppen eingefügt.

Die Verbindung zwischen den Achsen in der Hardware-Konfiguration und Ihrem Anwenderprogramm erfolgt durch Angabe folgender Moduleigenschaften in den Aufrufparametern des FB 891 - VMC InitSigma_PN:

- Moduleeigenschaft "Parameter Access Point": Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
 - FB 891 VMC InitSigma_PN: ParaAccessPointAddress:
 Angabe der Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
- Moduleeigenschaft"YASKAWA Telegram PZD...":

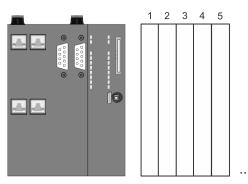
 Jeweilige Startadresse des Ein-/Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "InputsStartAddress":
 Angabe der Startadresse des Eingabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "OutputsStartAddress":
 Angabe der Startadresse des Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "LogicalAddress":
 Angabe des kleineren Werts der Startadressen des Ein-/ Ausgabe-Adressbereichs.
- Anwenderprogramm → 467
- FB 891 VMC InitSigma_PN → 514

Beispiel Hardware-Konfiguration

Slot	Baugruppe	 E-Adr.	A-Adr.	Diagnoseadresse
0	SGD7S-xxxAC0xxxx	2035		2035
X1	PN-IO	2034		2034
X1 P1	Port 1	2033		2033
X1 P2	Port 2	2032		2032
1	DO with YASKAWA telegr.100,	2044		2044
	PZD-16/14			
1.1	Parameter Access Point	2044		2044
1.2	YASKAWA telegram, PZD-16/14	28-55	32-63	2044

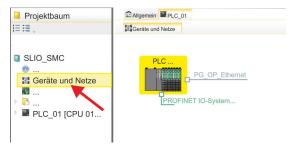
13.3.2.3.2 Hardware-Konfiguration System SLIO

CPU im Projekt anlegen


Bitte verwenden Sie für die Projektierung das SPEED7 Studio ab V1.8

1. Starten Sie das SPEED7 Studio.

- **2.** Erstellen sie auf der Startseite mit *"Neues Projekt"* ein neues Projekt und vergeben Sie einen *"Projektnamen"*.
 - ⇒ Ein neues Projekt wird angelegt und in die Sicht "Geräte und Netze" gewechselt.
- 3. Klicken Sie im Projektbaum auf "Neues Gerät hinzufügen ...".
 - ➡ Es öffnet sich ein Dialog für die Geräteauswahl.
- Wählen Sie unter den "Gerätevorlagen" Ihre PROFINET-CPU wie z.B. die CPU 015-CEFPR01 und klicken Sie auf [OK].
 - Die CPU wird in "Geräte und Netze" eingefügt und die "Gerätekonfiguration" geöffnet.



Gerätekonfiguration

Slot	Baugruppe	 	
0	CPU 015-CEFPR01		
-X1	PG_OP_Ethernet		
-X3	MPI-Schnittstelle		
-X4	PROFINET-IO-System		

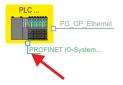
Ethernet-PG/OP-Kanal parametrieren

- 1. Klicken Sie im *Projektbaum* auf "Geräte und Netze".
 - ➡ Sie erhalten eine grafische Objekt-Ansicht Ihrer CPU.

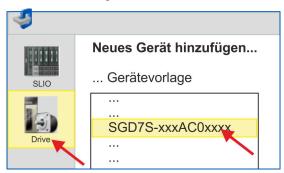
- 2. Klicken Sie auf das Netzwerk "PG_OP_Ethernet".
- 3. ▶ Wählen Sie "Kontextmenü → Eigenschaften der Schnittstelle".
 - ➡ Es öffnet sich ein Dialogfenster. Hier können Sie IP-Adressdaten für Ihren Ethernet-PG/OP-Kanal angeben. Gültige IP-Adress-Parameter erhalten Sie von Ihrem Systemadministrator.
- 4. Bestätigen Sie Ihre Eingabe mit [OK].
 - → Die IP-Adressdaten werden in Ihr Projekt übernommen und in "Geräte und Netze" unter "Lokale Baugruppen" aufgelistet.

Nach der Übertragung Ihres Projekts ist Ihre CPU über die angegebenen IP-Adressdaten via Ethernet-PG/OP-Kanal erreichbar.

GSDML-Datei installieren


Damit der Sigma-7 PROFINET Antrieb im SPEED7 Studio konfiguriert werden kann, muss die entsprechende GSDML-Datei installiert sein. In der Regel wird das SPEED7 Studio mit aktuellen GSDML-Dateien ausgeliefert und Sie können diesen Teil überspringen. Sollte Ihre GSDML-Datei veraltet sein, finden Sie die aktuellste GSDML-Datei für den Sigma-7 PROFINET Antrieb unter www.yaskawa.eu.com im "Download Center".

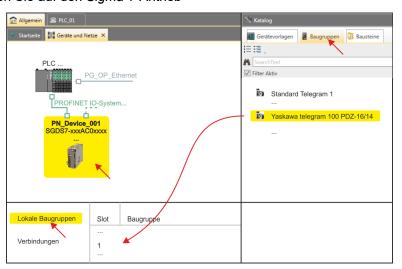
- 1. Laden Sie die zu Ihrem Antrieb passende GSDML-Datei herunter. Entpacken Sie diese falls erforderlich.
- 2. Gehen Sie in Ihr SPEED7 Studio.
- 3. Öffnen Sie mit "Extras → Gerätebeschreibungsdatei installieren (PROFINET GSDML)" das zugehörige Dialogfenster.
- **4.** Geben Sie unter "Quellpfad" die GSDML-Datei an und installieren Sie diese mit [Installieren].
 - → Die Geräte der GSDML-Datei steht Ihnen nun zur Verfügung.


Sigma-7 Antrieb hinzufügen

1. Klicken Sie im Projektbaum auf "Geräte und Netze".

2. Klicken Sie auf "PROFINET IO-System ..." und wählen sie "Kontextmenü → Neues Gerät hinzufügen".

➡ Es öffnet sich die Gerätevorlage zur Auswahl eines PROFINET-Devices.



- 3. Wählen Sie Ihren Sigma-7 Antrieb aus:
 - SGD7S-xxxACxxxx

Bestätigen Sie Ihre Angaben mit [OK]. Sollte Ihr Antrieb nicht vorhanden sein, müssen Sie die entsprechende GSDML-Datei wie weiter oben beschrieben installieren.

- → Der Sigma-7 Antrieb wird an Ihren PROFINET-IO-Controller angebunden.
- 4. Klicken Sie auf den Sigma-7 Antrieb

- 5. Wählen Sie unter "Katalog" den Reiter "Baugruppen" an.
 - ⇒ Die Telegramme für den Sigma-7 Antrieb werden aufgelistet.

- **6.** Wählen Sie "Yaskawa telegram 100 PZD..." und ziehen Sie dieses unter "Lokale Baugruppen" auf "Slot 1".
 - → Telegram 100 wird mit den entsprechenden Untergruppen eingefügt.

 $\tilde{\mathbb{I}}$

Die Verbindung zwischen den Achsen in der Hardware-Konfiguration und Ihrem Anwenderprogramm erfolgt durch Angabe folgender Moduleigenschaften in den Aufrufparametern des FB 891 - VMC InitSigma_PN:

- Moduleeigenschaft "Parameter Access Point": Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
 - FB 891 VMC InitSigma_PN: ParaAccessPointAddress:
 Angabe der Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
- Moduleeigenschaft"YASKAWA Telegram PZD...":
 Jeweilige Startadresse des Ein-/Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "InputsStartAddress":
 Angabe der Startadresse des Eingabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "OutputsStartAddress":
 Angabe der Startadresse des Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "LogicalAddress":
 Angabe des kleineren Werts der Startadressen des Ein-/ Ausgabe-Adressbereichs.
- Anwenderprogramm → 467
- FB 891 VMC InitSigma PN → 514

Beispiel Hardware-Konfiguration

Slot	Baugruppe	 E-Adr.	A-Adr.	Diagnoseadresse
0	SGD7S-xxxAC0xxxx	2035		2035
X1	PN-IO	2034		2034
X1 P1	Port 1	2033		2033
X1 P2	Port 2	2032		2032
1	DO with YASKAWA telegr.100,	2044		2044
	PZD-16/14			
1.1	Parameter Access Point	2044		2044
1.2	YASKAWA telegram, PZD-16/14	28-55	32-63	2044

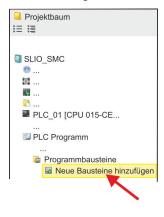
13.3.2.3.3 Anwender-Programm

Programmstruktur

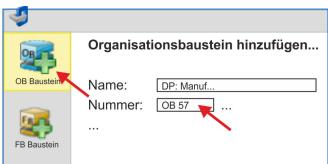
DB

Für jede Achse ist ein Datenbaustein (Achs-DB) für Konfiguration und Statusdaten anzulegen. Der Datenbaustein besteht aus folgenden Datenstrukturen:

- UDT 890 VMC_ConfigSigmaPN_REF
 Die Datenstruktur beschreibt den Aufbau der Konfiguration des Antriebs.
 Spezifische Datenstruktur für Sigma-5/7 PROFINET.
- UDT 860 MC_AXIS_REF

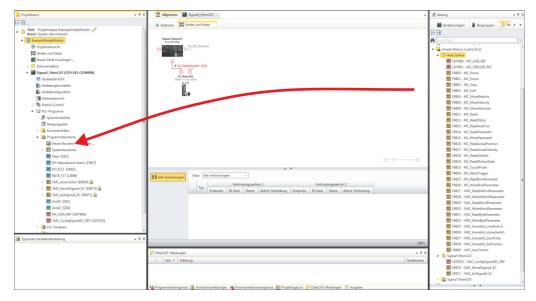

Die Datenstruktur beschreibt den Aufbau der Parameter und Statusinformationen von Antrieben.

Allgemeine Datenstruktur für alle Antriebe und Bussysteme.


- FB 891 VMC InitSigma PN
 - Der Init-Baustein dient zur Konfiguration einer Achse.
 - Spezifischer Baustein für Sigma-5/7 PROFINET.
 - Die Konfigurationsdaten für die Initialisierung sind im Achs-DB abzulegen.
- FB 890 VMC_AxisControlSigma_PN
 - Spezifischer Baustein für Sigma-5/7 PROFINET.
 - Dieser Baustein ist eine Kombination aus einem Kernel und einem AxisControl Baustein und kommuniziert über PROFINET mit dem Antrieb, verarbeitet die Benutzeranforderungen und gibt Statusmeldungen zurück.
 - Unterstützt einfache Bewegungskommandos und liefert alle relevanten Statusmeldungen.
 - Der Austausch der Daten erfolgt mittels des Achs-DB.
 - Über die Instanzdaten des Bausteins können Sie zur Bewegungssteuerung und Statusabfrage eine Visualisierung anbinden.
 - Zusätzlich zum FB 890 VMC_AxisControlSigma_PN, haben Sie die Möglichkeit PLCopen-Bausteine zu nutzen.
- FB 800 ... FB 838 PLCopen
 - Die PLCopen-Bausteine dienen zur Programmierung von Bewegungsabläufen und Statusabfragen.
 - Allgemeine Bausteine für alle Antriebe und Bussysteme.

Programmierung

Alarm-OBs anlegen



1. Klicken Sie im *Projektbaum* innerhalb der CPU unter "PLC-Programm", "Programmbausteine" auf "Neuen Baustein hinzufügen".

- → Das Dialogfenster "Baustein hinzufügen" öffnet sich.
- 2. Wählen Sie den Bausteintyp "OB Baustein" und fügen Sie nacheinander OB 57, OB 82 und OB 86 Ihrem Projekt hinzu.

Bausteine in Projekt kopieren

- Öffnen Sie im "Katalog" unter "Bausteine" "Simple Motion Control" und ziehen Sie per Drag&Drop folgende Bausteine in "Programmbausteine" des Projektbaums:
 - Sigma PROFINET:
 - UDT 890 VMC_ConfigSigmaPN_REF → "UDT 890 VMC_ConfigSigmaPN_REF Sigma-5/7 PROFINET Datenstruktur Achskonfiguration"...Seite 510
 - FB 890 VMC_AxisControlSigma_PN → "FB 890 VMC_Axis-ControlSigma_PN - Control-Baustein Achskontrolle für Sigma-5/7 PROFINET"...Seite 510
 - FB 891 VMC_InitSigma_PN → "FB 891 VMC_InitSigma_PN Sigma-5/7 PROFINET Initialisierung"...Seite 514
 - Axis Control
 - UDT 860 MC_AXIS_REF → "UDT 860 MC_AXIS_REF Datenstruktur Achsdaten"...Seite 659
 - FB 860 VMC_AxisControl → "FB 860 VMC_AxisControl Control-Baustein Achskontrolle"...Seite 659

Achs-DB anlegen

- Fügen Sie Ihrem Projekt einen neuen DB als Achs-DB hinzu. Klicken Sie hierzu im Projektbaum innerhalb der CPU unter "PLC-Programm", "Programmbausteine" auf "Neuen Baustein hinzufügen", wählen Sie den Bausteintyp "DB Baustein" und vergeben Sie diesem den Namen "Axis01". Die DB-Nr. können Sie frei wählen wie z.B. DB 10.
 - → Der Baustein wird angelegt und geöffnet.
- Legen Sie in "Axis01" die Variable "Config" vom Typ UDT 890 an. Dies sind spezifische Achs-Konfigurationsdaten.
 - Legen Sie in "Axis01" die Variable "Axis" vom Typ UDT 860 an. Während des Betriebs werden hier alle Betriebsdaten der Achse abgelegt.

•

Axis01 [DB10] Bausteinstruktur

Adr	Name	Datentyp	
	Config	UDT	[890]
	Axis	UDT	[860]

OB 1 - Konfiguration der Achsen

Öffnen Sie den OB 1 und programmieren Sie folgende FB-Aufrufe mit zugehörigen DBs: FB 891 - VMC InitSigma PN, DB 891

Die Verbindung zwischen den Achsen in der Hardware-Konfiguration und Ihrem Anwenderprogramm erfolgt durch Angabe folgender Moduleigenschaften in den Aufrufparametern des FB 891 - VMC InitSigma_PN:

- Moduleeigenschaft "Parameter Access Point": Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
 - FB 891 VMC InitSigma_PN: ParaAccessPointAddress:
 Angabe der Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
- Moduleeigenschaft"YASKAWA Telegram PZD...":
 Jeweilige Startadresse des Ein-/Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "InputsStartAddress":
 Angabe der Startadresse des Eingabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "OutputsStartAddress":
 Angabe der Startadresse des Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "LogicalAddress":
 Angabe des kleineren Werts der Startadressen des Ein-/Ausgabe-Adressbereichs.
- Hardware-Konfiguration → 457
- FB 891 VMC InitSigma PN → 514

Beispiel Hardware-Konfiguration

Slot	Baugruppe	•••	E-Adr.	A-Adr.	Diagnoseadresse
0	SGD7S-xxxAC0xxxx		2035		2035
X1	PN-IO		2034		2034
X1 P1	Port 1		2033		2033
X1 P2	Port 2		2032		2032
1	DO with YASKAWA telegr.100,		2044		2044
	PZD-16/14				
1.1	Parameter Access Point		2044		2044
1.2	YASKAWA telegram, PZD-16/14		28-55	32-63	2044

Beispielaufruf

```
CALL "VMC_InitSigma PN" , "VMC InitSigma PN 1"
                     :="InitS7PN1 Enable"
Enable
LogicalAddress
                     :28 //HW config: Smallest IO addr.
ParaAccessPointAdress := 2044 //HW config: Diag addr.
InputsStartAddress :=28 //HW config: Telegr. 100 start I addr.
OutputsStartAddress :=32 //HW config: Telegr. 100 start O addr.
EncoderType
                     :=1
EncoderResolutionBits :=20
FactorPosition
                     :=1.048576e+006
FactorVelocity
                     :=1.048576e+006
FactorAcceleration
                     :=1.048576e+006
OffsetPosition
                     :=0.000000e+000
MaxVelocityApp
                     :=5.000000e+001
MaxAccelerationApp
                     :=1.000000e+002
MaxDecelerationApp
                     :=1.000000e+002
MaxVelocityDrive
                      :=6.000000e+001
```

```
MaxPosition
                      :=1.048500e+003
MinPosition
                      :=-1.048514e+003
EnableMaxPosition
                      :=TRUE
EnableMinPosition
                      :=TRUE
MinUserPosition
                      :="InitS7PN1 MinUserPos"
                      :="InitS7PN1 MaxUserPos"
MaxUserPosition
                      :="InitS7PN1 Valid"
Valid
                      :="InitS7PN1 Error"
Error
                      :="InitS7PN1 ErrorID"
ErrorID
Config
                      :="Axis01".Config
                      :="Axis01".Axis
Axis
```

AxisControl verbinden

FB 890 - VMC_AxisControlSigma_PN, DB 890 → "FB 890 - VMC_AxisControlSigma_PN - Control-Baustein Achskontrolle für Sigma-5/7 PROFINET"...Seite 510

Der Baustein verarbeitet die Benutzerkommandos und gibt sie entsprechend aufbereitet an den Antrieb über PROFINET weiter.

```
CALL "VMC AxisControlSigma PN" , "DI AxisControlSigmaPN01"
AxisEnable :="AxCtrl1_AxisEnable"
                                     :="AxCtrl1 AxisReset"
AxisReset
                                     :="AxCtrl1 HomeExecute"
HomeExecute
HomePosition :="AxCtrl1_HomePosition"
StopExecute :="AxCtrl1_StopExecute"
MvVelocityExecute:="AxCtrl1 MvVelExecute"
MvRelativeExecute:="AxCtrl1 MvRelExecute"
MvAbsoluteExecute:="AxCtrl1 MvAbsExecute"
PositionDistance := "AxCtrl1 PositionDistance"
Direction :="AxCtrl1_Direction"
Velocity :="AxCtrl1_Velocity"
Velocity :="AxCtrll_Direction"

Velocity :="AxCtrll_Velocity"

Acceleration :="AxCtrll_Acceleration"

Deceleration :="AxCtrll_Deceleration"

JogPositive :="AxCtrll_JogPositive"

JogNegative :="AxCtrll_JogNegative"

JogVelocity :="AxCtrll_JogVelocity"

JogAcceleration :="AxCtrll_JogAcceleration"

JogDeceleration :="AxCtrll_JogAcceleration"
 JogDeceleration :="AxCtrl1_JogDeceleration"
JogDeceleration

AxisReady

AxisEnabled

AxisError

AxisErrorID

DriveWarning

DriveError

DriveErrorID

IsHomed

ModeOfOperation

PLODENSTATE

E "AXCtrl1 AxisEnabled"

:="AxCtrl1 AxisErrorID"

:="AxCtrl1 AxisErrorID"

:="AxCtrl1 DriveWarning"

:="AxCtrl1 DriveErrorID"

:="AxCtrl1 DriveErrorID"
PLCopenState :="AxCtrl1_PLCopenState"
ActualPosition :="AxCtrl1_ActualPosition"
ActualVelocity :="AxCtrll ActualVelocity"
CmdDone :="AxCtrl1_CmdDone"
CmdBusy :="AxCtrl1_CmdBusy"
CmdAborted :="AxCtrl1_CmdAborted"
CmdError :="AxCtrl1_CmdError"
CmdErrorID :="AxCtrl1_CmdErrorID"
DirectionPositive:="AxCtrl1 DirectionPos"
DirectionNegative:="AxCtrl1_DirectionNeg"
 SWLimitMinActive :="AxCtrl1_SWLimitMinActive"
 SWLimitMaxActive :="AxCtrl1 SWLimitMaxActive"
HWLimitMinActive :="AxCtrl1 HWLimitMinActive"
HWLimitMaxActive :="AxCtrl1 HWLimitMaxActive"
                                        :="Axis01".Axis
Axis
```

 $\tilde{\mathbb{J}}$

Für komplexe Bewegungsaufgaben können Sie die PLCopen-Bausteine verwenden. Hier müssen Sie ebenfalls unter Axis die Referenz zu den Achsdaten im Achs-DB angeben.

Ihr Projekt beinhaltet nun folgende Bausteine:

- OB 1 Main
- OB 57 DP Manufacturer Alarm
- OB 82 I/O_FLT1
- OB 86 Rack FLT
- FB 890 VMC_AxisControlSigma_PN mit Instanz-DB
- FB 891 VMC_InitSigma_PN mit Instanz-DB
- UDT 860 MC Axis REF
- UDT 890 VMC ConfigSigmaPN REF

Zeitlicher Ablauf

- <u>1.</u> Wählen Sie *"Projekt → Alles übersetzen"* und übertragen Sie das Projekt in Ihre CPU.
 - → Sie können jetzt Ihre Applikation in Betrieb nehmen.

VORSICHT

Bitte beachten Sie immer die Sicherheitshinweise zu ihrem Antrieb, insbesondere bei der Inbetriebnahme!

- **2.** Bevor eine Achse gesteuert werden kann, muss diese initialisiert werden. Rufen Sie hierzu den *Init* Baustein FB 891 VMC InitSigma PN mit *Enable* = TRUE auf.
 - → Der Ausgang Valid meldet TRUE zurück. Im Fehlerfall können Sie durch Auswertung der ErrorID den Fehler ermitteln.

Den *Init*-Baustein müssen Sie erneut aufrufen, wenn Sie einen neuen Achs-DB laden oder Parameter am *Init*-Baustein geändert wurden.

Fahren Sie erst fort, wenn der Init-Baustein keinen Fehler meldet!

3. Programmieren Sie Ihre Applikation mit dem FB 890 - VMC_AxisControlSigma_PN oder mit den PLCopen Bausteinen.

13.3.2.4 Einsatz im Siemens SIMATIC Manager

13.3.2.4.1 Hardware-Konfiguration System MICRO bzw. SLIO

Voraussetzung

Übersicht

- Bitte verwenden Sie für die Projektierung den Siemens SIMATIC Manager ab V5.5 SP2
- Die Projektierung der System MICRO bzw. SLIO CPU erfolgt im Siemens SIMATIC Manager in Form eines virtuellen PROFINET IO Devices.
 - Das PROFINET IO Device ist mittels GSDML im Hardware-Katalog zu installieren.
- Damit der PROFINET Antrieb im Siemens SIMATIC Manager konfiguriert werden kann, muss die entsprechende GSDML-Datei installiert sein.

GSDML-Datei für System MICRO bzw. SLIO installieren

Die Installation des PROFINET-IO-Device im Hardware-Katalog erfolgt nach folgender Vorgehensweise:

- 1. Gehen Sie in das "Download Center" von www.yaskawa.eu.com.
- 2. Laden Sie unter "GSDML SLIO" die Konfigurationsdatei f
 ür Ihre System MICRO bzw. SLIO CPU.
- 3. Extrahieren Sie die Datei in Ihr Arbeitsverzeichnis.
- 4. Starten Sie den Hardware-Konfigurator von Siemens.
- 5. Schließen Sie alle Projekte.
- **6.** ▶ Gehen Sie auf "Extras → GSD-Dateien installieren".
- Navigieren Sie in Ihr Arbeitsverzeichnis und installieren Sie die entsprechende GSDML-Datei.
 - Nach der Installation finden Sie das entsprechende PROFINET IO Device unter "PROFINET IO → Weitere Feldgeräte → I/O".

Von Yaskawa gibt es folgende PROFINET-IO-Devices:

- System MICRO: "... Micro PLC"
- System SLIO: "... System SLIO"

GSDML-Datei für Sigma-7 PROFINET Antrieb installieren

Die GSDML-Datei für den Sigma-7 PROFINET Antrieb finden Sie im "Download Center" auf www.yaskawa.eu.com.

Bitte verwenden Sie folgende GSDML:

GSDML-V2.33-Yaskawa-SGD7S-xxxAC0xxxx-20170914.xml

Die Installation erfolgt nach folgender Vorgehensweise:

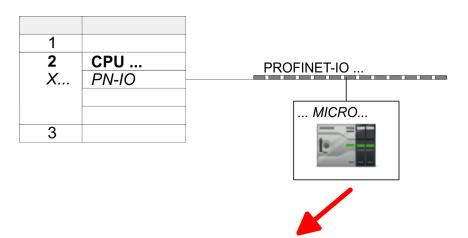
- 1. Laden Sie die zu Ihrem Antrieb passende GSDML-Datei herunter.
- 2. Extrahieren Sie die Datei in Ihr Arbeitsverzeichnis.
- 3. Starten Sie den Hardware-Konfigurator von Siemens.
- 4. Schließen Sie alle Projekte.
- **5.** ▶ Gehen Sie auf "Extras → GSD-Dateien installieren".
- 6. Navigieren Sie in Ihr Arbeitsverzeichnis und installieren Sie die entsprechende GSDML-Datei.
 - Nach der Installation finden Sie das PROFINET IO Device für den Sigma-7 Antrieb unter "PROFINET IO → Weitere Feldgeräte → Drives → Yaskawa Drives".

CPU im Projekt anlegen

Um kompatibel mit dem Siemens SIMATIC Manager zu sein, sind folgende Schritte durchzuführen:

- 1. Starten Sie den Hardware-Konfigurator von Siemens mit einem neuen Projekt.
- 2. Fügen Sie aus dem Hardware-Katalog eine Profilschiene ein.

3. Platzieren Sie auf "Slot"-Nummer 2 abhängig von der eingesetzten CPU von Yaskawa, folgende CPU von Siemens:


Yaskawa CPU	zu projektieren als SIMATIC S7-300 >
M13-CCF0000 ab V2.4.12	CPU 314C-2 PN/DP (6ES7 314-6EH04-0AB0 V3.3)
013-CCF0R00 ab V2.4.12	CPU 314C-2 PN/DP (6ES7 314-6EH04-0AB0 V3.3)
014-CEF0R01 ab V2.4.12	CPU 315-2 PN/DP (6ES7 315-2EH14-0AB0 V3.2)
015-CEFNR00 ab V2.4.16	CPU 315-2 PN/DP (6ES7 315-2EH14-0AB0 V3.2)
015-CEFPR01 ab V2.4.12	CPU 315-2 PN/DP (6ES7 315-2EH14-0AB0 V3.2)
017-CEFPR00 ab V2.4.12	CPU 317-2PN/DP (6ES7 317-2EK14-0AB0 V3.2)

- Die CPU wird auf der Profilschiene eingefügt wie z.B. für das System MICRO die CPU 314C-2 PN/DP.
- 1. Klicken Sie auf das Submodul "PN-IO" der CPU.
- 2. ▶ Wählen Sie "Kontextmenü → PROFINET IO-System einfügen".

- 3. Legen Sie mit [Neu] ein neues Subnetz an und vergeben Sie gültige IP-Adress-Daten
- **4.** ► Klicken Sie auf das Submodul "PN-IO" der CPU und öffnen Sie mit "Kontextmenü → Objekteigenschaften" den Eigenschafts-Dialog.
- **5.** Geben Sie unter "Allgemein" einen "Gerätenamen" an. Der Gerätename muss eindeutig am Ethernet-Subnetz sein.

Anbindung CPU als PROFINET-IO-Device

0	MICRO	M13-CCF0000
X2	M13-CCF0000	
1		
2		
3		

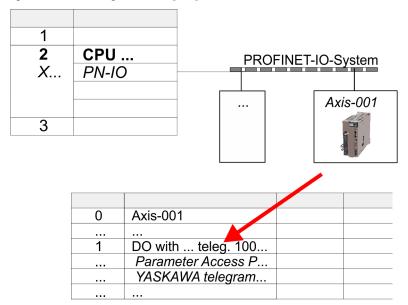
6. Navigieren Sie im Hardware-Katalog in das Verzeichnis "PROFINET IO → Weitere Feldgeräte → I/O" und binden Sie z.B. für System MICRO das IO-Device "M13-CCF0000" an Ihr PROFINET-System an.

Von Yaskawa gibt es folgende PROFINET-IO-Devices:

- System MICRO: "... Micro PLC"
- System SLIO: "... System SLIO"
- ➡ In der Steckplatzübersicht des PROFINET-IO-Device "... MICRO CPU" ist auf Steckplatz 0 die CPU bereits vorplatziert.

Ethernet-PG/OP-Kanal parametrieren

Steckpl.	Modul	
1		
2	CPU	
X	PN-IO	
3		
4	343-1EX30	7
5		


- 1. Platzieren Sie für den Ethernet-PG/OP-Kanal auf Steckplatz 4 den Siemens CP 343-1 (SIMATIC 300 \ CP 300 \ Industrial Ethernet \CP 343-1 \ 6GK7 343-1EX30 0XE0 V3.0).
- Öffnen Sie durch Doppelklick auf den CP 343-1EX30 den Eigenschaften-Dialog und geben Sie für den CP unter "Eigenschaften" IP-Adress-Daten an. Gültige IP-Adress-Parameter erhalten Sie von Ihrem Systemadministrator.
- 3. Ordnen Sie den CP einem "Subnetz" zu. Ohne Zuordnung werden die IP-Adress-Daten nicht übernommen!

Sigma-7 PROFINET Antrieb einfügen und konfigurieren

Bei der Konfiguration ist für jede Achse ein Sigma-7 PROFINET-IO-Device zu konfigurieren.

- 1. Wählen Sie Ihren Sigma-7 PROFINET Antrieb "SGD7S-xxxAC0xxxx" aus dem Hardware-Katalog und ziehen Sie ihn auf das "PROFINET-IO-System".
 - → Der Sigma-7 PROFINET Antrieb wird an den IO-Controller angebunden und kann nun konfiguriert werden.
- 2. ► Klicken Sie auf das Sigma-7 IO-Device und öffnen Sie mit "Kontextmenü → Objekteigenschaften" den Eigenschaftsdialog.
- 3. ▶ Vergeben Sie einen passendenden "Gerätenamen" wie Axis-001.

4. Bestätigen Sie Ihre Eingaben mit [OK].

- 5. Blenden Sie im Hardware-Katalog die Komponenten des Sigma-7 PROFINET Antriebs "SGD7S-xxxAC0xxxx" ein und ziehen Sie die Komponente "DO with YASKAWA telegr. 100..." auf Slot 1 des Sigma-7 PROFINET Antriebs.
 - → Telegram 100 wird mit den entsprechenden Untergruppen eingefügt.

Die Verbindung zwischen den Achsen in der Hardware-Konfiguration und Ihrem Anwenderprogramm erfolgt durch Angabe folgender Moduleigenschaften in den Aufrufparametern des FB 891 - VMC InitSigma PN:

- Moduleeigenschaft "Parameter Access Point": Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
 - FB 891 VMC InitSigma_PN: ParaAccessPointAddress:
 Angabe der Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
- Moduleeigenschaft"YASKAWA Telegram PZD...":
 Jeweilige Startadresse des Ein-/Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "InputsStartAddress":
 Angabe der Startadresse des Eingabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "OutputsStartAddress":
 Angabe der Startadresse des Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "LogicalAddress":
 Angabe des kleineren Werts der Startadressen des Ein-/Ausgabe-Adressbereichs.
- Anwenderprogramm → 482
- FB 891 VMC InitSigma_PN → 514

Beispiel Hardware-Konfiguration

Slot	Baugruppe	 E-Adr.	A-Adr.	Diagnoseadresse
0	SGD7S-xxxAC0xxxx			2035
X1	PN-IO			2034
X1 P1	Port 1			2033
X1 P2	Port 2			2032
1	DO with YASKAWA telegr.100,			2044
	PZD-16/14			
1.1	Parameter Access Point			2044
1.2	YASKAWA telegram, PZD-16/14	28-55	32-63	

13.3.2.4.2 Hardware-Konfiguration System 300S

Voraussetzung

- Bitte verwenden Sie für die Projektierung den Siemens SIMATIC Manager ab V5.5 SP2.
- Damit der PROFINET Antrieb im Siemens SIMATIC Manager konfiguriert werden kann, muss die entsprechende GSDML-Datei installiert sein.
- Die Bausteine können Sie bei folgenden CPUs einsetzen:
 - System 300S CPU 315-4PN43
 - System 300S CPU 315-4PN23
 - System 300S CPU 317-4PN23
- Die Projektierung der System 300S PROFINET CPU erfolgt im Siemens SIMATIC Manager als entsprechende Siemens CPU.
 - Die CPUs 315-4PNxx sind als Siemens CPU 315-2 PN/DP (6ES7 315-2EH14-0AB0 V3.2) zu projektieren.
 - Die CPU 317-4PN23 ist als Siemens CPU 317-2 PN/DP (6ES7 317-2EK14-0AB0 V3.2) zu projektieren.

GSDML-Datei für *Sigma-7* PROFINET Antrieb installieren

Die GSDML-Datei für den Sigma-7 PROFINET Antrieb finden Sie im "Download Center" auf www.yaskawa.eu.com.

Bitte verwenden Sie folgende GSDML:

GSDML-V2.33-Yaskawa-SGD7S-xxxAC0xxxx-20170914.xml

Die Installation erfolgt nach folgender Vorgehensweise:

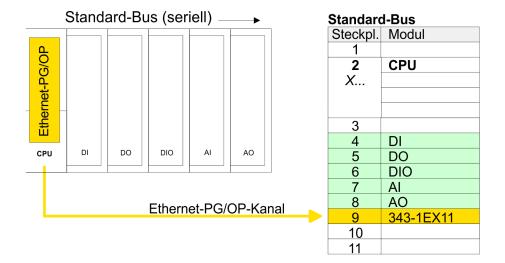
- 1. ▶ Laden Sie die zu Ihrem Antrieb passende GSDML-Datei herunter.
- **2.** Extrahieren Sie die Datei in Ihr Arbeitsverzeichnis.
- 3. Starten Sie den Hardware-Konfigurator von Siemens.
- 4. Schließen Sie alle Projekte.
- 5. ▶ Gehen Sie auf "Extras → GSD-Dateien installieren".
- Navigieren Sie in Ihr Arbeitsverzeichnis und installieren Sie die entsprechende GSDML-Datei.
 - Nach der Installation finden Sie das PROFINET IO Device für den Sigma-7 Antrieb unter "PROFINET IO → Weitere Feldgeräte → Drives → Yaskawa Drives".

CPU im Projekt anlegen

Steckp	Baugruppe
1	
2	CPU 315-2 PN/DP
X1	MPI/DP
X2	PN-IO
X2	Port 1
X2	Port 2
3	

Um kompatibel mit dem Siemens SIMATIC Manager zu sein, sind folgende Schritte durchzuführen:

- 1. Starten Sie den Hardware-Konfigurator von Siemens mit einem neuen Projekt.
- 2. Fügen Sie aus dem Hardware-Katalog eine Profilschiene ein.
- 3. Platzieren Sie auf "Slot"-Nummer 2 für die CPU 315PN die Siemens CPU 315-2 PN/DP (6ES7 315-2EH14-0AB0 V3.2) und für die CPU 317PN die Siemens CPU 317-2 PN/DP (6ES7 317-2EK14-0AB0 V3.2).
- 4. Klicken Sie auf das Submodul "PN-IO" der CPU.
- 5. ▶ Wählen Sie "Kontextmenü → PROFINET IO-System einfügen".

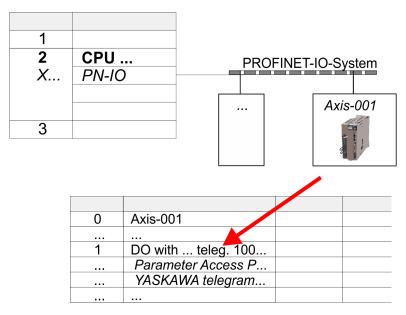

Steckpl.	Baugruppe	
1		
2	CPU	PROFINET-IO-System
X	PN-IO	TITOTINE 1-10-bystciii
3		

- 6. ▶ Legen Sie mit [Neu] ein neues Subnetz an.
- 7. ► Klicken Sie auf das Submodul "PN-IO" der CPU und öffnen Sie mit "Kontextmenü → Objekteigenschaften" den Eigenschafts-Dialog.
- **8.** Geben Sie unter "Allgemein" einen "Gerätenamen" an. Der Gerätename muss eindeutig am Ethernet-Subnetz sein.

Ethernet-PG/OP-Kanal parametrieren

Die CPU hat einen Ethernet-PG/OP-Kanal integriert. Über diesen Kanal können Sie Ihre CPU programmieren und fernwarten.

- 1. Projektieren Sie die Module am Standard-Bus.
- 2. Für den Ethernet-PG/OP-Kanal ist <u>immer</u> unterhalb der reell gesteckten Module ein Siemens CP 343-1 (SIMATIC 300 \ CP 300 \ Industrial Ethernet \CP 343-1 \ 6GK7 343-1EX11 0XE0) zu platzieren.
- 3. Offfnen Sie durch Doppelklick auf den CP 343-1EX11 den Eigenschaften-Dialog und geben Sie für den CP unter "Eigenschaften" die IP-Adress-Daten aus der Urtaufe an
- 4. Ordnen Sie den CP einem "Subnetz" zu. Ohne Zuordnung werden die IP-Adress-Daten nicht übernommen!
- 5. Übertragen Sie Ihr Projekt in Ihre CPU
 - ➡ Die IP-Adress-Daten werden in Ihr Projekt übernommen.


 $\hat{\mathbb{I}}$

Näheres zur Urtaufe und zum Einsatz des Ethernet-PG/OP-Kanals finden Sie im Handbuch zu Ihrer CPU.

Sigma-7 PROFINET Antrieb einfügen und konfigurieren

Bei der Konfiguration ist für jede Achse ein *Sigma-7* PROFINET-IO-Device zu konfigurieren.

- 1. Wählen Sie Ihren Sigma-7 PROFINET Antrieb "SGD7S-xxxAC0xxxx" aus dem Hardware-Katalog und ziehen Sie ihn auf das "PROFINET-IO-System".
 - → Der Sigma-7 PROFINET Antrieb wird an den IO-Controller angebunden und kann nun konfiguriert werden.
- <u>2.</u> Klicken Sie auf das *Sigma-7* IO-Device und öffnen Sie mit *"Kontextmenü* → *Objekteigenschaften"* den Eigenschaftsdialog.
- 3. Vergeben Sie einen passendenden "Gerätenamen" wie Axis-001.
- 4. Bestätigen Sie Ihre Eingaben mit [OK].

- 5. Blenden Sie im Hardware-Katalog die Komponenten des *Sigma-7* PROFINET Antriebs "SGD7S-xxxAC0xxxx" ein und ziehen Sie die Komponente "DO with YASKAWA telegr. 100..." auf Slot 1 des *Sigma-7* PROFINET Antriebs.
 - → Telegram 100 wird mit den entsprechenden Untergruppen eingefügt.

Die Verbindung zwischen den Achsen in der Hardware-Konfiguration und Ihrem Anwenderprogramm erfolgt durch Angabe folgender Moduleigenschaften in den Aufrufparametern des FB 891 - VMC InitSigma_PN:

- Moduleeigenschaft "Parameter Access Point": Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
 - FB 891 VMC InitSigma_PN: ParaAccessPointAddress:
 Angabe der Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
- Moduleeigenschaft"YASKAWA Telegram PZD...":

 Jeweilige Startadresse des Ein-/Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "InputsStartAddress":
 Angabe der Startadresse des Eingabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "OutputsStartAddress":
 Angabe der Startadresse des Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "LogicalAddress":
 Angabe des kleineren Werts der Startadressen des Ein-/Ausgabe-Adressbereichs.
- Anwenderprogramm → 482
- FB 891 VMC InitSigma PN → 514

Beispiel Hardware-Konfiguration

Slot	Baugruppe	 E-Adr.	A-Adr.	Diagnoseadresse
0	SGD7S-xxxAC0xxxx			2035
X1	PN-IO			2034
X1 P1	Port 1			2033
X1 P2	Port 2			2032
1	DO with YASKAWA telegr.100,			2044
	PZD-16/14			
1.1	Parameter Access Point			2044
1.2	YASKAWA telegram, PZD-16/14	28-55	32-63	

13.3.2.4.3 Hardware-Konfiguration Siemens S7-300

Voraussetzung

- Bitte verwenden Sie für die Projektierung den Siemens SIMATIC Manager ab V5.5 SP2.
- Damit der PROFINET Antrieb im Siemens SIMATIC Manager konfiguriert werden kann, muss die entsprechende GSDML-Datei installiert sein.
- Die Bausteine k\u00f6nnen Sie bei allen aktuellen Siemens S7-300 CPUs einsetzen, welche einen PROFINET-IO-Controller besitzen:

GSDML-Datei für Sigma-7 PROFINET Antrieb installieren

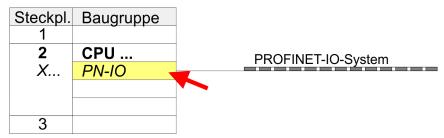
Die GSDML-Datei für den Sigma-7 PROFINET Antrieb finden Sie im "Download Center" auf www.yaskawa.eu.com.

Bitte verwenden Sie folgende GSDML:

GSDML-V2.33-Yaskawa-SGD7S-xxxAC0xxxx-20170914.xml

Die Installation erfolgt nach folgender Vorgehensweise:

- 1. Laden Sie die zu Ihrem Antrieb passende GSDML-Datei herunter.
- 2. Extrahieren Sie die Datei in Ihr Arbeitsverzeichnis.
- **3.** Starten Sie den Hardware-Konfigurator von Siemens.
- 4. Schließen Sie alle Projekte.
- **5.** ▶ Gehen Sie auf "Extras → GSD-Dateien installieren".
- **6.** Navigieren Sie in Ihr Arbeitsverzeichnis und installieren Sie die entsprechende GSDML-Datei.
 - Nach der Installation finden Sie das PROFINET IO Device für den Sigma-7 Antrieb unter "PROFINET IO → Weitere Feldgeräte → Drives → Yaskawa Drives".

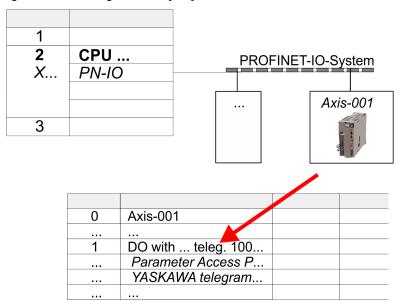

CPU im Projekt anlegen

Steckp	Baugruppe
1	
2	CPU 315-2 PN/DP
X1	MPI/DP
X2	PN-IO
X2	Port 1
X2	Port 2
3	

Im Siemens SIMATIC Manager sind folgende Schritte durchzuführen:

- 1. Starten Sie den Hardware-Konfigurator von Siemens mit einem neuen Projekt.
- 2. Fügen Sie aus dem Hardware-Katalog eine Profilschiene ein.

- Wählen Sie im Hardware-Katalog die entsprechende Siemens S7-300 CPU, welche einen PROFINET-IO-Controller besitzt, wie z.B. die Siemens CPU 315-2 PN/DP (6ES7 315-2EH14-0AB0 V3.2). Platzieren Sie diese auf "Slot"-Nummer 2.
- 4. Klicken Sie auf das Submodul "PN-IO" der CPU.
- 5. Wählen Sie "Kontextmenü → PROFINET IO-System einfügen".



- 6. ▶ Legen Sie mit [Neu] ein neues Subnetz an.
- 7. Klicken Sie auf das Submodul "PN-IO" der CPU und öffnen Sie mit "Kontextmenü Objekteigenschaften" den Eigenschafts-Dialog.
- **8.** Geben Sie unter "Allgemein" einen "Gerätenamen" an. Der Gerätename muss eindeutig am Ethernet-Subnetz sein.

Sigma-7 PROFINET Antrieb einfügen und konfigurieren

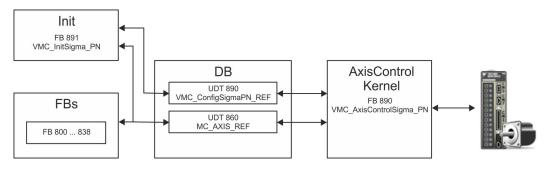
Bei der Konfiguration ist für jede Achse ein Sigma-7 PROFINET-IO-Device zu konfigurieren.

- 1. Wählen Sie Ihren Sigma-7 PROFINET Antrieb "SGD7S-xxxAC0xxxx" aus dem Hardware-Katalog und ziehen Sie ihn auf das "PROFINET-IO-System".
 - → Der Sigma-7 PROFINET Antrieb wird an den IO-Controller angebunden und kann nun konfiguriert werden.
- **2.** Klicken Sie auf das *Sigma-7* IO-Device und öffnen Sie mit *"Kontextmenü* → *Objekteigenschaften"* den Eigenschaftsdialog.
- **3.** Vergeben Sie einen passendenden "Gerätenamen" wie Axis-001.
- 4. Bestätigen Sie Ihre Eingaben mit [OK].

- 5. Blenden Sie im Hardware-Katalog die Komponenten des *Sigma-7* PROFINET Antriebs "SGD7S-xxxAC0xxxx" ein und ziehen Sie die Komponente "DO with YASKAWA telegr. 100..." auf Slot 1 des *Sigma-7* PROFINET Antriebs.
 - Telegram 100 wird mit den entsprechenden Untergruppen eingefügt.

 \int_{1}^{∞}

Die Verbindung zwischen den Achsen in der Hardware-Konfiguration und Ihrem Anwenderprogramm erfolgt durch Angabe folgender Moduleigenschaften in den Aufrufparametern des FB 891 - VMC InitSigma_PN:


- Moduleeigenschaft "Parameter Access Point": Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
 - FB 891 VMC InitSigma_PN: ParaAccessPointAddress:
 Angabe der Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
- Moduleeigenschaft"YASKAWA Telegram PZD...":
 Jeweilige Startadresse des Ein-/Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "InputsStartAddress":
 Angabe der Startadresse des Eingabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "OutputsStartAddress":
 Angabe der Startadresse des Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "LogicalAddress":
 Angabe des kleineren Werts der Startadressen des Ein-/Ausgabe-Adressbereichs.
- Anwenderprogramm → 482
- FB 891 VMC InitSigma_PN → 514

Beispiel Hardware-Konfiguration

Slot	Baugruppe	 E-Adr.	A-Adr.	Diagnoseadresse
0	SGD7S-xxxAC0xxxx			2035
X1	PN-IO			2034
X1 P1	Port 1			2033
X1 P2	Port 2			2032
1	DO with YASKAWA telegr.100,			2044
	PZD-16/14			
1.1	Parameter Access Point			2044
1.2	YASKAWA telegram, PZD-16/14	28-55	32-63	

13.3.2.4.4 Anwender-Programm

Programmstruktur

DB

Für jede Achse ist ein Datenbaustein (Achs-DB) für Konfiguration und Statusdaten anzulegen. Der Datenbaustein besteht aus folgenden Datenstrukturen:

UDT 890 - VMC_ConfigSigmaPN_REF

Die Datenstruktur beschreibt den Aufbau der Konfiguration des Antriebs. Spezifische Datenstruktur für *Sigma-5/7* PROFINET.

UDT 860 - MC_AXIS_REF

Die Datenstruktur beschreibt den Aufbau der Parameter und Statusinformationen von Antrieben.

Allgemeine Datenstruktur für alle Antriebe und Bussysteme.

- FB 891 VMC InitSigma PN
 - Der Init-Baustein dient zur Konfiguration einer Achse.
 - Spezifischer Baustein für Sigma-5/7 PROFINET.
 - Die Konfigurationsdaten für die Initialisierung sind im Achs-DB abzulegen.
- FB 890 VMC_AxisControlSigma_PN
 - Spezifischer Baustein für Sigma-5/7 PROFINET.
 - Dieser Baustein ist eine Kombination aus einem Kernel und einem AxisControl Baustein und kommuniziert über PROFINET mit dem Antrieb, verarbeitet die Benutzeranforderungen und gibt Statusmeldungen zurück.
 - Unterstützt einfache Bewegungskommandos und liefert alle relevanten Statusmeldungen.
 - Der Austausch der Daten erfolgt mittels des Achs-DB.
 - Über die Instanzdaten des Bausteins können Sie zur Bewegungssteuerung und Statusabfrage eine Visualisierung anbinden.
 - Zusätzlich zum FB 890 VMC_AxisControlSigma_PN, haben Sie die Möglichkeit PLCopen-Bausteine zu nutzen.
- FB 800 ... FB 838 PLCopen
 - Die PLCopen-Bausteine dienen zur Programmierung von Bewegungsabläufen und Statusabfragen.
 - Allgemeine Bausteine für alle Antriebe und Bussysteme.

Programmierung

Bibliothek einbinden

- 1. Gehen Sie in das "Download Center" von www.yaskawa.eu.com.
- **2.** Laden Sie aus dem Downloadbereich unter "Controls Library" die Simple Motion Control Library.
- 3. ▶ Öffnen Sie mit "Datei → Dearchivieren" das Dialogfenster zur Auswahl der ZIP-
- 4. Wählen Sie die entsprechende ZIP-Datei an und klicken Sie auf [Öffnen].
- 5. Geben Sie ein Zielverzeichnis an, in dem die Bausteine abzulegen sind und starten Sie den Entpackvorgang mit [OK].

Alarm-OBs anlegen

- 1. Klicken Sie in Ihrem Projekt auf "Bausteine" und wählen Sie "Kontextmenü

 Neues Objekt einfügen
 Organisationsbaustein".
 - ▶ Das Dialogfenster "Eigenschaften Organistionsbaustein" öffnet sich.
- **2.** Fügen Sie nacheinander OB 57, OB 82 und OB 86 Ihrem Projekt hinzu.

Bausteine in Projekt kopieren

- Öffnen Sie die Bibliothek nach dem Entpackvorgang und ziehen Sie per Drag&Drop folgende Bausteine in *"Bausteine"* Ihres Projekts:
 - Sigma PROFINET:
 - UDT 890 VMC_ConfigSigmaPN_REF → "UDT 890 VMC_ConfigSigmaPN_REF Sigma-5/7 PROFINET Datenstruktur Achskonfiguration"...Seite 510
 - FB 890 VMC_AxisControlSigma_PN → "FB 890 VMC_Axis-ControlSigma_PN - Control-Baustein Achskontrolle für Sigma-5/7 PROFINET"...Seite 510
 - FB 891 VMC_InitSigma_PN → "FB 891 VMC_InitSigma_PN Sigma-5/7 PROFINET Initialisierung"...Seite 514
 - Axis Control
 - UDT 860 MC_AXIS_REF → "UDT 860 MC_AXIS_REF Datenstruktur Achsdaten"...Seite 659
 - FB 860 VMC_AxisControl → "FB 860 VMC_AxisControl Control-Baustein Achskontrolle"...Seite 659

Achs-DB anlegen

1. Neues Objekt einfügen → Datenbaustein".

Geben Sie folgende Parameter an:

- Name und Typ
 - Die DB-Nr. als "Name" können Sie frei wählen wie z.B. DB 10.
 - Stellen Sie "Global-DB" als "Typ" ein.
- Symbolischer Name
 - Geben Sie "Axis01" an.

Bestätigen Sie Ihre Eingaben mit [OK].

- → Der Baustein wird angelegt.
- 2. Offnen Sie DB 10 "Axis01" durch Doppelklick.
 - Legen Sie in "Axis01" die Variable "Config" vom Typ UDT 890 an. Dies sind spezifische Achs-Konfigurationsdaten.
 - Legen Sie in "Axis01" die Variable "Axis" vom Typ UDT 860 an. Während des Betriebs werden hier alle Betriebsdaten der Achse abgelegt.

>

DB10

Adresse	Name	Тур	
		Struct	
	Config	"VMC_ConfigSigmaPN_REF"	
	Axis	"MC_AXIS_REF	
		END STRUCT	

OB 1 - Konfiguration der Achsen

Öffnen Sie den OB 1 und programmieren Sie folgende FB-Aufrufe mit zugehörigen DBs: FB 891 - VMC_InitSigma_PN, DB 891

 \int_{1}^{∞}

Die Verbindung zwischen den Achsen in der Hardware-Konfiguration und Ihrem Anwenderprogramm erfolgt durch Angabe folgender Moduleigenschaften in den Aufrufparametern des FB 891 - VMC InitSigma_PN:

- Moduleeigenschaft "Parameter Access Point": Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
 - FB 891 VMC InitSigma_PN: ParaAccessPointAddress:
 Angabe der Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
- Moduleeigenschaft"YASKAWA Telegram PZD...":
 Jeweilige Startadresse des Ein-/Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "InputsStartAddress":
 Angabe der Startadresse des Eingabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "OutputsStartAddress":
 Angabe der Startadresse des Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "LogicalAddress":
 Angabe des kleineren Werts der Startadressen des Ein-/Ausgabe-Adressbereichs.
- Hardware-Konfiguration → 469
- FB 891 VMC InitSigma PN → 514

Beispiel Hardware-Konfiguration

Slot	Baugruppe	 E-Adr.	A-Adr.	Diagnoseadresse
0	SGD7S-xxxAC0xxxx			2035
X1	PN-IO			2034
X1 P1	Port 1			2033
X1 P2	Port 2			2032
1	DO with YASKAWA telegr.100,			2044
	PZD-16/14			
1.1	Parameter Access Point			2044
1.2	YASKAWA telegram, PZD-16/14	28-55	32-63	

Beispielaufruf

```
CALL "VMC InitSigma PN" , "VMC InitSigma PN 1"
Enable :="InitS7PN1_Enable"
LogicalAddress :=28 //HW configure
                       :=28 //HW config: Smallest IO addr.
ParaAccessPointAdress :=2044 //HW config: Diag addr.
InputsStartAddress :=28 //HW config: Telegr. 100 start I addr.
OutputsStartAddress :=32 //HW config: Telegr. 100 start O addr.
EncoderType
                       :=1
EncoderResolutionBits :=20
FactorPosition :=1.048576e+006
FactorVelocity
                       :=1.048576e+006
FactorAcceleration :=1.048576e+006
OffsetPosition
                       :=0.000000e+000
MaxVelocityApp
                       :=5.000000e+001
MaxAccelerationApp :=1.000000e+002
MaxDecelerationApp :=1.000000e+002
MaxVelocityDrive
                       :=6.000000e+001
                       :=1.048500e+003
MaxPosition
MinPosition
                       :=-1.048514e+003
EnableMaxPosition
                       :=TRUE
```

```
EnableMinPosition
MinUserPosition
MaxUserPosition
Valid
Error
ErrorID
Config
Axis
:="RUE
:="InitS7PN1_MinUserPos"
:="InitS7PN1_MaxUserPos"
:="InitS7PN1_Valid"
:="InitS7PN1_Error"
:="InitS7PN1_ErrorID"
:="Axis01".Config
:="Axis01".Axis
```

AxisControl verbinden

FB 890 - VMC_AxisControlSigma_PN, DB 890 → "FB 890 - VMC_AxisControlSigma_PN - Control-Baustein Achskontrolle für Sigma-5/7 PROFINET"...Seite 510

Der Baustein verarbeitet die Benutzerkommandos und gibt sie entsprechend aufbereitet an den Antrieb über PROFINET weiter.

```
CALL "VMC AxisControlSigma PN" , "DI AxisControlSigmaPN01"
 AxisEnable :="AxCtrl1_AxisEnable"
AxisReset :="AxCtrl1_AxisReset"
                                                             :="AxCtrl1 HomeExecute"
 HomeExecute
 HomePosition :="AxCtrl1_HomePosition"
StopExecute :="AxCtrl1_StopExecute"
 MvVelocityExecute:="AxCtrl1 MvVelExecute"
 MvRelativeExecute:="AxCtrl1 MvRelExecute"
 MvAbsoluteExecute:="AxCtrl1 MvAbsExecute"
 PositionDistance :="AxCtrl1 PositionDistance"
 Velocity :="AxCtrl1_Velocity"

Acceleration :="AxCtrl1_Acceleration"

Deceleration :="AxCtrl1_Deceleration"

JogPositive :="AxCtrl1_JogPositive"

JogNegative :="AxCtrl1_JogNegative"

JogVelocity :="AxCtrl1_JogVelocity"

Taggreed and the control is a control in the control in the control is a control in the cont
 JogAcceleration :="AxCtrl1_JogAcceleration"
 JogDeceleration :="AxCtrl1 JogDeceleration"
JogDeceleration :="AxCtrll_JogDeceleration
AxisReady :="AxCtrll_AxisReady"
AxisEnabled :="AxCtrll_AxisEnabled"
AxisError :="AxCtrll_AxisError"
AxisErrorID :="AxCtrll_AxisErrorID"
DriveWarning :="AxCtrll_DriveWarning"
DriveError :="AxCtrll_DriveError"
DriveErrorID :="AxCtrll_DriveErrorID"
IsHomed :="AxCtrll_IsHomed"

ModeOfOperation :="AxCtrll_IsHomed"
ModeOfOperation :="AxCtrl1_Ishomed

**E"AxCtrl1_ModeOfOperation"

**PLCopenState :="AxCtrl1_PLCopenState"

**ActualPosition :="AxCtrl1_ActualPosition"

**ActualVelocity :="AxCtrl1_ActualVelocity"

**CardPoses**
CmdDone :="AxCtrl1_CmdBusy"
:="AxCtrl1_CmdBusy"
CmdBusy :="AxCtrll_CmdBusy"
CmdAborted :="AxCtrll_CmdAborted"
CmdError :="AxCtrll_CmdError"
CmdErrorID :="AxCtrll_CmdErrorID"
 DirectionPositive:="AxCtrl1 DirectionPos"
 DirectionNegative:="AxCtrl1 DirectionNeg"
 SWLimitMinActive :="AxCtrl1 SWLimitMinActive"
 SWLimitMaxActive := "AxCtrl1 SWLimitMaxActive"
 HWLimitMinActive :="AxCtrl1 HWLimitMinActive"
 HWLimitMaxActive :="AxCtrl1 HWLimitMaxActive"
                                                                :="Axis01".Axis
 Axis
```


Für komplexe Bewegungsaufgaben können Sie die PLCopen-Bausteine verwenden. Hier müssen Sie ebenfalls unter Axis die Referenz zu den Achsdaten im Achs-DB angeben.

Ihr Projekt beinhaltet nun folgende Bausteine:

- OB 1 Main
- OB 57 DP Manufacturer Alarm
- OB 82 I/O_FLT1
- OB 86 Rack FLT
- FB 890 VMC AxisControlSigma PN mit Instanz-DB
- FB 891 VMC_InitSigma_PN mit Instanz-DB
- UDT 860 MC Axis REF
- UDT 890 VMC ConfigSigmaPN REF

Zeitlicher Ablauf

- - → Sie können jetzt Ihre Applikation in Betrieb nehmen.

VORSICHT

Bitte beachten Sie immer die Sicherheitshinweise zu ihrem Antrieb, insbesondere bei der Inbetriebnahme!

- **2.** Bevor eine Achse gesteuert werden kann, muss diese initialisiert werden. Rufen Sie hierzu den *Init* Baustein FB 891 VMC InitSigma PN mit *Enable* = TRUE auf.
 - ▶ Der Ausgang Valid meldet TRUE zurück. Im Fehlerfall können Sie durch Auswertung der ErrorID den Fehler ermitteln.

Den *Init*-Baustein müssen Sie erneut aufrufen, wenn Sie einen neuen Achs-DB laden oder Parameter am *Init*-Baustein geändert wurden.

Fahren Sie erst fort, wenn der Init-Baustein keinen Fehler meldet!

- 3. Programmieren Sie Ihre Applikation mit dem FB 890 VMC_AxisControlSigma_PN oder mit den PLCopen Bausteinen.
- 13.3.2.5 Einsatz im Siemens TIA Portal Yaskawa CPUs bzw. Siemens S7-300 CPUs
- 13.3.2.5.1 Hardware-Konfiguration System MICRO bzw. SLIO

Voraussetzung

Übersicht

- Bitte verwenden Sie für die Projektierung das Siemens TIA Portal ab V14.
- Die Projektierung der System MICRO bzw. SLIO CPU erfolgt im Siemens TIA Portal in Form eines virtuellen PROFINET IO Devices.
 - Das PROFINET IO Device ist mittels GSDML im Hardware-Katalog zu installieren.
- Damit der PROFINET Antrieb im Siemens TIA Portal konfiguriert werden kann, muss die entsprechende GSDML-Datei installiert sein.

GSDML-Datei für System MICRO bzw. SLIO installieren

Die Installation des PROFINET-IO-Device im Hardware-Katalog erfolgt nach folgender Vorgehensweise:

- 1. Gehen Sie in das "Download Center" von www.yaskawa.eu.com.
- **2.** Laden Sie unter "GSDML" die Konfigurationsdatei für Ihre System MICRO bzw. SLIO CPU.
- 3. Extrahieren Sie die Datei in Ihr Arbeitsverzeichnis.
- 4. Starten Sie das Siemens TIA Portal.
- 5. Schließen Sie alle Projekte.
- **6.** Wechseln Sie in die *Projektansicht*.
- 7. ▶ Gehen Sie auf "Extras → Gerätebeschreibungsdatei (GSD) installieren".
- 8. Navigieren Sie in Ihr Arbeitsverzeichnis und installieren Sie die entsprechende GSDML-Datei.
 - Nach der Installation wird der Hardware-Katalog aktualisiert und das Siemens TIA Portal beendet. Nach einem Neustart des Siemens TIA Portals finden Sie das entsprechende PROFINET-IO-Device unter "Weitere Feldgeräte → PROFINET IO → I/O → VIPA ...".

Von Yaskawa gibt es folgende PROFINET-IO-Devices:

- System MICRO: "... Micro PLC"
- System SLIO: "... System SLIO"

Damit die Komponenten von Yaskawa angezeigt werden können, müssen Sie im Hardware-Katalog bei "Filter" den Haken entfernen.

GSDML-Datei für Sigma-7 PROFINET Antrieb installieren

Die GSDML-Datei für den Sigma-7 PROFINET Antrieb finden Sie auf www.yaskawa.eu.com im "Download Center".

Bitte verwenden Sie folgende GSDML:

GSDML-V2.33-Yaskawa-SGD7S-xxxAC0xxxx-20170914.xml

Die Installation erfolgt nach folgender Vorgehensweise:

- **1.** Laden Sie die zu Ihrem Antrieb passende GSDML-Datei herunter.
- 2. Extrahieren Sie die Datei in Ihr Arbeitsverzeichnis.
- 3. Starten Sie das Siemens TIA Portal.
- 4. Schließen Sie alle Projekte.
- 5. ▶ Gehen Sie auf "Extras → Gerätebeschreibungsdatei (GSD) installieren".
- **6.** Navigieren Sie in Ihr Arbeitsverzeichnis und installieren Sie die entsprechende GSDML-Datei.
 - Nach der Installation finden Sie das PROFINET IO Device für den Sigma-7 Antrieb unter "Weitere Feldgeräte → PROFINET IO → Drives → Yaskawa ...".

CPU im Projekt anlegen


Um kompatibel mit dem Siemens TIA Portal zu sein, sind folgende Schritte durchzuführen:

- 1. Starten Sie das Siemens TIA Portal mit einem neuen Projekt.
- 2. Wechseln Sie in die Projektansicht.
- 3. Klicken Sie in der Projektnavigation auf "Neues Gerät hinzufügen".

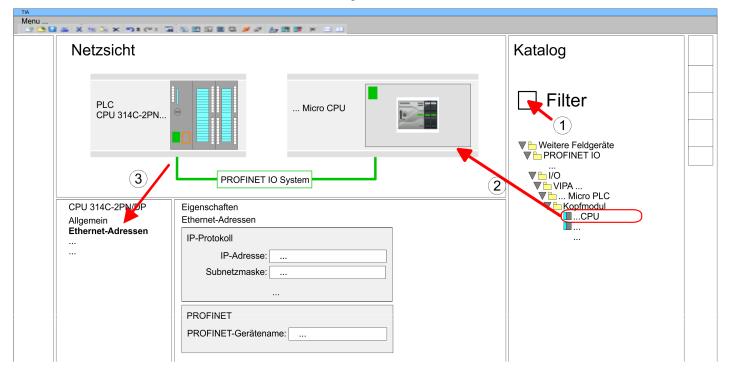
4. Wählen Sie, abhängig von der eingesetzten CPU von Yaskawa, folgende CPU von Siemens aus:

Yaskawa CPU	zu projektieren als SIMATIC S7-300 >
M13-CCF0000 ab V2.4.12	CPU 314C-2 PN/DP (6ES7 314-6EH04-0AB0 V3.3)
013-CCF0R00 ab V2.4.12	CPU 314C-2 PN/DP (6ES7 314-6EH04-0AB0 V3.3)
014-CEF0R01 ab V2.4.12	CPU 315-2 PN/DP (6ES7 315-2EH14-0AB0 V3.2)
015-CEFNR00 ab V2.4.16	CPU 315-2 PN/DP (6ES7 315-2EH14-0AB0 V3.2)
015-CEFPR01 ab V2.4.12	CPU 315-2 PN/DP (6ES7 315-2EH14-0AB0 V3.2)
017-CEFPR00 ab V2.4.12	CPU 317-2PN/DP (6ES7 317-2EK14-0AB0 V3.2)

→ Die CPU wird mit einer Profilschiene eingefügt wie z.B. für das System MICRO die CPU 314C-2 PN/DP.

Geräteübersicht:

Baugruppe	 Steckplatz	 Тур	
PLC	2	CPU 314C-2PN/DP	
MPI-Schnittstelle	2 X1	MPI/DP-Schnittstelle	
PROFINET- Schnitt	2 X2	PROFINET-Schnittstelle	
DI24/DO16	2 5	DI24/DO16	
AI5/AO2	2 6	AI5/AO2	
Zählen	27	Zählen	
•••			


Anbindung CPU als PROFINET-IO-Device

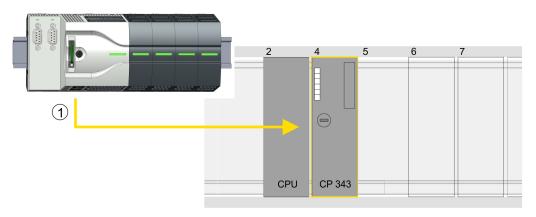
- 1. Wechseln Sie im *Projektbereich* in die "Netzsicht".
- 2. Navigieren Sie im Hardware-Katalog zu "Weitere Feldgeräte → PROFINET IO → I/O → VIPA ..." und binden Sie das Slave-System an die CPU an, indem Sie dies aus dem Hardware-Katalog in die Netzsicht ziehen und dieses über PROFINET an die CPU anbinden.

Von Yaskawa gibt es folgende PROFINET-IO-Devices:

- System MICRO: "... Micro PLC"
- System SLIO: "... System SLIO"

- 3. Klicken Sie in der *Netzsicht* auf den PROFINET-Teil der Siemens CPU und geben Sie in *"Eigenschaften"* unter *"Ethernet-Adressen"* im Bereich *"IP-Protokoll"* gültige IP-Adressdaten an.
- **4.** Geben Sie unter "PROFINET" einen "PROFINET Gerätenamen" an. Der Gerätename muss eindeutig am Ethernet-Subnetz sein.

- **5.** Wählen Sie in der *Netzsicht* das IO-Device wie z.B. "... *MICRO PLC*" an und wechseln Sie in die *Geräteübersicht*.
 - ➡ In der Geräteübersicht des PROFINET-IO-Device "... MICRO PLC" ist auf Steckplatz 0 die CPU bereits vorplatziert. Ab Steckplatz 1 können Sie Ihre System MICRO bzw. SLIO Module platzieren.


Ethernet-PG/OP-Kanal parametrieren

Damit Sie auf die entsprechende Ethernet-Schnittstelle online zugreifen können, müssen Sie dieser durch die "Initialisierung" bzw. "Urtaufe" IP-Adress-Parameter zuweisen. Bitte beachten Sie, dass Sie die IP-Adress-Daten in Ihr Projekt für den CP 343-1 übernehmen.

Näheres zur Urtaufe und zum Einsatz des Ethernet-PG/OP-Kanals finden Sie im Handbuch zu Ihrer CPU.

- 1. Platzieren Sie für den Ethernet-PG/OP-Kanal auf Steckplatz 4 des Siemens-Systems den Siemens CP 343-1 (6GK7 343-1EX30 0XE0 V3.0).
- Offnen Sie durch Klick auf den CP 343-1EX30 den "Eigenschaften"-Dialog und geben Sie für den CP unter "Eigenschaften" die IP-Adress-Daten aus der Urtaufe an.
- 3. Ordnen Sie den CP einem "Subnetz" zu. Ohne Zuordnung werden die IP-Adress-Daten nicht übernommen!
- 4. Übertragen Sie Ihr Projekt in Ihre CPU
 - Die IP-Adress-Daten werden in Ihr Projekt übernommen. Beispielhaft wird dies nachfolgend am System MICRO gezeigt.

(1) Ethernet-PG/OP-Kanal

Geräteübersicht

Baugruppe	 Steckplatz	 Тур	
PLC	2	CPU 314C-2PN/DP	
MPI/DP-Schnittstelle	2 X1	MPI/DP-Schnittstelle	
PROFINET-Schnitt- stelle	2 X2	PROFINET-Schnittstelle	
CP 343-1	4	CP 343-1	

Sigma-7 PROFINET Antrieb einfügen und konfigurieren

Bei der Konfiguration ist für jede Achse ein *Sigma-7* PROFINET-IO-Device zu konfigurieren.

- 1. Wählen Sie Ihren Sigma-7 PROFINET Antrieb "SGD7S-xxxAC0xxxx" aus dem Hardware-Katalog unter "Weitere Feldgeräte → PROFINET IO → Drives → Yaskawa ..." und ziehen Sie ihn auf das "PROFINET-IO-System".
 - → Der Sigma-7 PROFINET Antrieb wird an den IO-Controller angebunden und kann nun konfiguriert werden.
- 2. ► Klicken Sie auf das Sigma-7 IO-Device und öffnen Sie mit "Kontextmenü → Gerätekonfiguration" die "Geräteübersicht".
- 3. Vergeben Sie einen passendenden "Gerätenamen" wie Axis-001.

4. Geräteübersicht

Baugruppe	 Steckplatz	 Тур	
Axis-001	0	SGD7S-xxxAC0xxxx	
PN-IO	0 X1	SGD7S-xxxAC0xxxx	
DO w/ Yaskawa telegr.100,PZD	1	DO w/ Yaskawa telegr.100,PZD-16/14	
Parameter Access Point	11	Parameter Access Point	
Yaskawa telegram, PZD-16/14	12	Yaskawa telegram, PZD-16/14	

Blenden Sie im Hardware-Katalog die Module des *Sigma-7* PROFINET Antriebs "SGD7S-xxxAC0xxxx" ein und ziehen Sie die Komponente "DO w/ YASKAWA telegr.100..." auf "Steckplatz 1" des Sigma-7 PROFINET Antriebs.

→ Telegram 100 wird mit den entsprechenden Untergruppen eingefügt.

Die Verbindung zwischen den Achsen in der Hardware-Konfiguration und Ihrem Anwenderprogramm erfolgt durch Angabe folgender Moduleigenschaften in den Aufrufparametern des FB 891 - VMC InitSigma_PN:

- Moduleeigenschaft "Parameter Access Point": Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
 - FB 891 VMC InitSigma_PN: ParaAccessPointAddress:
 Angabe der Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
- Moduleeigenschaft"YASKAWA Telegram PZD...":
 Jeweilige Startadresse des Ein-/Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "InputsStartAddress":
 Angabe der Startadresse des Eingabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "OutputsStartAddress":
 Angabe der Startadresse des Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "LogicalAddress":
 Angabe des kleineren Werts der Startadressen des Ein-/Ausgabe-Adressbereichs.
- Anwenderprogramm → 499
- FB 891 VMC InitSigma PN → 514

Beispiel Hardware-Konfiguration

Slot	Baugruppe	 E-Adr.	A-Adr.	Diagnoseadresse
0	SGD7S-xxxAC0xxxx			2035
X1	PN-IO			2034
X1 P1	Port 1			2033
X1 P2	Port 2			2032
1	DO with YASKAWA telegr.100,			2044
	PZD-16/14			
1.1	Parameter Access Point			2044
1.2	YASKAWA telegram, PZD-16/14	28-55	32-63	

13.3.2.5.2 Hardware-Konfiguration System 300S

Voraussetzung

Übersicht

- Bitte verwenden Sie für die Projektierung das Siemens TIA Portal ab V14.
- Damit der PROFINET Antrieb im Siemens TIA Portal konfiguriert werden kann, muss die entsprechende GSDML-Datei installiert sein.
- Die Bausteine können Sie bei folgenden CPUs einsetzen:
 - System 300S CPU 315-4PN43
 - System 300S CPU 315-4PN23
 - System 300S CPU 317-4PN23
- Die Projektierung der System 300S PROFINET CPU erfolgt im Siemens TIA Portal als entsprechende Siemens CPU.
 - Die CPUs 315-4PNxx sind als Siemens CPU 315-2 PN/DP (6ES7 315-2EH14-0AB0 V3.2) zu projektieren.
 - Die CPU 317-4PN23 ist als Siemens CPU 317-2 PN/DP (6ES7 317-2EK14-0AB0 V3.2) zu projektieren.

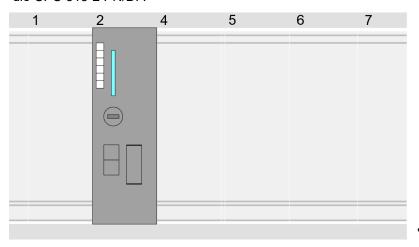
GSDML-Datei für Sigma-7 PROFINET Antrieb installieren

Die GSDML-Datei für den *Sigma-7* PROFINET Antrieb finden Sie auf www.yaskawa.eu.com im "Download Center".

Bitte verwenden Sie folgende GSDML:

GSDML-V2.33-Yaskawa-SGD7S-xxxAC0xxxx-20170914.xml

Die Installation erfolgt nach folgender Vorgehensweise:


- 1. Laden Sie die zu Ihrem Antrieb passende GSDML-Datei herunter.
- 2. Extrahieren Sie die Datei in Ihr Arbeitsverzeichnis.
- 3. Starten Sie das Siemens TIA Portal.
- 4. Schließen Sie alle Projekte.
- 5. ▶ Gehen Sie auf "Extras → Gerätebeschreibungsdatei (GSD) installieren".
- **6.** Navigieren Sie in Ihr Arbeitsverzeichnis und installieren Sie die entsprechende GSDML-Datei.
 - Nach der Installation finden Sie das PROFINET IO Device für den Sigma-7 Antrieb unter "Weitere Feldgeräte → PROFINET IO → Drives → Yaskawa ...".

CPU im Projekt anlegen

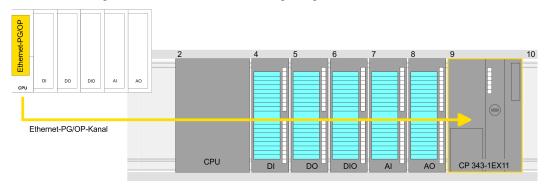
Um kompatibel mit dem Siemens TIA Portal zu sein, sind folgende Schritte durchzuführen:

1. Starten Sie das Siemens TIA Portal mit einem neuen Projekt.

- 2. Wechseln Sie in die *Projektansicht*.
- 3. Klicken Sie in der Projektnavigation auf "Neues Gerät hinzufügen".
- **4.** Wählen Sie, abhängig von der eingesetzten CPU von Yaskawa, folgende CPU von Siemens aus:
 - Die CPUs 315-4PNxx sind als Siemens CPU 315-2 PN/DP (6ES7 315-2EH14-0AB0 V3.2) zu projektieren.
 - Die CPU 317-4PN23 ist als Siemens CPU 317-2 PN/DP (6ES7 317-2EK14-0AB0 V3.2) zu projektieren.
 - Die CPU wird mit einer Profilschiene eingefügt wie z.B. für die CPU 315-4PN23 die CPU 315-2 PN/DP.

Geräteübersicht

Baugruppe	 Steckplatz	 Тур	
PLC	2	CPU 315-2PN/DP	
MPI/DP-Schnittstelle	2 X1	MPI/DP-Schnittstelle	
PROFINET-Schnittstelle	2 X2	PROFINET-Schnittstelle	


Ethernet-PG/OP-Kanal parametrieren

Damit Sie auf die entsprechende Ethernet-Schnittstelle online zugreifen können, müssen Sie dieser durch die "Initialisierung" bzw. "Urtaufe" IP-Adress-Parameter zuweisen. Bitte beachten Sie, dass Sie die IP-Adress-Daten in Ihr Projekt für den CP 343-1 übernehmen.

Näheres zur Urtaufe und zum Einsatz des Ethernet-PG/OP-Kanals finden Sie im Handbuch zu Ihrer CPU.

- Projektieren Sie für den Ethernet-PG/OP-Kanal immer als letztes Modul nach den gesteckten System 300 Modulen einen Siemens CP 343-1 (6GK7 343-1EX11 0XE0).
- 2. Offfnen Sie durch Klick auf den CP 343-1EX11 den "Eigenschaften"-Dialog und geben Sie für den CP unter "Eigenschaften" die IP-Adress-Daten aus der Urtaufe an.
- 3. Ordnen Sie den CP einem "Subnetz" zu. Ohne Zuordnung werden die IP-Adress-Daten nicht übernommen!
- 4. Dibertragen Sie Ihr Projekt in Ihre CPU
 - → Die IP-Adress-Daten werden in Ihr Projekt übernommen. Beispielhaft wird dies nachfolgend an der CPU 315-4PN23 gezeigt.

Geräteübersicht

Baugruppe	 Steckplatz	 Тур	
PLC	2	CPU 315-2PN/DP	
DI	4	DI	
DO	5	DO	
DIO	6	DIO	
Al	7	Al	
AO	8	AO	
CP 343-1	9	CP 343-1	

Sigma-7 PROFINET Antrieb einfügen und konfigurieren

Bei der Konfiguration ist für jede Achse ein Sigma-7 PROFINET-IO-Device zu konfigurieren.

- 1. Wählen Sie Ihren Sigma-7 PROFINET Antrieb "SGD7S-xxxAC0xxxx" aus dem Hardware-Katalog unter "Weitere Feldgeräte → PROFINET IO → Drives → Yaskawa ..." und ziehen Sie ihn auf das "PROFINET-IO-System".
 - → Der Sigma-7 PROFINET Antrieb wird an den IO-Controller angebunden und kann nun konfiguriert werden.
- 2. ► Klicken Sie auf das Sigma-7 IO-Device und öffnen Sie mit "Kontextmenü → Gerätekonfiguration" die "Geräteübersicht".
- 3. ▶ Vergeben Sie einen passendenden "Gerätenamen" wie Axis-001.

4. Geräteübersicht

Baugruppe	 Steckplatz	 Тур	•••
Axis-001	0	SGD7S-xxxAC0xxxx	
PN-IO	0 X1	SGD7S-xxxAC0xxxx	
DO w/ Yaskawa telegr.100,PZD	1	DO w/ Yaskawa telegr.100,PZD-16/14	
Parameter Access Point	11	Parameter Access Point	
Yaskawa telegram, PZD-16/14	12	Yaskawa telegram, PZD-16/14	
	•••		

Blenden Sie im Hardware-Katalog die Module des *Sigma-7* PROFINET Antriebs "SGD7S-xxxAC0xxxx" ein und ziehen Sie die Komponente "DO w/ YASKAWA telegr.100..." auf "Steckplatz 1" des Sigma-7 PROFINET Antriebs.

→ Telegram 100 wird mit den entsprechenden Untergruppen eingefügt.

 \int_{1}^{∞}

Die Verbindung zwischen den Achsen in der Hardware-Konfiguration und Ihrem Anwenderprogramm erfolgt durch Angabe folgender Moduleigenschaften in den Aufrufparametern des FB 891 - VMC InitSigma_PN:

- Moduleeigenschaft "Parameter Access Point": Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
 - FB 891 VMC InitSigma_PN: ParaAccessPointAddress:
 Angabe der Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
- Moduleeigenschaft"YASKAWA Telegram PZD...":
 Jeweilige Startadresse des Ein-/Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "InputsStartAddress":
 Angabe der Startadresse des Eingabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "OutputsStartAddress":
 Angabe der Startadresse des Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "LogicalAddress":
 Angabe des kleineren Werts der Startadressen des Ein-/Ausgabe-Adressbereichs.
- Anwenderprogramm → 499
- FB 891 VMC InitSigma PN → 514

Beispiel Hardware-Konfiguration

Slot	Baugruppe	 E-Adr.	A-Adr.	Diagnoseadresse
0	SGD7S-xxxAC0xxxx			2035
X1	PN-IO			2034
X1 P1	Port 1			2033
X1 P2	Port 2			2032
1	DO with YASKAWA telegr.100,			2044
	PZD-16/14			
1.1	Parameter Access Point			2044
1.2	YASKAWA telegram, PZD-16/14	28-55	32-63	

13.3.2.5.3 Hardware-Konfiguration Siemens S7-300

Voraussetzung

Übersicht

- Bitte verwenden Sie für die Projektierung das Siemens TIA Portal ab V14.
- Damit der PROFINET Antrieb im Siemens TIA Portal konfiguriert werden kann, muss die entsprechende GSDML-Datei installiert sein.
- Die Bausteine k\u00f6nnen Sie bei allen aktuellen Siemens S7-300 CPUs einsetzen, welche einen PROFINET-IO-Controller besitzen.

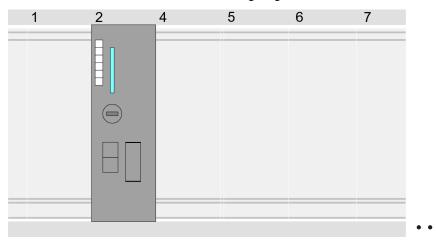
GSDML-Datei für *Sigma-7* PROFINET Antrieb installieren

Die GSDML-Datei für den Sigma-7 PROFINET Antrieb finden Sie auf www.yaskawa.eu.com im "Download Center".

Bitte verwenden Sie folgende GSDML:

GSDML-V2.33-Yaskawa-SGD7S-xxxAC0xxxx-20170914.xml

Die Installation erfolgt nach folgender Vorgehensweise:


1. Laden Sie die zu Ihrem Antrieb passende GSDML-Datei herunter.

- 2. Extrahieren Sie die Datei in Ihr Arbeitsverzeichnis.
- 3. Starten Sie das Siemens TIA Portal.
- 4. Schließen Sie alle Projekte.
- 5. Gehen Sie auf "Extras → Gerätebeschreibungsdatei (GSD) installieren".
- **6.** Navigieren Sie in Ihr Arbeitsverzeichnis und installieren Sie die entsprechende GSDML-Datei.
 - Nach der Installation finden Sie das PROFINET IO Device für den Sigma-7 Antrieb unter "Weitere Feldgeräte → PROFINET IO → Drives → Yaskawa ...".

CPU im Projekt anlegen

Im TIA Portal sind folgende Schritte durchzuführen:

- 1. Starten Sie das Siemens TIA Portal mit einem neuen Projekt.
- 2. Wechseln Sie in die *Projektansicht*.
- 3. Klicken Sie in der Projektnavigation auf "Neues Gerät hinzufügen".
- Wählen Sie die entsprechende Siemens S7-300 CPU, welche einen PROFINET-IO-Controller besitzt, wie z.B. die CPU 315-2 PN/DP (6ES7 315-2EH14-0AB0 V3.2).
 - → Die CPU wird mit einer Profilschiene eingefügt.

Geräteübersicht

Baugruppe	 Steckplatz	 Тур	
PLC	2	CPU 315-2PN/DP	
MPI/DP-Schnittstelle	2 X1	MPI/DP-Schnittstelle	
PROFINET-Schnittstelle	2 X2	PROFINET-Schnittstelle	

Sigma-7 PROFINET Antrieb einfügen und konfigurieren

Bei der Konfiguration ist für jede Achse ein Sigma-7 PROFINET-IO-Device zu konfigurieren.

- 1. Wählen Sie Ihren Sigma-7 PROFINET Antrieb "SGD7S-xxxAC0xxxx" aus dem Hardware-Katalog unter "Weitere Feldgeräte → PROFINET IO → Drives → Yaskawa ..." und ziehen Sie ihn auf das "PROFINET-IO-System".
 - → Der Sigma-7 PROFINET Antrieb wird an den IO-Controller angebunden und kann nun konfiguriert werden.
- 2. ► Klicken Sie auf das Sigma-7 IO-Device und öffnen Sie mit "Kontextmenü → Gerätekonfiguration" die "Geräteübersicht".
- 3. ▶ Vergeben Sie einen passendenden "Gerätenamen" wie Axis-001.

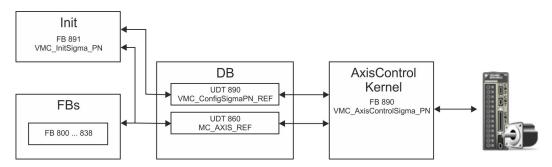
4. Geräteübersicht

Baugruppe	 Steckplatz	 Тур	
Axis-001	0	SGD7S-xxxAC0xxxx	
PN-IO	0 X1	SGD7S-xxxAC0xxxx	
DO w/ Yaskawa telegr.100,PZD	1	DO w/ Yaskawa telegr.100,PZD-16/14	
Parameter Access Point	11	Parameter Access Point	
Yaskawa telegram, PZD-16/14	12	Yaskawa telegram, PZD-16/14	

Blenden Sie im Hardware-Katalog die Module des *Sigma-7* PROFINET Antriebs "SGD7S-xxxAC0xxxx" ein und ziehen Sie die Komponente "DO w/ YASKAWA telegr.100..." auf "Steckplatz 1" des Sigma-7 PROFINET Antriebs.

→ Telegram 100 wird mit den entsprechenden Untergruppen eingefügt.

Die Verbindung zwischen den Achsen in der Hardware-Konfiguration und Ihrem Anwenderprogramm erfolgt durch Angabe folgender Moduleigenschaften in den Aufrufparametern des FB 891 - VMC InitSigma_PN:


- Moduleeigenschaft "Parameter Access Point": Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
 - FB 891 VMC InitSigma_PN: ParaAccessPointAddress:
 Angabe der Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
- Moduleeigenschaft"YASKAWA Telegram PZD...":
 Jeweilige Startadresse des Ein-/Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "InputsStartAddress":
 Angabe der Startadresse des Eingabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "OutputsStartAddress":
 Angabe der Startadresse des Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "LogicalAddress":
 Angabe des kleineren Werts der Startadressen des Ein-/Ausgabe-Adressbereichs.
- Anwenderprogramm → 499
- FB 891 VMC InitSigma_PN → 514

Beispiel Hardware-Konfiguration

Slot	Baugruppe	 E-Adr.	A-Adr.	Diagnoseadresse
0	SGD7S-xxxAC0xxxx			2035
X1	PN-IO			2034
X1 P1	Port 1			2033
X1 P2	Port 2			2032
1	DO with YASKAWA telegr.100,			2044
	PZD-16/14			
1.1	Parameter Access Point			2044
1.2	YASKAWA telegram, PZD-16/14	28-55	32-63	

13.3.2.5.4 Anwender-Programm

Programmstruktur

DB

Für jede Achse ist ein Datenbaustein (Achs-DB) für Konfiguration und Statusdaten anzulegen. Der Datenbaustein besteht aus folgenden Datenstrukturen:

- UDT 890 VMC_ConfigSigmaPN_REF
 Die Datenstruktur beschreibt den Aufbau der Konfiguration des Antriebs.
 Spezifische Datenstruktur für Sigma-5/7 PROFINET.
- UDT 860 MC_AXIS_REF
 Die Datenstruktur beschreibt den Aufbau der Parameter und Statusinformationen von Antrieben.

Allgemeine Datenstruktur für alle Antriebe und Bussysteme.

- FB 891 VMC_InitSigma PN
 - Der Init-Baustein dient zur Konfiguration einer Achse.
 - Spezifischer Baustein für Sigma-5/7 PROFINET.
 - Die Konfigurationsdaten für die Initialisierung sind im Achs-DB abzulegen.
- FB 890 VMC_AxisControlSigma_PN
 - Spezifischer Baustein für Sigma-5/7 PROFINET.
 - Dieser Baustein ist eine Kombination aus einem Kernel und einem AxisControl Baustein und kommuniziert über PROFINET mit dem Antrieb, verarbeitet die Benutzeranforderungen und gibt Statusmeldungen zurück.
 - Unterstützt einfache Bewegungskommandos und liefert alle relevanten Statusmeldungen.
 - Der Austausch der Daten erfolgt mittels des Achs-DB.
 - Über die Instanzdaten des Bausteins können Sie zur Bewegungssteuerung und Statusabfrage eine Visualisierung anbinden.
 - Zusätzlich zum FB 890 VMC_AxisControlSigma_PN, haben Sie die Möglichkeit PLCopen-Bausteine zu nutzen.

- FB 800 ... FB 838 PLCopen
 - Die PLCopen-Bausteine dienen zur Programmierung von Bewegungsabläufen und Statusabfragen.
 - Allgemeine Bausteine für alle Antriebe und Bussysteme.

Programmierung

Bibliothek einbinden

- 1. Gehen Sie in das "Download Center" von www.yaskawa.eu.com.
- Laden Sie unter "Controls Library" die Simple Motion Control Library.
 Die Bibliothek liegt für die entsprechende TIA Portal Version als gepackte zip-Datei vor.
- 3. Starten Sie mit einem Doppelklick auf die Datei ...TIA_Vxx.zip ihr Unzip-Programm, entpacken Sie Dateien und Ordner in ein Arbeitsverzeichnis für das Siemens TIA Portal.
- **4.** Wechseln sie im Siemens TIA Portal in die *Projektansicht*.
- 5. Wählen Sie auf der rechten Seite die Task-Card "Bibliotheken".
- 6. Klicken Sie auf "Globale Bibliothek".
- 7. Klicken Sie innerhalb der "Globalen Bibliothek" auf die freie Fläche und wählen Sie "Kontextmenü → Bibliothek dearchivieren".
- 8. Navigieren Sie zu ihrem Arbeitsverzeichnis und laden Sie die Datei ...Simple Motion.zalxx.

Alarm-OBs anlegen

- 1. Klicken Sie auf "Projektnavigation → ...CPU... → Programmbausteine → Neuen Baustein hinzufügen".
 - ▶ Das Dialogfenster "Neuen Baustein hinzufügen" öffnet sich.
- 2. Geben Sie OB 57 an und bestätigen Sie mit [OK].
 - Der OB 57 wird angelegt.
- 3. Fügen Sie nacheinander OB 82 und OB 86 Ihrem Projekt hinzu.

Bausteine in Projekt kopieren

- Offnen Sie die Bibliothek nach dem Entpackvorgang und ziehen Sie per Drag&Drop folgende Bausteine in "Programmbausteine" Ihres Projekts:
 - Sigma PROFINET:
 - FB 890 VMC_AxisControlSigma_PN → "FB 890 VMC_Axis-ControlSigma_PN - Control-Baustein Achskontrolle für Sigma-5/7 PROFINET"...Seite 510
 - FB 891 VMC_InitSigma_PN → "FB 891 VMC_InitSigma_PN Sigma-5/7 PROFINET Initialisierung"...Seite 514
- 2. Viehen Sie per Drag&Drop folgende Bausteine in "PLC-Datentypen" Ihres Projekts:
 - Sigma PROFINET:
 - UDT 890 VMC_ConfigSigmaPN_REF → "UDT 890 VMC_ConfigSigmaPN_REF Sigma-5/7 PROFINET Datenstruktur Achskonfiguration"...Seite 510
 - Axis Control
 - UDT 860 MC_AXIS_REF → "UDT 860 MC_AXIS_REF Datenstruktur Achsdaten"...Seite 659

Achs-DB anlegen

- 1. ► Klicken Sie auf "Projektnavigation → ...CPU... → Programmbausteine → Neuen Baustein hinzufügen".
 - → Das Dialogfenster "Baustein hinzufügen" öffnet sich.
- 2. Wählen Sie den Bausteintyp "DB Baustein" und vergeben Sie diesem den Namen "Axis01". Die DB-Nr. können Sie frei wählen wie z.B. DB 10. Geben Sie DB 10 an und legen Sie diesen als globalen DB mit [OK] an.
 - → Der Baustein wird angelegt und geöffnet.
- 3. Legen Sie in "Axis01" folgende Variablen an:
 - "Config" vom Typ UDT 890 VMC_ConfigSigmaPN_REF. Dies sind spezifische Achs-Konfigurationsdaten.
 - "Axis" vom Typ UDT 860 MC_AXIS_REF.
 Während des Betriebs werden hier alle Betriebsdaten der Achse abgelegt.

OB 1 - Konfiguration der Achsen

Öffnen Sie den OB 1 und programmieren Sie folgende FB-Aufrufe mit zugehörigen DBs: FB 891 - VMC_InitSigma_PN, DB 891

Die Verbindung zwischen den Achsen in der Hardware-Konfiguration und Ihrem Anwenderprogramm erfolgt durch Angabe folgender Moduleigenschaften in den Aufrufparametern des FB 891 - VMC InitSigma_PN:

- Moduleeigenschaft "Parameter Access Point": Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
 - FB 891 VMC InitSigma_PN: ParaAccessPointAddress:
 Angabe der Diagnoseadresse von Steckplatz 1 der Steckplatzübersicht.
- Moduleeigenschaft"YASKAWA Telegram PZD...":
 Jeweilige Startadresse des Ein-/Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "InputsStartAddress":
 Angabe der Startadresse des Eingabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "OutputsStartAddress":
 Angabe der Startadresse des Ausgabe-Adressbereichs.
 - FB 891 VMC InitSigma_PN: "LogicalAddress":
 Angabe des kleineren Werts der Startadressen des Ein-/Ausgabe-Adressbereichs.
- Hardware-Konfiguration → 485
- FB 891 VMC InitSigma PN → 514

Beispiel Hardware-Konfiguration

Slot	Baugruppe	 E-Adr.	A-Adr.	Diagnoseadresse
0	SGD7S-xxxAC0xxxx			2035
X1	PN-IO			2034
X1 P1	Port 1			2033
X1 P2	Port 2			2032
1	DO with YASKAWA telegr.100,			2044
	PZD-16/14			
1.1	Parameter Access Point			2044
1.2	YASKAWA telegram, PZD-16/14	28-55	32-63	

Beispielaufruf

```
CALL "VMC InitSigma PN" , "VMC_InitSigma_PN_1"
             :="InitS7PN1_Enable"
Enable
LogicalAddress
                   :=28 //HW config: Smallest IO addr.
ParaAccessPointAdress := 2044 //HW config: Diag addr.
InputsStartAddress
                   :=28 //HW config: Telegr. 100 start I addr.
OutputsStartAddress
                   :=32 //HW config: Telegr. 100 start 0 addr.
                   :=1
EncoderType
EncoderResolutionBits :=20
FactorPosition :=1.048576e+006
FactorVelocity
                  :=1.048576e+006
MaxAccelerationApp :=1.000000e+002
MaxPosition
                  :=1.048500e+003
EnableMaxPosition :=TRUE
EnableMinPosition

Minus
MinUserPosition
                  :="InitS7PN1 MinUserPos"
MaxUserPosition
                  :="InitS7PN1_MaxUserPos"
Valid
                  :="InitS7PN1_Valid"
Error
                  :="InitS7PN1_Error"
ErrorID
                   :="InitS7PN1 ErrorID"
Config
                   :="Axis01".Config
Axis
                   :="Axis01".Axis
```

AxisControl verbinden

FB 890 - VMC_AxisControlSigma_PN, DB 890 → "FB 890 - VMC_AxisControlSigma_PN - Control-Baustein Achskontrolle für Sigma-5/7 PROFINET"...Seite 510

Der Baustein verarbeitet die Benutzerkommandos und gibt sie entsprechend aufbereitet an den Antrieb über PROFINET weiter.

```
CALL "VMC AxisControlSigma PN" , "DI AxisControlSigmaPN01"
AxisEnable :="AxCtrl1_AxisEnable"
AxisReset
                              :="AxCtrl1_AxisReset"
HomeExecute
                            :="AxCtrl1_HomeExecute"
HomePosition :="AxCtrl1_HomePosition"
StopExecute :="AxCtrl1_StopExecute"
MvVelocityExecute:="AxCtrl1_MvVelExecute"
MvRelativeExecute:="AxCtrl1_MvRelExecute"
MvAbsoluteExecute:="AxCtrl1 MvAbsExecute"
PositionDistance :="AxCtrl1 PositionDistance"
PositionDistance :="AxCtrll_PositionDistance Direction :="AxCtrll_Direction"

Velocity :="AxCtrll_Velocity"

Acceleration :="AxCtrll_Acceleration"

Deceleration :="AxCtrll_Deceleration"

JogPositive :="AxCtrll_JogPositive"

JogNegative :="AxCtrll_JogNegative"

JogVelocity :="AxCtrll_JogNegative"

IngNegation :="AxCtrll_JogVelocity"

IngNegation :="AxCtrll_JogVelocity"
JogAcceleration :="AxCtrl1 JogAcceleration"
JogDeceleration :="AxCtrl1 JogDeceleration"
AxisReady :="AxCtrl1 AxisReady"
AxisEnabled :="AxCtrl1_AxisEnabled"
AxisError :="AxCtrl1_AxisError"
AxisErrorID :="AxCtrl1_AxisErrorID"
DriveWarning :="AxCtrl1_DriveWarning"
DriveError :="AxCtrl1_DriveError"
DriveError
                             :="AxCtrl1_DriveError"
DriveErrorID :="AxCtrl1_DriveErrorID"

TsHomed :="AyCtrl1_IsHomed"
 IsHomed
                               :="AxCtrl1_IsHomed"
ModeOfOperation :="AxCtrl1_ModeOfOperation"
PLCopenState
                              :="AxCtrl1 PLCopenState"
```

ActualPosition :="AxCtrl1_ActualPosition" ActualVelocity :="AxCtrl1_ActualVelocity" CmdDone :="AxCtrl1_CmdDone" :="AxCtrl1_CmdBusy"
:="AxCtrl1_CmdAborted"
:="AxCtrl1_CmdError" CmdBusy CmdAborted CmdError CmdErrorID :="AxCtrl1 CmdErrorID" DirectionPositive:="AxCtrl1 DirectionPos" DirectionNegative:="AxCtrl1 DirectionNeg" SWLimitMinActive :="AxCtrl1 SWLimitMinActive" SWLimitMaxActive := "AxCtrl1 SWLimitMaxActive" HWLimitMinActive := "AxCtrl1 HWLimitMinActive" HWLimitMaxActive :="AxCtrl1 HWLimitMaxActive" :="Axis01".Axis

ĭ

Für komplexe Bewegungsaufgaben können Sie die PLCopen-Bausteine verwenden. Hier müssen Sie ebenfalls unter Axis die Referenz zu den Achsdaten im Achs-DB angeben.

Ihr Projekt beinhaltet nun folgende Bausteine:

- OB 1 Main
- OB 57 DP Manufacturer Alarm
- OB 82 I/O FLT1
- OB 86 Rack FLT
- FB 890 VMC_AxisControlSigma_PN mit Instanz-DB
- FB 891 VMC InitSigma PN mit Instanz-DB
- UDT 860 MC Axis REF
- UDT 890 VMC_ConfigSigmaPN_REF

Zeitlicher Ablauf

- 1. Wählen Sie "Projekt → Alles übersetzen" und übertragen Sie das Projekt in Ihre CPU.
 - Sie können jetzt Ihre Applikation in Betrieb nehmen.

VORSICHT

Bitte beachten Sie immer die Sicherheitshinweise zu ihrem Antrieb, insbesondere bei der Inbetriebnahme!

- **2.** Bevor eine Achse gesteuert werden kann, muss diese initialisiert werden. Rufen Sie hierzu den *Init* Baustein FB 891 VMC_InitSigma_PN mit *Enable* = TRUE auf.
 - → Der Ausgang Valid meldet TRUE zurück. Im Fehlerfall können Sie durch Auswertung der ErrorID den Fehler ermitteln.

Den *Init*-Baustein müssen Sie erneut aufrufen, wenn Sie einen neuen Achs-DB laden oder Parameter am *Init*-Baustein geändert wurden.

Fahren Sie erst fort, wenn der Init-Baustein keinen Fehler meldet!

3. Programmieren Sie Ihre Applikation mit dem FB 890 - VMC_AxisControlSigma_PN oder mit den PLCopen Bausteinen.

13.3.2.6 Einsatz im Siemens TIA Portal - Siemens S7-1200 bzw. S7-1500 CPUs

13.3.2.6.1 Hardware-Konfiguration Siemens S7-1200 bzw. S7-1500

Voraussetzung

Übersicht

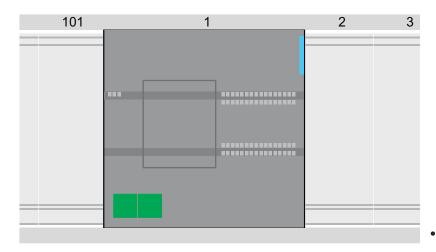
- Bitte verwenden Sie für die Projektierung das Siemens TIA Portal ab V15.
- Damit der PROFINET Antrieb im Siemens TIA Portal konfiguriert werden kann, muss die entsprechende GSDML-Datei installiert sein.
- Die Bausteine k\u00f6nnen Sie bei folgenden Siemens-CPUs einsetzen:
 - Alle Siemens S7-1200 mit FW V4.2, welche einen PROFINET-IO-Controller besitzen.
 - Alle Siemens S7-1500 mit FW V2.5, welche einen PROFINET-IO-Controller besitzen.

GSDML-Datei für Sigma-7 PROFINET Antrieb installieren

Die GSDML-Datei für den Sigma-7 PROFINET Antrieb finden Sie auf www.yaskawa.eu.com im "Download Center".

Bitte verwenden Sie folgende GSDML:

GSDML-V2.33-Yaskawa-SGD7S-xxxAC0xxxx-20170914.xml


Die Installation erfolgt nach folgender Vorgehensweise:

- 1. Laden Sie die zu Ihrem Antrieb passende GSDML-Datei herunter.
- 2. Extrahieren Sie die Datei in Ihr Arbeitsverzeichnis.
- 3. Starten Sie das Siemens TIA Portal.
- 4. Schließen Sie alle Projekte.
- 5. ▶ Gehen Sie auf "Extras → Gerätebeschreibungsdatei (GSD) installieren".
- 6. Navigieren Sie in Ihr Arbeitsverzeichnis und installieren Sie die entsprechende GSDML-Datei.
 - Nach der Installation finden Sie das PROFINET IO Device für den Sigma-7 Antrieb unter "Weitere Feldgeräte → PROFINET IO → Drives → Yaskawa ...".

CPU im Projekt anlegen

Im Siemens TIA Portal sind folgende Schritte durchzuführen:

- 1. Starten Sie das Siemens TIA Portal mit einem neuen Projekt.
- 2. Wechseln Sie in die Projektansicht.
- 3. ▶ Klicken Sie in der *Projektnavigation* auf "Neues Gerät hinzufügen".
- Wählen Sie die entsprechende Siemens S7-1200 bzw. S7-1500 CPU, welche einen PROFINET-IO-Controller besitzt wie z.B. die Siemens CPU 1215C DC/DC/DC (6ES7 215-1AG40-0xB0).
 - Die CPU wird mit einer Profilschiene eingefügt.

Geräteübersicht

Baugruppe	 Steckplatz	 Тур	
	 101	 	
PLC	1	CPU 1215C DC/DC/DC	
PROFINET-Schnittstelle	1 X1	PROFINET-Schnittstelle	

Sigma-7 PROFINET Antrieb einfügen und konfigurieren

Bei der Konfiguration ist für jede Achse ein Sigma-7 PROFINET-IO-Device zu konfigurieren.

- 1. Wählen Sie Ihren Sigma-7 PROFINET Antrieb "SGD7S-xxxAC0xxxx" aus dem Hardware-Katalog unter "Weitere Feldgeräte → PROFINET IO → Drives → Yaskawa ..." und ziehen Sie ihn auf das "PROFINET-IO-System".
 - → Der Sigma-7 PROFINET Antrieb wird an den IO-Controller angebunden und kann nun konfiguriert werden.
- 2. ► Klicken Sie auf das Sigma-7 IO-Device und öffnen Sie mit "Kontextmenü → Gerätekonfiguration" die "Geräteübersicht".
- 3. Vergeben Sie einen passendenden "Gerätenamen" wie Axis-001.
- **4.** Blenden Sie im Hardware-Katalog die Module des *Sigma-7* PROFINET Antriebs "SGD7S-xxxAC0xxxx" ein und ziehen Sie die Komponente "DO w/ YASKAWA telegr.100..." auf "Steckplatz 1" des Sigma-7 PROFINET Antriebs.
 - → Telegram 100 wird mit den entsprechenden Untergruppen eingefügt.

Geräteübersicht

Baugruppe	 Steckplatz	 Тур	
Axis-001	0	SGD7S-xxxAC0xxxx	
PN-IO	0 X1	SGD7S-xxxAC0xxxx	
DO w/ Yaskawa telegr.100,PZD	1	DO w/ Yaskawa telegr.100,PZD-16/14	
Parameter Access Point	11	Parameter Access Point	
Yaskawa telegram, PZD-16/14	12	Yaskawa telegram, PZD-16/14	

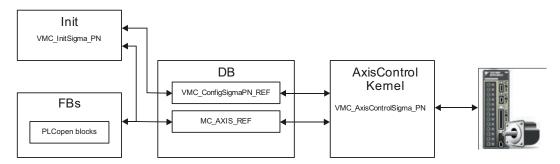
Die Verbindung zwischen den Achsen in der Hardware-Konfiguration und Ihrem Anwenderprogramm erfolgt durch Angabe folgender Moduleigenschaften in den Aufrufparametern des VMC InitSigma_PN:

Parameter für Siemens S7-1200 bzw. S7-1500 CPUs

- HW ID ParaAccessPoint
 - HW-Kennung der Hardware-Konfiguration der Achse. → 64
- HW ID Telegramm100
 - HW-Kennung des YASKAWA Telegramm 100 der Achse. → 64
- Anwenderprogramm → 499
- VMC InitSigma_PN → 514

Beispiel Hardware-Konfiguration

Baugruppe	Slot
SGD7S-xxxAC0xxxx	0
PN-IO	X1
Port 1	X1 P1
Port 2	X1 P2
DO with YASKAWA telegr.100, PZD-16/14	1
Parameter Access Point	1.1
YASKAWA telegram, PZD-16/14	1.2


Systemkonstanten	HW-Kennung
Parameter Access Point	279
DO with YASKAWA telegr.100,	278

13.3.2.6.2 Anwender-Programm

Bitte beachten Sie, dass im Siemens TIA Portal bei Einsatz der Siemens S7-1200 bzw. S7-1500 CPUs ausschließlich Bausteinnamen zum Einsatz kommen. Die Bausteinnummern werden dynamisch vergeben.

Programmstruktur

DB

Für jede Achse ist ein Datenbaustein (Achs-DB) für Konfiguration und Statusdaten anzulegen. Der Datenbaustein besteht aus folgenden Datenstrukturen:

- UDT VMC_ConfigSigmaPN_REF
 Die Datenstruktur beschreibt den Aufbau der Konfiguration des Antriebs.
 Spezifische Datenstruktur für Sigma-5/7 PROFINET.
- UDT MC AXIS REF

Die Datenstruktur beschreibt den Aufbau der Parameter und Statusinformationen von Antrieben.

Allgemeine Datenstruktur für alle Antriebe und Bussysteme.

- FB VMC_InitSigma_PN
 - Der Init-Baustein dient zur Konfiguration einer Achse.
 - Spezifischer Baustein für Sigma-5/7 PROFINET.
 - Die Konfigurationsdaten für die Initialisierung sind im Achs-DB abzulegen.
- FB VMC_AxisControlSigma PN
 - Spezifischer Baustein für Sigma-5/7 PROFINET.
 - Dieser Baustein ist eine Kombination aus einem Kernel und einem AxisControl Baustein und kommuniziert über PROFINET mit dem Antrieb, verarbeitet die Benutzeranforderungen und gibt Statusmeldungen zurück.
 - Unterstützt einfache Bewegungskommandos und liefert alle relevanten Statusmeldungen.
 - Der Austausch der Daten erfolgt mittels des Achs-DB.
 - Über die Instanzdaten des Bausteins können Sie zur Bewegungssteuerung und Statusabfrage eine Visualisierung anbinden.
 - Zusätzlich zum VMC_AxisControlSigma_PN, haben Sie die Möglichkeit PLCopen-Bausteine zu nutzen.
- PLCopen blocks PLCopen
 - Die PLCopen-Bausteine dienen zur Programmierung von Bewegungsabläufen und Statusabfragen.
 - Allgemeine Bausteine für alle Antriebe und Bussysteme.

Programmierung

Bibliothek einbinden

- 1. Gehen Sie in das "Download Center" von www.yaskawa.eu.com.
- 2. Laden Sie unter "Controls Library" die Simple Motion Control Library.

Die Bibliothek liegt für die entsprechende TIA Portal Version als gepackte zip-Datei vor.

- 3. Starten Sie mit einem Doppelklick auf die Datei ...TIA_Vxx.zip ihr Unzip-Programm, entpacken Sie Dateien und Ordner in ein Arbeitsverzeichnis für das Siemens TIA Portal.
- **4.** Wechseln sie im Siemens TIA Portal in die *Projektansicht*.

- 5. Wählen Sie auf der rechten Seite die Task-Card "Bibliotheken".
- 6. Klicken Sie auf "Globale Bibliothek".
- 7. ► Klicken Sie innerhalb der "Globalen Bibliothek" auf die freie Fläche und wählen Sie "Kontextmenü → Bibliothek dearchivieren".
- 8. Navigieren Sie zu ihrem Arbeitsverzeichnis und laden Sie die Datei Simple Motion Control 1200 1500.zalxx.

Bitte beachten Sie, dass im Siemens TIA Portal bei Einsatz der Siemens S7-1200 bzw. S7-1500 CPUs ausschließlich Bausteinnamen zum Einsatz kommen. Die Bausteinnummern werden dynamisch vergeben.

Bausteine in Projekt kopieren

- 1. Öffnen Sie die Bibliothek nach dem Entpackvorgang und ziehen Sie per Drag&Drop folgende Bausteine in "Programmbausteine" Ihres Projekts:
 - Sigma PROFINET:
 - VMC_AxisControlSigma_PN → 510
 - VMC InitSigma PN 514
- 2. Jiehen Sie per Drag&Drop folgende Bausteine in "PLC-Datentypen" Ihres Projekts:
 - Sigma PROFINET:
 - VMC ConfigSigmaPN REF 510
 - Axis Control
 - MC_AXIS_REF → 659

Achs-DB anlegen

- 1. ► Klicken Sie auf "Projektnavigation → ...CPU... → Programmbausteine → Neuen Baustein hinzufügen".
 - → Das Dialogfenster "Baustein hinzufügen" öffnet sich.
- 2. Wählen Sie den Bausteintyp "DB Baustein" und vergeben Sie diesem den Namen "Axis01". Legen Sie diesen als globalen DB mit [OK] an.
 - Der Baustein wird angelegt und geöffnet.
- 3. Legen Sie in "Axis01" folgende Variablen an:
 - "Config" vom Typ VMC_ConfigSigmaPN_REF.
 Dies sind spezifische Achs-Konfigurationsdaten.
 - "Axis" vom Typ MC_AXIS_REF.
 Während des Betriebs werden hier alle Betriebsdaten der Achse abgelegt.

OB 1 - Konfiguration der Achsen

Öffnen Sie den OB 1 und programmieren Sie folgende Aufrufe:

VMC_InitSigma_PN

Ŋ

Die Verbindung zwischen den Achsen in der Hardware-Konfiguration und Ihrem Anwenderprogramm erfolgt durch Angabe folgender Moduleigenschaften in den Aufrufparametern des VMC InitSigma_PN:

Parameter für Siemens S7-1200 bzw. S7-1500 CPUs

- HW ID ParaAccessPoint
 - HW-Kennung der Hardware-Konfiguration der Achse. → 64
- HW_ID_Telegramm100
 - HW-Kennung des YASKAWA Telegramm 100 der Achse. → 64
- Hardware-Konfiguration → 503
- VMC InitSigma PN → 514

Beispiel Hardware-Konfiguration

Baugruppe	Slot
SGD7S-xxxAC0xxxx	0
PN-IO	X1
Port 1	X1 P1
Port 2	X1 P2
DO with YASKAWA telegr.100, PZD-16/14	1
Parameter Access Point	1.1
YASKAWA telegram, PZD-16/14	1.2

Systemkonstanten	HW-Kennung
Parameter Access Point	279
DO with YASKAWA telegr.100,	278

Beispielaufruf - SCL

```
"VMC InitSigma PN DB" (Enable:="InitS7PN1 Enable"
HW ID ParaAccessPoint :=279 //HW config: Axis
HW ID Telegramm100 :=278 //HW config: Axis
                    :=1.048576e+006
FactorPosition
                    :=1.048576e+006
FactorVelocity
FactorAcceleration
                    :=1.048576e+006
OffsetPosition
                     :=0.000000e+000
MaxVelocityApp
                     :=5.000000e+001
MaxAccelerationApp
                    :=1.000000e+002
MaxDecelerationApp
                     :=1.000000e+002
MaxVelocityDrive
                     :=6.000000e+001
MaxPosition
                     :=1.048500e+003
MinPosition
                     :=-1.048514e+003
EnableMaxPosition
                     :=TRUE
EnableMinPosition
                     :=TRUE
MinUserPosition
                     :="InitS7PN1 MinUserPos"
MaxUserPosition
                     :="InitS7PN1_MaxUserPos"
Valid
                     :="InitS7PN1_Valid"
Error
                     :="InitS7PN1_Error"
ErrorID
                     :="InitS7PN1_ErrorID"
                     :="Axis01".Config
Config
Axis
                     :="Axis01".Axis);
```

AxisControl verbinden - SCL

VMC AxisControlSigma PN → 510

Der Baustein verarbeitet die Benutzerkommandos und gibt sie entsprechend aufbereitet an den Antrieb über PROFINET weiter.

```
"VMC AxisControlSigma PN" (AxisEnable:="AxCtrl1 AxisEnable",
AxisReset:="AxCtrl1 AxisReset",
HomeExecute :="AxCtrl1_HomeExecute",
HomePosition :="AxCtrl1_HomePosition",
StopExecute :="AxCtrl1_StopExecute",
MvVelocityExecute:="AxCtrl1_MvVelExecute",
MvRelativeExecute:="AxCtrl1 MvRelExecute"
MvAbsoluteExecute:="AxCtrl1 MvAbsExecute",
PositionDistance :="AxCtrll PositionDistance",
PositionDistance :="AxCtrll_PositionDistan
Direction :="AxCtrll_Direction",
Velocity :="AxCtrll_Velocity",
Acceleration :="AxCtrll_Acceleration",
Deceleration :="AxCtrll_Deceleration",
JogPositive :="AxCtrll_JogPositive",
JogNegative :="AxCtrll_JogNegative",
JogNegative :="AxCtrll_JogNegative",
IngResoleration :="AxCtrll_JogNegative",
JogAcceleration :="AxCtrl1_JogAcceleration",
JogDeceleration :="AxCtrl1_JogDeceleration",
AxisReady :="AxCtrll_AxisReady",
AxisReady
AxisEnabled
:="AxCtrl1_AxisEnabled",
AxisError
:="AxCtrl1_AxisError",
AxisErrorID
:="AxCtrl1_AxisErrorID",
DriveWarning
:="AxCtrl1_DriveWarning",
DriveError
:="AxCtrl1_DriveError",
DriveErrorID
:="AxCtrl1_DriveErrorID",
IsHomed
:="AxCtrl1_IniveErrorID",
IsHomed
                             :="AxCtrl1_IsHomed",
ModeOfOperation :="AxCtrl1_ModeOfOperation",
PLCopenState :="AxCtrl1_PLCopenState",
ActualPosition :="AxCtrl1_ActualPosition",
ActualPosition
ActualVelocity :="AxCtrl1_ActualVelocity", CmdDone :="AxCtrl1_CmdDone",
CmdDone
                             :="AxCtrl1 CmdBusy",
CmdBusy
CmdAborted :="AxCtrl1_CmdAborted",
CmdError :="AxCtrl1_CmdError",
CmdErrorID :="AxCtrl1_CmdErrorID",
                            :="AxCtrl1 CmdAborted",
DirectionPositive:="AxCtrl1 DirectionPos",
DirectionNegative:="AxCtrl1 DirectionNeg",
SWLimitMinActive := "AxCtrl1 SWLimitMinActive",
 SWLimitMaxActive := "AxCtrl1 SWLimitMaxActive",
HWLimitMinActive := "AxCtrl1 HWLimitMinActive",
HWLimitMaxActive := "AxCtrl1 HWLimitMaxActive",
Axis
                              :="Axis01".Axis);
```


Für komplexe Bewegungsaufgaben können Sie die PLCopen-Bausteine verwenden. Hier müssen Sie ebenfalls unter Axis die Referenz zu den Achsdaten im Achs-DB angeben.

Ihr Projekt beinhaltet nun folgende Bausteine:

- OB 1 Main
- VMC_AxisControlSigma_PN mit Instanz-DB
- VMC_InitSigma_PN mit Instanz-DB
- MC Axis REF
- VMC_ConfigSigmaPN_REF

Zeitlicher Ablauf

- <u>1.</u> Wählen Sie *"Projekt → Alles übersetzen"* und übertragen Sie das Projekt in Ihre CPU.
 - ⇒ Sie können jetzt Ihre Applikation in Betrieb nehmen.

VORSICHT

Bitte beachten Sie immer die Sicherheitshinweise zu ihrem Antrieb, insbesondere bei der Inbetriebnahme!

- **2.** Bevor eine Achse gesteuert werden kann, muss diese initialisiert werden. Rufen Sie hierzu den *Init* Baustein VMC_InitSigma_PN mit *Enable* = TRUE auf.
 - → Der Ausgang Valid meldet TRUE zurück. Im Fehlerfall können Sie durch Auswertung der ErrorID den Fehler ermitteln.

Den *Init*-Baustein müssen Sie erneut aufrufen, wenn Sie einen neuen Achs-DB laden oder Parameter am *Init*-Baustein geändert wurden.

Fahren Sie erst fort, wenn der Init-Baustein keinen Fehler meldet!

3. Programmieren Sie Ihre Applikation mit dem Funktionsbaustein VMC_AxisControl-Sigma_PN oder mit den PLCopen Bausteinen.

13.3.3 Antriebsspezifische Bausteine

Bitte beachten Sie, dass im Siemens TIA Portal bei Einsatz der Siemens S7-1200 bzw. S7-1500 CPUs ausschließlich Bausteinnamen zum Einsatz kommen. Die Bausteinnummern werden dynamisch vergeben.

Die PLCopen-Bausteine zur Achskontrolle finden Sie hier: → "Bausteine zur Achskontrolle"...Seite 656

13.3.3.1 UDT 890 - VMC ConfigSigmaPN REF - Sigma-5/7 PROFINET Datenstruktur Achskonfiguration

Dies ist eine benutzerdefinierte Datenstruktur, die Informationen zu den Konfigurationsdaten beinhaltet. Die UDT ist speziell angepasst an die Verwendung eines *Sigma-5/7-* Antriebs, welcher über PROFINET angebunden ist.

13.3.3.2 FB 890 - VMC_AxisControlSigma_PN - Control-Baustein Achskontrolle für Sigma-5/7 PROFINET

Beschreibung

Der FB VMC_AxisControlSigma_PN ist eine Kombination aus einem Kernel für Sigma-5/7 Achsen für PROFINET und einem Axis_Control Baustein zum Ansteuern der Motion Control Funktionen. Mit dem FB VMC_AxisControlSigma_PN können Sie die angebundene Achse steuern. Sie können den Status des Antriebs abrufen, den Antrieb ein- bzw. ausschalten oder verschiedene Bewegungskommandos ausführen.

S

Der Baustein VMC_AxisControlSigma_PN sollte nie gleichzeitig mit dem PLCopen-Baustein MC_Power verwendet werden. Da der VMC_Axis-ControlSigma_PN Funktionalitäten des MC_Power beinhaltet und immer der aktuellste Befehl vom Kernel ausgeführt wird, kann dies zu einem Fehlverhalten des Antriebs führen.

ĭ

Bitte beachten Sie, dass durch einen Abbruchversuch einer Bewegung wie z.B. durch eine Referenzfahrt (Homing) der Status des aktuellen Bewegungsauftrags nicht mehr über CmdDone bzw. CmdBusy ermittelt werden kann. Hier sollte die Auswertung der aktuellen Bewegung über die aktuelle Position bzw. Geschwindigkeit und den PLCopen-Status erfolgen.

<u>J</u>

Wird ein laufender MoveVelocity-Auftrag durch einen neuen MoveRelative- oder MoveAbsolute-Auftrag abgebrochen, so wird der entsprechende Antrieb gestoppt und danach der neue Bewegungs-Auftrag ausgeführt.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
AxisEnable	INPUT	BOOL	AchsenfreigabeTRUE: Die Achse wird freigegeben.FALSE: Die Achse wird gesperrt.
AxisReset	INPUT	BOOL	Reset AchseFlanke 0-1: Reset der Achse wird durchgeführt.
HomeExecute	INPUT	BOOL	ReferenzfahrtFlanke 0-1: Referenzfahrt wird gestartet.
HomePosition	INPUT	REAL	Bei erfolgreicher Referenzierung wird die Istposition der Achse einmalig gleich Position gesetzt. Die Position ist in der verwendeten Anwendereinheit anzugeben.
StopExecute	INPUT	BOOL	Achse stoppenFlanke 0-1: Stoppen der Achse wird gestartet.
MvVelocityExecute	INPUT	BOOL	 Verfahren der Achse starten Flanke 0-1: Die Achse wird auf die angegebene Geschwindigkeit beschleunigt / abgebremst.
MvRelativeExecute	INPUT	BOOL	 Verfahren der Achse starten Flanke 0-1: Die relative Positionierung der Achse wird gestartet.
MvAbsoluteExecute	INPUT	BOOL	 Verfahren der Achse starten Flanke 0-1: Die absolute Positionierung der Achse wird gestartet.
Direction ¹	INPUT	ВҮТЕ	Modus für absolute Positionierung: 0: kürzester Weg 1: positive Richtung 2: negative Richtung 3: aktuelle Richtung

Parameter	Deklaration	Datentyp	Beschreibung
PositionDistance	INPUT	REAL	Absolute Position bzw. relative Wegstrecke je nach Kommando in [Anwendereinheiten].
Velocity	INPUT	REAL	Geschwindigkeitsvorgabe (vorzeichenbehafteter Wert) in [Anwendereinheiten/s].
Acceleration	INPUT	REAL	Beschleunigung in [Anwendereinheiten/s²].
Deceleration	INPUT	REAL	Verzögerung in [Anwendereinheiten/s²].
JogPositive	INPUT	BOOL	 Achse mit konstanter Geschwindigkeit in positive Richtung verfahren Flanke 0-1: Das Verfahren der Achse mit konstanter Geschwindigkeit wird gestartet. Flanke 1-0: Die Achse wird gestoppt.
JogNegative	INPUT	BOOL	 Achse mit konstanter Geschwindigkeit in negative Richtung verfahren Flanke 0-1: Das Verfahren der Achse mit konstanter Geschwindigkeit wird gestartet. Flanke 1-0: Die Achse wird gestoppt.
JogVelocity	INPUT	REAL	Geschwindigkeitsvorgabe für Jogging (positiver Wert) in [Anwendereinheiten/s].
JogAcceleration	INPUT	REAL	Beschleunigung in [Anwendereinheiten/s²].
JogDeceleration	INPUT	REAL	Verzögerung für Jogging in [Anwendereinheiten/s²].
KernellnitReset	INPUT	BOOL	Rücksetzen der <i>Kernel-</i> Funktionen. Achtung, laufende Kommandos werden abgebrochen!
AxisReady	OUTPUT	BOOL	 ■ AxisReady TRUE: Die Achse ist einschaltbereit. FALSE: Die Achse ist nicht einschaltbereit. → Prüfe und behebe AxisError (siehe AxisErrorID). → Prüfe und behebe DriveError (siehe DriveErrorID). → Prüfe Initialisierungs-FB (Input- und Output Adressen bzw. Diagnoseadresse richtig?)
AxisEnabled	OUTPUT	BOOL	 Status Achse TRUE: Achse ist eingeschaltet und nimmt Bewegungsaufträge an. FALSE: Achse ist nicht eingeschaltet und nimmt keine Bewegungsaufträge an.
AxisError	OUTPUT	BOOL	 Fehler bei Motion Achse TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter AxisErrorID entnommen werden. → Die Achse wird gesperrt.
AxisErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen → "ErrorID - Zusätzliche Fehlerinformationen"Seite 739
DriveWarning	OUTPUT	BOOL	 Warnung TRUE: Der Antrieb liefert eine Warnung. Zusätzliche Informationen sind aus dem entsprechenden Handbuch des Herstellers zu entnehmen.

Parameter	Deklaration	Datentyp	Beschreibung
DriveError	OUTPUT	BOOL	 ■ Fehler direkt am Antrieb − TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter <i>DriveErrorID</i> entnommen werden. → Die Achse wird gesperrt.
DriveErrorID	OUTPUT	WORD	 Fehler TRUE: Der Antrieb liefert einen Fehler. Zusätzliche Informationen sind aus dem entsprechenden Handbuch des Herstellers zu entnehmen.
IsHomed	OUTPUT	BOOL	Information Achse: referenziertTRUE: Die Achse ist referenziert.
ModeOfOperation	OUTPUT	INT	Antriebsspezifischer Modus. Weitere Infos siehe Antriebsmanual. Beispiel Sigma-5: 0: No mode changed/no mode assigned 1: Profile Position mode 2: Reserved (keep last mode) 3: Profile Velocity mode 4: Torque Profile mode 6: Homing mode 7: Interpolated Position mode 8: Cyclic Sync Position mode 9: Cyclic Sync Velocity mode 10: Cyclic Sync Torque mode Other Reserved (keep last mode)
PLCopenState	OUTPUT	INT	Aktueller PLCopenState: 1: Disabled 2: Standstill 3: Homing 4: Discrete Motion 5: Continous Motion 7: Stopping 8: Errorstop
ActualPosition	OUTPUT	REAL	Position der Achse in [Anwendereinheit].
ActualVelocity	OUTPUT	REAL	Geschwindigkeit der Achse in [Anwendereinheit/s].
CmdDone	OUTPUT	BOOL	StatusTRUE: Auftrag wurde ohne Fehler beendet.
CmdBusy	OUTPUT	BOOL	StatusTRUE: Auftrag ist in Bearbeitung.

Parameter	Deklaration	Datentyp	Beschreibung		
CmdAborted	OUTPUT	BOOL	 Status TRUE: Der Auftrag wurde während der Bearbeitung von einem anderen Auftrag abgebrochen. Ist MvExecute bereits FALSE bevor das Kommando unterbrochen 		
			wird, wird <i>CmdAborted</i> nur für einen Zyklus auf TRUE gesetzt.		
CmdError	OUTPUT	BOOL	StatusTRUE: Ein Fehler ist aufgetreten.		
			Zusätzliche Fehlerinformationen können dem Parameter <i>CmdErrorID</i> entnommen werden.		
CmdErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen		
			→ "ErrorID - Zusätzliche Fehlerinformationen"Seite 739		
DirectionPositive	OUTPUT	BOOL	Zustand Bewegungsauftrag: Position zunehmendTRUE: Die Position der Achse nimmt zu.		
DirectionNegative	OUTPUT	BOOL	Zustand Bewegungsauftrag: Position abnehmendTRUE: Die Position der Achse nimmt ab.		
SWLimitMinActive	OUTPUT	BOOL	 Software Endschalter TRUE: Software Endschalter Minimum aktiv (Minimale Position in negative Richtung überschritten). 		
SWLimitMaxActive	OUTPUT	BOOL	 Software Endschalter TRUE: Software Endschalter Maximum aktiv (Maximale Position in positive Richtung überschritten). 		
HWLimitMinActive	OUTPUT	BOOL	 Hardware Endschalter TRUE: Negativer Hardware Endschalter am Antrieb aktiv (NOT- Negative Overtravel). 		
HWLimitMaxActive	OUTPUT	BOOL	 Hardware Endschalter TRUE: Positiver Hardware Endschalter am Antrieb aktiv (POT-Positive Overtravel). 		
Config	IN_OUT	VMC_ConfigSig- maPN_REF	Referenz zur Konfiguration der Achse.		
Axis	IN_OUT	MC_AXIS_REF	Referenz zur Achse.		
1) Dieser Parameter wird aktuell nicht unterstützt! Es wird immer der kürzester Weg genommen. Die Prüfung erfolgt aber auf Werte von 0 bis 3.					

13.3.3.3 FB 891 - VMC_InitSigma_PN - Sigma-5/7 PROFINET Initialisierung

Beschreibung

Dieser Baustein dient zur Konfiguration der Achse. Der Baustein ist speziell angepasst an die Verwendung eines *Sigma-5/7-*Antriebs, welcher über PROFINET angebunden ist.

 \int_{1}^{∞}

Bitte beachten Sie, dass die Parameter, abhängig von der eingesetzten CPU, unterschiedlich strukturiert sind.

Parameter

Parameter für:	Deklaration	Datentyp	Beschreibung
Siemens S7-1200 bzw. S7-1500 CPUs			
Enable	INPUT	BOOL	Freigabe der Initialisierung.
HW_ID_ParaAccessPoint	INPUT	HW_IO	HW-Kennung der Hardware-Konfiguration der Achse. → 64
HW_ID_Telegramm100	INPUT	HW_IO	HW-Kennung des YASKAWA Telegramm 100 der Achse. → 64

Parameter für:	Deklaration	Datentyp	Beschreibung
CPUs von Yaskawa bzw. S7-300 CPUs von Siemens			
Enable	INPUT	BOOL	Freigabe der Initialisierung.
LogicalAddress	INPUT	INT	Kleinste Adresse des Ein-/Ausgabe-Adressbereichs der Hardware-Konfiguration der Achse.
ParaAccessPointAddress	INPUT	INT	Diagnoseadresse von Steckplatz 1 der Hardware-Konfiguration der Achse.
InputsStartAddress	INPUT	INT	Startadresse des Eingabe-Adressbereichs der Hardware-Konfiguration der Achse.
OutputsStartAddress	INPUT	INT	Startadresse des Ausgabe-Adressbereichs der Hardware-Konfiguration der Achse.
EncoderType	INPUT	INT	Encoder-Typ
			■ 1: Absolut-Encoder
			2: Inkremental-Encoder
EncoderResolutionBits	INPUT	INT	Anzahl der Bits, die einer Geber-Umdrehung entsprechen. Default: 20

Parameter für alle CPUs	Deklaration	Datentyp	Beschreibung
FactorPosition	INPUT	REAL	Faktor zur Umrechnung der Position von Benutzereinheiten [u] in Antriebseinheiten [Inkremente] und zurück.
			Es gilt: p _[Inkremente] = p _[u] x FactorPosition
			Bitte berücksichten sie auch den Faktor, welchen Sie am Antrieb über die Objekte 0x2301:1 und 0x2301:2 vorgeben können. Dieser sollte 1 sein.
FactorVelocity	INPUT	REAL	Faktor zur Umrechnung der Geschwindigkeit von Benutzereinheiten [u/s] in Antriebseinheiten [Inkremente/s] und zurück.
			Es gilt: v _[Inkremente/s] = v _[u/s] x FactorVelocity
			Bitte berücksichten sie auch den Faktor, welchen Sie am Antrieb über die Objekte 0x2302:1 und 0x2302:2 vorgeben können. Dieser sollte 1 sein.

Parameter für alle CPUs	Deklaration	Datentyp	Beschreibung
FactorAcceleration	INPUT	REAL	Faktor zur Umrechnung der Beschleunigung von Benutzereinheiten [u/s²] in Antriebseinheiten [10 -4 x Inkremente/s²] und zurück.
			Es gilt: 10^{-4} x $a_{[Inkremente/s_2]} = a_{[u/s_2]}$ x FactorAcceleration
			Bitte berücksichten sie auch den Faktor, welchen Sie am Antrieb über die Objekte 0x2303:1 und 0x2303:2 vorgeben können. Dieser sollte 1 sein.
OffsetPosition	INPUT	REAL	Offset für die Nullposition [u].
MaxVelocityApp	INPUT	REAL	Maximale Geschwindigkeit der Applikation [u/s].
			Die Kommandoeingaben werden vor Ausführung auf den Maximalwert überprüft.
MaxAccelerationApp	INPUT	REAL	Maximale Beschleunigung der Applikation [u/s²].
			Die Kommandoeingaben werden vor Ausführung auf den Maximalwert überprüft.
MaxDecelerationApp	INPUT	REAL	Maximale Verzögerung der Applikation [u/s²].
			Die Kommandoeingaben werden vor Ausführung auf den Maximalwert überprüft.
MaxPosition	INPUT	REAL	Maximale Position für die Überwachung der Softwarelimits [u].
MinPosition	INPUT	REAL	Minimale Position für die Überwachung der Softwarelimits [u].
EnableMaxPosition	INPUT	BOOL	Überwachung maximale Position
			TRUE: Aktivierung der Überwachung der maximalen Position.
EnableMinPosition	INPUT	BOOL	Überwachung minimale Position
			TRUE: Aktivierung der Überwachung der minimalen Position.
MinUserPosition	OUTPUT	REAL	Minimale Benutzerposition basierend auf dem minimalen Encoder Wert von 0x80000000 und dem <i>FactorPosition</i> [u].
MaxUserPosition	OUTPUT	REAL	Maximale Benutzerposition basierend auf dem maximalen Encoder Wert von 0x7FFFFFFF und dem <i>Factor-Position</i> [u].
Valid	OUTPUT	BOOL	Initialisierung
			■ TRUE: Initialisierung ist gültig.
Error	OUTPUT	BOOL	 Fehler TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter ErrorID
			entnommen werden. Die Achse wird gesperrt.
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen
			→ "ErrorID - Zusätzliche Fehlerinformationen"Seite 739
Config	IN_OUT	VMC_Config- SigmaPN_REF	Datenstruktur zur Übergabe von achsabhängigen Konfigurationsdaten an den AxisKernel.
Axis	IN_OUT	MC_AXIS_REF	Datenstruktur zur Übergabe von achsabhängigen Informationen an <i>AxisKernel</i> und PLCopen-Bausteine.

HW-Kennung - HW ID

HW ID

- Den Parameter HW_ID zur Angabe der HW-Kennung gibt es nur bei Einsatz in Siemens S7-1200 bzw. S7-1500 CPUs.
- Bei der Konfiguration einer Hardware-Komponente wird für jedes Objekt der Hardware-Konfiguration automatisch eine Hardware-Kennung als *HW-Kennung* vergeben.
- Die *HW-Kennung* umfasst Module, Ports, Schnittstellen und E/A-Bereiche von Bus-Systemen.
- Die *HW-Kennung* ist eine dezimale Ganzzahl-Konstante vom Datentyp HW_IO.
- Bei der *HW-Kennung* wird nicht zwischen Ein- und Ausgabebereich unterschieden.
- Mit Hilfe der HW-Kennung können Sie die entsprechenden Hardware-Komponenten adressieren.

HW-Kennung und Systemkonstanten

- Sie können auch die HW-Kennung über die "Systemkonstanten" ermitteln.
- Über "Systemkonstanten" im Inspektor-Fenster werden alle HW-Kennungen eines in der Gerätesicht markierten Objekts mit Name und Typ aufgelistet.
- Name und Typ werden bei der Zuordnung der HW-Kennung automatisch generiert. Hierbei besitzt Name einen hierarchischen Aufbau mit maximal 4 Hierarchieebenen, wobei jede Ebene durch ein "~" getrennt wird.
- Den Namen der Komponente der entsprechenden Hierarchieebene k\u00f6nnen Sie jederzeit \u00fcber die Eigenschaften anpassen.

HW-Kennung im Anwenderprogramm

- Bei der Erstellung Ihres Anwenderprogramms können Sie über Doppelklick auf den entsprechenden Ein- bzw. Ausgabe-Parameter aus einer Liste aller möglichen Hardware-Komponenten die entsprechende Hardware-Komponente zuordnen.
- Bei einem Prozessalarm können sie über die Startinformationen die HW-Kennung als "ID" der alarmauslösenden Hardware-Komponente ermitteln.

HW-Kennung einer Achse ermitteln

Die *HW-Kennung* für die jeweilige Komponente können Sie mit folgender Vorgehensweise ermitteln:

- 1. Soffnen Sie in der *Projektnavigation "Geräte & Netze"*.
- **2.** Klicken Sie auf den entsprechenden Sigma PROFINET-Antrieb und öffnen Sie mit "Kontextmenü → Gerätekonfiguration" die "Geräteübersicht".
- 3. Selektieren Sie in der "Geräteübersicht" den Eintrag "Parameter Access Point".
- 4. Klicken Sie im *Inspektor*-Fenster auf den Reiter "Systemkonstanten".
 - Die "HW-Kennung" wird angezeigt. Diese k\u00f6nnen Sie bei der Beschaltung des Bausteins in den Parameter HW ID ParaAccessPoint \u00fcbernehmen.
- 5. Selektieren Sie in der "Geräteübersicht" den Eintrag "Yaskawa telegram, PZD-16/14".
- 6. ▶ Klicken Sie im *Inspektor*-Fenster auf den Reiter "Systemkonstanten".
 - ➡ Die "HW-Kennung" wird angezeigt. Diese k\u00f6nnen Sie bei der Beschaltung des Bausteins in den Parameter HW_ID_Telegramm100 \u00fcbernehmen.

Einsatz Sigma-5/7 Pulse Train > Parameter am Antrieb einstellen

13.4 Einsatz Sigma-5/7 Pulse Train

13.4.1 Übersicht

Voraussetzung


- SPEED7 Studio ab V1.7 oder
- Siemens SIMATIC Manager ab V5.5 SP2 & Simple Motion Control Library oder
- Siemens TIA Portal V14 & Simple Motion Control Library
- System MICRO bzw. System SLIO CPU mit Pulse Train Ausgabe wie z.B. CPU M13-CCF0000 bzw. CPU 013-CCF0R00.
- Sigma-5- bzw. Sigma-7-Antrieb mit Pulse Train Optionskarte

Schritte der Projektierung

- 1. Parameter am Antrieb einstellen
 - Die Einstellung der Parameter hat mit dem Softwaretool Sigma Win+ zu erfolgen.
- 2. Hardwarekonfiguration im *SPEED7 Studio*, Siemens SIMATIC Manager oder Siemens TIA Portal.
 - Projektierung der CPU.
- **3.** Programmierung im *SPEED7 Studio*, Siemens SIMATIC Manager oder Siemens TIA Portal.
 - VMC_AxisControl_PT-Baustein zur Konfiguration und zur Kommunikation mit der Achse, welche über Pulse Train angebunden ist.
 - → "Demo-Projekte"...Seite 288

13.4.2 Parameter am Antrieb einstellen

Parameter-Digits

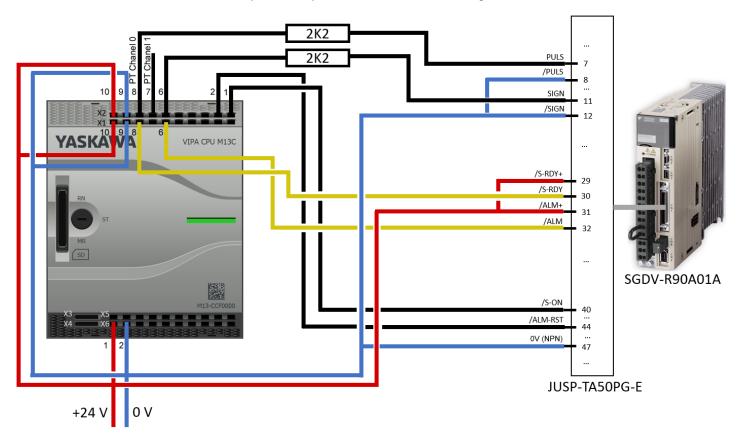
VORSICHT

Vor der Erstinbetriebnahme müssen Sie Ihren Antrieb mit dem Softwaretool *Sigma Win+* an Ihre Applikation anpassen! Näheres hierzu finden Sie im Handbuch zu ihrem Antrieb.

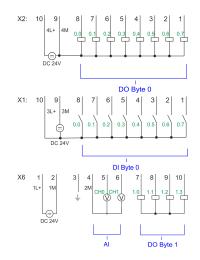
Die nachfolgende Tabelle zeigt alle Parameter auf, die nicht den Standardwerten entsprechen. Zur Abstimmung auf die Simple Motion Control Library sind diese über Sigma Win+einzustellen:

Sigma-5/7

Servopack Parameter	Adresse:Digit	Name	Wert
Pn000	(2000h:01)	Basic Function Selection Switch 0	1: Position control (pulse train reference)
Pn002	(2002h:02)	Application Function Select Switch 2	1: Uses absolute encoder as incremental encoder
Pn200	(2200h:03)	Position Control Reference From Selection Switch	1: Uses reference input filter for open collector signal
Pn20E	(220Eh)	Electronic Gear Ratio (Numerator)	1024
Pn216	(2216h)	Position Reference Acceleration / Deceleration Time Constant	0
Pn217	(2217h)	Average Movement Time of Position Reference	0
Pn50A	(250Ah:02)	/P-CON Signal Mapping	8: Sets signal off


Einsatz Sigma-5/7 Pulse Train > Beschaltung

Servopack Parameter	Adresse:Digit	Name	Wert
Pn50A	(250Ah:03)	P-OT Signal Mapping	8: Forward run allowed
Pn50B	(250Bh:00)	N-OT Signal Mapping	8: Reverse run allowed
Pn50B	(250Bh:02)	/P-CL Signal Mapping	8: Sets signal off
Pn50B	(250Bh:03)	/N-CL Signal Mapping	8: Sets signal off


13.4.3 Beschaltung

Beispielapplikation

Die nachfolgende Abbildung zeigt den Anschluss eines Sigma-5 Servo-Antriebs über Pulse Train an eine System MICRO CPU M13C. In diesem Beispiel ist der Pulse Train Kanal 0 (X2 - Pin 8) beschaltet. Zur Beschaltung von Kanal 1 ist X2 - Pin 7 zu verwenden.

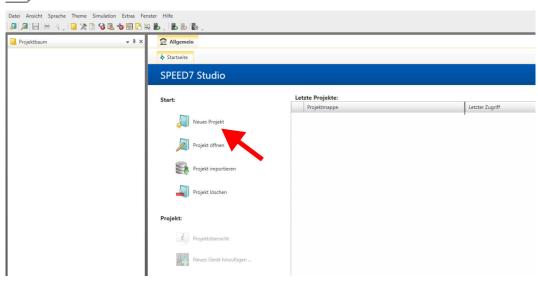
Einsatz Sigma-5/7 Pulse Train > Beschaltung

X2	Funk- tion	Тур	LED grün rot	Beschreibung
1	DO 0.7	Α		Digital Ausgang DO 7
2	DO 0.6	Α		Digital Ausgang DO 6
6	DO 0.2	Α		Digital Ausgang DO 2
7	DO 0.1	Α		Pulse Train Kanal 1
8	DO 0.0	Α		Pulse Train Kanal 0
9	0 V	E		4M: GND für Pulse Train
				LED leuchtet bei Fehler, Überlast bzw. Kurzschluss an den Ausgängen
10	DC 24V	E		4L+: DC 24V Leistungsversorgung für Pulse Train

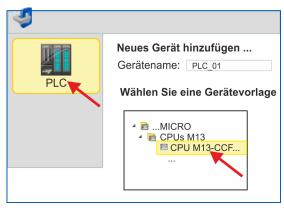
X1	Funk- tion	Тур	LED grün	Beschreibung
6	DI 0.2	Е		Digitaler Eingang DI 2
8	DI 0.0	Е		Digitaler Eingang DI 0
9	0 V	Е		3M: GND Leistungsversorgung für Onboard DI
10	DC 24V	E		3L+: DC 24V Leistungsversorgung für Onboard DI

X6	Funk- tion	Тур	LED grün	Beschreibung
1	Sys DC 24V	E		1L+: DC 24V für Elektronikversorgung
2	Sys 0V	Е		1M: GND für Elektronikversorgung

13.4.4 Einsatz im SPEED7 Studio


13.4.4.1 Hardware-Konfiguration

CPU im Projekt anlegen


Bitte verwenden Sie für die Projektierung das SPEED7 Studio ab V1.7.

Sollten Sie einen anderen Kanal als Kanal 0 verwenden, müssen Sie diesen in der Hardware-Konfiguration und in Ihrem Anwenderprogramm entsprechend anpassen.

1. Starten Sie das SPEED7 Studio.

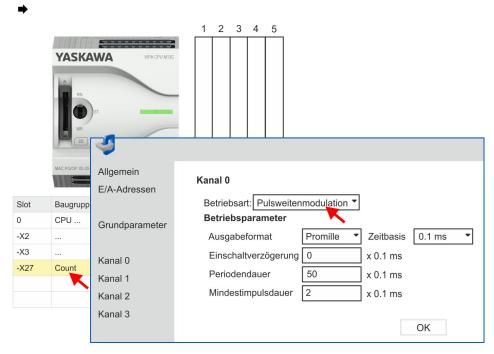
- **2.** Erstellen sie auf der Startseite mit "Neues Projekt" ein neues Projekt und vergeben Sie einen "Projektnamen".
 - ▶ Ein neues Projekt wird angelegt und in die Sicht "Geräte und Netze" gewechselt.
- 3. Klicken Sie im Projektbaum auf "Neues Gerät hinzufügen ...".

- Wählen Sie unter den "Gerätevorlagen" Ihre CPU mit Pulse Train Funktionalität wie z.B. die System MICRO CPU M13-CCF0000 und klicken Sie auf [OK].
 - → Die CPU wird in "Geräte und Netze" eingefügt und die "Gerätekonfiguration" geöffnet.

Ethernet-PG/OP-Kanal parametrieren

- 1. Klicken Sie im Projektbaum auf "Geräte und Netze".
 - ⇒ Sie erhalten eine grafische Objekt-Ansicht Ihrer CPU.

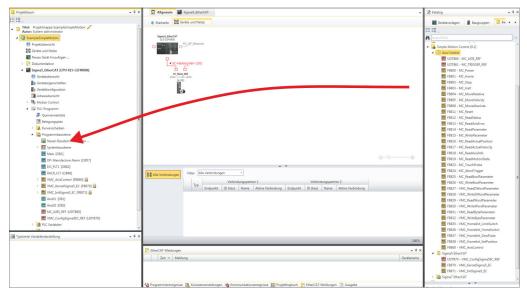
- 2. Klicken Sie auf das Netzwerk "PG_OP_Ethernet".
- 3. ▶ Wählen Sie "Kontextmenü → Eigenschaften der Schnittstelle".
 - ➡ Es öffnet sich ein Dialogfenster. Hier können Sie IP-Adressdaten für Ihren Ethernet-PG/OP-Kanal angeben. Gültige IP-Adress-Parameter erhalten Sie von Ihrem Systemadministrator.
- 4. Bestätigen Sie Ihre Eingabe mit [OK].
 - → Die IP-Adressdaten werden in Ihr Projekt übernommen und in "Geräte und Netze" unter "Lokale Baugruppen" aufgelistet.


Nach der Übertragung Ihres Projekts ist Ihre CPU über die angegebenen IP-Adressdaten via Ethernet-PG/OP-Kanal erreichbar.

E/A-Peripherie auf Pulse Train umschalten

Für die Parametrierung der Ein-/Ausgabeperipherie und der *Technologischen Funktionen* sind die entsprechenden Submodule der CPU zu verwenden. Für die Pulse Train Ausgabe ist das Submodul Count auf *"Pulsweitenmodulation"* umzuschalten.

- 1. Klicken Sie im Projektbaum auf "PLC... > Gerätekonfiguration".
- 2. Klicken Sie in der "Gerätekonfiguration" auf "-X27 Count" und wählen Sie "Kontextmenü → Eigenschaften der Baugruppe".
 - ➡ Es öffnet sich der Eigenschaften-Dialog.
- 3. Klicken Sie auf den entsprechenden Kanal wie z.B. "Kanal 0" und stellen Sie unter "Betriebsart" die Funktion "Pulsweitenmodulation" ein.


<u>4.</u> Die für Pulse Train erforderlichen Betriebsparameter werden intern auf die entsprechenden Werte angepasst. Lassen Sie alle Werte unverändert.

- 5. Schließen Sie den Dialog mit [OK].
- 6. Wählen Sie "Projekt → Alles übersetzen".

13.4.4.2 Anwender-Programm

Baustein in Projekt kopieren

- Offnen Sie im "Katalog" unter "Bausteine" "Simple Motion Control" und ziehen Sie per Drag&Drop folgenden Baustein in "Programmbausteine" des Projektbaums:
 - Sigma5+7 Pulse Train
 - FB 875 VMC_AxisControl_PT → "FB 875 VMC_AxisControl_PT Achskon-trolle über Pulse Train"...Seite 535

OB₁

Konfiguration der Achse

Sollten Sie einen anderen Kanal als Kanal 0 verwenden, müssen Sie diesen in der Hardware-Konfiguration und in Ihrem Anwenderprogramm entsprechend anpassen.

- <u>1.</u> Öffnen Sie im *Projektbaum* innerhalb der CPU unter "*PLC-Programm*", "*Programmbausteine*" den OB 1 und programmieren Sie den Call FB 875, DB 875.
 - ➡ Es öffnet sich der Dialog "Instanz-Datenbaustein hinzufügen".
- 2. Stellen Sie, wenn nicht schon geschehen, die Nummer für den Instanz-Datenbaustein ein und schließen Sie den Dialog mit [OK].
 - → Der Bausteinaufruf wird angelegt und die Parameter werden aufgelistet
- **3.** Vergeben Sie für das Beispielprojekt folgende Parameter. Beachten Sie hier insbesondere die beiden Umrechnungsfaktoren *FactorPosition* und *FactorVelocity*:

```
"VMC_AxisControl_PT" , "DI_AxisControl PT"
S_ChannelNumberPWM := 0
S_Ready
                         := E 136.0
S Alarm
                        := E 136.2
FactorPosition
FactorVelocity
                        := 1024.0
                        := 976.5625
AxisEnable
                        := M 100.1
AxisReset .- M 100.3
StopExecute := M 100.4
MvVelocityExecute := M 100.5
:= M 100.6
                        := M 100.2
JogPositive
JogNegative
                        := M 100.6
                        := M 100.7
PositionDistance
                        := MD 102
Velocity
                        := MD 106
S On
                        := A 136.7
S Direction
                        := A 136.2
S_AlarmReset
                        := A 136.6
MinUserDistance
                        := MD 110
MaxUserDistance
                        := MD 114
MinUserVelocity
                        := MD 118
MaxUserVelocity
                        := MD 122
AxisReady
                        := M 101.3
AxisEnabled
                        := M 101.4
AxisError
                        := M 101.5
AxisErrorID
                        := MW 126
DriveError
                        := M 101.6
CmdActive
                        := MB 128
CmdDone
                        := M 130.0
CmdBusy
                         := M 130.1
CmdAborted
                        := M 130.2
                         := M 130.3
CmdError
                         := MW 132
CmdErrorID
```

Die Adressen von *S_Ready* und *S_Alarm* ergeben sich aus den Adressen der Eingänge, welche mit den Digitalausgängen des Antrieb verbunden sind. Diese können über das Submodul *"-X25 DI/DIO"* der CPU ermittelt werden.

Die Adressen von S_On, S_Direction und S_AlarmReset ergeben sich aus den Adressen der Ausgänge, welche mit den Digitaleingängen des Antriebs verbunden sind. Diese können über das Submodul "-X25 DI/DIO" der CPU ermittelt werden.

Zeitlicher Ablauf

<u>1.</u> Wählen Sie *"Projekt → Alles übersetzen"* und übertragen Sie das Projekt in Ihre CPU.

Näheres zur Übertragung Ihres Projekt finden Sie in der Onlinehilfe zum *SPEED7 Studio*.

⇒ Sie k\u00f6nnen jetzt Ihre Applikation in Betrieb nehmen.

VORSICHT

Bitte beachten Sie immer die Sicherheitshinweise zu ihrem Antrieb, insbesondere bei der Inbetriebnahme!

- 2. Bringen Sie Ihre CPU in RUN und schalten Sie Ihren Antrieb ein.
 - → Der FB 875 VMC_AxisControl_PT wird zyklisch abgearbeitet.
- 3. Sobald *AxisReady* = TRUE meldet, können Sie mit *AxisEnable* den Antrieb frei geben.
- 4. Sie haben jetzt die Möglichkeit über die entsprechenden Parameter Ihren Antrieb zu steuern und dessen Status abzufragen. → "FB 875 VMC_AxisControl_PT Achskontrolle über Pulse Train"...Seite 535

Steuerung des Antriebs über HMI

Sie haben die Möglichkeit über ein HMI Ihren Antrieb zu steuern. Hierzu gibt es für Movicon eine vorgefertigte Symbolbibliothek für den Zugriff auf den VMC_AxisControl_PT Funktionsbaustein.

"Antrieb über HMI steuern"...Seite 714

13.4.5 Einsatz im Siemens SIMATIC Manager

13.4.5.1 Voraussetzung

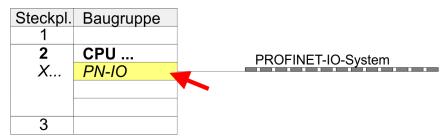
Übersicht

- Bitte verwenden Sie für die Projektierung den Siemens SIMATIC Manager ab V 5.5 SP2.
- Die Projektierung der CPU von Yaskawa mit Pulse Train Funktionalität erfolgt im Siemens SIMATIC Manager in Form eines virtuellen PROFINET IO Devices.
- Das PROFINET IO Device ist mittels GSDML im Hardware-Katalog zu installieren.

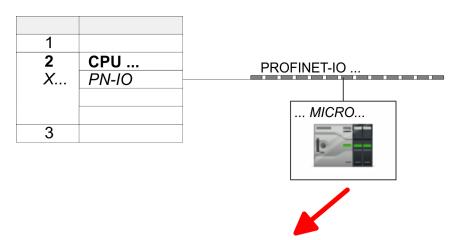
IO Device installieren

Die Installation des PROFINET IO Device im Hardware-Katalog erfolgt nach folgender Vorgehensweise:

- 1. Gehen Sie in das "Download Center" von www.yaskawa.eu.com.
- 2. Laden Sie unter "GSDML SLIO" die Konfigurationsdatei für Ihre CPU.
- 3. Extrahieren Sie die Datei in Ihr Arbeitsverzeichnis.
- **4.** ▶ Starten Sie den Hardware-Konfigurator von Siemens.
- 5. Schließen Sie alle Projekte.
- **6.** ▶ Gehen Sie auf "Extras → GSD-Dateien installieren".
- Navigieren Sie in Ihr Arbeitsverzeichnis und installieren Sie die entsprechende GSDML-Datei.
 - Nach der Installation finden Sie das entsprechende PROFINET IO Device unter "PROFINET IO → Weitere Feldgeräte → I/O → VIPA ...".


13.4.5.2 Hardware-Konfiguration

CPU im Projekt anlegen


Steckp	Baugruppe
1	
2	CPU 314C-2PN/DP
X1	MPI/DP
X2	PN-IO
X2	Port 1
X2	Port 2
3	_

Um kompatibel mit dem Siemens SIMATIC Manager zu sein, sind folgende Schritte durchzuführen:

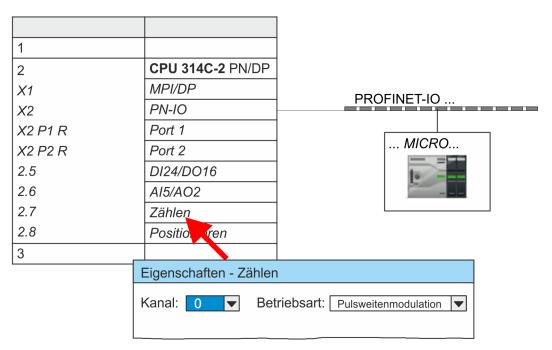
- 1. Starten Sie den Hardware-Konfigurator von Siemens mit einem neuen Projekt.
- 2. Fügen Sie aus dem Hardware-Katalog eine Profilschiene ein.
- 3. Platzieren Sie auf "Slot"-Nummer 2 die CPU 314C-2 PN/DP (314-6EH04-0AB0 V3.3).
- 4. Klicken Sie auf das Submodul "PN-IO" der CPU.
- 5. ▶ Wählen Sie "Kontextmenü → PROFINET IO-System einfügen".

- 6. Legen Sie mit [Neu] ein neues Subnetz an und vergeben Sie gültige IP-Adress-
- 7. ► Klicken Sie auf das Submodul "PN-IO" der CPU und öffnen Sie mit "Kontextmenü → Objekteigenschaften" den Eigenschafts-Dialog.
- **8.** Geben Sie unter "Allgemein" einen "Gerätenamen" an. Der Gerätename muss eindeutig am Ethernet-Subnetz sein.

0	MICRO	M13-CCF0000	
X2	M13-CCF0000		
1			
2			
3			

- 9. Navigieren Sie im Hardware-Katalog in das Verzeichnis "PROFINET IO → Weitere Feldgeräte → I/O → VIPA ..." und binden Sie z.B. für das System MICRO das IO-Device "M13-CCF0000" an Ihr PROFINET-System an.
 - ➡ In der Steckplatzübersicht des PROFINET-IO-Device "... MICRO PLC" ist auf Steckplatz 0 die CPU bereits vorplatziert.

Ethernet-PG/OP-Kanal parametrieren


Steckpl.	Modul	
1		
2 X	CPU	
X	PN-IO	_
3		
4	343-1EX30	
5		

- 1. Platzieren Sie für den Ethernet-PG/OP-Kanal auf Steckplatz 4 den Siemens CP 343-1 (SIMATIC 300 \ CP 300 \ Industrial Ethernet \CP 343-1 \ 6GK7 343-1EX30 0XE0 V3.0).
- Öffnen Sie durch Doppelklick auf den CP 343-1EX30 den Eigenschaften-Dialog und geben Sie für den CP unter "Eigenschaften" IP-Adress-Daten an. Gültige IP-Adress-Parameter erhalten Sie von Ihrem Systemadministrator.
- 3. Ordnen Sie den CP einem "Subnetz" zu. Ohne Zuordnung werden die IP-Adress-Daten nicht übernommen!

E/A-Peripherie auf Pulse Train umschalten

Für die Parametrierung der Ein-/Ausgabeperipherie und der *Technologischen Funktionen* sind die entsprechenden Submodule der Siemens CPU 314C-2 PN/DP (314-6EH04-0AB0 V3.3) zu verwenden. Für die Pulse Train Ausgabe ist das Submodul Count auf *"Pulsweitenmodulation"* umzuschalten. Sollten Sie einen anderen Kanal als Kanal 0 verwenden, müssen Sie diesen in der Hardware-Konfiguration und in Ihrem Anwenderprogramm entsprechend anpassen.

- 1. Doppelklicken Sie auf das Zähler-Submodul der Siemens CPU 314C-2 PN/DP.
 - ➡ Sie gelangen in das Dialogfeld "Eigenschaften".
- 2. Wählen Sie z.B. "Kanal 0" und stellen Sie unter "Betriebsart" die Funktion "Pulsweitenmodulation" ein.
- 3. Lassen Sie alle Werte unverändert.

- 4. Schließen Sie den Dialog mit [OK].
- 5. ▶ Wählen Sie "Station → Speichern und übersetzen".
- **6.** Schließen Sie den Hardware-Konfigurator.

13.4.5.3 Anwender-Programm

Bibliothek einbinden

- 1. Gehen Sie in das "Download Center" von www.yaskawa.eu.com.
- **2.** Laden Sie aus dem Downloadbereich unter "Controls Library" die Simple Motion Control Library.
- 4. Wählen Sie die entsprechende ZIP-Datei an und klicken Sie auf [Öffnen].
- **5.** Geben Sie ein Zielverzeichnis an, in dem die Bausteine abzulegen sind und starten Sie den Entpackvorgang mit [OK].

Bausteine in Projekt kopieren

- Öffnen Sie die Bibliothek nach dem Entpackvorgang und ziehen Sie per Drag&Drop folgenden Baustein in *"Bausteine"* Ihres Projekts:
 - Sigma5+7 Pulse Train
 - FB 875 VMC_AxisControl_PT → "FB 875 VMC_AxisControl_PT Achskon-trolle über Pulse Train"...Seite 535

OB₁

Konfiguration der Achse

- 1. Öffnen Sie den OB 1 und programmieren Sie den Call FB 875, DB 875.
 - → Der Bausteinaufruf wird angelegt und die Parameter werden aufgelistet

2. Vergeben Sie für das Beispielprojekt folgende Parameter. Beachten Sie hier insbesondere die beiden Umrechnungsfaktoren *FactorPosition* und *FactorVelocity*:

```
"VMC AxisControl PT" , "DI AxisControl PT"
→ CALL FB
  S ChannelNumberPWM
                        := 0
  S Ready
                         := E 136.0
  S Alarm
                         := E 136.2
 FactorPosition
                         := 1024.0
  FactorVelocity
                         := 976.5625
 AxisEnable
                         := M 100.1
 AxisReset
                         := M 100.2
 StopExecute
                        := M 100.3
 MvVelocityExecute
MvRelativeExecute
                        := M 100.4
                        := M 100.5
 JogPositive
                         := M 100.6
 JogNegative
                         := M 100.7
 PositionDistance
                         := MD 102
 Velocity
                         := MD 106
  S On
                         := A 136.7
  S Direction
                         := A 136.2
  S_AlarmReset
                         := A 136.6
                         := MD 110
 MinUserDistance
 MaxUserDistance
                         := MD 114
                         := MD 118
 MinUserVelocity
 MaxUserVelocity
                         := MD 122
 AxisReady
                         := M 101.3
 AxisEnabled
                         := M 101.4
 AxisError
                         := M 101.5
 AxisErrorID
                         := MW 126
  DriveError
                         := M 101.6
  CmdActive
                         := MB 128
  CmdDone
                         := M 130.0
                         := M 130.1
  CmdBusy
  CmdAborted
                         := M 130.2
  CmdError
                         := M 130.3
  CmdErrorID
                         := MW 132
```

Die Adressen von *S_Ready* und *S_Alarm* ergeben sich aus den Adressen der Eingänge, welche mit den Digitalausgängen des Antrieb verbunden sind. Diese können über das Submodul *"DI24/DO16"* der CPU ermittelt werden.

Die Adressen von S_On, S_Direction und S_AlarmReset ergeben sich aus den Adressen der Ausgänge, welche mit den Digitaleingängen des Antriebs verbunden sind. Diese können über das Submodul "DI24/DO16" der CPU ermittelt werden.

Zeitlicher Ablauf

- 1. Wechseln Sie in den Siemens SIMATIC Manager und übertragen Sie Ihr Projekt in die CPU.
 - ⇒ Sie können jetzt Ihre Applikation in Betrieb nehmen.

VORSICHT

Bitte beachten Sie immer die Sicherheitshinweise zu ihrem Antrieb, insbesondere bei der Inbetriebnahme!

- 2. Bringen Sie Ihre CPU in RUN und schalten Sie Ihren Antrieb ein.
 - → Der FB 875 VMC_AxisControl_PT wird zyklisch abgearbeitet.
- 3. Sobald *AxisReady* = TRUE meldet, können Sie mit *AxisEnable* den Antrieb frei geben.
- 4. Sie haben jetzt die Möglichkeit über die entsprechenden Parameter Ihren Antrieb zu steuern und dessen Status abzufragen. → "FB 875 VMC_AxisControl_PT Achskontrolle über Pulse Train"...Seite 535

Steuerung des Antriebs über HMI

Sie haben die Möglichkeit über ein HMI Ihren Antrieb zu steuern. Hierzu gibt es für Movicon eine vorgefertigte Symbolbibliothek für den Zugriff auf den VMC_AxisControl_PT Funktionsbaustein.

"Antrieb über HMI steuern"...Seite 714

13.4.6 Einsatz im Siemens TIA Portal

13.4.6.1 Voraussetzung

Übersicht

- Bitte verwenden Sie für die Projektierung das Siemens TIA Portal ab V 14.
- Die Projektierung der CPU von Yaskawa mit Pulse Train Funktionalität erfolgt im Siemens TIA Portal in Form eines virtuellen PROFINET IO Devices.
- Das PROFINET IO Device ist mittels GSDML im Hardware-Katalog zu installieren.

IO Device installieren

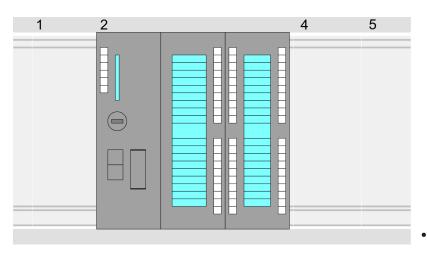
Die Installation des PROFINET IO Device im Hardware-Katalog erfolgt nach folgender Vorgehensweise:

- 1. Gehen Sie in das "Download Center" von www.yaskawa.eu.com.
- 2. Laden Sie unter "GSDML MICRO" die entsprechende Datei für Ihr System.
- 3. Extrahieren Sie die Datei in Ihr Arbeitsverzeichnis.
- 4. Starten das Siemens TIA Portal.
- 5. Schließen Sie alle Projekte.
- **6.** ▶ Wechseln Sie in die *Projektansicht*.
- 7. ▶ Gehen Sie auf "Extras → Gerätebeschreibungsdatei (GSD) installieren".
- 8. Navigieren Sie in Ihr Arbeitsverzeichnis und installieren Sie die entsprechende GSDML-Datei.
 - Nach der Installation wird der Hardware-Katalog aktualisiert und das Siemens TIA Portal beendet.

Nach einem Neustart des Siemens TIA Portals finden Sie das entsprechende PROFINET-IO-Device unter *Weitere Feldgeräte > PROFINET > IO > VIPA ...* > ... *MICRO PLC*.

Damit die Komponenten von Yaskawa angezeigt werden können, müssen Sie im Hardware-Katalog bei "Filter" den Haken entfernen.

13.4.6.2 Hardware-Konfiguration

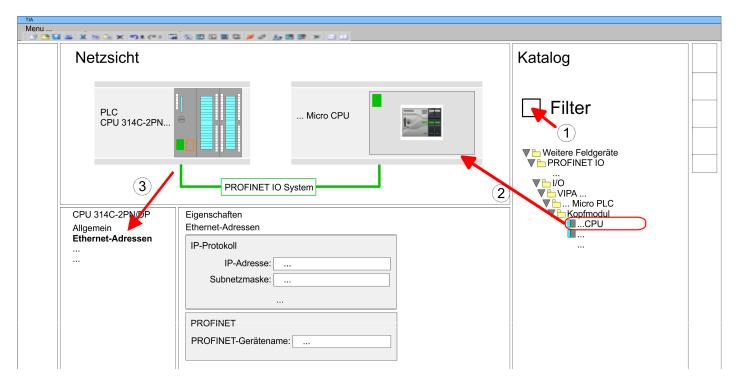

CPU im Projekt anlegen

Um kompatibel mit dem Siemens TIA Portal zu sein, sind folgende Schritte durchzuführen:

- 1. Starten Sie das Siemens TIA Portal mit einem neuen Projekt.
- 2. Wechseln Sie in die *Projektansicht*.
- 3. Klicken Sie in der Projektnavigation auf "Neues Gerät hinzufügen".
- **4.** Wählen Sie im Eingabedialog folgende CPU aus:

SIMATIC S7-300 > CPU 314C-2 PN/DP (314-6EH04-0AB0 V3.3)

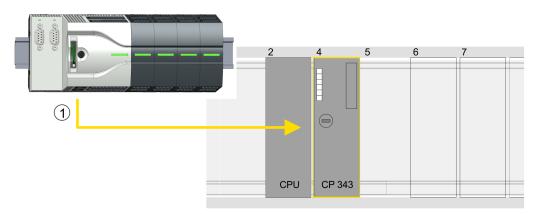
Die CPU wird mit einer Profilschiene eingefügt.



Geräteübersicht:

Baugruppe	 Steckplatz	 Тур	
PLC	2	CPU 314C-2PN/DP	
MPI-Schnittstelle	2 X1	MPI/DP-Schnittstelle	
PROFINET- Schnitt	2 X2	PROFINET-Schnittstelle	
DI24/DO16	2 5	DI24/DO16	
AI5/AO2	2 6	AI5/AO2	
Zählen	27	Zählen	

Anbindung CPU als PROFINET-IO-Device


- 1. Wechseln Sie im *Projektbereich* in die "Netzsicht".
- 2. Nach der Installation der GSDML finden Sie das IO-Device für die CPU im Hardware-Katalog unter Weitere Feldgeräte > PROFINET > IO > VIPA ... > ... MICRO PLC. Binden Sie das Slave-System an die CPU an, indem Sie dies aus dem Hardware-Katalog in die Netzsicht ziehen und dieses über PROFINET an die CPU anbinden.
- 3. Klicken Sie in der *Netzsicht* auf den PROFINET-Teil der Siemens CPU und geben Sie in *"Eigenschaften"* unter *"Ethernet-Adressen"* im Bereich *"IP-Protokoll"* gültige IP-Adressdaten an.
- **4.** Geben Sie unter "PROFINET" einen "PROFINET Gerätenamen" an. Der Gerätename muss eindeutig am Ethernet-Subnetz sein.

- 5. Wählen Sie in der *Netzsicht* das IO-Device "... *MICRO PLC*" an und wechseln Sie in die *Geräteübersicht*.
 - ➡ In der Geräteübersicht des PROFINET-IO-Device "... MICRO PLC" ist auf Steckplatz 0 die CPU bereits vorplatziert.

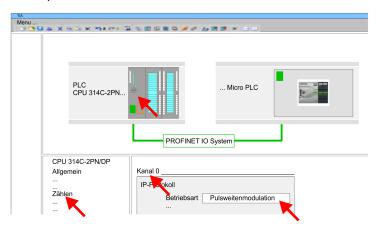
Ethernet-PG/OP-Kanal parametrieren

- 1. Platzieren Sie für den Ethernet-PG/OP-Kanal auf Steckplatz 4 den Siemens CP 343-1 (6GK7 343-1EX30 0XE0 V3.0).
- Öffnen Sie durch Klick auf den CP 343-1EX30 den "Eigenschaften"-Dialog und geben Sie für den CP in den "Eigenschaften" unter "Ethernet-Adresse" IP-Adress-Daten an. Gültige IP-Adress-Parameter erhalten Sie von Ihrem Systemadministrator.

1 Ethernet-PG/OP-Kanal

Geräteübersicht

Baugruppe	 Steckplatz	 Тур	
PLC	2	CPU 314C-2PN/DP	
MPI/DP-Schnitt- stelle	2 X1	MPI/DP-Schnittstelle	


PROFINET- Schnittstelle	2 X2	PROFINET-Schnittstelle
CP 343-1	4	CP 343-1

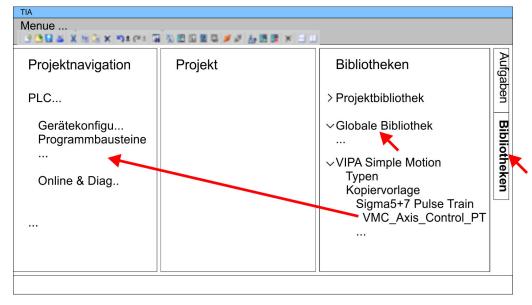
E/A-Peripherie auf Pulse Train umschalten

Für die Parametrierung der Ein-/Ausgabeperipherie und der *Technologischen Funktionen* sind die entsprechenden Submodule der Siemens CPU 314C-2 PN/DP (314-6EH04-0AB0 V3.3) zu verwenden. Für die Pulse Train Ausgabe ist das Submodul Count auf *"Pulsweitenmodulation"* umzuschalten. Sollten Sie einen anderen Kanal als Kanal 0 verwenden, müssen Sie diesen in der Hardware-Konfiguration und in Ihrem Anwenderprogramm entsprechend anpassen.

- 1. Doppelklicken Sie auf das Zähler-Submodul der Siemens CPU 314C-2 PN/DP.
 - ⇒ Sie gelangen in das Dialogfeld "Eigenschaften".
- **2.** Wählen Sie z.B. "Kanal 0" und stellen Sie unter "Betriebsart" die Funktion "Pulsweitenmodulation" ein.
- 3. Lassen Sie alle Werte unverändert.

•

4. Klicken Sie in der Projektnavigation auf Ihre CPU und wählen Sie "Kontextmenü → Übersetzen → Alles".


13.4.6.3 Anwender-Programm

Bibliothek einbinden

- 1. Gehen Sie in den "Download Center" von www.yaskawa.eu.com.
- Laden Sie unter "Controls Library" die Simple Motion Control Library.
 Die Bibliothek liegt für die entsprechende TIA Portal Version als gepackte zip-Datei vor.
- 3. Starten Sie mit einem Doppelklick auf die Datei ...TIA_Vxx.zip ihr Unzip-Programm, entpacken Sie Dateien und Ordner in ein Arbeitsverzeichnis für das Siemens TIA Portal.
- **4.** Wechseln sie im Siemens TIA Portal in die *Projektansicht*.
- 5. Wählen Sie auf der rechten Seite die Task-Card "Bibliotheken".
- 6. Klicken Sie auf "Globale Bibliothek".
- 7. Klicken Sie innerhalb der "Globalen Bibliothek" auf die freie Fläche und wählen Sie "Kontextmenü → Bibliothek dearchivieren".

8. Navigieren Sie zu ihrem Arbeitsverzeichnis und laden Sie die Datei ...Simple Motion.zalxx.

Bausteine in Projekt kopieren

- Kopieren Sie folgenden Baustein aus der Bibliothek in das Verzeichnis "Programm-bausteine" in der *Projektnavigation* Ihres Projekts.
 - Sigma5+7 Pulse Train
 - FB 875 VMC_AxisControl_PT → "FB 875 VMC_AxisControl_PT Achskon-trolle über Pulse Train"...Seite 535

OB 1 Konfiguration der Achse

- <u>1.</u> Öffnen Sie in der *Projektnavigation* innerhalb der CPU unter *"Programmbausteine"* den OB 1 und programmieren Sie den Call FB 875, DB 875
 - ⇒ Es öffnet sich der Dialog "Instanz-Datenbaustein hinzufügen".
- 2. Stellen Sie, wenn nicht schon geschehen, die Nummer für den Instanz-Datenbaustein ein und schließen Sie den Dialog mit [OK].
 - → Der Bausteinaufruf wird angelegt und die Parameter werden aufgelistet
- **3.** Vergeben Sie für das Beispielprojekt folgende Parameter. Beachten Sie hier insbesondere die beiden Umrechnungsfaktoren *FactorPosition* und *FactorVelocity*:

```
"VMC AxisControl PT" , "DI AxisControl PT"
S ChannelNumberPWM
                      := 0
S Ready
                       := E 136.0
S Alarm
                       := E 136.2
FactorPosition
                       := 1024.0
                       := 976.5625
FactorVelocity
AxisEnable
                       := M 100.1
AxisReset
                       := M 100.2
StopExecute
                       := M 100.3
MvVelocityExecute
                       := M 100.4
MvRelativeExecute
                       := M 100.5
JogPositive
                       := M 100.6
JogNegative
                       := M 100.7
PositionDistance
                       := MD 102
Velocity
                       := MD 106
S On
                       := A 136.7
S Direction
                       := A 136.2
S AlarmReset
                       := A 136.6
MinUserDistance
                        := MD 110
```

MaxUserDistance := MD 114MinUserVelocity := MD 118 MaxUserVelocity := MD 122 AxisReady := M 101.3AxisEnabled := M 101.4:= M 101.5AxisError := MW 126 AxisErrorID DriveError := M 101.6:= MB 128 CmdActive CmdDone := M 130.0CmdBusy := M 130.1CmdAborted := M 130.2:= M 130.3CmdError CmdErrorID := MW 132

Die Adressen von S_Ready und S_Alarm ergeben sich aus den Adressen der Eingänge, welche mit den Digitalausgängen des Antrieb verbunden sind. Diese können über das Submodul "DI24/DO16" der CPU ermittelt werden.

Die Adressen von *S_On*, *S_Direction* und *S_AlarmReset* ergeben sich aus den Adressen der Ausgänge, welche mit den Digitaleingängen des Antriebs verbunden sind. Diese können über das Submodul *"DI24/DO16"* der CPU ermittelt werden.

Zeitlicher Ablauf

- 1. Wählen Sie "Bearbeiten → Übersetzen" und übertragen Sie das Projekt in Ihre CPU. Näheres zur Übertragung Ihres Projekt finden Sie in der Onlinehilfe zum Siemens TIA Portal.
 - ⇒ Sie können jetzt Ihre Applikation in Betrieb nehmen.

VORSICHT

Bitte beachten Sie immer die Sicherheitshinweise zu ihrem Antrieb, insbesondere bei der Inbetriebnahme!

- 2. Bringen Sie Ihre CPU in RUN und schalten Sie Ihren Antrieb ein.
 - → Der FB 875 VMC AxisControl PT wird zyklisch abgearbeitet
- 3. Sobald *AxisReady* = TRUE meldet, können Sie mit *AxisEnable* den Antrieb frei geben.
- 4. Sie haben jetzt die Möglichkeit über die entsprechenden Parameter Ihren Antrieb zu steuern und dessen Status abzufragen. → "FB 875 VMC_AxisControl_PT Achskontrolle über Pulse Train"...Seite 535

Steuerung des Antriebs über HMI

Sie haben die Möglichkeit über ein HMI Ihren Antrieb zu steuern. Hierzu gibt es für Movicon eine vorgefertigte Symbolbibliothek für den Zugriff auf den VMC_AxisControl_PT Funktionsbaustein.

"Antrieb über HMI steuern"...Seite 714

13.4.7 Antriebsspezifischer Baustein

13.4.7.1 FB 875 - VMC_AxisControl_PT - Achskontrolle über Pulse Train

13.4.7.1.1 Beschreibung

Mit dem FB VMC_AxisControl_PT können Sie eine über Pulse Train angebundene Achse steuern. Sie können den Status des Antriebs abrufen, den Antrieb ein- bzw. ausschalten oder verschiedene Bewegungskommandos ausführen. In den Instanzdaten des Bausteins befindet sich ein gesonderter Speicherbereich. Über diesen können Sie mittels eines HMI Ihre Achse steuern. → "Antrieb über HMI steuern"...Seite 714

Die Ansteuerung eines Pulse Train Antriebs erfolgt ausschließlich mit dem FB 875 VMC_AxisControl_PT. PLCopen-Bausteine werden nicht unterstützt!

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
S_Channel- NumberPWM	INPUT	INT	Kanalnummer vom PWM-Ausgang, der für die Ansteuerung vom Pulse-Train-Eingang des Servos (Signal PULS) verwendet wird.
S_Ready	INPUT	BOOL	Digitaleingang zur Anbindung des S_Ready-Signals (S-RDY)TRUE: Servo ist bereit für das S_On-Signal.
S_Alarm	INPUT	BOOL	Digitaleingang zur Anbindung des S_Alarm-Signals (ALM)FALSE, wenn der Servo einen Fehler erkannt hat.
FactorPosition	INPUT	REAL	Faktor zur Umrechnung der Position von Benutzer- in Antriebseinheiten (Inkremente) und zurück. → "FactorPosition"Seite 539
FactorVelocity	INPUT	REAL	Faktor zur Umrechnung der Geschwindigkeit von Benutzer- in Antriebseinheiten (Inkremente/s) und zurück. → "FactorVelo- city"Seite 540
AxisEnable	INPUT	BOOL	AchsenfreigabeTRUE: Die Achse wird freigegeben.FALSE: Die Achse wird gesperrt.
AxisReset	INPUT	BOOL	 Reset Achse Flanke 0-1: Reset der Achse wird durchgeführt. Der Zustand eines mit AxisReset gestarteten Reset wird nicht an den Ausgängen CmdActive, CmdDone, CmdBusy, CmdAborted, CmdError und CmdErrorID ausgegeben.
StopExecute	INPUT	BOOL	 Achse stoppen Flanke 0-1: Stoppen der Achse wird gestartet. Hinweis: StopExecute = 1: Kein anderes Kommando kann gestartet werden!
MvVelocityExecute	INPUT	BOOL	 Verfahren der Achse starten Flanke 0-1: Die Achse wird auf die angegebene Geschwindigkeit beschleunigt / abgebremst.
MvRelativeE- xecute	INPUT	BOOL	 Verfahren der Achse starten Flanke 0-1: Die relative Positionierung der Achse wird gestartet.
JogPositive	INPUT	BOOL	 Tipp-Betrieb positiv Achse mit konstanter Geschwindigkeit in positive Richtung verfahren Flanke 0-1: Das Verfahren der Achse mit konstanter Geschwindigkeit wird gestartet. Flanke 1-0: Die Achse wird gestoppt.

Parameter	Deklaration	Datentyp	Beschreibung
JogNegative	INPUT	BOOL	Tipp-Betrieb negativ
			 Achse mit konstanter Geschwindigkeit in negative Richtung verfahren Flanke 0-1: Das Verfahren der Achse mit konstanter Geschwindigkeit wird gestartet. Flanke 1-0: Die Achse wird gestoppt.
PositionDis- tance	INPUT	REAL	Absolute Position bzw. relative Wegstrecke für <i>MvRelativeExecute</i> [Anwendereinheiten].
Velocity	INPUT	REAL	Geschwindigkeitsvorgabe (vorzeichenbehafteter Wert) in [Anwendereinheiten/s].
S_On	OUTPUT	BOOL	 Digitalausgang zur Ansteuerung des S_On-Signals (S-ON) TRUE: schaltet den Servo ein. FALSE: schaltet den Servo aus.
S_Direction	OUTPUT	BOOL	 Digitalausgang zur Ansteuerung des S_Direction-Signals (SIGN) TRUE: Vorgabe der Drehrichtung positive Richtung für den Servo. FALSE: Vorgabe der Drehrichtung negative Richtung für den Servo.
S_AlarmReset	OUTPUT	BOOL	 Digitalausgang zur Ansteuerung des S_AlarmReset-Signals (ALM-RST) TRUE: Alarme werden im Servo zurückgesetzt. FALSE: Alarme im Servo bleiben bestehen.
MinUserDis- tance	OUTPUT	REAL	Minimaler Verfahrweg (1 Inkrement) des Servos [Anwendereinheiten].
MaxUserDis- tance	OUTPUT	REAL	Maximaler Verfahrweg (8388607 Inkremente = maximale Anzahl Impulse des PWM-Ausgangs) des Servos [Anwendereinheiten].
MinUserVelo- city	OUTPUT	REAL	Minimale Geschwindigkeit (Periodendauer = 65535µs = maximale Periodendauer des PWM-Ausgangs) des Servos [Anwendereinheiten].
MaxUserVelo- city	OUTPUT	REAL	Maximale Geschwindigkeit (Periodendauer = 20µs = minimale Periodendauer des PWM-Ausgang) des Servos [Anwendereinheiten].
AxisReady	OUTPUT	BOOL	 ■ AxisReady TRUE: Die Achse ist einschaltbereit. FALSE: Die Achse ist nicht einschaltbereit. → Prüfe und behebe AxisError (siehe AxisErrorID). → Prüfe und behebe DriveError.
AxisEnabled	OUTPUT	BOOL	 Status Achse TRUE: Achse ist eingeschaltet und nimmt Bewegungsaufträge an. FALSE: Achse ist nicht eingeschaltet und nimmt keine Bewegungsaufträge an. Bedingungen für AxisEnabled = TRUE AxisEnable = TRUE S_Ready = TRUE S_Alarm = TRUE

Parameter	Deklaration	Datentyp	Beschreibung
AxisError	OUTPUT	BOOL	Fehler bei Motion AchseTRUE: Ein Fehler ist aufgetreten.
			Zusätzliche Fehlerinformationen können dem Parameter <i>AxisErrorID</i> entnommen werden.
			→ Die Achse wird gesperrt (S_On = FALSE und AxisEnabled = FALSE). Kommando wird nicht ausgeführt.
AxisErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen
			→ "ErrorID - Zusätzliche Fehlerinformationen"Seite 739
DriveError	OUTPUT	BOOL	 Fehler direkt am Antrieb TRUE: Ein Fehler ist aufgetreten. → Die Achse wird gesperrt.
CmdActive	OUTPUT	ВҮТЕ	 ■ Kommando - 0: kein Cmd aktiv - 1: STOP - 2: MvVelocity - 3: MvRelative - 4: JogPos - 5: JogNeg
CmdDone	OUTPUT	BOOL	Status DoneTRUE: Auftrag wurde ohne Fehler beendet.
CmdBusy	OUTPUT	BOOL	Status BusyTRUE: Auftrag ist in Bearbeitung.
CmdAborted	OUTPUT	BOOL	 Status Aborted TRUE: Der Auftrag wurde während der Bearbeitung von einem anderen Auftrag abgebrochen.
			Hinweis: CmdAborted wird beim Start eines Cmd zurückgesetzt
CmdError	OUTPUT	BOOL	Status ErrorTRUE: Ein Fehler ist aufgetreten. Die Achse wird gesperrt
			Zusätzliche Fehlerinformationen können dem Parameter <i>CmdEr-rorID</i> entnommen werden.
CmdErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen
			→ "ErrorID - Zusätzliche Fehlerinformationen"Seite 739

13.4.7.1.2 Umrechnungsfaktoren

FactorPosition

Die Berechnung von FactorPosition ist nur gültig, wenn der Servo-Parameter Reference Pulse Multiplier (Pn218) = 1 gesetzt ist.

$$FactorPosition = \frac{Resolution}{Numerator} \cdot Denominator$$

FactorPosition Faktor zur Umrechnung der Position von Benutzer- in Antriebseinheiten

(Inkremente) und zurück.

Resolution Anzahl Inkremente pro Anwendereinheit

Numerator Zähler: Electronic Gear Ratio (Pn20E) der Servo-Parameter

Denominator Nenner: Electronic Gear Ratio (Pn210) der Servo-Parameter

Beispiel Anwendereinheit für Position = 1 Umdrehung

FactorPosition Faktor zur Umrechnung der Position von Benutzer- in Antriebseinheiten

(Inkremente) und zurück.

Resolution Anzahl Inkremente pro Anwendereinheit

 $Resolution = 2^{20} = 1048576$

Numerator Zähler: Electronic Gear Ratio (Pn20E) der Servo-Parameter

Numerator = 1024

Denominator Nenner: Electronic Gear Ratio (Pn210) der Servo-Parameter

Denominator = 1

 $Factor Position = \frac{Resolution}{Numerator} \cdot Denominator$

 $FactorPosition = \frac{1048576}{1024} \cdot 1 = 1024$

Beispiel minimaler Verfahrweg

MinPos Minimaler Verfahrweg in Umdehungen
Resolution Anzahl Inkremente pro Anwendereinheit

Resolution = 2^{20} = 1048576

Numerator Zähler: Electronic Gear Ratio (Pn20E) der Servo-Parameter

Numerator = 1024

Period Minimale Periode

Period = 1

 $\mathit{MinPos=Numerator} \cdot \frac{\mathit{Period}}{\mathit{Resolutioon}}$

 $MinPos=1024 \cdot \frac{1}{1048576} = \frac{1}{1024}$

Beispiel maximaler Verfahrweg

MaxPos Maximaler Verfahrweg in Umdrehungen
Resolution Anzahl Inkremente pro Anwendereinheit

Resolution = 2^{20} = 1048576

Numerator Zähler: Electronic Gear Ratio (Pn20E) der Servo-Parameter

Numerator = 1024

Period Maximale Periode

Period = 8388607

 $MaxPos=Numerator \cdot \frac{Period}{Resolution}$

$$MaxPos = 1024 \cdot \frac{8388607}{1048576} = 8192$$

FactorVelocity

Die Berechnung von FactorVelocity ist nur gültig, wenn der Servo-Parameter Reference Pulse Multiplier (Pn218) = 1 gesetzt ist.

$$Factor Velocity = Time \cdot \frac{ \begin{array}{c} Numerator \\ \hline Denominator \\ \hline Resolution \end{array}}$$

Time Zeit für 1 Umdrehung in µs

Numerator Zähler: Electronic Gear Ratio (Pn20E) der Servo-Parameter

Denominator Nenner: Electronic Gear Ratio (Pn210) der Servo-Parameter

Resolution Anzahl Inkremente pro Anwendereinheit

Einsatz Sigma-5/7 Pulse Train > Antriebsspezifischer Baustein

Beispiel Anwendereinheit für Geschwindigkeit = Umdrehung/min

FactorVelocity Faktor zur Umrechnung von Benutzer- in Antriebseinheiten (Inkremente/

sec) und zurück.

Time Zeit für 1 Umdrehung in µs

 $Time = 1min = 60 \cdot 10^6 \mu s$

Numerator Zähler: Electronic Gear Ratio (Pn20E) der Servo-Parameter

Numerator = 1024

Denominator Nenner: Electronic Gear Ratio (Pn210) der Servo-Parameter

Denominator = 1

Resolution Anzahl Inkremente pro Anwendereinheit

Resolution = 2^{20} = 1048576

 $Factor Velocity = Time \cdot \frac{Numerator}{Denominator}$ Resolution

FactorVelocity= $60 \cdot 10^6 \frac{1024}{1048576} = \frac{60 \cdot 10^6}{1024} = 58593,75$

Beispiel Anwendereinheit für Geschwindigkeit = Umdrehung/s

FactorVelocity Faktor zur Umrechnung von Benutzer- in Antriebseinheiten (Inkremente/

sec) und zurück.

Time Zeit für 1 Umdrehung in μs

Time = $1s = 10^6 \mu s$

Numerator Zähler: Electronic Gear Ratio (Pn20E) der Servo-Parameter

Numerator = 1024

Denominator Nenner: Electronic Gear Ratio (Pn210) der Servo-Parameter

Denominator = 1

Resolution Anzahl Inkremente pro Anwendereinheit

Resolution = 2^{20} = 1048576

 $Factor Velocity = Time \cdot \frac{Numerator}{Denominator}$ Resolution

 $Factor Velocity = 10^{6} \frac{\frac{1024}{1}}{1048576} = \frac{10^{6}}{1024} = 976,5625$

Einsatz Sigma-5/7 Pulse Train > Antriebsspezifischer Baustein

Minimale Geschwindigkeit für Umdrehungen/min

MinVel Minimale Geschwindigkeit in Umdrehungen/min

FactorVelocity Faktor zur Umrechnung von Benutzer- in Antriebseinheiten (Inkre-

mente/s) und zurück.

$$MinVel = \frac{FactorVelocity}{65535} = \frac{58593,75}{65535} = 0,89$$

Maximale Geschwindigkeit für Umdrehungen/min

MaxVel Maximale Geschwindigkeit in Umdrehungen/min

FactorVelocity Faktor zur Umrechnung von Benutzer- in Antriebseinheiten (Inkremente/s) und zurück.

$$MaxVel = \frac{FactorVelocity}{20} = \frac{58593,75}{20} = 2929,69$$

13.4.7.1.3 Funktionalität

Antrieb ein- bzw. ausschalten

- Der Eingang AxisEnable dient zum Ein- und Ausschalten einer Achse.
- Das Einschalten ist nur möglich, wenn AxisReady = TRUE meldet, d.h. die Achse einschaltbereit ist.
- Sobald die Achse eingeschaltet ist, wird dies durch die Statusinformation AxisEnabled angezeigt.
- Hat die Achse einen Fehler, wird dies durch die Statusinformation *AxisError* angezeigt. Weitere Informationen liefert *AxisErrorID*.

Bitte beachten Sie, dass Sie den Baustein immer innerhalb des OB 1 aufrufen, ansonsten erhalten Sie die Fehlermeldung 0x8317.

Verhalten der Ausgänge CmdActive, CmdDone und CmdBusy

Die Kommandoabarbeitung lässt sich in 3 Phasen gliedern. Abhängig von der Betriebsart zeigen die Ausgänge *CmdActive*, *CmdDone* und *CmdBusy* innerhalb dieser Phasen folgendes Verhalten:

Geschwindigkeitsregelung mit Velocity <> 0

- Phase 1: Mit einer Flanke 0-1 an MvVelocityExecute wird das Kommando gestartet.
 - CmdActive = 2, CmdDone = FALSE, CmdBusy = TRUE
- Phase 2: Die Geschwindigkeitsvorgabe wurde erreicht, MvVelocityExecute = TRUE
 - Kommando wird weiterhin ausgeführt.
 - CmdActive = 2, CmdDone = TRUE, CmdBusy = FALSE
- Phase 3: MvVelocityExecute = FALSE
 - Kommando wird weiterhin ausgeführt.
 - CmdActive = 2, CmdDone = FALSE, CmdBusy = FALSE

Geschwindigkeitsregelung mit Velocity = 0

- Phase 1: Mit einer Flanke 0-1 an MvVelocityExecute wird das Kommando gestartet.
 - CmdActive = 2, CmdDone = FALSE, CmdBusy = TRUE

Einsatz Sigma-5/7 Pulse Train > Antriebsspezifischer Baustein

- Phase 2: Die Geschwindigkeit 0 wurde erreicht, MvVelocityExecute = TRUE
 - Achse befindet sich im Stillstand und ist bereit für weitere Kommandos.
 - CmdActive = 0, CmdDone = TRUE, CmdBusy = FALSE
- Phase 3: MvVelocityExecute = FALSE
 - Achse befindet sich im Stillstand und ist bereit für weitere Kommandos.
 - CmdActive = 0, CmdDone = FALSE, CmdBusy = FALSE

Achse stoppen

- Phase 1: Mit einer Flanke 0-1 an StopExecute wird das Kommando gestartet.
 - CmdActive = 1, CmdDone = FALSE, CmdBusy = TRUE
- Phase 2: Die Geschwindigkeit 0 wurden erreicht, StopExecute = TRUE
 - Achse befindet sich im Stillstand und das Stop-Kommando blockiert die Ausführung weiterer Kommandos.
 - CmdActive = 1, CmdDone = TRUE, CmdBusy = FALSE
- Phase 3: StopExecute = FALSE
 - Achse befindet sich im Stillstand und ist bereit für weitere Kommandos.
 - CmdActive = 0, CmdDone = FALSE, CmdBusy = FALSE

Relative Positionierung

- Phase 1: Mit einer Flanke 0-1 an MvRelativeExecute wird das Kommando gestartet.
 - CmdActive = 3, CmdDone = FALSE, CmdBusy = TRUE
- Phase 2: Das Positionsziel wurden erreicht, MvRelativeExecute = TRUE
 - Es ist kein Kommando aktiv
 - CmdActive = 0, CmdDone = TRUE, CmdBusy = FALSE
- Phase 3: MvRelativeExecute = FALSE
 - CmdActive = 0, CmdDone = FALSE, CmdBusy = FALSE

Tipp-Betrieb

- Phase 1: Mit einer Flanke 0-1 an JogPositive bzw. JogNegative wird das Kommando gestartet.
 - CmdActive = 4 bzw. 5, CmdDone = FALSE, CmdBusy = TRUE
- Phase 2: Die Geschwindigkeitsvorgabe wurden erreicht, JogPositive = TRUE bzw. JogNegative = TRUE.
 - Kommando ist noch aktiv, Achse wird erst mit JogPositive = FALSE bzw. JogNegative = FALSE gestoppt.
 - CmdActive = 4 bzw. 5, CmdDone = TRUE, CmdBusy = FALSE
- Phase 3: JogPositive = FALSE bzw. JogNegative = FALSE
 - Achse befindet sich im Stillstand und ist bereit für weitere Kommandos.
 - CmdActive = 0, CmdDone = FALSE, CmdBusy = FALSE

Antriebsfehler quittieren

- Mit AxisReset können Sie Fehler am Antrieb quittieren.
- Anliegende Fehler werden über DriveError zurück gemeldet.

Achse stoppen - MC Stop

- Eine Achse in Bewegung können Sie durch Setzen von StopExecute stoppen.
- Solange StopExecute gesetzt ist, werden keine weiteren Pulse generiert und alle Kommandos sind gesperrt.

Geschwindigkeitsmodus - MC_MoveVelocity

- Voraussetzung: Der Antrieb ist eingeschaltet und AxisReady = TRUE.
- Mit MvVelocityExecute k\u00f6nnen Sie die Achse zum Drehen mit konstanter Geschwindigkeit bringen.

Einsatz Frequenzumrichter über PWM > Übersicht

- Die Geschwindigkeit geben Sie über Velocity vor.
- Durch Vorgabe von 0 stoppt die Achse ebenso wie mit *StopExecute*.
- Die Drehrichtung bestimmen Sie über das Vorzeichen von Velocity.
- Der Wert für Velocity darf 0 sein oder MinUserVelocity ≤ Velocity ≤ MaxUserVelocity.

Systembedingt kann die Istgeschwindigkeit von der Sollgeschwindigkeit abweichen. Die Differenz MaxVelError nimmt mit steigender Drehzahl zu und kann mit der nachfolgenden Formel ermittelt werden.

$$MaxVelError = \frac{FactorVelocity}{20} - \frac{FactorVelocity}{21}$$

Relative Positionierung - MC MoveRelative

- Voraussetzung: Der Antrieb ist eingeschaltet und AxisReady = TRUE.
- Die relative Positionierung erfolgt über MvRelativeExecute.
- Die Distanz können Sie über *PositionDistance* in Anwendereinheiten vorgeben.
- Die Drehrichtung bestimmen Sie über das Vorzeichen von PositionDistance.
- Die Geschwindigkeit geben Sie über Velocity vor.
- Durch Setzen von StopExecute können Sie ein laufendes Kommando stoppen.

Tipp-Betrieb - Jogging

- Voraussetzung: Der Antrieb ist eingeschaltet und AxisReady = TRUE.
- Mit einer Flanke 0-1 an JogPositive oder JogNegative können Sie Ihren Antrieb im Tipp-Betrieb steuern. Hierbei wird ein Jogging Kommando in die entsprechende Drehrichtung ausgeführt.
- Die Geschwindigkeit geben Sie über Velocity vor. Das Vorzeichen ist nicht relevant.
- Mit einer Flanke 1-0 an JogPositive oder JogNegative bzw. durch Setzen von StopExecute wird die Achse gestoppt.

Bitte beachten Sie, dass Sie im Tipp-Betrieb bei Velocity = 0 eine Fehlermeldung (0x8003) erhalten!

13.5 Einsatz Frequenzumrichter über PWM

13.5.1 Übersicht

Voraussetzung

- SPEED7 Studio ab V1.7.1 oder
- Siemens SIMATIC Manager ab V5.5 SP2 & Simple Motion Control Library oder
- Siemens TIA Portal V14 & Simple Motion Control Library
- System MICRO bzw. System SLIO CPU mit PWM-Ausgabe wie z.B. CPU M13-CCF0000 bzw. CPU 013-CCF0R00.
- Frequenzumrichter mit PWM-Eingang z.B. V1000.

Einsatz Frequenzumrichter über PWM > Parameter am Frequenzumrichter einstellen

Schritte der Projektierung

- 1. Parameter am Frequenzumrichter einstellen
 - Die Einstellung der Parameter hat mit dem Softwaretool Drive Wizard+ zu erfolgen.
- **2.** Hardwarekonfiguration im *SPEED7 Studio*, Siemens SIMATIC Manager oder Siemens TIA Portal.
 - Projektierung der CPU.
- **3.** Programmierung im *SPEED7 Studio*, Siemens SIMATIC Manager oder Siemens TIA Portal.
 - VMC_AxisControlV1000PWM-Baustein zur Konfiguration und zur Kommunikation mit der Achse, welche über PWM angebunden ist.
 - → "Demo-Projekte"...Seite 288

13.5.2 Parameter am Frequenzumrichter einstellen

VORSICHT

Vor der Erstinbetriebnahme müssen Sie Ihren Frequenzumrichter mit dem Softwaretool *Drive Wizard*+ an Ihre Applikation anpassen! Näheres hierzu finden Sie im Handbuch zu ihrem Frequenzumrichter.

Die nachfolgende Tabelle zeigt alle Parameter auf, die nicht den Standardwerten entsprechen. Zur Abstimmung auf die *Simple Motion Control Library* sind diese über *Drive Wizard*+ einzustellen. Danach folgt eine Tabelle mit Parameter, welche in Abhängigkeit von der Applikation angepasst werden können.

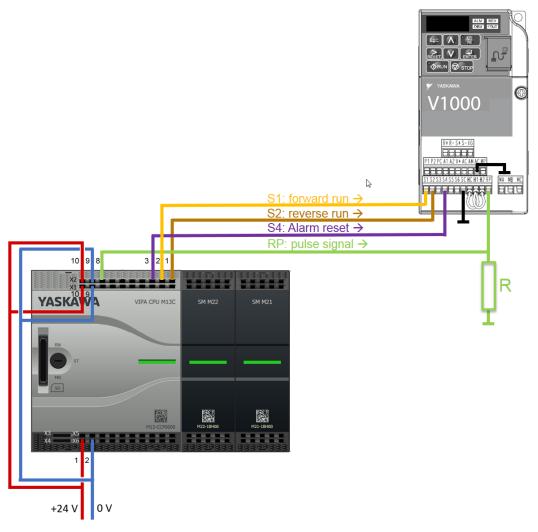
Nr.	Parameter, die vom Standard abweichen	Einstellung für Simple Motion Control Library
B1-01	Auswahl Frequenzsollwert	■ 4: Pulse train input
B1-02	Auswahl Start-Befehl	■ 1: Control circuit terminal
H1-01	Funktionsauswahl für Digitaleingänge S1	■ 0040: Forward Run Command
H1-02	Funktionsauswahl für Digitaleingänge S2	■ 0041: Reverse Run Command
H2-01	Funktionswahl Klemme MA, MB und MC (Relais)	■ 000E: Fault
H2-02	Funktionswahl für Klemme P1 (Open-Collector-Ausgang)	■ 0006
H6-01	Funktionsauswahl für die Impulsfolgeeingangsklemmen RP	0: Frequency reference
H6-02	Skalierung für Impulsfolgeeingang	■ 20000Hz
H6-03	Verstärkung für Impulsfolgeeingang	■ 100.0%
H6-04	Vorspannung für Impulsfolgeeingang	■ 0.0%
H6-05	Filterzeit für Impulsfolgeeingang	■ 0.10s
H6-06	Auswahl der Überwachung für Impulsfolgeausgangsklemme MP	■ 102: Output frequency
H6-07	Überwachungsskalierung für Impulsfolgeeingang	■ 20000Hz
	D () All II 1 1 1 1 1 1 1 1 1	5

Nr.	Parameter in Abhängigkeit von der Applikation	Beispiel
C1-01	Hochlaufzeit 1	■ 10.00s
C1-02	Tieflaufzeit 1	■ 10.00s
C1-10	Einstellschritte für Hochlauf-/Tieflaufzeit	■ 0: 0.01- second units

Einsatz Frequenzumrichter über PWM > Beschaltung

Nr.	Parameter in Abhängigkeit von der Applikation	Beispiel
C1-11	Umschaltfrequenz für Hochlauf-/Tieflaufzeit	■ 0.0Hz
O1-02	Auswahl Anwender-Überwachungsparameter nach dem Einschalten	■ 1: Frequency reference
O1-03	Auswahl Anzeige am digitalen Bedienteil	2: min-1 unit

Damit alle Einstellungen übernommen werden, müssen Sie den Frequenzumrichter nach der Parametrierung neu starten!


13.5.3 Beschaltung

13.5.3.1 Ansteuerung V1000 Eingänge

Beispielapplikation

Die nachfolgende Abbildung zeigt eine Beispielapplikation zum Anschluss der Eingänge eines V1000 Frequenzumrichters über PWM an eine System MICRO CPU M13C. In diesem Beispiel ist der PWM Kanal 0 (X2 - Pin 8) beschaltet. Zur Beschaltung von Kanal 1 ist X2 - Pin 7 zu verwenden.

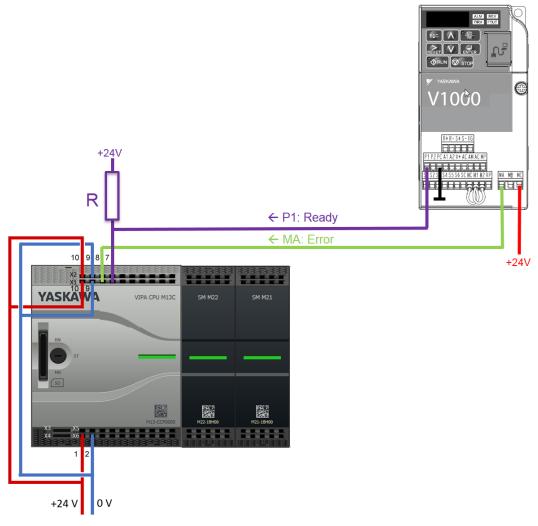
Einsatz Frequenzumrichter über PWM > Beschaltung

R Widerstand

Wert: max. 470Ω

Verlustleistung: min. 0,6W

Widerstandsbeispiel: Metallschichtwiderstand 0207 bedrahtet mit 0,6W Verlustleis-


tung

Kabellänge max. 20m

13.5.3.2 Ansteuerung V1000 Ausgänge

Beispielapplikation

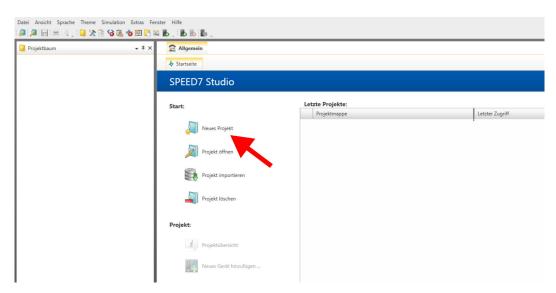
Die nachfolgende Abbildung zeigt eine Beispielapplikation zum Anschluss der Ausgänge eines V1000 Frequenzumrichters an eine System MICRO CPU M13C.

R Widerstand Wert: 4,7kΩ

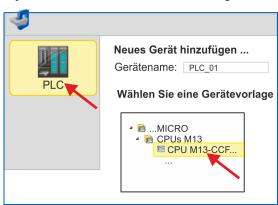
Verlustleistung: min. 0,25W

Widerstandsbeispiel: Kohleschichtwiderstand 0207 bedrahtet mit 0,25W Verlustleistung

13.5.4 Einsatz im SPEED7 Studio


13.5.4.1 Hardware-Konfiguration

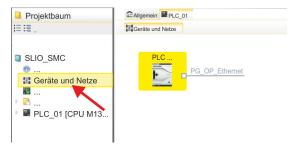
CPU im Projekt anlegen


Bitte verwenden Sie für die Projektierung das SPEED7 Studio ab V1.7.1

Sollten Sie einen anderen Kanal als Kanal 0 verwenden, müssen Sie diesen in der Hardware-Konfiguration und in Ihrem Anwenderprogramm entsprechend anpassen.

1. Starten Sie das SPEED7 Studio.

- **2.** Erstellen sie auf der Startseite mit "Neues Projekt" ein neues Projekt und vergeben Sie einen "Projektnamen".
 - ⇒ Ein neues Projekt wird angelegt und in die Sicht "Geräte und Netze" gewechselt.
- 3. Klicken Sie im Projektbaum auf "Neues Gerät hinzufügen ...".




- **4.** Wählen Sie unter den "Gerätevorlagen" Ihre CPU mit PWM Funktionalität wie z.B. die System MICRO CPU M13-CCF0000 und klicken Sie auf [OK].
 - ➡ Die CPU wird in "Geräte und Netze" eingefügt und die "Gerätekonfiguration" geöffnet.

Ethernet-PG/OP-Kanal parametrieren

- 1. Klicken Sie im *Projektbaum* auf "Geräte und Netze".
 - ➡ Sie erhalten eine grafische Objekt-Ansicht Ihrer CPU.

2. Klicken Sie auf das Netzwerk "PG_OP_Ethernet".

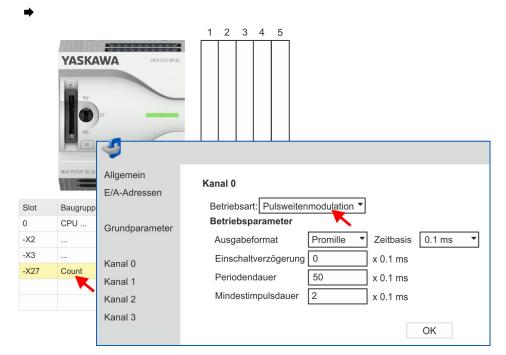
☐ Projektbaum ☐ 등

SLIO_SMC

Neues Gerät hinzufügen

201

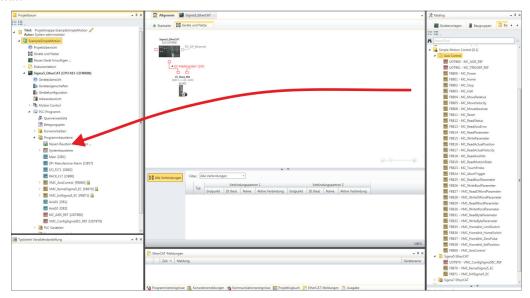
9


- 3. ▶ Wählen Sie "Kontextmenü → Eigenschaften der Schnittstelle".
 - ⇒ Es öffnet sich ein Dialogfenster. Hier können Sie IP-Adressdaten für Ihren Ethernet-PG/OP-Kanal angeben. Gültige IP-Adress-Parameter erhalten Sie von Ihrem Systemadministrator.
- 4. Bestätigen Sie Ihre Eingabe mit [OK].
 - → Die IP-Adressdaten werden in Ihr Projekt übernommen und in "Geräte und Netze" unter "Lokale Baugruppen" aufgelistet.

Nach der Übertragung Ihres Projekts ist Ihre CPU über die angegebenen IP-Adressdaten via Ethernet-PG/OP-Kanal erreichbar.

E/A-Peripherie auf PWM umschalten

Für die Parametrierung der Ein-/Ausgabeperipherie und der *Technologischen Funktionen* sind die entsprechenden Submodule der CPU zu verwenden. Für die PWM Ausgabe ist das Submodul Count auf *"Pulsweitenmodulation"* umzuschalten.


- 1. ▶ Klicken Sie im Projektbaum auf "PLC... > Gerätekonfiguration".
- **2.** Klicken Sie in der "Gerätekonfiguration" auf "-X27 Count" und wählen Sie "Kontextmenü → Eigenschaften der Baugruppe".
 - Es öffnet sich der Eigenschaften-Dialog.
- 3. Klicken Sie auf den entsprechenden Kanal wie z.B. "Kanal 0" und stellen Sie unter "Betriebsart" die Funktion "Pulsweitenmodulation" ein.
- **4.** Die für PWM erforderlichen Betriebsparameter werden intern auf die entsprechenden Werte angepasst. Lassen Sie alle Werte unverändert.

- 5. Schließen Sie den Dialog mit [OK].
- **6.** Wählen Sie "Projekt → Alles übersetzen".

13.5.4.2 Anwender-Programm

Baustein in Projekt kopieren

- Öffnen Sie im "Katalog" unter "Bausteine" "Simple Motion Control" und ziehen Sie per Drag&Drop folgenden Baustein in "Programmbausteine" des Projektbaums:
 - V1000 PWM
 - FB885 VMC_AxisControlV1000PWM
 "FB 885 VMC_AxisControlV1000_PWM Achskontrolle über PWM"...Seite 562

OB 1

Konfiguration der Achse

Sollten Sie einen anderen Kanal als Kanal 0 verwenden, müssen Sie diesen in der Hardware-Konfiguration und in Ihrem Anwenderprogramm entsprechend anpassen.

- Offnen Sie in "Projektbaum → ...CPU... → PLC-Programm → Programmbausteine" den OB 1 und programmieren Sie den Call FB 885, DB 885.
 - ⇒ Es öffnet sich der Dialog "Instanz-Datenbaustein hinzufügen".
- 2. Stellen Sie, wenn nicht schon geschehen, die Nummer für den Instanz-Datenbaustein ein und schließen Sie den Dialog mit [OK].
 - → Der Bausteinaufruf wird angelegt und die Parameter werden aufgelistet.
- 3. Vergeben Sie für das Beispielprojekt folgende Parameter:

```
"VMC AxisControlV1000PWM",
→ CALL
       FB
  "VMC AxisCtrlV1000PWM 885"
  I ChannelNumberPWM :="Ax1 I ChannelNumberPWM"
                      :="Ax1 MA Alarm"
  I MA Alarm
  I P1 Ready
                     :="I Pl Ready"
  MaxVelocityDrive
                     :=1.000000e+002
  AxisEnable
                      :="Ax1 AxisEnable"
                     :="Ax1 AxisReset"
  AxisReset
                     :="Ax1 StopExecute"
  StopExecute
                     :="Ax1_MvVelExecute"
  MvVelocityExecute
  JogPositive
                      :="Ax1 JogPositive"
                      :="Ax1_JogNegative"
  JogNegative
  Velocity
                      :="Ax1_Velocity"
  I S1 ForwardRun
                     :="Ax1_S1_ForwardRun"
  I_S2_ReverseRun
                     :="Ax1_S2_ReverseRun"
                     :="Ax1_S4_AlarmReset"
  I S4 AlarmReset
  MinUserVelocity
                      :="Ax1_MinUserVelocity"
                      :="Ax1_MaxUserVelocity"
  MaxUserVelocity
  AxisReady
                      :="Ax1_AxisReady"
  AxisEnabled
                      :="Ax1 AxisEnabled"
```

AxisError :="Ax1_AxisError"

AxisErrorID :="Ax1_AxisErrorID"

DriveError :="Ax1_DriveError"

CmdActive :="Ax1_CmdActive"

CmdDone :="Ax1_CmdDone"

CmdBusy :="Ax1_CmdBusy"

CmdAborted :="Ax1_CmdAborted"

CmdError :="Ax1_CmdError"

CmdErrorID :="Ax1_CmdErrorID"

Die Adressen von *I_P1_Ready* und *I_MA_Alarm* ergeben sich aus den Adressen der Eingänge, welche mit den Digitalausgängen des Frequenzumrichters verbunden sind. Diese können über das Submodul *"-X25 DI/DIO"* der CPU ermittelt werden.

Die Adressen von *I_S1_ForwardRun*, *I_S2_ReverseRun* und *I_S4_AlarmReset* ergeben sich aus den Adressen der Ausgänge, welche mit den Digitaleingängen des Frequenzumrichters verbunden sind. Diese können über das Submodul *"-X25 DI/DIO"* der CPU ermittelt werden.

Zeitlicher Ablauf

<u>1.</u> Wählen Sie *"Projekt → Alles übersetzen"* und übertragen Sie das Projekt in Ihre CPU.

Näheres zur Übertragung Ihres Projekt finden Sie in der Onlinehilfe zum *SPEED7 Studio*.

Sie können jetzt Ihre Applikation in Betrieb nehmen.

VORSICHT

Bitte beachten Sie immer die Sicherheitshinweise zu ihrem Frequenzumrichter, insbesondere bei der Inbetriebnahme!

- 2. Bringen Sie Ihre CPU in RUN und schalten Sie Ihren Frequenzumrichter ein.
 - → Der FB 885 VMC_AxisControlV1000PWM wird zyklisch abgearbeitet.
- 3. Sobald *AxisReady* = TRUE meldet, können Sie mit *AxisEnable* die Achse frei geben.
- 4. Sie haben jetzt die Möglichkeit über die entsprechenden Parameter Ihre Achse zu steuern und deren Status abzufragen. → "FB 885 VMC_AxisControlV1000_PWM Achskontrolle über PWM"...Seite 562

13.5.5 Einsatz im Siemens SIMATIC Manager

13.5.5.1 Voraussetzung

Übersicht

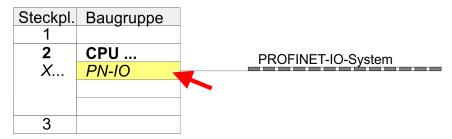
- Bitte verwenden Sie für die Projektierung den Siemens SIMATIC Manager ab V 5.5 SP2.
- Die Projektierung der CPU mit PWM Funktionalität von Yaskawa erfolgt im Siemens SIMATIC Manager in Form eines virtuellen PROFINET IO Devices.
- Das PROFINET IO Device ist mittels GSDML im Hardware-Katalog zu installieren.

IO Device installieren

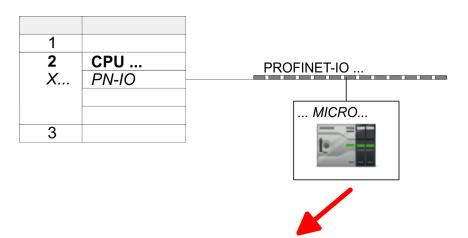
Die Installation des PROFINET IO Device im Hardware-Katalog erfolgt nach folgender Vorgehensweise:

- 1. Gehen Sie in das "Download Center" von www.yaskawa.eu.com.
- **2.** Laden Sie unter "GSDML SLIO" die Konfigurationsdatei für Ihre CPU.
- 3. Extrahieren Sie die Datei in Ihr Arbeitsverzeichnis.
- **4.** Starten Sie den Hardware-Konfigurator von Siemens.
- 5. Schließen Sie alle Projekte.

- **6.** ▶ Gehen Sie auf "Extras → GSD-Dateien installieren".
- 7. Navigieren Sie in Ihr Arbeitsverzeichnis und installieren Sie die entsprechende GSDML-Datei.
 - Nach der Installation finden Sie das entsprechende PROFINET IO Device unter "PROFINET IO → Weitere Feldgeräte → I/O → VIPA ...".


13.5.5.2 Hardware-Konfiguration

CPU im Projekt anlegen


Steckp	Baugruppe
1	
2	CPU 314C-2PN/DP
X1	MPI/DP
X2	PN-IO
X2	Port 1
X2	Port 2
3	

Um kompatibel mit dem Siemens SIMATIC Manager zu sein, sind folgende Schritte durchzuführen:

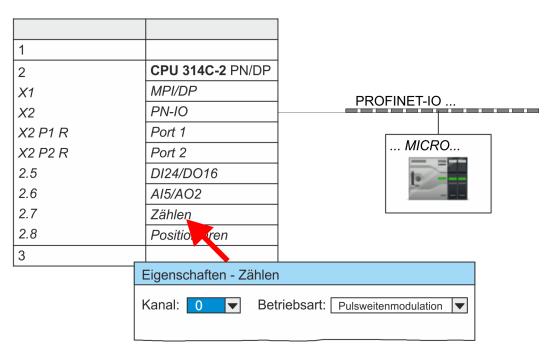
- 1. Starten Sie den Hardware-Konfigurator von Siemens mit einem neuen Projekt.
- 2. Fügen Sie aus dem Hardware-Katalog eine Profilschiene ein.
- 3. Platzieren Sie auf "Slot"-Nummer 2 die CPU 314C-2 PN/DP (314-6EH04-0AB0 V3.3).
- 4. Klicken Sie auf das Submodul "PN-IO" der CPU.
- 5. ▶ Wählen Sie "Kontextmenü → PROFINET IO-System einfügen".

- **6.** Legen Sie mit [Neu] ein neues Subnetz an und vergeben Sie gültige IP-Adress-Daten.
- **8.** Geben Sie unter "Allgemein" einen "Gerätenamen" an. Der Gerätename muss eindeutig am Ethernet-Subnetz sein.

0	MICRO	M13-CCF0000	
X2	M13-CCF0000		
1			
2			
3			

- 9. Navigieren Sie im Hardware-Katalog in das Verzeichnis "PROFINET IO → Weitere Feldgeräte → I/O → VIPA ..." und binden Sie z.B. für das System MICRO das IO-Device "M13-CCF0000" an Ihr PROFINET-System an.
 - ➡ In der Steckplatzübersicht des PROFINET-IO-Device "... MICRO PLC" ist auf Steckplatz 0 die CPU bereits vorplatziert.

Ethernet-PG/OP-Kanal parametrieren


Steckpl.	Modul	
1		
2 X	CPU	
X	PN-IO	
3		
4	343-1EX30	
5		

- 1. Platzieren Sie für den Ethernet-PG/OP-Kanal auf Steckplatz 4 den Siemens CP 343-1 (SIMATIC 300 \ CP 300 \ Industrial Ethernet \CP 343-1 \ 6GK7 343-1EX30 0XE0 V3.0).
- Öffnen Sie durch Doppelklick auf den CP 343-1EX30 den Eigenschaften-Dialog und geben Sie für den CP unter "Eigenschaften" IP-Adress-Daten an. Gültige IP-Adress-Parameter erhalten Sie von Ihrem Systemadministrator.
- 3. Ordnen Sie den CP einem "Subnetz" zu. Ohne Zuordnung werden die IP-Adress-Daten nicht übernommen!

E/A-Peripherie auf PWM umschalten

Für die Parametrierung der Ein-/Ausgabeperipherie und der *Technologischen Funktionen* sind die entsprechenden Submodule der Siemens CPU 314C-2 PN/DP (314-6EH04-0AB0 V3.3) zu verwenden. Für die PWM Ausgabe ist das Submodul Count auf *"Pulsweitenmodulation"* umzuschalten. Sollten Sie einen anderen Kanal als Kanal 0 verwenden, müssen Sie diesen in der Hardware-Konfiguration und in Ihrem Anwenderprogramm entsprechend anpassen.

- 1. Doppelklicken Sie auf das Zähler-Submodul der Siemens CPU 314C-2 PN/DP.
 - ⇒ Sie gelangen in das Dialogfeld "Eigenschaften".
- 2. Wählen Sie z.B. "Kanal 0" und stellen Sie unter "Betriebsart" die Funktion "Pulsweitenmodulation" ein.
- 3. Lassen Sie alle Werte unverändert.

- 4. Schließen Sie den Dialog mit [OK].
- 5. ▶ Wählen Sie "Station → Speichern und übersetzen".
- **6.** Schließen Sie den Hardware-Konfigurator.

13.5.5.3 Anwender-Programm

Bibliothek einbinden

- 1. Gehen Sie in das "Download Center" von www.yaskawa.eu.com.
- 2. Laden Sie unter "Controls Library" die Simple Motion Control Library.
- 3. ▶ Öffnen Sie mit "Datei → Dearchivieren" das Dialogfenster zur Auswahl der ZIP-Datei.
- 4. Wählen Sie die entsprechende ZIP-Datei an und klicken Sie auf [Öffnen].
- **5.** Geben Sie ein Zielverzeichnis an, in dem die Bausteine abzulegen sind und starten Sie den Entpackvorgang mit [OK].

Bausteine in Projekt kopieren

- Öffnen Sie die Bibliothek nach dem Entpackvorgang und ziehen Sie per Drag&Drop folgenden Baustein in "Bausteine" Ihres Projekts:
 - V1000 PWM
 - FB885 VMC_AxisControlV1000PWM→ "FB 885 VMC_AxisControlV1000 PWM Achskontrolle über PWM"...Seite 562

OB 1

Konfiguration der Achse

Sollten Sie einen anderen Kanal als Kanal 0 verwenden, müssen Sie diesen in der Hardware-Konfiguration und in Ihrem Anwenderprogramm entsprechend anpassen.

- Öffnen Sie im *Projektbaum* innerhalb der CPU unter "PLC-Programm", "Programmbausteine" den OB 1 und programmieren Sie den Call FB 885, DB 885.
 - ➡ Es öffnet sich der Dialog "Instanz-Datenbaustein hinzufügen".
- 2. Stellen Sie, wenn nicht schon geschehen, die Nummer für den Instanz-Datenbaustein ein und schließen Sie den Dialog mit [OK].
 - → Der Bausteinaufruf wird angelegt und die Parameter werden aufgelistet

3. ▶ Vergeben Sie für das Beispielprojekt folgende Parameter:

```
"VMC AxisControlV1000PWM",
→ CALL FB
 "VMC AxisCtrlV1000PWM 885"
 I ChannelNumberPWM :="Ax1 I ChannelNumberPWM"
 :="Ax1 MA Alarm"
                   :="Ax1 AxisEnable"
 AxisEnable
                   :="Ax1 AxisReset"
 AxisReset
 StopExecute :="Ax1 StopExecute"
 MvVelocityExecute :="Ax1 MvVelExecute"
 JogPositive :="Ax1_JogPositive"
JogNegative :="Ax1_JogNegative"
                  :="Ax1 Velocity"
 Velocity
 :="Ax1 MaxUserVelocity"
 MaxUserVelocity
 AxisReady
                   :="Ax1_AxisReady"
 AxisEnabled
                   :="Ax1 AxisEnabled"
                   :="Ax1_AxisError"
 AxisError
 AxisErrorID
                   :="Ax1_AxisErrorID"
 DriveError
                   :="Ax1_DriveError"
                   :="Ax1_CmdActive"
 CmdActive
 CmdDone
                   :="Ax1_CmdDone"
                   :="Ax1_CmdBusy"
 CmdBusy
 CmdAborted
                   :="Ax1_CmdAborted"
                   :="Ax1_CmdError"
:="Ax1_CmdErrorID"
 CmdError
 CmdErrorID
```

Die Adressen von *I_P1_Ready* und *I_MA_Alarm* ergeben sich aus den Adressen der Eingänge, welche mit den Digitalausgängen des Frequenzumrichters verbunden sind. Diese können über das Submodul *"-X25 DI/DIO"* der CPU ermittelt werden.

Die Adressen von *I_S1_ForwardRun*, *I_S2_ReverseRun* und *I_S4_AlarmReset* ergeben sich aus den Adressen der Ausgänge, welche mit den Digitaleingängen des Frequenzumrichters verbunden sind. Diese können über das Submodul *"-X25 DI/DIO"* der CPU ermittelt werden.

Zeitlicher Ablauf

- 1. Wechseln Sie in den Siemens SIMATIC Manager und übertragen Sie Ihr Projekt in die CPU.
 - ⇒ Sie können jetzt Ihre Applikation in Betrieb nehmen.

VORSICHT

Bitte beachten Sie immer die Sicherheitshinweise zu ihrem Frequenzumrichter, insbesondere bei der Inbetriebnahme!

- 2. Bringen Sie Ihre CPU in RUN und schalten Sie Ihren Frequenzumrichter ein.
 - → Der FB 885 VMC AxisControlV1000PWM wird zyklisch abgearbeitet.
- Sobald *AxisReady* = TRUE meldet, können Sie mit *AxisEnable* die Achse frei geben.
- 4. Sie haben jetzt die Möglichkeit über die entsprechenden Parameter Ihre Achse zu steuern und deren Status abzufragen. → "FB 885 VMC_AxisControlV1000_PWM Achskontrolle über PWM"...Seite 562

13.5.6 Einsatz im Siemens TIA Portal

13.5.6.1 Voraussetzung

Übersicht

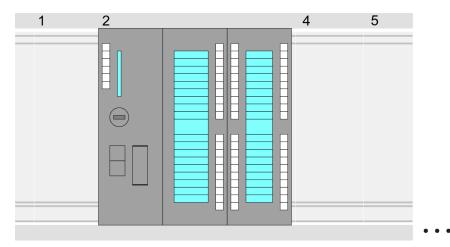
- Bitte verwenden Sie für die Projektierung das Siemens TIA Portal ab V 14.
- Die Projektierung der CPU mit PWM Funktionalität von Yaskawa erfolgt im Siemens TIA Portal in Form eines virtuellen PROFINET IO Devices.
- Das PROFINET IO Device ist mittels GSDML im Hardware-Katalog zu installieren.

IO Device installieren

Die Installation des PROFINET IO Device im Hardware-Katalog erfolgt nach folgender Vorgehensweise:

- 1. Gehen Sie in das "Download Center" von www.yaskawa.eu.com.
- 2. ▶ Laden Sie unter "GSDML MICRO" die entsprechende Datei für Ihr System.
- 3. Extrahieren Sie die Datei in Ihr Arbeitsverzeichnis.
- 4. Starten das Siemens TIA Portal.
- 5. Schließen Sie alle Projekte.
- 6. ▶ Wechseln Sie in die Projektansicht.
- 7. Gehen Sie auf "Extras → Gerätebeschreibungsdatei (GSD) installieren".
- 8. Navigieren Sie in Ihr Arbeitsverzeichnis und installieren Sie die entsprechende GSDML-Datei.
 - Nach der Installation wird der Hardware-Katalog aktualisiert und das Siemens TIA Portal beendet.

Nach einem Neustart des Siemens TIA Portals finden Sie das entsprechende PROFINET-IO-Device unter *Weitere Feldgeräte > PROFINET > IO > VIPA ...* > ... *MICRO PLC*.

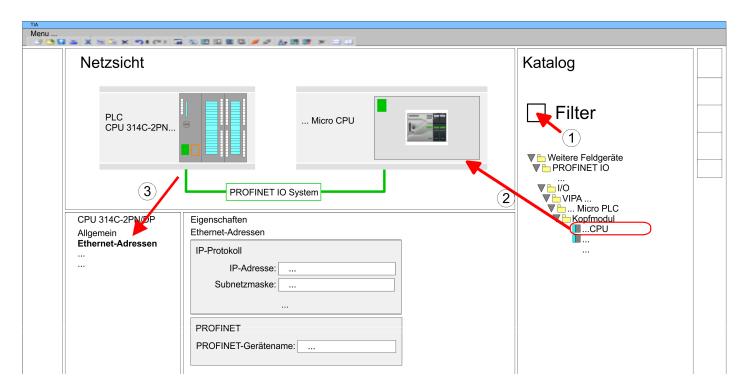

Damit die Komponenten von Yaskawa angezeigt werden können, müssen Sie im Hardware-Katalog bei "Filter" den Haken entfernen.

13.5.6.2 Hardware-Konfiguration

CPU im Projekt anlegen

Um kompatibel mit dem Siemens TIA Portal zu sein, sind folgende Schritte durchzuführen:

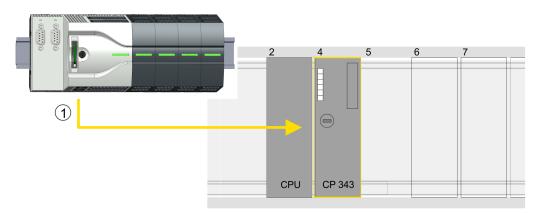
- 1. Starten Sie das Siemens TIA Portal mit einem neuen Projekt.
- 2. Wechseln Sie in die Projektansicht.
- 3. Klicken Sie in der *Projektnavigation* auf "Neues Gerät hinzufügen".
- 4. Wählen Sie im Eingabedialog folgende CPU aus: SIMATIC S7-300 > CPU 314C-2 PN/DP (314-6EH04-0AB0 V3.3)
 - → Die CPU wird mit einer Profilschiene eingefügt.



Geräteübersicht:

Baugruppe	 Steckplatz	 Тур	
PLC	2	CPU 314C-2PN/DP	
MPI-Schnittstelle	2 X1	MPI/DP-Schnittstelle	
PROFINET- Schnitt	2 X2	PROFINET-Schnittstelle	
DI24/DO16	2 5	DI24/DO16	
AI5/AO2	2 6	AI5/AO2	
Zählen	27	Zählen	

Anbindung CPU als PROFINET-IO-Device


- 1. Wechseln Sie im *Projektbereich* in die "Netzsicht".
- 2. Nach der Installation der GSDML finden Sie das IO-Device für die CPU im Hardware-Katalog unter Weitere Feldgeräte > PROFINET > IO > VIPA ... > ... MICRO PLC. Binden Sie das Slave-System an die CPU an, indem Sie dies aus dem Hardware-Katalog in die Netzsicht ziehen und dieses über PROFINET an die CPU anbinden.
- 3. Klicken Sie in der *Netzsicht* auf den PROFINET-Teil der Siemens CPU und geben Sie in *"Eigenschaften"* unter *"Ethernet-Adressen"* im Bereich *"IP-Protokoll"* gültige IP-Adressdaten an.
- **4.** Geben Sie unter "PROFINET" einen "PROFINET Gerätenamen" an. Der Gerätename muss eindeutig am Ethernet-Subnetz sein.

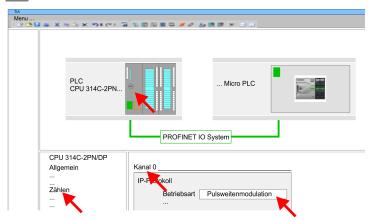
- 5. Wählen Sie in der *Netzsicht* das IO-Device "... *MICRO PLC*" an und wechseln Sie in die *Geräteübersicht*.
 - ➡ In der Geräteübersicht des PROFINET-IO-Device "... MICRO PLC" ist auf Steckplatz 0 die CPU bereits vorplatziert.

Ethernet-PG/OP-Kanal parametrieren

- 1. Platzieren Sie für den Ethernet-PG/OP-Kanal auf Steckplatz 4 den Siemens CP 343-1 (6GK7 343-1EX30 0XE0 V3.0).
- Öffnen Sie durch Klick auf den CP 343-1EX30 den "Eigenschaften"-Dialog und geben Sie für den CP in den "Eigenschaften" unter "Ethernet-Adresse" IP-Adress-Daten an. Gültige IP-Adress-Parameter erhalten Sie von Ihrem Systemadministrator.

1 Ethernet-PG/OP-Kanal

Geräteübersicht


Baugruppe	 Steckplatz	 Тур	
PLC	2	CPU 314C-2PN/DP	
MPI/DP-Schnitt- stelle	2 X1	MPI/DP-Schnittstelle	

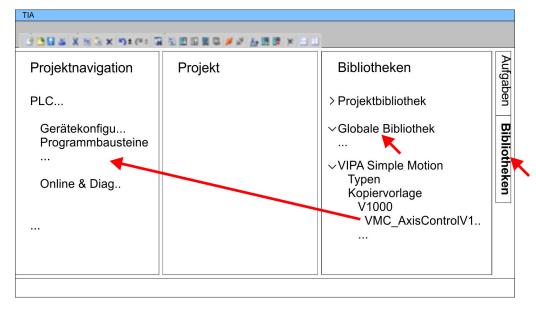
PROFINET- Schnittstelle	2 X2	PROFINET-Schnittstelle
CP 343-1	4	CP 343-1
		m

E/A-Peripherie auf PWM umschalten

Für die Parametrierung der Ein-/Ausgabeperipherie und der *Technologischen Funktionen* sind die entsprechenden Submodule der Siemens CPU 314C-2 PN/DP (314-6EH04-0AB0 V3.3) zu verwenden. Für die PWM Ausgabe ist das Submodul Count auf *"Pulsweitenmodulation"* umzuschalten. Sollten Sie einen anderen Kanal als Kanal 0 verwenden, müssen Sie diesen in der Hardware-Konfiguration und in Ihrem Anwenderprogramm entsprechend anpassen.

- 1. ▶ Doppelklicken Sie auf das Zähler-Submodul der Siemens CPU 314C-2 PN/DP.
 - ⇒ Sie gelangen in das Dialogfeld "Eigenschaften".
- **2.** Wählen Sie z.B. "Kanal 0" und stellen Sie unter "Betriebsart" die Funktion "Pulsweitenmodulation" ein.
- 3. Lassen Sie alle Werte unverändert.

4. Klicken Sie in der Projektnavigation auf Ihre CPU und wählen Sie "Kontextmenü → Übersetzen → Alles".


13.5.6.3 Anwender-Programm

Bibliothek einbinden

- 1. Gehen Sie in das "Download Center" von www.yaskawa.eu.com.
- Laden Sie unter "Controls Library" die Simple Motion Control Library.
 Die Bibliothek liegt für die entsprechende TIA Portal Version als gepackte zip-Datei vor
- 3. Starten Sie mit einem Doppelklick auf die Datei ...TIA_Vxx.zip ihr Unzip-Programm, entpacken Sie Dateien und Ordner in ein Arbeitsverzeichnis für das Siemens TIA Portal.
- **4.** Wechseln sie im Siemens TIA Portal in die *Projektansicht*.
- 5. Wählen Sie auf der rechten Seite die Task-Card "Bibliotheken".
- 6. Klicken Sie auf "Globale Bibliothek".
- 7. Klicken Sie innerhalb der "Globalen Bibliothek" auf die freie Fläche und wählen Sie "Kontextmenü → Bibliothek dearchivieren".

Navigieren Sie zu ihrem Arbeitsverzeichnis und laden Sie die Datei ...Simple Motion.zalxx.

Bausteine in Projekt kopieren

- Kopieren Sie folgenden Baustein aus der Bibliothek in das Verzeichnis "Programmbausteine" in der *Projektnavigation* Ihres Projekts.
 - V1000 PWM
 - FB885 VMC_AxisControlV1000PWM→ "FB 885 VMC_AxisControlV1000 PWM - Achskontrolle über PWM"...Seite 562

OB 1 Konfiguration der Achse

Sollten Sie einen anderen Kanal als Kanal 0 verwenden, müssen Sie diesen in der Hardware-Konfiguration und in Ihrem Anwenderprogramm entsprechend anpassen.

- 1. Öffnen Sie in der *Projektnavigation* innerhalb der CPU unter "*Programmbausteine*" den OB 1 und programmieren Sie den Call FB 885, DB 885
 - ➡ Es öffnet sich der Dialog "Instanz-Datenbaustein hinzufügen".
- 2. Stellen Sie, wenn nicht schon geschehen, die Nummer für den Instanz-Datenbaustein ein und schließen Sie den Dialog mit [OK].
 - → Der Bausteinaufruf wird angelegt und die Parameter werden aufgelistet
- 3. Vergeben Sie für das Beispielprojekt folgende Parameter:

```
"VMC AxisControlV1000PWM" ,
→ CALL FB
 "VMC AxisCtrlV1000PWM 885"
  I ChannelNumberPWM :="Ax1 I ChannelNumberPWM"
                     :="Ax1 MA Alarm"
 I MA Alarm
                     :="I P1 Ready"
 I P1 Ready
 MaxVelocityDrive
                     :=1.000000e+002
 AxisEnable
                     :="Ax1 AxisEnable"
                     :="Ax1 AxisReset"
 AxisReset
 StopExecute
                     :="Ax1 StopExecute"
 MvVelocityExecute :="Ax1 MvVelExecute"
 JogPositive
                     :="Ax1 JogPositive"
 JogNegative
                     :="Ax1 JogNegative"
                     :="Ax1_Velocity"
 Velocity
 I S1 ForwardRun
                    :="Ax1 S1 ForwardRun"
                    :="Ax1 S2_ReverseRun"
 I S2 ReverseRun
 I S4 AlarmReset
                    :="Ax1_S4_AlarmReset"
 MinUserVelocity
                    :="Ax1 MinUserVelocity"
                     :="Ax1 MaxUserVelocity"
 MaxUserVelocity
```

:="Ax1_AxisReady" AxisReady :="Ax1_AxisEnabled" :="Ax1_AxisError" AxisEnabled AxisError :="Ax1_AxisErrorID"
:="Ax1_DriveError" AxisErrorID DriveError :="Ax1 CmdActive" CmdActive :="Ax1 CmdDone" CmdDone :="Ax1 CmdBusy" CmdBusy :="Ax1 CmdAborted" CmdAborted :="Ax1 CmdError" CmdError :="Ax1 CmdErrorID" CmdErrorID

Die Adressen von *I_P1_Ready* und *I_MA_Alarm* ergeben sich aus den Adressen der Eingänge, welche mit den Digitalausgängen des Frequenzumrichters verbunden sind. Diese können über das Submodul *"-X25 DI/DIO"* der CPU ermittelt werden.

Die Adressen von *I_S1_ForwardRun*, *I_S2_ReverseRun* und *I_S4_AlarmReset* ergeben sich aus den Adressen der Ausgänge, welche mit den Digitaleingängen des Frequenzumrichters verbunden sind. Diese können über das Submodul *"-X25 DI/DIO"* der CPU ermittelt werden.

Zeitlicher Ablauf

- 1. Wählen Sie "Bearbeiten → Übersetzen" und übertragen Sie das Projekt in Ihre CPU. Näheres zur Übertragung Ihres Projekt finden Sie in der Onlinehilfe zum Siemens TIA Portal.
 - ⇒ Sie können jetzt Ihre Applikation in Betrieb nehmen.

VORSICHT

Bitte beachten Sie immer die Sicherheitshinweise zu ihrem Frequenzumrichter, insbesondere bei der Inbetriebnahme!

- 2. Bringen Sie Ihre CPU in RUN und schalten Sie Ihren Frequenzumrichter ein.
 - → Der FB 875 VMC_AxisControl_PT wird zyklisch abgearbeitet
- 3. Sobald *AxisReady* = TRUE meldet, können Sie mit *AxisEnable* die Achse frei geben.
- 4. Sie haben jetzt die Möglichkeit über die entsprechenden Parameter Ihre Achse zu steuern und deren Status abzufragen. → "FB 885 VMC_AxisControlV1000_PWM Achskontrolle über PWM"...Seite 562

13.5.7 Antriebsspezifischer Baustein

13.5.7.1 FB 885 - VMC_AxisControlV1000_PWM - Achskontrolle über PWM

13.5.7.1.1 Beschreibung

Mit dem FB *VMC_AxisControlV1000_PWM* können Sie einen über PWM angebundenen Frequenzumrichter steuern und dessen Status abrufen.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
I_Channel- NumberPWM	INPUT	INT	Kanalnummer des PWM-Ausgangs, der für die Ansteuerung des PWM-Eingangs des Frequenzumrichters verwendet wird.
I_MA_Alarm	INPUT	BOOL	 Digitaleingang zur Anbindung des I_MA_Alarm-Signals (MA) TRUE: Der Frequenzumrichter hat einen Fehler erkannt.
I_P1_Ready	INPUT	BOOL	Digitaleingang zur Anbindung des <i>I_P1_Ready</i>-SignalsFALSE: Der Frequenzumrichter ist bereit.

Parameter	Deklaration	Datentyp	Beschreibung
MaxVelocity- Drive	INPUT	REAL	■ Maximale Geschwindigkeit des Frequenzumrichters [Anwendereinheiten]. → "Berechnung"Seite 565
AxisEnable	INPUT	BOOL	 Achsenfreigabe Dieser Parameter dient zur bausteininternen Freigabe und hat keinen Einfluss auf den Frequenzumrichter. TRUE: Die Achse wird freigegeben. FALSE: Die Achse wird gesperrt.
AxisReset	INPUT	BOOL	 Reset Achse Flanke 0-1: Reset der Achse wird durchgeführt. Der Zustand eines mit AxisReset gestarteten Reset wird nicht an den Ausgängen CmdActive, CmdDone, CmdBusy, CmdAborted, CmdError und CmdErrorID ausgegeben.
StopExecute	INPUT	BOOL	 Achse stoppen Flanke 0-1: Stoppen der Achse wird gestartet. Hinweis: StopExecute = 1: Kein anderes Kommando kann gestartet werden!
MvVelocityExecute	INPUT	BOOL	 Verfahren der Achse starten Flanke 0-1: Die Achse wird auf die angegebene Geschwindigkeit beschleunigt/abgebremst.
JogPositive	INPUT	BOOL	 Tipp-Betrieb positiv Achse mit konstanter Geschwindigkeit in positive Richtung verfahren Flanke 0-1: Das Verfahren der Achse mit konstanter Geschwindigkeit wird gestartet. Flanke 1-0: Die Achse wird gestoppt.
JogNegative	INPUT	BOOL	 Tipp-Betrieb negativ Achse mit konstanter Geschwindigkeit in negative Richtung verfahren Flanke 0-1: Das Verfahren der Achse mit konstanter Geschwindigkeit wird gestartet. Flanke 1-0: Die Achse wird gestoppt.
Velocity	INPUT	REAL	Geschwindigkeitsvorgabe (vorzeichenbehafteter Wert) in [Anwendereinheiten/s]. Hinweis: Bei <i>JogPositive</i> , <i>JogNegative</i> wird der absolute Wert der Geschwindkeit verwendet.
I_S1_For- wardRun	OUTPUT	BOOL	 Digitalausgang zur Ansteuerung des Frequenzumrichter-Signals S1 TRUE: Schaltet Frequenzumrichter in positive Richtung frei.
I_S2_Rever- seRun	OUTPUT	BOOL	 Digitalausgang zur Ansteuerung des Frequenzumrichter-Signals S2 TRUE: Schaltet Frequenzumrichter in negative Richtung frei.
I_S4_Alarm- Reset	OUTPUT	BOOL	 Digitalausgang zur Ansteuerung des Frequenzumrichter-Signals S4 TRUE: Alarme werden im Frequenzumrichter zurückgesetzt. FALSE: Alarme im Frequenzumrichter bleiben bestehen.

Parameter	Deklaration	Datentyp	Beschreibung
MinUserVelo- city	OUTPUT	REAL	Minimale Geschwindigkeit (Periodendauer = 65535µs = maximale Periodendauer des PWM-Ausgangs) des Frequenzumrichters [Anwendereinheiten].
MaxUserVelo- city	OUTPUT	REAL	Maximale Geschwindigkeit bei einer maximalen Frequenz von 20kHz des Frequenzumrichters [Anwendereinheiten].
AxisReady	OUTPUT	BOOL	 ■ AxisReady TRUE: Die Achse ist einschaltbereit. FALSE: Die Achse ist nicht einschaltbereit. → Prüfe und behebe AxisError (siehe AxisErrorID). → Prüfe und behebe DriveError.
AxisEnabled	OUTPUT	BOOL	 Status Achse TRUE: Achse ist eingeschaltet und nimmt Bewegungsaufträge an. FALSE: Achse ist nicht eingeschaltet und nimmt keine Bewegungsaufträge an.
AxisError	OUTPUT	BOOL	 Fehler an Achse TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter AxisErrorID entnommen werden. → Die Achse wird gesperrt (S_On = FALSE und AxisEnabled = FALSE) Kommando wird nicht ausgeführt.
AxisErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen → "ErrorID - Zusätzliche Fehlerinformationen"Seite 739
DriveError	OUTPUT	BOOL	 Fehler direkt am Frequenzumrichter TRUE: Ein Fehler ist aufgetreten. → Die Achse wird gesperrt.
CmdActive	OUTPUT	ВҮТЕ	■ Kommando - 0: kein Cmd aktiv - 1: STOP - 2: MvVelocity - 4: JogPos - 5: JogNeg
CmdDone	OUTPUT	BOOL	Status DoneTRUE: Auftrag wurde ohne Fehler beendet.
CmdBusy	OUTPUT	BOOL	Status BusyTRUE: Auftrag ist in Bearbeitung.
CmdAborted	OUTPUT	BOOL	 Status Aborted TRUE: Der Auftrag wurde während der Bearbeitung von einem anderen Auftrag abgebrochen. Hinweis: CmdAborted wird beim Start eines Cmd zurückgesetzt
CmdError	OUTPUT	BOOL	 Status Error TRUE: Ein Fehler ist aufgetreten. Die Achse wird gesperrt Zusätzliche Fehlerinformationen können dem Parameter CmdErrorID entnommen werden.

Parameter	Deklaration	Datentyp	Beschreibung	
CmdErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen	
			→ "ErrorID - Zusätzliche Fehlerinformationen"Seite 739	

VORSICHT

Bitte beachten Sie, dass der Baustein keinen CPU-Neustart erkennt. Um zu verhindern, dass bei einem CPU-Neustart die Achse ungewollt anläuft, sollten mittels des Anlauf-OBs z.B. OB 100 die Werte an den Eingängen AxisEnable, JogPositive und JogNegative auf FALSE gesetzt werden!

13.5.7.1.2 Berechnung

MaxVelocityDrive

Dieser Wert dient zur Normierung des Eingangswerts Velocity.

 $n=2\cdot60\cdot\frac{fmax,out}{poles}\,\frac{1}{min}$

f_{max, out} Maximale Frequenz (Parameter E1-04)poles Anzahl der Motor-Pole (Parameter E5-04)

n Maximale Geschwindigkeit des Frequenzumrichters [Anwendereinheiten] wie z.B 100.0 % oder 3000.0 Umdrehungen/min.

13.5.7.1.3 Funktionalität

Achse ein- bzw. ausschalten

- Der Eingang AxisEnable dient zum Ein- und Ausschalten einer Achse.
- Das Einschalten ist nur möglich, wenn AxisReady = TRUE meldet, d.h. die Achse einschaltbereit ist.
- Sobald die Achse eingeschaltet ist, wird dies durch die Statusinformation AxisEnabled angezeigt.
- Hat die Achse einen Fehler, wird dies durch die Statusinformation *AxisError* angezeigt. Weitere Informationen liefert *AxisErrorID*.

Achsfehler quittieren

- Mit AxisReset können Sie Achsfehler quittieren.
- Anliegende Fehler werden über DriveError zurück gemeldet.

Achse stoppen

- Eine Achse in Bewegung können Sie durch Setzen von StopExecute stoppen.
- Solange *StopExecute* gesetzt ist, werden keine weiteren Pulse generiert und alle Kommandos sind gesperrt.

Geschwindigkeitsmodus

- Voraussetzung: Die Achse ist eingeschaltet und AxisReady = TRUE.
- Mit MvVelocityExecute k\u00f6nnen Sie die Achse zum Drehen mit konstanter Geschwindigkeit bringen.
- Die Geschwindigkeit geben Sie über Velocity vor.
- Durch Vorgabe von 0 stoppt die Achse ebenso wie mit StopExecute.
- Die Drehrichtung bestimmen Sie über das Vorzeichen von Velocity.
- Der Wert für Velocity darf 0 sein oder MinUserVelocity ≤ Velocity ≤ MaxUserVelocity.

Tipp-Betrieb - Jogging

- Voraussetzung: Die Achse ist eingeschaltet und AxisReady = TRUE.
- Mit einer Flanke 0-1 an JogPositive oder JogNegative k\u00f6nnen Sie Ihre Achse im Tipp-Betrieb steuern. Hierbei wird ein Jogging Kommando in die entsprechende Drehrichtung ausgef\u00fchrt.

Einsatz Frequenzumrichter über Modbus RTU > Parameter am Frequenzumrichter einstellen

- Die Geschwindigkeit geben Sie über Velocity vor. Das Vorzeichen ist nicht relevant.
- Mit einer Flanke 1-0 an JogPositive oder JogNegative bzw. durch Setzen von StopExecute wird die Achse gestoppt.

13.6 Einsatz Frequenzumrichter über Modbus RTU

13.6.1 Übersicht

Voraussetzung

- SPEED7 Studio ab V1.7.1 oder
- Siemens SIMATIC Manager ab V 5.5 SP2 & Simple Motion Control Library oder
- Siemens TIA Portal V 14 & Simple Motion Control Library
- System MICRO bzw. System SLIO CPU mit serieller Schnittstelle wie z.B. CPU M13-CCF0000 bzw. CPU 013-CCF0R00.
- V1000-Frequenzumrichter mit serieller Schnittstelle und zugehörigem Motor

Schritte der Projektierung

- 1. Parameter am Frequenzumrichter einstellen
 - Die Einstellung der Parameter hat mit dem Softwaretool Drive Wizard+ zu erfolgen.
- 2. Hardwarekonfiguration im SPEED7 Studio, Siemens SIMATIC Manager oder Siemens TIA Portal.
 - Projektierung der CPU.
- **3.** Programmierung im *SPEED7 Studio*, Siemens SIMATIC Manager oder Siemens TIA Portal.
 - Baustein zur seriellen Kommunikation beschalten.
 - Baustein für jeden Modbus-Slave beschalten.
 - Baustein für die Kommunikationsdaten aller Modbus-Slaves beschalten.
 - Baustein für den Kommunikations-Manager beschalten.
 - Baustein zur Initialisierung des Frequenzumrichters beschalten.
 - Bausteine für die Bewegungsabläufe beschalten.
 - → "Demo-Projekte"...Seite 288

13.6.2 Parameter am Frequenzumrichter einstellen

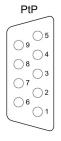
VORSICHT

Vor der Erstinbetriebnahme müssen Sie Ihren Frequenzumrichter mit dem Softwaretool *Drive Wizard*+ an Ihre Applikation anpassen! Näheres hierzu finden Sie im Handbuch zu ihrem Frequenzumrichter.

Die nachfolgende Tabelle zeigt alle Parameter auf, die nicht den Standardwerten entsprechen. Zur Abstimmung auf die Simple Motion Control Library sind diese über Drive Wizard+ einzustellen:

Nr.	Bezeichnung	Wertebereich	Einstellung für Simple Motion Control Library
H5-01	Slave-Adresse Frequenzumrichter	00h 20h	Standardmäßig ist die Slave-Adresse auf 1Fh eingestellt.
			Bitte beachten Sie, dass Adressen im Netzwerk nicht mehrfach vergeben sein dürfen!

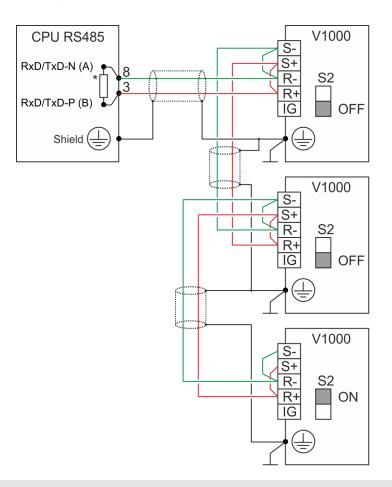
Einsatz Frequenzumrichter über Modbus RTU > Beschaltung


Nr.	Bezeichnung	Wertebereich	Einstellung für Simple Motion Control Library
H5-02	Kommunikationsgeschwindigkeit MEMOBUS/Modbus	0, 1, 2,, 8	■ 3: 9600Bit/s
H5-03	Übertragungsparität MEMOBUS/ Modbus	0, 1, 2	■ 0: keine Parität
H5-04	Stoppmethode nach Kommunikations-Fehler (CE-Fehler)	0, 1, 2, 3	■ 3: Betrieb wird fortgesetzt mit Alarm
H5-05	Erkennung Kommunikations-Fehler (CE-Fehler)	0, 1	1: Aktiviert - Bei einem Abbruch der Verbindung für länger als 2s (einstellbar über H2-09) wird ein CE-Fehler ausgelöst.
H5-06	Wartezeit zwischen Empfang und Senden von Daten des Frequenzum- richters	5 65ms	■ 5ms
H5-07	Request to send (RTS)-Steuerung	0, 1	■ 1: Aktiviert - RTS wird nur beim Senden aktiviert (bei RS485 oder RS422 und <i>multi-drop</i>)
H5-09	Zeit nach der ein Kommunikations- Fehler (CE-Fehler) erkannt wird.	0,0 10,0s	■ 2s
H5-10	Schrittgröße (Auflösung) für das MEMOBUS/Modbus-Register 0025h	0, 1	Standardmäßig ist die Auflösung auf 0,1V Inkremente (0) eingestellt.
			0: 0,1V Inkremente1: 1V Inkremente
H5-11	ENTER-Funktion für Verbindungen	0,1	■ 1: Enter-Befehl nicht erforderlich
H5-12	Auswahl Startbefehlmethode	0, 1	■ 1: Run/Stop
B1-01	Eingangsquelle Frequenzsollwert 1	0, 1, 2, 3, 4	■ 2: MEMOBUS/Modbus-Kommunikation
B1-02	Eingangsquelle Startbefehl 1	0, 1, 2, 3	■ 2: MEMOBUS/Modbus-Kommunikation
B1-15	Eingangsquelle Frequenzsollwert 2	0, 1, 2, 3, 4	■ 2: MEMOBUS/Modbus-Kommunikation
B1-16	Eingangsquelle Startbefehl 2	0, 1, 2, 3	■ 2: MEMOBUS/Modbus-Kommunikation

Damit alle Einstellungen übernommen werden, müssen Sie den Frequenzumrichter nach der Parametrierung neu starten!

13.6.3 Beschaltung

RS485-Verkabelung

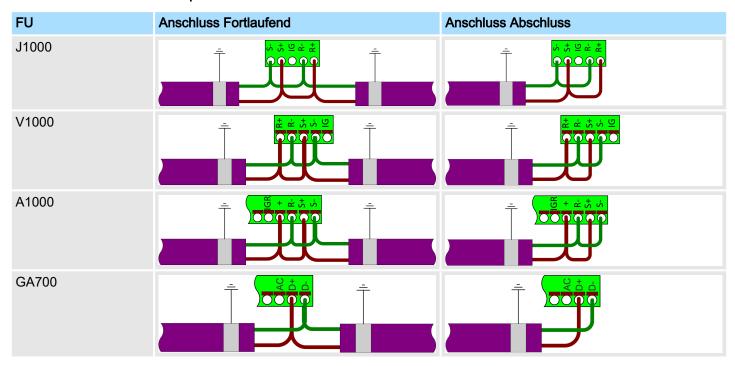


- ① n.c.
- 2 M24V3 RxD/TxD-P (line B)
- 4 RTS
- ⑤ M5V
- 6 P5V7 P24V
- 8 RxD/TxD-N (line A)
- 9 n.c.

Die nachfolgende Abbildung zeigt den Anschluss von *V1000*-Frequenzumrichter über RS485. Hierbei werden die einzelnen Frequenzumrichter über PROFIBUS-Kabel verbunden und über einen PROFIBUS-Stecker an die PtP-Schnittstelle (**P**oint-to-**P**oint) der CPU angebunden.

- Maximal 8 Frequenzumrichter können über Modbus RTU angebunden werden.
- Bei allen angebunden Frequenzumrichter ist der Parameter H5-07 auf 1 zu setzen.
- Die serielle Leitung ist an Ihrem Ende mit einem Abschlusswiderstand abzuschließen. Zur Aktivierung müssen Sie hierzu am entsprechenden Frequenzumrichter den Schalter S2 auf "ON" stellen.

Einsatz Frequenzumrichter über Modbus RTU > Beschaltung


- *) Verwenden Sie für einen störungsfreien Datenverkehr einen Abschlusswiderstand von ca. 120Ω an der CPU, wie z.B. beim PRO-FIBUS-Stecker von Yaskawa.
- Verbinden Sie niemals Kabelschirm und M5V (Pin 5) miteinander, da aufgrund von Ausgleichsströmen die Schnittstellen zerstört werden könnten!

Einsatz Frequenzumrichter über Modbus RTU > Beschaltung

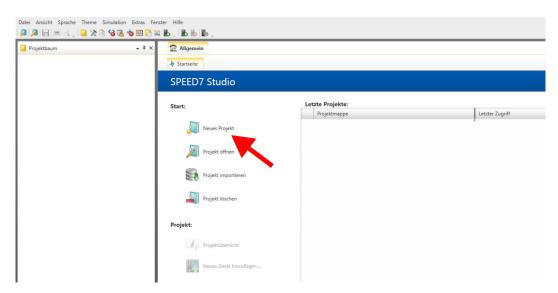
Anschluss der CPU

CPU	Anschluss	Kommentar
MICRO CPU M13C		 Für die PtP-Kommunikation ist der Einsatz des optional erhältlichen Erweiterungsmoduls EM M09 erforderlich. Das Erweiterungsmodul stellt die Schnittstelle X1: PtP (RS422/485) mit fixer Pinbelegung zur Verfügung. Verwenden Sie zur Anbindung an die CPU einen PROFIBUS-Stecker von Yaskawa. Aktivieren Sie am PROFIBUS-Stecker den Abschlusswiderstand. Nach Einschalten der Spannungsversorgung und kurzer Anlaufzeit ist die CPU bereit für die PtP-Kommunikation.
System SLIO CPU 013C		 Die CPU besitzt die Schnittstelle X3 MPI(PtP) mit fixer Pinbelegung. Verwenden Sie zur Anbindung an die CPU einen PROFIBUS-Stecker von Yaskawa. Aktivieren Sie am PROFIBUS-Stecker den Abschlusswiderstand. Nach Einschalten der Spannungsversorgung und kurzer Anlaufzeit bzw. nach dem Urlöschen hat die Schnittstelle MPI-Funktionalität. Über die Hardware-Konfiguration können Sie die PtP-Funktionalität aktivieren. "Einsatz im SPEED7 Studio"Seite 570 "Einsatz im Siemens SIMATIC Manager"Seite 586 "Einsatz im Siemens TIA Portal"Seite 601
System SLIO CPU 014 017		 Die CPU besitzt die Schnittstelle X2 PtP(MPI) die standardmäßig auf PtP-Kommunikation (point to point) eingestellt ist. Verwenden Sie zur Anbindung an die CPU einen PROFIBUS-Stecker von Yaskawa. Aktivieren Sie am PROFIBUS-Stecker den Abschlusswiderstand. Nach Einschalten der Spannungsversorgung und kurzer Anlaufzeit ist die CPU bereit für die PtP-Kommunikation.

Anschluss der YASKAWA Frequenzumrichter

Näheres hierzu finden Sie im entsprechenden Handbuch.

13.6.4 Einsatz im SPEED7 Studio


13.6.4.1 Hardware-Konfiguration

13.6.4.1.1 Hardware-Konfiguration System MICRO


CPU im Projekt anlegen

Bitte verwenden Sie für die Projektierung das SPEED7 Studio ab V1.7.1

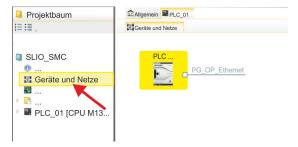
1. Starten Sie das SPEED7 Studio.

- **2.** Erstellen sie auf der Startseite mit "Neues Projekt" ein neues Projekt und vergeben Sie einen "Projektnamen".
 - ⇒ Ein neues Projekt wird angelegt und in die Sicht "Geräte und Netze" gewechselt.
- 3. Klicken Sie im Projektbaum auf "Neues Gerät hinzufügen ...".

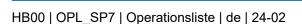
- **4.** Wählen Sie unter den "Gerätevorlagen" die System MICRO CPU M13-CCF0000 und klicken Sie auf [OK].
 - Die CPU wird in "Geräte und Netze" eingefügt und die "Gerätekonfiguration" geöffnet.

Ethernet-PG/OP-Kanal parametrieren

☐ Projektbaum


SLIO_SMC

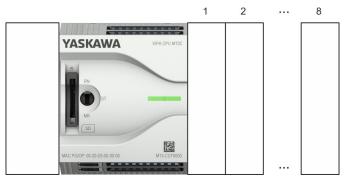
Neues Gerät hinzufügen


201

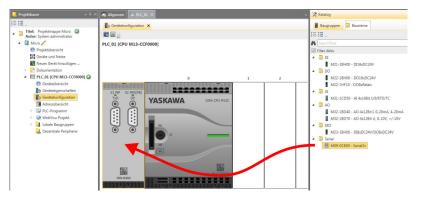
9

- 1. Klicken Sie im *Projektbaum* auf "Geräte und Netze".
 - ➡ Sie erhalten eine grafische Objekt-Ansicht Ihrer CPU.

2. Klicken Sie auf das Netzwerk "PG_OP_Ethernet".



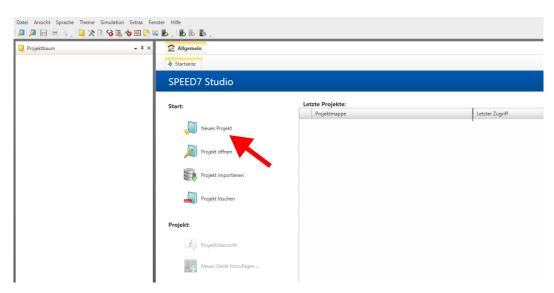
- 3. ▶ Wählen Sie "Kontextmenü → Eigenschaften der Schnittstelle".
 - ➡ Es öffnet sich ein Dialogfenster. Hier können Sie IP-Adressdaten für Ihren Ethernet-PG/OP-Kanal angeben. Gültige IP-Adress-Parameter erhalten Sie von Ihrem Systemadministrator.
- 4. Bestätigen Sie Ihre Eingabe mit [OK].
 - → Die IP-Adressdaten werden in Ihr Projekt übernommen und in "Geräte und Netze" unter "Lokale Baugruppen" aufgelistet.


Nach der Übertragung Ihres Projekts ist Ihre CPU über die angegebenen IP-Adressdaten via Ethernet-PG/OP-Kanal erreichbar.

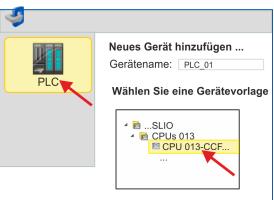
PtP-Funktionalität aktivieren

- 1. ▶ Klicken Sie im *Projektbaum* auf "PLC..CPU M13.... → Gerätekonfiguration".
 - ⇒ Die "Gerätekonfiguration" wird geöffnet.

Öffnen Sie im "Katalog" unter "Baugruppen" die Sammlung "Seriell" und ziehen Sie per Drag&Drop das serielle Modul "M09-0CB00 - Serial2x" auf den linken Steckplatz der CPU. Per Default ist die Schnittstelle X1 auf PtP-Funktionalität eingestellt.



13.6.4.1.2 Hardware-Konfiguration System SLIO CPU 013C


CPU im Projekt anlegen

Bitte verwenden Sie für die Projektierung das SPEED7 Studio ab V1.7.1

1. Starten Sie das SPEED7 Studio.

- **2.** Erstellen sie auf der Startseite mit "Neues Projekt" ein neues Projekt und vergeben Sie einen "Projektnamen".
 - ➡ Ein neues Projekt wird angelegt und in die Sicht "Geräte und Netze" gewechselt.
- 3. Klicken Sie im Projektbaum auf "Neues Gerät hinzufügen ...".

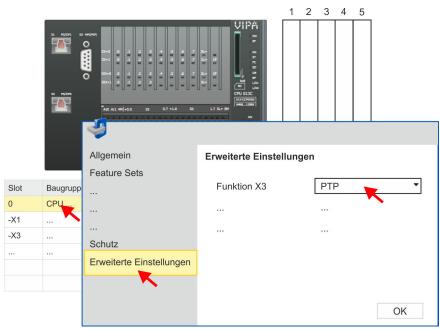


- **4.** Wählen Sie unter den "Gerätevorlagen" die System SLIO CPU 013-CCF0R00 und klicken Sie auf [OK].
 - Die CPU wird in "Geräte und Netze" eingefügt und die "Gerätekonfiguration" geöffnet.

Ethernet-PG/OP-Kanal parametrieren

- 1. Klicken Sie im *Projektbaum* auf "Geräte und Netze".
 - ➡ Sie erhalten eine grafische Objekt-Ansicht Ihrer CPU.

2. Klicken Sie auf das Netzwerk "PG_OP_Ethernet".

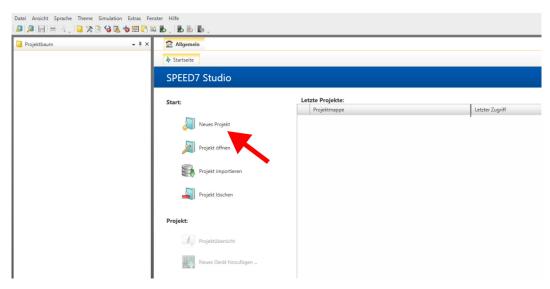


- 3. ▶ Wählen Sie "Kontextmenü → Eigenschaften der Schnittstelle".
 - ⇒ Es öffnet sich ein Dialogfenster. Hier können Sie IP-Adressdaten für Ihren Ethernet-PG/OP-Kanal angeben. Gültige IP-Adress-Parameter erhalten Sie von Ihrem Systemadministrator.
- 4. Bestätigen Sie Ihre Eingabe mit [OK].
 - → Die IP-Adressdaten werden in Ihr Projekt übernommen und in "Geräte und Netze" unter "Lokale Baugruppen" aufgelistet.

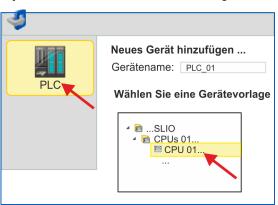
Nach der Übertragung Ihres Projekts ist Ihre CPU über die angegebenen IP-Adressdaten via Ethernet-PG/OP-Kanal erreichbar.

PtP-Funktionalität aktivieren

- 1. Klicken Sie im Projektbaum auf "PLC... > Gerätekonfiguration".
- **2.** Klicken Sie in der "Gerätekonfiguration" auf "0 CPU 013..." und wählen Sie "Kontextmenü → Eigenschaften der Baugruppe".
 - ➡ Es öffnet sich der Eigenschaften-Dialog.


3. Klicken Sie auf "Erweiterte Einstellungen" und stellen Sie unter "Funktion X3" die Funktion "PTP" ein.

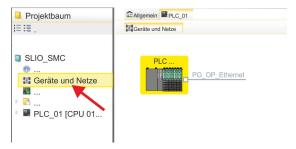
13.6.4.1.3 Hardware-Konfiguration System SLIO CPU 014 ... 017


CPU im Projekt anlegen

Bitte verwenden Sie für die Projektierung das SPEED7 Studio ab V1.7.1

1. Starten Sie das SPEED7 Studio.

- **2.** Erstellen sie auf der Startseite mit "Neues Projekt" ein neues Projekt und vergeben Sie einen "Projektnamen".
 - ➡ Ein neues Projekt wird angelegt und in die Sicht "Geräte und Netze" gewechselt.
- 3. Klicken Sie im Projektbaum auf "Neues Gerät hinzufügen ...".



- **4.** Wählen Sie unter den "Gerätevorlagen" die entsprechende System SLIO CPU aus und klicken Sie auf [OK].
 - Die CPU wird in "Geräte und Netze" eingefügt und die "Gerätekonfiguration" geöffnet.

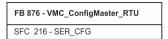
Ethernet-PG/OP-Kanal parametrieren

- 1. Klicken Sie im *Projektbaum* auf "Geräte und Netze".
 - ⇒ Sie erhalten eine grafische Objekt-Ansicht Ihrer CPU.

2. Klicken Sie auf das Netzwerk "PG_OP_Ethernet".

- 3. ▶ Wählen Sie "Kontextmenü → Eigenschaften der Schnittstelle".
 - ⇒ Es öffnet sich ein Dialogfenster. Hier können Sie IP-Adressdaten für Ihren Ethernet-PG/OP-Kanal angeben. Gültige IP-Adress-Parameter erhalten Sie von Ihrem Systemadministrator.
- 4. Bestätigen Sie Ihre Eingabe mit [OK].
 - → Die IP-Adressdaten werden in Ihr Projekt übernommen und in "Geräte und Netze" unter "Lokale Baugruppen" aufgelistet.

Nach der Übertragung Ihres Projekts ist Ihre CPU über die angegebenen IP-Adressdaten via Ethernet-PG/OP-Kanal erreichbar.


PtP-Funktionalität aktivieren

Bei den System SLIO CPUs 014 ... 017 ist die RS485-Schnittstelle standardmäßig auf PtP-Kommunikation eingestellt. Eine Hardware-Konfiguration zur Einstellung der PtP-Funktionalität ist nicht erforderlich.

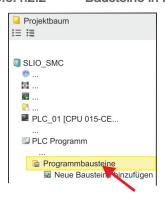
13.6.4.2 Anwender-Programm


13.6.4.2.1 Programmstruktur

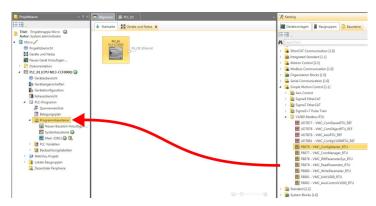
OB 100

- FB 876 VMC ConfigMaster RTU → 618
 - Dieser Baustein dient zur Parametrierung der seriellen Schnittstelle der CPU für Modbus RTU Kommunikation.
 - Intern wird der Baustein SFC 216 SER_CFG aufgerufen.

OB₁



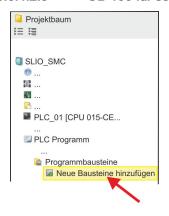
Mit Ausnahme der Bausteine DB 99 und FB 877 müssen Sie für jeden angebundenen Frequenzumrichter die nachfolgend aufgeführten Bausteine anlegen:


- FB 881 VMC_InitV1000_RTU → 621
 - Der FB 881 VMC_InitV1000_RTU initialisiert den entsprechenden Frequenzumrichter mit den Nutzerdaten.
 - Bevor ein Frequenzumrichter angesteuert werden kann, muss dieser initialisiert werden.
 - UDT 881 VMC_ConfigV1000RTU_REF → 618
 - UDT 879 VMC_AxisRTU_REF → 618
- FB 879 VMC ReadParameter RTU → 620
 - Mit diesem FB haben Sie lesenden Zugriff auf die Parameter eines seriell über Modbus RTU angebundenen Frequenzumrichters.
 - Die gelesenen Daten werden in einem Datenbaustein erfasst.
 - UDT 879 VMC_AxisRTU_REF → 618

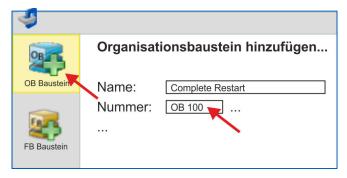
- FB 880 VMC_WriteParameter RTU → 621
 - Mit diesem FB haben Sie schreibenden Zugriff auf die Parameter eines seriell über Modbus RTU angebundenen Frequenzumrichters.
 - Die zu schreibenden Daten sind in einem Datenbaustein abzulegen.
 - UDT 879 VMC_AxisRTU_REF → 618
- DB 100 A1 V1000
 - Für jeden Frequenzumrichter, welcher seriell über Modbus RTU angekoppelt ist, ist jeweils ein Datenbaustein anzulegen.
 - UDT 879 VMC_AxisRTU_REF → 618
 - UDT 881 VMC ConfigV1000RTU REF → 618
- FB 882 VMC AxisControlV1000 RTU→623
 - Mit diesem Baustein können Sie einen seriell über Modbus RTU angebundenen Frequenzumrichter steuern und dessen Status abrufen.
 - UDT 881 VMC ConfigV1000RTU REF → 618
 - UDT 879 VMC AxisRTU REF → 618
 - UDT 878 VMC_ComObjectRTU_REF → 618
- DB 99 ComDataSlaves
 - Für die Erfassung der Kommunikationsdaten aller Frequenzumrichter (max. 8), welche seriell über Modbus RTU angekoppelt sind, ist ein gemeinsamer Datenbaustein anzulegen.
 - UDT 877 VMC_ComSlavesRTU_REF → 618
 - UDT 878 VMC ComObjectRTU REF → 618
- FB 877 VMC ComManager RTU → 619
 - Der Baustein sorgt dafür, dass immer nur 1 Frequenzumrichter (Modbus-Slave) die serielle Schnittstelle benutzen kann. Bei Einsatz mehrerer Frequenzumrichter sendet dieser Baustein als Kommunikations-Manager die Aufträge an die jeweiligen Modbus-Slaves und wertet deren Antworten aus.
 - UDT 877 VMC ComSlavesRTU REF → 618

13.6.4.2.2 Bausteine in Projekt kopieren

1. Nlicken Sie auf "Projektbaum → ...CPU... → PLC-Programm → Programmbausteine".



- Öffnen Sie im "Katalog" unter "Bausteine → Simple Motion Control" die Sammlung "V1000 Modbus RTU" und ziehen Sie per Drag&Drop folgende Bausteine in "Programmbausteine" des Projektbaums:
 - FB 876 VMC_ConfigMaster_RTU
 - FB 877 VMC ComManager RTU
 - FB 878 VMC_RWParameterSys_RTU
 - FB 879 VMC_ReadParameter_RTU
 - FB 880 VMC_WriteParameter_RTU
 - FB 881 VMC_InitV1000_RTU
 - FB 882 VMC_AxisControlV1000_RTU


Hierbei werden folgende Bausteine automatisch dem Projekt hinzugefügt:

- SEND (FB 60)
- RECEIVE (FB 61)
- RTU MB_MASTER (FB 72)
- SER_CFG (FC 216)
- SER_SND (FC 217)
- SER_RCV (FC 218)
- VMC_ComSlavesRTU_REF (UDT 877)
- VMC_ComObjectRTU_REF (UDT 878)
- VMC_AxisRTU_REF (UDT 879)
- VMC_ConfigV1000RTU_REF (UDT 881)

13.6.4.2.3 OB 100 für serielle Kommunikation anlegen

- 1. Nlicken Sie auf "Projektbaum → ...CPU... → PLC-Programm → Programmbausteine → Neuen Baustein hinzufügen".
 - ▶ Das Dialogfenster "Baustein hinzufügen" öffnet sich.

- 2. Geben Sie OB 100 an und bestätigen Sie mit [OK].
 - → Der OB 100 wird angelegt und geöffnet.

- 3. ▶ Fügen Sie dem OB 100 einen Call FB876, DB876 zu.
 - → Der Bausteinaufruf wird angelegt und es öffnet sich ein Dialog zur Angabe des Instanz-Datenbausteins "VMC_ConfigMaster_RTU_876".
- 4. Bestätigen Sie die Abfrage des Instanz-Datenbausteins mit [OK].
- **5.** Geben Sie folgende Parameter vor:

Call FB876, DB876 - "FB 876 - VMC_ConfigMaster_RTU - Modbus RTU CPU-Schnittstelle"...Seite 618

Baudrate	:= B#16#09	// Baudrate: 09h (9600Bit/s)	IN: BYTE
CharLen	:= B#16#03	// Anzahl Datenbits: 03h (8Bit)	IN: BYTE
Parity	:= B#16#00	// Parităt: 0 (none = keine)	IN: BYTE
StopBits	:= B#16#01	// Stopbits: 1 (1Bit)	IN: BYTE
TimeOut	:= W#16#1FFF	// Fehler-Wartezeit: 1FFFh (hoch gewählt)	IN: WORD
Valid	:= "ModbusConfigValid"	// Konfiguration	OUT: BOOL
Error	:= "ModbusConfigError"	// Fehlerrückmeldung	OUT: BOOL
ErrorID	:= "ModbusConfigErrorID"	// Zusätzliche Fehlerinformationen	OUT: WORD

Symbolische Variable

Die symbolischen Variablen erstellen Sie über *"Kontextmenü → Symbol erstellen/bearbeiten"*. Hier können Sie über einen Dialog den entsprechenden Operanden zuordnen.

13.6.4.2.4 Datenbaustein für Modbus-Slave anlegen

Für jeden Frequenzumrichter, welcher seriell über Modbus RTU angekoppelt ist, ist jeweils ein Datenbaustein anzulegen.

- 1. ► Klicken Sie hierzu auf "Projektbaum → ...CPU... → PLC-Programm → Programmbausteine → Neuen Baustein hinzufügen".
 - ▶ Das Dialogfenster "Baustein hinzufügen" öffnet sich.
- Wählen Sie den Bausteintyp "DB Baustein" und vergeben Sie diesem den Namen "A1_V1000". Die DB-Nr. können Sie frei wählen wie z.B. DB 100. Geben Sie DB 100 an und legen Sie diesen als globalen DB mit [OK] an.
 - Der Baustein wird angelegt und geöffnet.
- 3. Legen Sie in "A1_V1000" folgende Variablen an:
 - "AxisData" vom Typ UDT 879 VMC_AxisRTU_REF
 - "V1000Data" vom Typ UDT 881 VMC_ConfigV1000RTU_REF

13.6.4.2.5 Datenbaustein für alle Modbus-Slaves anlegen

Für die Erfassung der Kommunikationsdaten aller Frequenzumrichter, welche seriell über Modbus RTU angekoppelt sind, ist ein gemeinsamer Datenbaustein anzulegen.

- 1. Klicken Sie hierzu auf "Projektbaum → ...CPU... → PLC-Programm → Programmbausteine → Neuen Baustein hinzufügen".
 - → Das Dialogfenster "Baustein hinzufügen" öffnet sich.
- Wählen Sie den Bausteintyp "DB Baustein" und vergeben Sie diesem den Namen "ComDataSlaves". Die DB-Nr. können Sie frei wählen wie z.B. DB 99. Geben Sie DB 99 an und legen Sie diesen als globalen DB mit [OK] an.
 - Der Baustein wird angelegt und geöffnet.

- 3. ▶ Legen Sie in "ComDataSlaves" folgende Variable an:
 - "Slaves" vom Typ UDT 877 VMC_ComSlavesRTU_REF

13.6.4.2.6 OB 1 - Instanz des Kommunikations-Managers anlegen

Der FB 877 - VMC_ComManager_RTU sorgt dafür, dass immer nur 1 Frequenzumrichter (Modbus-Slave) die serielle Schnittstelle benutzen kann. Als Kommunikations-Manager sendet der Baustein die Aufträge an die jeweiligen Modbus-Slaves und wertet deren Antworten aus.

- 1. Doppelklicken Sie auf "Projektbaum → ...CPU... → PLC-Programm → Programmbausteine → Main [OB1]".
 - → Das Programmierfenster für den OB 1 wird geöffnet.
- 2. Fügen Sie dem OB 1 einen Call FB877, DB877 zu.
 - → Der Bausteinaufruf wird angelegt und es öffnet sich ein Dialog zur Angabe des Instanz-Datenbausteins "VMC_ComManager_RTU_877".
- 3. ▶ Bestätigen Sie die Abfrage des Instanz-Datenbausteins mit [OK].
- **4.** ▶ Geben Sie folgende Parameter vor:

Call FB877, DB877 → "FB 877 - VMC_ComManager_RTU - Modbus RTU Kommunikations-Manager"...Seite 619

```
      NumberOfSlaves
      := 1
      // Anzahl angebundener Frequenzumrichter: 1
      IN: INT

      WaitCycles
      := "ComWaitCycles"
      // Mindestanzahl Wartezyklen
      IN: DINT

      SlavesComData
      := "ComDataSlaves.Slave"
      // Referenz zu allen Kommunikationsobjekten
      IN-OUT: UDT 877
```

13.6.4.2.7 OB 1 - Instanz der V1000-Initialisierung anlegen

Der FB 881 - VMC_InitV1000_RTU initialisiert den entsprechenden Frequenzumrichter mit den Nutzerdaten. Bevor ein Frequenzumrichter angesteuert werden kann, muss dieser initialisiert werden.

- 1. Fügen Sie dem OB 1 einen Call FB881, DB881 hinzu.
 - → Der Bausteinaufruf wird angelegt und es öffnet sich ein Dialog zur Angabe des Instanz-Datenbausteins "VMC_InitV1000_RTU_881".
- 2. Bestätigen Sie die Abfrage des Instanz-Datenbausteins mit [OK].
- **3.** Geben Sie folgende Parameter vor:

Call FB881, DB881 → "FB 881 - VMC_InitV1000_RTU - Modbus RTU Initialisierung"Seite 621			
Execute	:= "A1_InitExecute"	// Mit Flanke 0-1 wird der Auftrag ausgeführt.	IN: BOOL
Hardware	:= "A1_InitHardware"	// Angabe der eingesetzten Hardware	IN: BYTE
		// 1: System SLIO CP040, 2: SPEED7 CPU	
Laddr	:= "A1_InitLaddr"	// Logische Adresse bei Einsatz CP040	IN: INT
UnitId	:= "A1_InitUnitId"	// Modbus-Adresse des V1000	IN: BYTE
UserUnitsVelocity	:= "A1_InitUserUnitsVel"	// Benutzereinheit für Geschwindigkeiten	IN: INT
		// 0: Hz, 1: %, 2: U/min	
UserUnitsAcceleration	:= "A1_InitUserUnitsAcc"	// Benutzereinheit Beschleunigung/Verzögerung	IN: INT
		// 0: 0,01s, 1: 0,1s	
MaxVelocityApp	:= "A1_InitMaxVelocityApp"	// Max. Geschwindigkeit in Benutzereinheiten	IN: REAL
Done	:= "A1_InitDone"	// Status Auftrag fertig	OUT: BOOL
Busy	:= "A1_InitBusy"	// Status Auftrag in Bearbeitung	OUT: BOOL
Error	:= "A1_InitError"	// Fehlerrückmeldung	OUT: BOOL
ErrorlD	:= "A1_InitErrorID"	// Zusätzliche Fehlerinformationen	OUT: WORD
Axis	:= "A1_V1000".AxisData	// Referenz zu den allgemeinen Achsdaten	IN-OUT: UDT 879
V1000	:= "A1_V1000".V1000Data	// Referenz zu den antriebsspezifischen Daten	IN-OUT: UDT 881

Eingabewerte

Alle Parameter sind mit den entsprechenden Variablen bzw. Operanden zu verschalten. Folgende Eingabe-Parameter sind entsprechend vorzubelegen:

Hardware

Geben Sie hier die Hardware an, über welche Sie Ihre Frequenzumrichter ansteuern:

- 1: System SLIO CP040 dessen logische Adresse über *Laddr* vorzugeben ist.
- 2: SPEED7 CPU
- Laddr
 - Logische Adresse für System SLIO CP040 (Hardware = 1). Ansonsten wird dieser Parameter ignoriert.
- Unitld
 - Modbus-Adresse des V1000.
- UserUnitsVelocity

Benutzereinheit für Geschwindigkeiten:

0: Hz

Angabe in Hertz

- 1: %

Angabe als prozentualer Bezug auf die maximale Geschwindigkeit

 $= 2*f_{max}/p$

mit f_{max}: max. Ausgabefrequenz (Parameter E1-04)

p: Anzahl der Motorpole (motorabhängiger Parameter E2-04, E4-04 oder E5-04)

- 2: U/min

Angabe in Umdrehungen pro Minute

UserUnitsAcceleration

Benutzereinheiten für die Beschleunigung und Verzögerung

- 0: 0,01s (Wertebereich: 0,00s 600,00s)
- 1: 0,1s (Wertebereich: 0,0 6000,0s)
- MaxVelocityApp

Max. Geschwindigkeit für die Applikation. Die Angabe hat in Benutzereinheiten zu erfolgen und wird bei Bewegungskommandos für den Abgleich verwendet.

13.6.4.2.8 OB 1 - Instanz Achskontrolle V1000 anlegen

Mit dem FB 882 - VMC_AxisControlV1000_RTU können Sie einen seriell über Modbus RTU angebundenen Frequenzumrichter steuern und dessen Status abrufen.

- 1. Fügen Sie dem OB 1 einen Call FB882, DB882 hinzu.
 - → Der Bausteinaufruf wird angelegt und es öffnet sich ein Dialog zur Angabe des Instanz-Datenbausteins "VMC_AxisControlV1000_RTU_882".
- 2. Bestätigen Sie die Abfrage des Instanz-Datenbausteins mit [OK].
- 3. Geben Sie folgende Parameter vor:

Call FB882, DB882 → "FB 882 - VMC_AxisControlV1000_RTU - Modbus RTU Achskontrolle"...Seite 623

AxisEnable	:= "A1_AxisEnable"	// Aktivierung der Achse	IN: BOOL
AxisReset	:= "A1_AxisReset"	// Kommando: Fehler des V1000 zurücksetzen.	IN: BOOL
StopExecute	:= "A1_StopExecute"	// Kommando: Stop - Achse stoppen	IN: BOOL
MvVelocityExecute	:= "A1_MvVelocityExecute"	// Kommando: MoveVelocity (Geschwindigkeitsregelung)	IN: BOOL
Velocity	:= "A1_Velocity"	// Parameter: Geschwindigkeitsvorgabe für MoveVelocity	IN: REAL
AccelerationTime	:= "A1_AccelerationTime"	// Parameter: Beschleunigungszeit	IN: REAL
DecelerationTime	:= "A1_DecelerationTime"	// Parameter: Verzögerungszeit	IN: REAL
JogPositive	:= "A1_JogPositive"	// Kommando: <i>JogPos</i>	IN: BOOL
JogNegative	:= "A1_JogNegative"	// Kommando: <i>JogNeg</i>	IN: BOOL
JogVelocity	:= "A1_JogVelocity"	// Parameter: Geschwindigkeitsvorgabe für Jogging	IN: REAL
JogAccelerationTime	:= "A1_JogAccelerationTime"	// Parameter: Beschleunigungszeit für Jogging	IN: REAL
JogDecelerationTime	:= "A1_JogDecelerationTime"	// Parameter: Verzögerungszeit für Jogging	IN: REAL
AxisReady	:= "A1_AxisReady"	// Status: Bereitschaft der Achse	OUT: BOOL
AxisEnabled	:= "A1_AxisEnabled"	// Status: Aktivierung der Achse	OUT: BOOL
AxisError	:= "A1_AxisError"	// Status: Achsfehler	OUT: BOOL
AxisErrorID	:= "A1_AxisErrorID"	// Status: Zusätzliche Fehlerinformationen für AxisError	OUT: WORD
DriveError	:= "A1_DriveError"	// Status: Fehler Frequenzumrichter	OUT: BOOL
ActualVelocity	:= "A1_ActualVelocity"	// Status: Aktuelle Geschwindigkeit	OUT: REAL
InVelocity	:= "A1_InVelocity"	// Status Zielgeschwindigkeit	OUT: BOOL
CmdDone	:= "A1_CmdDone"	// Status: Kommando fertig	OUT: BOOL
CmdBusy	:= "A1_CmdBusy"	// Status: Kommando in Bearbeitung	OUT: BOOL
CmdAborted	:= "A1_CmdAborted"	// Status: Kommando abgebrochen	OUT: BOOL
CmdError	:= "A1_CmdError"	// Status: Kommando Fehler	OUT: BOOL

CmdErrorID	:= "A1_CmdErrorID"	// Status: Zusätzliche Fehlerinformationen für CmdError	OUT: WORD
CmdActive	:= "A1_CmdActive"	// Status: Aktives Kommando	OUT: INT
DirectionPositive	:= "A1_DirectionPositive"	// Status: Drehrichtung positiv	OUT: BOOL
DirectionNegative	:= "A1_DirectionNegative"	// Status: Drehrichtung negativ	OUT: BOOL
Axis	:= "A1_V1000".AxisData	// Referenz zu den allgemeinen Achsdaten	IN-OUT: UDT 879
V1000	:= "A1_V1000".V1000Data	// Referenz zu den allgemeinen Daten des	IN-OUT: UDT 881
		// Frequenzumrichters	
AxisComData	:= "ComDataSlaves".Slaves.Slave(1)	// Referenz zu den Kommunikationsdaten	IN-OUT: UDT 878

13.6.4.2.9 OB 1 - Instanz Parameter lesen anlegen

Mit dem FB 879 - VMC_ReadParameter_RTU haben Sie lesenden Zugriff auf die Parameter eines seriell über Modbus RTU angebundenen Frequenzumrichters. Für die Erfassung der Parameterdaten ist ein DB anzulegen.

- 1. ► Klicken Sie hierzu auf "Projektbaum → ...CPU... → PLC-Programm → Programmbausteine → Neuen Baustein hinzufügen".
 - ⇒ Das Dialogfenster "Baustein hinzufügen" öffnet sich.
- Wählen Sie den Bausteintyp "DB Baustein" und vergeben Sie diesem den Namen "A1_TransferData". Die DB-Nr. können Sie frei wählen wie z.B. DB 98. Geben Sie DB 98 an und legen Sie diesen als globalen DB mit [OK] an.
 - → Der Baustein wird angelegt und geöffnet.
- **3.** Legen Sie in "A1_TransferData" folgende Variablen an:
 - "Data_0" vom Typ WORD
 - "Data_1" vom Typ WORD
 - "Data_2" vom Typ WORD
 - "Data_3" vom Typ WORD
- **4.** ▶ Fügen Sie dem OB 1 einen Call FB879, DB879 hinzu.
 - → Der Bausteinaufruf wird angelegt und es öffnet sich ein Dialog zur Angabe des Instanz-Datenbausteins "VMC_ReadParameter_RTU".
- **5.** Bestätigen Sie die Abfrage des Instanz-Datenbausteins mit [OK].
- **6.** ▶ Geben Sie folgende Parameter vor:

Call FB879, DB879 → "FB 879 - VMC_ReadParameter_RTU - Modbus RTU Parameter lesen"...Seite 620

Execute	:= "A1_RdParExecute"	// Mit Flanke 0-1 wird der Auftrag ausgeführt.	IN: BOOL
StartAddress	:= "A1_RdParStartAddress"	// Start-Adresse des 1. Registers	IN: INT
Quantity	:= "A1_RdParQuantity"	// Anzahl der zu lesenden Register	IN: INT
Done	:= "A1_RdParDone"	// Status Auftrag fertig	IN: REAL
Busy	:= "A1_RdParBusy"	// Status Auftrag in Bearbeitung	OUT: BOOL
Error	:= "A1_RdParError"	// Fehlerrückmeldung	OUT: BOOL
ErrorID	:= "A1_RdParErrorID"	// Zusätzliche Fehlerinformationen	OUT: BOOL
Data	:= P#DB98.DBX0.0 BYTES 8	// Ablageort der Parameterdaten	OUT: WORD
Axis	:= "A1_V1000".AxisData	// Referenz zu den allgemeinen Achsdaten	IN-OUT: UDT 879

Bitte beachten Sie, dass immer nur ganze Register als WORD gelesen werden können. Zur Auswertung einzelner Bits müssen Sie High- und Low-Byte vertauschen!

13.6.4.2.10 OB 1 - Instanz Parameter schreiben anlegen

Mit dem FB 880 - VMC_WriteParameter_RTU haben Sie schreibenden Zugriff auf die Parameter eines seriell über Modbus RTU angebundenen Frequenzumrichters. Für die Erfassung können Sie den für Lesezugriff angelegten DB verwenden - hier DB 98.

- 1. Fügen Sie dem OB 1 einen Call FB880, DB880 hinzu.
 - → Der Bausteinaufruf wird angelegt und es öffnet sich ein Dialog zur Angabe des Instanz-Datenbausteins "VMC WriteParameter RTU".
- 2. Bestätigen Sie die Abfrage des Instanz-Datenbausteins mit [OK].
- **3.** ▶ Geben Sie folgende Parameter vor:

Call FB880, DB880 → "FB 880 - VMC_WriteParameter_RTU - Modbus RTU Parameter schreiben"...Seite 621

Execute	:= "A1_WrParExecute"	// Mit Flanke 0-1 wird der Auftrag ausgeführt.	IN: BOOL
StartAddress	:= "A1_WrParStartAddress"	// Start-Adresse des 1. Registers	IN: INT
Quantity	:= "A1_WrParQuantity"	// Anzahl der zu schreibenden Register	IN: INT
Done	:= "A1_WrParDone"	// Status Auftrag fertig	IN: REAL
Busy	:= "A1_WrParBusy"	// Status Auftrag in Bearbeitung	OUT: BOOL
Error	:= "A1_WrParError"	// Fehlerrückmeldung	OUT: BOOL
ErrorID	:= "A1_WrParErrorID"	// Zusätzliche Fehlerinformationen	OUT: BOOL
Data	:= P#DB98.DBX0.0 BYTES 8	// Ablageort der Parameterdaten	OUT: WORD
Axis	:= "A1_V1000".AxisData	// Referenz zu den allgemeinen Achsdaten	IN-OUT: UDT 879

13.6.4.2.11 Zeitlicher Ablauf

1. ▶ Wählen Sie *"Projekt → Alles übersetzen"* und übertragen Sie das Projekt in Ihre CPU.

Näheres zur Übertragung Ihres Projekt finden Sie in der Onlinehilfe zum SPEED7 Studio.

→ Sie können jetzt Ihre Applikation über die bestehende Kommunikationsverbindung in Betrieb nehmen.

VORSICHT

Bitte beachten Sie immer die Sicherheitshinweise zu ihrem Frequenzumrichter, insbesondere bei der Inbetriebnahme!

- **2.** Mittels einer Beobachtungstabelle können Sie den Frequenzumrichter manuell steuern. Doppelklicken Sie auf "Projektbaum → ...CPU... → PLC-Programm → Beobachtungstabellen → Neue Beobachtungstabelle hinzufügen".
- 3. Geben Sie einen Namen für die Beobachtungstabelle an wie z.B. "V1000" und bestätigen Sie mit [OK]
 - ➡ Die Beobachtungstabelle wird angelegt und für die Bearbeitung geöffnet.
- 4. Passen Sie zuerst die Wartezeit zwischen 2 Aufträgen an. Diese beträgt für einen V1000-Frequenzumrichter mindestens 200ms. Stellen Sie hierzu in der Beobachtungstabelle unter "Namen" den Bezeichner "ComWaitCycles" als "Dezimal" ein und geben Sie unter "Steuerwert" einen Wert zwischen 200 und 400 vor.

Zur Performance-Steigerung können Sie diesen Wert später nach unten korrigieren, solange Sie keinen Timeout-Fehler (80C8h) erhalten. Bitte beachten Sie hierbei, dass manche Befehle, wie z.B. MoveVelocity aus mehreren Aufträgen bestehen können.

5. Bevor Sie einen Frequenzumrichter ansteuern k\u00f6nnen, muss dieser mit dem FB 881 - VMC_InitV1000_RTU initialisiert werden. → "FB 881 - VMC InitV1000_RTU - Modbus RTU Initialisierung"... Seite 621

Stellen Sie hierzu in der Beobachtungstabelle unter "Namen" den Bezeichner "A1_InitExecute" als "Boolean" ein und geben Sie unter "Steuerwert" den Wert "True" vor. Aktivieren Sie "Steuern" und starten Sie die Übertragung der Steuerwerte.

→ Der Frequenzumrichter wird initialisiert. Nach Abarbeitung liefert der Ausgang Done TRUE zurück. Im Fehlerfall können Sie durch Auswertung der ErrorID den Fehler ermitteln.

Fahren Sie erst fort, wenn der Init-Baustein keinen Fehler meldet!

- 6. ▶ Bei erfolgreicher Initialisierung erfolgt zyklisch die Abarbeitung der Register der angebundenen Frequenzumrichter d.h. diese erhalten zyklisch Aufträge. Zur manuellen Steuerung können Sie mit dem FB 882 VMC_AxisControlV1000_RTU Steuerbefehle an den entsprechenden Frequenzumrichter senden. → "FB 882 VMC_AxisControlV1000_RTU Modbus RTU Achskontrolle"...Seite 623
- **7.** Legen Sie die Parameter des FB 882 VMC_AxisControlV1000_RTU zur Steuerung und Abfrage in der Beobachtungstabelle an.
- Aktivieren Sie durch Setzen von *AxisEnable* die entsprechende Achse. Sobald diese *AxisReady* = TRUE zurückmeldet, können Sie diese mit den entsprechenden Fahrbefehlen ansteuern.

13.6.5 Einsatz im Siemens SIMATIC Manager

13.6.5.1 Voraussetzung

Übersicht

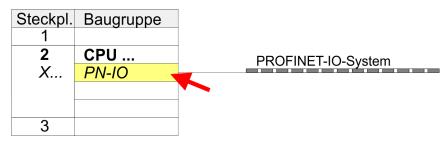
- Bitte verwenden Sie für die Projektierung den Siemens SIMATIC Manager ab V 5.5 SP2.
- Bei einer System MICRO CPU wird durch Stecken des Erweiterungsmoduls die PtP-Funktionalität aktiviert. Die Projektierung erfolgt im Siemens SIMATIC Manager in Form eines virtuellen PROFINET IO Devices. Das PROFINET IO Device ist mittels GSDML im Hardware-Katalog zu installieren.
- Bei einer System SLIO CPU 013C erfolgt die Projektierung der PtP-Funktionalität im Siemens SIMATIC Manager in Form eines virtuellen PROFINET IO Devices. Das PROFINET IO Device ist mittels GSDML im Hardware-Katalog zu installieren.
- Bei den System SLIO CPUs 014 ... 017 ist die RS485-Schnittstelle standardmäßig auf PtP-Kommunikation eingestellt. Die Projektierung erfolgt im Siemens SIMATIC Manager in Form eines virtuellen PROFINET IO Devices. Das PROFINET IO Device ist mittels GSDML im Hardware-Katalog zu installieren.

IO Device installieren

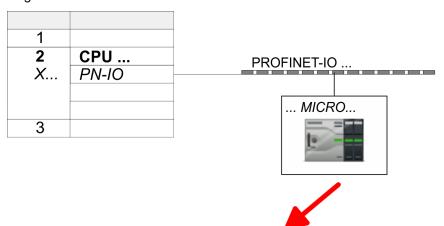
Die Installation des PROFINET IO Device im Hardware-Katalog erfolgt nach folgender Vorgehensweise:

- 1. Gehen Sie in das "Download Center" von www.yaskawa.eu.com.
- **2.** Laden Sie aus dem Downloadbereich unter "GSDML SLIO" die Konfigurationsdatei für Ihre CPU.
- 3. Extrahieren Sie die Datei in Ihr Arbeitsverzeichnis.
- **4.** Starten Sie den Hardware-Konfigurator von Siemens.
- 5. ▶ Schließen Sie alle Projekte.
- **6.** Gehen Sie auf "Extras → GSD-Dateien installieren".
- 7. Navigieren Sie in Ihr Arbeitsverzeichnis und installieren Sie die entsprechende GSDML-Datei.
 - Nach der Installation finden Sie das entsprechende PROFINET IO Device unter "PROFINET IO → Weitere Feldgeräte → I/O → VIPA ...".

13.6.5.2 Hardware-Konfiguration


13.6.5.2.1 Hardware-Konfiguration System MICRO

CPU im Projekt anlegen


Steckp	Baugruppe
1	
2	CPU 314C-2PN/DP
X1	MPI/DP
X2	PN-IO
X2	Port 1
X2	Port 2
3	

Um kompatibel mit dem Siemens SIMATIC Manager zu sein, sind folgende Schritte durchzuführen:

- 1. Starten Sie den Hardware-Konfigurator von Siemens mit einem neuen Projekt.
- 2. Fügen Sie aus dem Hardware-Katalog eine Profilschiene ein.
- 3. Platzieren Sie auf "Slot"-Nummer 2 die CPU 314C-2 PN/DP (314-6EH04-0AB0 V3.3).
- **4.** Klicken Sie auf das Submodul "PN-IO" der CPU.
- 5. ▶ Wählen Sie "Kontextmenü → PROFINET IO-System einfügen".

- 6. Legen Sie mit [Neu] ein neues Subnetz an und vergeben Sie gültige IP-Adress-Daten.
- 7. Klicken Sie auf das Submodul "PN-IO" der CPU und öffnen Sie mit "Kontextmenü Objekteigenschaften" den Eigenschafts-Dialog.
- **8.** Geben Sie unter "Allgemein" einen "Gerätenamen" an. Der Gerätename muss eindeutig am Ethernet-Subnetz sein.

0	MICRO	M13-CCF0000	
X2	M13-CCF0000		
1			
2			
3			

- 9. Navigieren Sie im Hardware-Katalog in das Verzeichnis "PROFINET IO → Weitere Feldgeräte → I/O → VIPA ..." und binden Sie z.B. für das System MICRO das IO-Device "M13-CCF0000" an Ihr PROFINET-System an.
 - ▶ In der Steckplatzübersicht des PROFINET-IO-Device "... MICRO PLC" ist auf Steckplatz 0 die CPU bereits vorplatziert.

Ethernet-PG/OP-Kanal parametrieren

Steckpl.	Modul	
1		
2	CPU	
X	PN-IO	
3		
4	343-1EX30	
5		
		_

- 1. Platzieren Sie für den Ethernet-PG/OP-Kanal auf Steckplatz 4 den Siemens CP 343-1 (SIMATIC 300 \ CP 300 \ Industrial Ethernet \CP 343-1 \ 6GK7 343-1EX30 0XE0 V3.0).
- Öffnen Sie durch Doppelklick auf den CP 343-1EX30 den Eigenschaften-Dialog und geben Sie für den CP unter "Eigenschaften" IP-Adress-Daten an. Gültige IP-Adress-Parameter erhalten Sie von Ihrem Systemadministrator.
- 3. Ordnen Sie den CP einem "Subnetz" zu. Ohne Zuordnung werden die IP-Adress-Daten nicht übernommen!

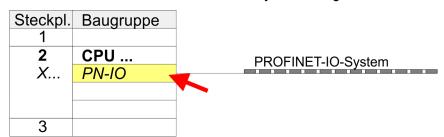
PtP-Funktionalität aktivieren

Eine Hardware-Konfiguration zur Einstellung der PtP-Funktionalität ist nicht erforderlich.

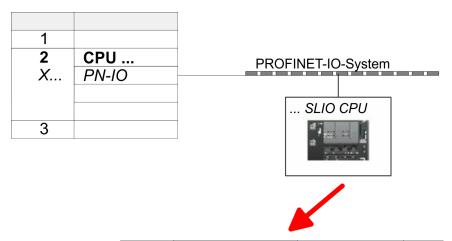
1. Schalten Sie die Spannungsversorgung aus.

- 2. Montieren Sie das Erweiterungsmodul.
- 3. Stellen Sie einen Kabelverbindung zum Kommunikationspartner her.

- **4.** Schalten Sie die Spannungsversorgung ein.
 - Nach kurzer Hochlaufzeit ist die Schnittstelle X1 PtP bereit für die PtP-Kommunikation

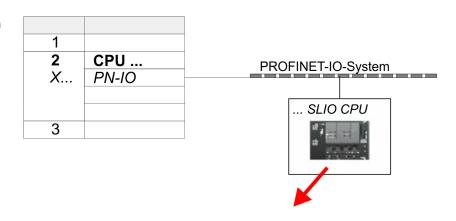

13.6.5.2.2 Hardware-Konfiguration System SLIO CPU 013C

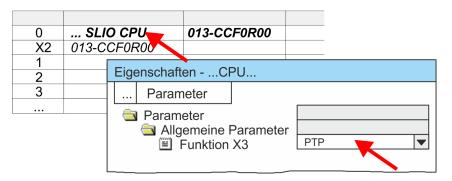
CPU im Projekt anlegen


Steckp	Baugruppe
1	
2	CPU 314C-2PN/DP
X1	MPI/DP
X2	PN-IO
X2	Port 1
X2	Port 2
3	

Um kompatibel mit dem Siemens SIMATIC Manager zu sein, sind folgende Schritte durchzuführen:

- 1. Starten Sie den Hardware-Konfigurator von Siemens mit einem neuen Projekt.
- 2. Fügen Sie aus dem Hardware-Katalog eine Profilschiene ein.
- 3. Platzieren Sie auf "Slot"-Nummer 2 die CPU 314C-2 PN/DP (314-6EH04-0AB0 V3.3).
- **4.** Klicken Sie auf das Submodul "PN-IO" der CPU.
- 5. ▶ Wählen Sie "Kontextmenü → PROFINET IO-System einfügen".

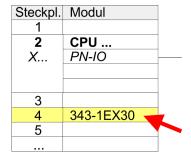

- **6.** Legen Sie mit [Neu] ein neues Subnetz an und vergeben Sie gültige IP-Adress-Daten für Ihr PROFINET-System.
- 7. Klicken Sie auf das Submodul "PN-IO" der CPU und öffnen Sie mit "Kontextmenü Objekteigenschaften" den Eigenschafts-Dialog.
- **8.** Geben Sie unter "Allgemein" einen "Gerätenamen" an. Der Gerätename muss eindeutig am Ethernet-Subnetz sein.



0	SLIO CPU	013-CCF0R00	
X2	013-CCF0R00		
1			
2			
3			

- 9. Navigieren Sie im Hardware-Katalog in das Verzeichnis "PROFINET IO → Weitere Feldgeräte → I/O → VIPA ..." und binden das IO-Device "013-CCF0R00" CPU an Ihr PROFINET-System an.
 - ➡ In der Steckplatzübersicht des PROFINET IO Device "... SLIO CPU" ist auf Steckplatz 0 die CPU bereits vorplatziert. Ab Steckplatz 1 können Sie Ihre System SLIO Module platzieren.

PtP-Funktionalität aktivieren

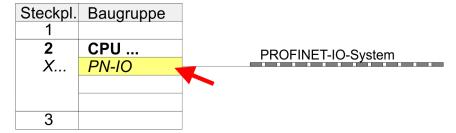


- <u>1.</u> Öffnen Sie den Eigenschaften-Dialog, indem Sie auf die "... SLIO CPU" doppelklicken.
 - ▶ Im Eigenschaft-Dialog haben Sie Zugriff auf die produktspezifischen Parameter.

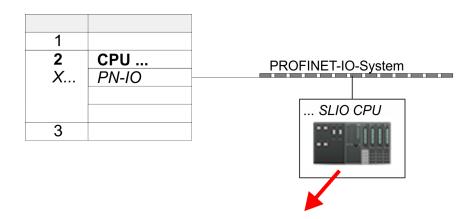
2. Stellen Sie unter "Funktion X3" den Wert "PTP" ein.

Ethernet-PG/OP-Kanal parametrieren

- Platzieren Sie für den Ethernet-PG/OP-Kanal auf Steckplatz 4 den Siemens CP 343-1 (SIMATIC 300 \ CP 300 \ Industrial Ethernet \CP 343-1 \ 6GK7 343-1EX30 0XE0 V3.0).
- Öffnen Sie durch Doppelklick auf den CP 343-1EX30 den Eigenschaften-Dialog und geben Sie für den CP unter "Eigenschaften" IP-Adress-Daten an. Gültige IP-Adress-Parameter erhalten Sie von Ihrem Systemadministrator.
- 3. Ordnen Sie den CP einem "Subnetz" zu. Ohne Zuordnung werden die IP-Adress-Daten nicht übernommen!

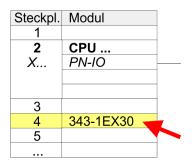

13.6.5.2.3 Hardware-Konfiguration System SLIO CPU 014 ... 017

CPU im Projekt anlegen


Steckp	Baugruppe
1	
2	CPU 315-2 PN/DP
X1	MPI/DP
X2	PN-IO
X2	Port 1
X2	Port 2
3	

Um kompatibel mit dem Siemens SIMATIC Manager zu sein, sind folgende Schritte durchzuführen:

- 1. Starten Sie den Hardware-Konfigurator von Siemens mit einem neuen Projekt.
- 2. Fügen Sie aus dem Hardware-Katalog eine Profilschiene ein.
- 3. Platzieren Sie auf "Slot"-Nummer 2 die CPU 315-2 PN/DP (315-2EH14-0AB0 V3.2).
- 4. Klicken Sie auf das Submodul "PN-IO" der CPU.


- **5.** Legen Sie mit [Neu] ein neues Subnetz an und vergeben Sie gültige IP-Adress-Daten für Ihr PROFINET-System.
- 6. ► Klicken Sie auf das Submodul "PN-IO" der CPU und öffnen Sie mit "Kontextmenü Objekteigenschaften" den Eigenschafts-Dialog.
- Geben Sie unter "Allgemein" einen "Gerätenamen" an. Der Gerätename muss eindeutig am Ethernet-Subnetz sein.

0	SLIO CPU	
X2		
1		
2		
3		

- 8. Navigieren Sie im Hardware-Katalog in das Verzeichnis "PROFINET IO → Weitere Feldgeräte → I/O → VIPA ..." und binden das Ihrer CPU entsprechende IO-Device an Ihr PROFINET-System an.
 - ➡ In der Steckplatzübersicht des PROFINET IO Device "... SLIO CPU" ist auf Steckplatz 0 die CPU bereits vorplatziert. Ab Steckplatz 1 können Sie Ihre System SLIO Module platzieren.

Ethernet-PG/OP-Kanal parametrieren

- 1. Platzieren Sie für den Ethernet-PG/OP-Kanal auf Steckplatz 4 den Siemens CP 343-1 (SIMATIC 300 \ CP 300 \ Industrial Ethernet \CP 343-1 \ 6GK7 343-1EX30 0XE0 V3.0).
- Öffnen Sie durch Doppelklick auf den CP 343-1EX30 den Eigenschaften-Dialog und geben Sie für den CP unter "Eigenschaften" IP-Adress-Daten an. Gültige IP-Adress-Parameter erhalten Sie von Ihrem Systemadministrator.
- 3. Ordnen Sie den CP einem "Subnetz" zu. Ohne Zuordnung werden die IP-Adress-Daten nicht übernommen!

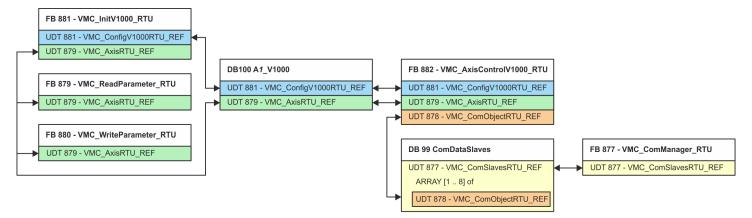
PtP-Funktionalität aktivieren

Bei den System SLIO CPUs 014 ... 017 ist die RS485-Schnittstelle standardmäßig auf PtP-Kommunikation eingestellt. Eine Hardware-Konfiguration zur Einstellung der PtP-Funktionalität ist nicht erforderlich.

13.6.5.3 Anwender-Programm

13.6.5.3.1 Programmstruktur

OB 100


■ FB 876 - VMC_ConfigMaster_RTU → 618

FB 876 - VMC_ConfigMaster_RTU

SFC 216 - SER CFG

- Dieser Baustein dient zur Parametrierung der seriellen Schnittstelle der CPU für Modbus RTU Kommunikation.
- Intern wird der Baustein SFC 216 SER_CFG aufgerufen.

OB₁

Mit Ausnahme der Bausteine DB 99 und FB 877 müssen Sie für jeden angebundenen Frequenzumrichter die nachfolgend aufgeführten Bausteine anlegen:

- FB 881 VMC_InitV1000_RTU → 621
 - Der FB 881 VMC_InitV1000_RTU initialisiert den entsprechenden Frequenzumrichter mit den Nutzerdaten.
 - Bevor ein Frequenzumrichter angesteuert werden kann, muss dieser initialisiert werden.
 - UDT 881 VMC ConfigV1000RTU REF → 618
 - UDT 879 VMC_AxisRTU_REF → 618
- FB 879 VMC ReadParameter RTU → 620
 - Mit diesem FB haben Sie lesenden Zugriff auf die Parameter eines seriell über Modbus RTU angebundenen Frequenzumrichters.
 - Die gelesenen Daten werden in einem Datenbaustein erfasst.
 - UDT 879 VMC_AxisRTU_REF → 618
- FB 880 VMC WriteParameter RTU → 621
 - Mit diesem FB haben Sie schreibenden Zugriff auf die Parameter eines seriell über Modbus RTU angebundenen Frequenzumrichters.
 - Die zu schreibenden Daten sind in einem Datenbaustein abzulegen.
 - UDT 879 VMC_AxisRTU_REF → 618
- DB 100 A1_V1000
 - Für jeden Frequenzumrichter, welcher seriell über Modbus RTU angekoppelt ist, ist jeweils ein Datenbaustein anzulegen.
 - UDT 879 VMC AxisRTU REF → 618
 - UDT 881 VMC_ConfigV1000RTU_REF → 618
- FB 882 VMC AxisControlV1000 RTU→623
 - Mit diesem Baustein k\u00f6nnen Sie einen seriell \u00fcber Modbus RTU angebundenen Frequenzumrichter steuern und dessen Status abrufen.
 - UDT 881 VMC_ConfigV1000RTU_REF → 618
 - UDT 879 VMC_AxisRTU_REF → 618
 - UDT 878 VMC ComObjectRTU REF → 618
- DB 99 ComDataSlaves
 - Für die Erfassung der Kommunikationsdaten aller Frequenzumrichter (max. 8), welche seriell über Modbus RTU angekoppelt sind, ist ein gemeinsamer Datenbaustein anzulegen.
 - UDT 877 VMC ComSlavesRTU REF → 618
 - UDT 878 VMC_ComObjectRTU_REF → 618

- FB 877 VMC_ComManager_RTU → 619
 - Der Baustein sorgt dafür, dass immer nur 1 Frequenzumrichter (Modbus-Slave) die serielle Schnittstelle benutzen kann. Bei Einsatz mehrerer Frequenzumrichter sendet dieser Baustein als Kommunikations-Manager die Aufträge an die jeweiligen Modbus-Slaves und wertet deren Antworten aus.
 - UDT 877 VMC_ComSlavesRTU_REF → 618

13.6.5.3.2 Bausteine in Projekt kopieren

Bibliothek einbinden

- 1. Gehen Sie in das "Download Center" von www.yaskawa.eu.com.
- **2.** Laden Sie unter "Controls Library" die Simple Motion Control Library.
- 3. ▶ Öffnen Sie mit "Datei → Dearchivieren" das Dialogfenster zur Auswahl der ZIP-Datei.
- **4.** Wählen Sie die entsprechende ZIP-Datei an und klicken Sie auf [Öffnen].
- **5.** Geben Sie ein Zielverzeichnis an, in dem die Bausteine abzulegen sind und starten Sie den Entpackvorgang mit [OK].

Bausteine in Projekt kopieren

- Öffnen Sie die Bibliothek nach dem Entpackvorgang und ziehen Sie per Drag&Drop alle Bausteine aus "V1000 Modbus RTU" in "Bausteine" Ihres Projekts:
 - FB 876 VMC ConfigMaster RTU
 - FB 877 VMC_ComManager_RTU
 - FB 878 VMC_RWParameterSys_RTU
 - FB 879 VMC_ReadParameter_RTU
 - FB 880 VMC WriteParameter RTU
 - FB 881 VMC InitV1000 RTU
 - FB 882 VMC_AxisControlV1000_RTU
 - FB 60 SEND
 - FB 61 RECEIVE
 - FB 72 RTU MB_MASTER
 - FC 216 SER CFG
 - FC 217 SER SND
 - FC 218 SER RCV
 - UDT 877 VMC_ComSlavesRTU_REF
 - UDT 878 VMC_ComObjectRTU_REF
 - UDT 879 VMC_AxisRTU_REF
 - UDT 881 VMC_ConfigV1000RTU_REF
 - SFB 4 TON

13.6.5.3.3 OB 100 für serielle Kommunikation anlegen

Alarm-OBs anlegen

- 1. Klicken Sie in Ihrem Projekt auf "Bausteine" und wählen Sie "Kontextmenü → Neues Objekt einfügen → Organisationsbaustein".
 - → Das Dialogfenster "Eigenschaften Organistionsbaustein" öffnet sich.
- 2. Fügen Sie den OB 100 Ihrem Projekt hinzu.
- 3. Diffnen Sie den OB 100.
- 4. ▶ Fügen Sie dem OB 100 einen Call FB876, DB876 hinzu.
 - → Der Bausteinaufruf wird angelegt und es öffnet sich ein Dialog zur Angabe des Instanz-Datenbausteins "VMC_ConfigMaster_RTU_876".
- **5.** Geben Sie folgende Parameter vor:

Call FB876, DB876 → "FB 876 - VMC_ConfigMaster_RTU - Modbus RTU CPU-Schnittstelle"...Seite 618

Baudrate	:= B#16#09	// Baudrate: 09h (9600Bit/s)	IN: BYTE
CharLen	:= B#16#03	// Anzahl Datenbits: 03h (8Bit)	IN: BYTE
Parity	:= B#16#00	// Parität: 0 (none = keine)	IN: BYTE
StopBits	:= B#16#01	// Stopbits: 1 (1Bit)	IN: BYTE
TimeOut	:= W#16#1FFF	// Fehler-Wartezeit: 1FFFh (hoch gewählt)	IN: WORD
Valid	:= "ModbusConfigValid"	// Konfiguration	OUT: BOOL
Error	:= "ModbusConfigError"	// Fehlerrückmeldung	OUT: BOOL
ErrorID	:= "ModbusConfigErrorID"	// Zusätzliche Fehlerinformationen	OUT: WORD

Symbolische Variable

Die symbolischen Variablen erstellen Sie über *"Kontextmenü* → *Symbole bearbeiten"*. Hier können Sie über einen Dialog den entsprechenden Operanden zuordnen.

13.6.5.3.4 Datenbaustein für Modbus-Slave anlegen

Für jeden Frequenzumrichter, welcher seriell über Modbus RTU angekoppelt ist, ist jeweils ein Datenbaustein anzulegen.

- 1. ► Klicken Sie in Ihrem Projekt auf "Bausteine" und wählen Sie "Kontextmenü → Neues Objekt einfügen → Datenbaustein".
 - ⇒ Das Dialogfenster "Baustein hinzufügen" öffnet sich.
- **2.** Geben Sie folgende Parameter an:
 - Name und Typ
 - Die DB-Nr. als "Name" können Sie frei wählen wie z.B. DB 100. Geben Sie DB 100 an.
 - Stellen Sie "Global-DB" als "Typ" ein.
 - Symbolischer Name
 - Geben Sie "A1_V1000" an.

Bestätigen Sie Ihre Eingaben mit [OK].

- Der Baustein wird angelegt.
- 3. Offnen Sie DB 100 "A1 V1000" durch Doppelklick.
- **4.** Legen Sie in "A1_V1000" folgende Variablen an:
 - "AxisData" vom Typ UDT 879 VMC_AxisRTU_REF
 - "V1000Data" vom Typ UDT 881 VMC_ConfigV1000RTU_REF

13.6.5.3.5 Datenbaustein für alle Modbus-Slaves anlegen

Für die Erfassung der Kommunikationsdaten aller Frequenzumrichter, welche seriell über Modbus RTU angekoppelt sind, ist ein gemeinsamer Datenbaustein anzulegen.

- 1. ► Klicken Sie in Ihrem Projekt auf "Bausteine" und wählen Sie "Kontextmenü → Neues Objekt einfügen → Datenbaustein".
 - ▶ Das Dialogfenster "Baustein hinzufügen" öffnet sich.

- 2. Geben Sie folgende Parameter an:
 - Name und Typ
 - Die DB-Nr. als "Name" können Sie frei wählen wie z.B. DB 99. Geben Sie DB 99 an.
 - Stellen Sie "Global-DB" als "Typ" ein.
 - Symbolischer Name
 - Geben Sie "ComDataSlaves" an.

Bestätigen Sie Ihre Eingaben mit [OK].

- → Der Baustein wird angelegt.
- 3. Offnen Sie DB 99 "ComDataSlaves" durch Doppelklick.
- **4.** Legen Sie in "ComDataSlaves" folgende Variable an:
 - "Slaves" vom Typ UDT 877 VMC_ComSlavesRTU_REF

13.6.5.3.6 OB 1 - Instanz des Kommunikations-Managers anlegen

Der FB 877 - VMC_ComManager_RTU sorgt dafür, dass immer nur 1 Frequenzumrichter (Modbus-Slave) die serielle Schnittstelle benutzen kann. Als Kommunikations-Manager sendet der Baustein die Aufträge and die jeweiligen Modbus-Slaves und wertet deren Antworten aus.

- 1. Diffnen Sie den OB 1.
- 2. Fügen Sie dem OB 1 einen Call FB877, DB877 hinzu.
 - → Der Bausteinaufruf wird angelegt und es öffnet sich ein Dialog zur Angabe des Instanz-Datenbausteins "VMC_ComManager_RTU_877".
- Bestätigen Sie die Abfrage des Instanz-Datenbausteins mit [OK].

Call FB877, DB877 → "FB 877 - VMC_ComManager_RTU - Modbus RTU Kommunikations-Manager"...Seite 619

```
NumberOfSlaves:= 1// Anzahl angebundener Frequenzumrichter: 1IN: INTWaitCycles:= "ComWaitCycles"// Mindestanzahl WartezyklenIN: DINTSlavesComData:= "ComDataSlaves.Slave"// Referenz zu allen KommunikationsobjektenIN-OUT: UDT 877
```

13.6.5.3.7 OB 1 - Instanz der V1000-Initialisierung anlegen

Der FB 881 - VMC_InitV1000_RTU initialisiert den entsprechenden Frequenzumrichter mit den Nutzerdaten. Bevor ein Frequenzumrichter angesteuert werden kann, muss dieser initialisiert werden.

- 1. Fügen Sie dem OB 1 einen Call FB881, DB881 hinzu.
 - → Der Bausteinaufruf wird angelegt und es öffnet sich ein Dialog zur Angabe des Instanz-Datenbausteins "VMC_InitV1000_RTU_881".
- 2. Bestätigen Sie die Abfrage des Instanz-Datenbausteins mit [OK].
- **3.** Geben Sie folgende Parameter vor:

OUT: WORD

IN-OUT: UDT 879

IN-OUT: UDT 881

Einsatz Frequenzumrichter über Modbus RTU > Einsatz im Siemens SIMATIC Manager

Call FB881, DB881 → "FB 881 - VMC_InitV1000_RTU - Modbus RTU Initialisierung"... Seite 621

Execute	:= "A1_InitExecute"	// Mit Flanke 0-1 wird der Auftrag ausgeführt.	IN: BOOL
Hardware	:= "A1_InitHardware"	// Angabe der eingesetzten Hardware	IN: BYTE
		// 1: System SLIO CP040, 2: SPEED7 CPU	
Laddr	:= "A1_InitLaddr"	// Logische Adresse bei Einsatz CP040	IN: INT
Unitld	:= "A1_InitUnitId"	// Modbus-Adresse des V1000	IN: BYTE
UserUnitsVelocity	:= "A1_InitUserUnitsVel"	// Benutzereinheit für Geschwindigkeiten	IN: INT
		// 0: Hz, 1: %, 2: U/min	
UserUnitsAcceleration	:= "A1_InitUserUnitsAcc"	// Benutzereinheit Beschleunigung/Verzögerung	IN: INT
		// 0: 0,01s, 1: 0,1s	
MaxVelocityApp	:= "A1_InitMaxVelocityApp"	// Max. Geschwindigkeit in Benutzereinheiten	IN: REAL
Done	:= "A1_InitDone"	// Status Auftrag fertig	OUT: BOOL
Busy	:= "A1_InitBusy"	// Status Auftrag in Bearbeitung	OUT: BOOL
Error	:= "A1_InitError"	// Fehlerrückmeldung	OUT: BOOL

// Zusätzliche Fehlerinformationen

// Referenz zu den allgemeinen Achsdaten

// Referenz zu den antriebsspezifischen Daten

Eingabewerte

Axis V1000

ErrorID

Alle Parameter sind mit den entsprechenden Variablen bzw. Operanden zu verschalten. Folgende Eingabe-Parameter sind entsprechend vorzubelegen:

Hardware

:= "A1 InitErrorID"

:= "A1 V1000".AxisData

:= "A1 V1000".V1000Data

Geben Sie hier die Hardware an, über welche Sie Ihre Frequenzumrichter ansteuern:

- 1: System SLIO CP040 dessen logische Adresse über Laddr vorzugeben ist.
- 2: SPEED7 CPU
- Laddr
 - Logische Adresse für System SLIO CP040 (Hardware = 1). Ansonsten wird dieser Parameter ignoriert.
- Unitld
 - Modbus-Adresse des V1000.
- UserUnitsVelocity

Benutzereinheit für Geschwindigkeiten:

0: Hz

Angabe in Hertz

- 1: %

Angabe als prozentualer Bezug auf die maximale Geschwindigkeit

 $= 2*f_{max}/p$

mit f_{max}: max. Ausgabefrequenz (Parameter E1-04)

p: Anzahl der Motorpole (motorabhängiger Parameter E2-04, E4-04 oder E5-04)

2: U/min

Angabe in Umdrehungen pro Minute

UserUnitsAcceleration

Benutzereinheiten für die Beschleunigung und Verzögerung

- 0: 0,01s (Wertebereich: 0,00s 600,00s)
- 1: 0,1s (Wertebereich: 0,0 6000,0s)
- MaxVelocityApp

Max. Geschwindigkeit für die Applikation. Die Angabe hat in Benutzereinheiten zu erfolgen und wird bei Bewegungskommandos für den Abgleich verwendet.

13.6.5.3.8 OB 1 - Instanz Achskontrolle V1000 anlegen

Mit dem FB 882 - VMC_AxisControlV1000_RTU können Sie einen seriell über Modbus RTU angebundenen Frequenzumrichter steuern und dessen Status abrufen.

- 1. Fügen Sie dem OB 1 einen Call FB882, DB882 hinzu.
 - → Der Bausteinaufruf wird angelegt und es öffnet sich ein Dialog zur Angabe des Instanz-Datenbausteins "VMC AxisControlV1000 RTU 882".
- 2. Bestätigen Sie die Abfrage des Instanz-Datenbausteins mit [OK].
- 3. Geben Sie folgende Parameter vor:

Call FB882, DB882 - "FB 882 - VMC_AxisControlV1000_RTU - Modbus RTU Achskontrolle"...Seite 623

AxisEnable	:= "A1_AxisEnable"	// Aktivierung der Achse	IN: BOOL
AxisReset	:= "A1_AxisReset"	// Kommando: Fehler des V1000 zurücksetzen.	IN: BOOL
StopExecute	:= "A1_StopExecute"	// Kommando: Stop - Achse stoppen	IN: BOOL
MvVelocityExecute	:= "A1_MvVelocityExecute"	// Kommando: MoveVelocity (Geschwindigkeitsregelung)	IN: BOOL
Velocity	:= "A1_Velocity"	// Parameter: Geschwindigkeitsvorgabe für MoveVelocity	IN: REAL
AccelerationTime	:= "A1_AccelerationTime"	// Parameter: Beschleunigungszeit	IN: REAL
DecelerationTime	:= "A1_DecelerationTime"	// Parameter: Verzögerungszeit	IN: REAL
JogPositive	:= "A1_JogPositive"	// Kommando: <i>JogPos</i>	IN: BOOL
JogNegative	:= "A1_JogNegative"	// Kommando: <i>JogNeg</i>	IN: BOOL
JogVelocity	:= "A1_JogVelocity"	// Parameter: Geschwindigkeitsvorgabe für Jogging	IN: REAL
JogAccelerationTime	:= "A1_JogAccelerationTime"	// Parameter: Beschleunigungszeit für Jogging	IN: REAL
JogDecelerationTime	:= "A1_JogDecelerationTime"	// Parameter: Verzögerungszeit für Jogging	IN: REAL
AxisReady	:= "A1_AxisReady"	// Status: Bereitschaft der Achse	OUT: BOOL
AxisEnabled	:= "A1_AxisEnabled"	// Status: Aktivierung der Achse	OUT: BOOL
AxisError	:= "A1_AxisError"	// Status: Achsfehler	OUT: BOOL
AxisErrorID	:= "A1_AxisErrorID"	// Status: Zusätzliche Fehlerinformationen für AxisError	OUT: WORD
DriveError	:= "A1_DriveError"	// Status: Fehler Frequenzumrichter	OUT: BOOL
ActualVelocity	:= "A1_ActualVelocity"	// Status: Aktuelle Geschwindigkeit	OUT: REAL
InVelocity	:= "A1_InVelocity"	// Status Zielgeschwindigkeit	OUT: BOOL
CmdDone	:= "A1_CmdDone"	// Status: Kommando fertig	OUT: BOOL
CmdBusy	:= "A1_CmdBusy"	// Status: Kommando in Bearbeitung	OUT: BOOL
CmdAborted	:= "A1_CmdAborted"	// Status: Kommando abgebrochen	OUT: BOOL
CmdError	:= "A1_CmdError"	// Status: Kommando Fehler	OUT: BOOL

CmdErrorID	:= "A1_CmdErrorID"	// Status: Zusätzliche Fehlerinformationen für CmdError	OUT: WORD
CmdActive	:= "A1_CmdActive"	// Status: Aktives Kommando	OUT: INT
DirectionPositive	:= "A1_DirectionPositive"	// Status: Drehrichtung positiv	OUT: BOOL
DirectionNegative	:= "A1_DirectionNegative"	// Status: Drehrichtung negativ	OUT: BOOL
Axis	:= "A1_V1000".AxisData	// Referenz zu den allgemeinen Achsdaten	IN-OUT: UDT 879
V1000	:= "A1_V1000".V1000Data	// Referenz zu den allgemeinen Daten des	IN-OUT: UDT 881
		// Frequenzumrichters	
AxisComData	:= "ComDataSlaves".Slaves.Slave(1)	// Referenz zu den Kommunikationsdaten	IN-OUT: UDT 878

13.6.5.3.9 OB 1 - Instanz Parameter lesen anlegen

Mit dem FB 879 - VMC_ReadParameter_RTU haben Sie lesenden Zugriff auf die Parameter eines seriell über Modbus RTU angebundenen Frequenzumrichters. Für die Erfassung der Parameterdaten ist ein DB anzulegen.

- 1. Neues Objekt einfügen → Datenbaustein".
 - → Das Dialogfenster "Baustein hinzufügen" öffnet sich.
- **2.** Geben Sie folgende Parameter an:
 - Name und Typ
 - Die DB-Nr. als "Name" k\u00f6nnen Sie frei w\u00e4hlen wie z.B. DB 98. Geben Sie DB 98 an.
 - Stellen Sie "Global-DB" als "Typ" ein.
 - Symbolischer Name
 - Geben Sie "A1_TransferData" an.

Bestätigen Sie Ihre Eingaben mit [OK].

- Der Baustein wird angelegt.
- 3. Diffnen Sie DB 98 "A1_TransferData" durch Doppelklick.
- 4. Legen Sie in "A1_TransferData" folgende Variablen an:
 - "Data 0" vom Typ WORD
 - "Data_1" vom Typ WORD
 - "Data_2" vom Typ WORD
 - "Data_3" vom Typ WORD
- 5. Fügen Sie dem OB 1 einen Call FB879, DB879 hinzu.
 - → Der Bausteinaufruf wird angelegt und es öffnet sich ein Dialog zur Angabe des Instanz-Datenbausteins "VMC_ReadParameter_RTU".
- **6.** Bestätigen Sie die Abfrage des Instanz-Datenbausteins mit [OK].
- 7. Geben Sie folgende Parameter vor:

Call FB879, DB879 → "FB 879 - VMC_ReadParameter_RTU - Modbus RTU Parameter lesen"...Seite 620

Execute	:= "A1_RdParExecute"	// Mit Flanke 0-1 wird der Auftrag ausgeführt.	IN: BOOL
StartAddress	:= "A1_RdParStartAddress"	// Start-Adresse des 1. Registers	IN: INT
Quantity	:= "A1_RdParQuantity"	// Anzahl der zu lesenden Register	IN: INT
Done	:= "A1_RdParDone"	// Status Auftrag fertig	IN: REAL
Busy	:= "A1_RdParBusy"	// Status Auftrag in Bearbeitung	OUT: BOOL
Error	:= "A1_RdParError"	// Fehlerrückmeldung	OUT: BOOL
ErrorID	:= "A1_RdParErrorID"	// Zusätzliche Fehlerinformationen	OUT: BOOL
Data	:= P#DB98.DBX0.0 BYTES 8	// Ablageort der Parameterdaten	OUT: WORD
Axis	:= "A1 V1000".AxisData	// Referenz zu den allgemeinen Achsdaten	IN-OUT: UDT 879

 $\tilde{\mathbb{I}}$

Bitte beachten Sie, dass immer nur ganze Register als WORD gelesen werden können. Zur Auswertung einzelner Bits müssen Sie High- und Low-Byte vertauschen!

13.6.5.3.10 OB 1 - Instanz Parameter schreiben anlegen

Mit dem FB 880 - VMC_WriteParameter_RTU haben Sie schreibenden Zugriff auf die Parameter eines seriell über Modbus RTU angebundenen Frequenzumrichters. Für die Erfassung können Sie den für Lesezugriff angelegten DB verwenden - hier DB 98.

- 1. Fügen Sie dem OB 1 einen Call FB880, DB880 hinzu.
 - → Der Bausteinaufruf wird angelegt und es öffnet sich ein Dialog zur Angabe des Instanz-Datenbausteins "VMC WriteParameter RTU".
- 2. Bestätigen Sie die Abfrage des Instanz-Datenbausteins mit [OK].
- **3.** ▶ Geben Sie folgende Parameter vor:

Call FB880, DB880 → "FB 880 - VMC_WriteParameter_RTU - Modbus RTU Parameter schreiben"...Seite 621

Execute	:= "A1_WrParExecute"	// Mit Flanke 0-1 wird der Auftrag ausgeführt.	IN: BOOL
StartAddress	:= "A1_WrParStartAddress"	// Start-Adresse des 1. Registers	IN: INT
Quantity	:= "A1_WrParQuantity"	// Anzahl der zu schreibenden Register	IN: INT
Done	:= "A1_WrParDone"	// Status Auftrag fertig	IN: REAL
Busy	:= "A1_WrParBusy"	// Status Auftrag in Bearbeitung	OUT: BOOL
Error	:= "A1_WrParError"	// Fehlerrückmeldung	OUT: BOOL
ErrorID	:= "A1_WrParErrorID"	// Zusätzliche Fehlerinformationen	OUT: BOOL
Data	:= P#DB98.DBX0.0 BYTES 8	// Ablageort der Parameterdaten	OUT: WORD
Axis	:= "A1_V1000".AxisData	// Referenz zu den allgemeinen Achsdaten	IN-OUT: UDT 879

13.6.5.3.11 Zeitlicher Ablauf

1. ▶ Speichern Sie Ihr Projekt mit "Station → Speichern und übersetzen".

- 2. Transferieren Sie Ihr Projekt in Ihre CPU.
 - ⇒ Sie können jetzt Ihre Applikation in Betrieb nehmen.

VORSICHT

Bitte beachten Sie immer die Sicherheitshinweise zu ihrem Frequenzumrichter, insbesondere bei der Inbetriebnahme!

- 3. Mittels einer Beobachtungstabelle können Sie den Frequenzumrichter manuell steuern. Zum Anlegen einer Beobachtungstabelle wählen Sie "Zielsystem Variable beobachten/steuern".
 - ➡ Die Beobachtungstabelle wird angelegt und für die Bearbeitung geöffnet.
- 4. Passen Sie zuerst die Wartezeit zwischen 2 Aufträgen an. Diese beträgt für einen V1000-Frequenzumrichter mindestens 200ms. Stellen Sie hierzu in der Beobachtungstabelle unter "Symbol" den Bezeichner "ComWaitCycles" als "DEZ" ein und geben Sie unter "Steuerwert" einen Wert zwischen 200 und 400 vor.

Zur Performance-Steigerung können Sie diesen Wert später nach unten korrigieren, solange Sie keinen Timeout-Fehler (80C8h) erhalten. Bitte beachten Sie hierbei, dass manche Befehle, wie z.B. MoveVelocity aus mehreren Aufträgen bestehen können.

5. Bevor Sie einen Frequenzumrichter ansteuern k\u00f6nnen, muss dieser mit dem FB 881 - VMC_InitV1000_RTU initialisiert werden. → "FB 881 - VMC_InitV1000_RTU - Modbus RTU Initialisierung"... Seite 621

Stellen Sie hierzu in der Beobachtungstabelle unter "Symbol" den Bezeichner "A1_InitExecute" als "BOOL" ein und geben Sie unter "Steuerwert" den Wert "True" vor. Aktivieren Sie "Steuern" und starten Sie die Übertragung der Steuerwerte.

→ Der Frequenzumrichter wird initialisiert. Nach Abarbeitung liefert der Ausgang Done TRUE zurück. Im Fehlerfall können Sie durch Auswertung der ErrorID den Fehler ermitteln.

Fahren Sie erst fort, wenn der Init-Baustein keinen Fehler meldet!

- 6. ▶ Bei erfolgreicher Initialisierung erfolgt zyklisch die Abarbeitung der Register der angebundenen Frequenzumrichter d.h. diese erhalten zyklisch Aufträge. Zur manuellen Steuerung können Sie mit dem FB 882 VMC_AxisControlV1000_RTU Steuerbefehle an den entsprechenden Frequenzumrichter senden. → "FB 882 VMC_AxisControlV1000_RTU Modbus RTU Achskontrolle"...Seite 623
- **7.** Legen Sie die Parameter des FB 882 VMC_AxisControlV1000_RTU zur Steuerung und Abfrage in der Beobachtungstabelle an.
- 8. ▶ Speichern Sie die Beobachtungstabelle unter einem Namen wie z.B. "V1000".
- 9. Aktivieren Sie durch Setzen von AxisEnable die entsprechende Achse. Sobald diese AxisReady = TRUE zurückmeldet, können Sie diese mit den entsprechenden Fahrbefehlen ansteuern.

13.6.6 Einsatz im Siemens TIA Portal

13.6.6.1 Voraussetzung

Übersicht

- Bitte verwenden Sie für die Projektierung das Siemens TIA Portal ab V 14.
- Bei einer System MICRO CPU wird durch Stecken des Erweiterungsmoduls die PtP-Funktionalität aktiviert. Die Projektierung erfolgt im Siemens TIA Portal in Form eines virtuellen PROFINET-IO-Devices. Das PROFINET-IO-Device ist mittels GSDML im Hardware-Katalog zu installieren.
- Bei einer System SLIO CPU 013C erfolgt die Projektierung der PtP-Funktionalität im Siemens TIA Portal in Form eines virtuellen PROFINET-IO-Devices. Das PROFINET-IO-Device ist mittels GSDML im Hardware-Katalog zu installieren.
- Bei den System SLIO CPUs 014 ... 017 ist die RS485-Schnittstelle standardmäßig auf PtP-Kommunikation eingestellt. Die Projektierung erfolgt im Siemens TIA Portal in Form eines virtuellen PROFINET-IO-Devices. Das PROFINET-IO-Device ist mittels GSDML im Hardware-Katalog zu installieren.

IO Device installieren

Die Installation des PROFINET IO Device im Hardware-Katalog erfolgt nach folgender Vorgehensweise:

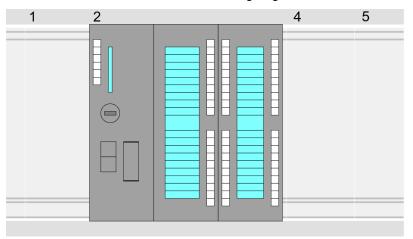
- 1. Gehen Sie in das "Download Center" von www.yaskawa.eu.com.
- 2. Laden Sie unter "GSDML SLIO" die Konfigurationsdatei für Ihre CPU.
- 3. Extrahieren Sie die Datei in Ihr Arbeitsverzeichnis.
- 4. Starten das Siemens TIA Portal.
- 5. Schließen Sie alle Projekte.
- 6. ▶ Wechseln Sie in die Projektansicht.
- 7. ▶ Gehen Sie auf "Extras → Gerätebeschreibungsdatei (GSD) installieren".
- 8. Navigieren Sie in Ihr Arbeitsverzeichnis und installieren Sie die entsprechende GSDML-Datei.
 - Nach der Installation wird der Hardware-Katalog aktualisiert und das Siemens TIA Portal beendet.

Nach einem Neustart des Siemens TIA Portals finden Sie das entsprechende PROFINET-IO-Device unter *Weitere Feldgeräte > PROFINET > IO > VIPA ...* >

Damit die Komponenten von Yaskawa angezeigt werden können, müssen Sie im Hardware-Katalog bei "Filter" den Haken entfernen.

13.6.6.2 Hardware-Konfiguration

13.6.6.2.1 Hardware-Konfiguration System MICRO

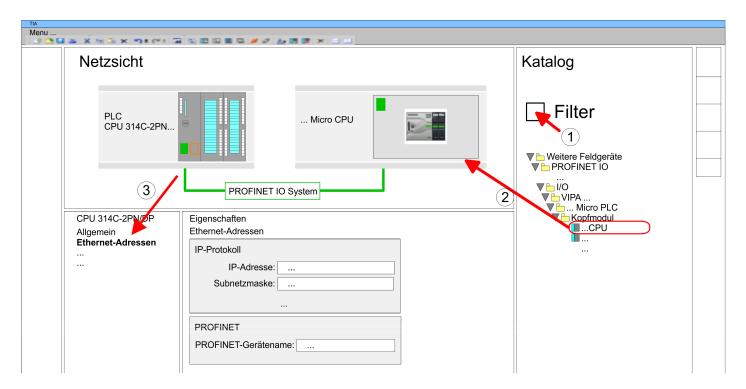

CPU im Projekt anlegen

Um kompatibel mit dem Siemens TIA Portal zu sein, sind folgende Schritte durchzuführen:

- 1. Starten Sie das Siemens TIA Portal mit einem neuen Projekt.
- 2. Wechseln Sie in die *Projektansicht*.
- 3. Klicken Sie in der Projektnavigation auf "Neues Gerät hinzufügen".

4. Wählen Sie im Eingabedialog folgende CPU aus: SIMATIC S7-300 > CPU 314C-2 PN/DP (314-6EH04-0AB0 V3.3)

⇒ Die CPU wird mit einer Profilschiene eingefügt.

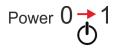


Geräteübersicht:

Baugruppe	 Steckplatz	 Тур	
PLC	2	CPU 314C-2PN/DP	
MPI-Schnittstelle	2 X1	MPI/DP-Schnittstelle	
PROFINET- Schnitt	2 X2	PROFINET-Schnittstelle	
DI24/DO16	2 5	DI24/DO16	
AI5/AO2	2 6	AI5/AO2	
Zählen	27	Zählen	

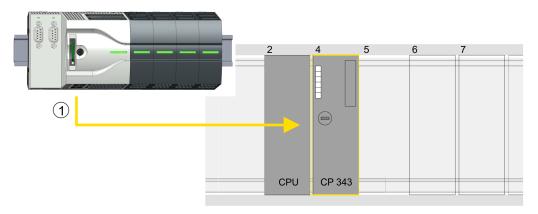
Anbindung CPU als PROFINET-IO-Device

- 1. Wechseln Sie im *Projektbereich* in die "Netzsicht".
- 2. Nach der Installation der GSDML finden Sie das IO-Device für die CPU im Hardware-Katalog unter Weitere Feldgeräte > PROFINET > IO > VIPA ... > ... MICRO PLC. Binden Sie das Slave-System an die CPU an, indem Sie dies aus dem Hardware-Katalog in die Netzsicht ziehen und dieses über PROFINET an die CPU anbinden.
- 3. Klicken Sie in der *Netzsicht* auf den PROFINET-Teil der Siemens CPU und geben Sie in *"Eigenschaften"* unter *"Ethernet-Adressen"* im Bereich *"IP-Protokoll"* gültige IP-Adressdaten an.
- **4.** Geben Sie unter "PROFINET" einen "PROFINET Gerätenamen" an. Der Gerätename muss eindeutig am Ethernet-Subnetz sein.


- 5. Wählen Sie in der *Netzsicht* das IO-Device "... *MICRO PLC*" an und wechseln Sie in die *Geräteübersicht*.
 - In der Geräteübersicht des PROFINET-IO-Device "... MICRO PLC" ist auf Steckplatz 0 die CPU bereits vorplatziert.

PtP-Funktionalität aktivieren

Eine Hardware-Konfiguration zur Einstellung der PtP-Funktionalität ist nicht erforderlich.


- 1. Schalten Sie die Spannungsversorgung aus.
- 2. Montieren Sie das Erweiterungsmodul.
- 3. ▶ Stellen Sie einen Kabelverbindung zum Kommunikationspartner her.

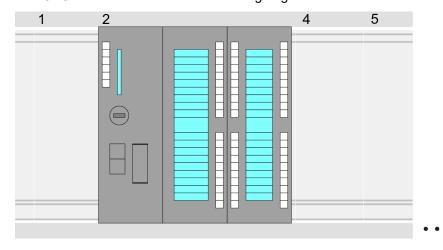
- **4.** ▶ Schalten Sie die Spannungsversorgung ein.
 - Nach kurzer Hochlaufzeit ist die Schnittstelle X1 PtP bereit für die PtP-Kommunikation.

Ethernet-PG/OP-Kanal parametrieren

- 1. Platzieren Sie für den Ethernet-PG/OP-Kanal auf Steckplatz 4 den Siemens CP 343-1 (6GK7 343-1EX30 0XE0 V3.0).
- Öffnen Sie durch Klick auf den CP 343-1EX30 den "Eigenschaften"-Dialog und geben Sie für den CP in den "Eigenschaften" unter "Ethernet-Adresse" IP-Adress-Daten an. Gültige IP-Adress-Parameter erhalten Sie von Ihrem Systemadministrator.

1 Ethernet-PG/OP-Kanal

Geräteübersicht


Baugruppe	 Steckplatz	 Тур	
PLC	2	CPU 314C-2PN/DP	
MPI/DP-Schnitt- stelle	2 X1	MPI/DP-Schnittstelle	
PROFINET- Schnittstelle	2 X2	PROFINET-Schnittstelle	
CP 343-1	4	CP 343-1	

13.6.6.2.2 Hardware-Konfiguration System SLIO CPU 013C

CPU im Projekt anlegen

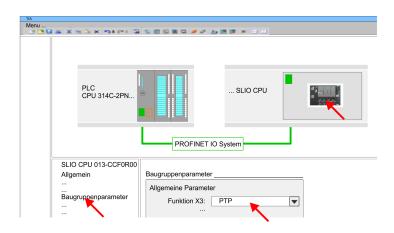
Um kompatibel mit dem Siemens TIA Portal zu sein, sind folgende Schritte durchzuführen:

- 1. Starten Sie das Siemens TIA Portal mit einem neuen Projekt.
- 2. Wechseln Sie in die Projektansicht.
- 3. Klicken Sie in der Projektnavigation auf "Neues Gerät hinzufügen".
- 4. Wählen Sie im Eingabedialog folgende CPU aus: SIMATIC S7-300 > CPU 314C-2 PN/DP (314-6EH04-0AB0 V3.3)
 - → Die CPU wird mit einer Profilschiene eingefügt.



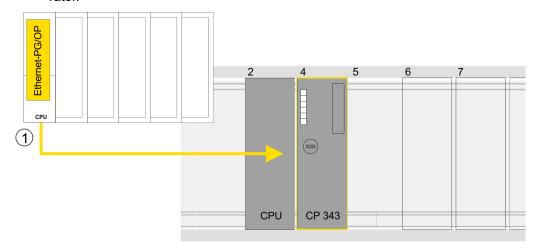
Geräteübersicht:

Baugruppe	 Steckplatz	 Тур	
PLC	2	CPU 314C-2PN/DP	
MPI-Schnittstelle	2 X1	MPI/DP-Schnittstelle	
PROFINET- Schnitt	2 X2	PROFINET-Schnittstelle	
DI24/DO16	2 5	DI24/DO16	
AI5/AO2	2 6	AI5/AO2	
Zählen	27	Zählen	


Anbindung CPU als PROFINET-IO-Device

- 1. Wechseln Sie im *Projektbereich* in die "Netzsicht".
- 2. Nach der Installation der GSDML finden Sie das IO-Device für die SLIO CPU im Hardware-Katalog unter Weitere Feldgeräte > PROFINET > IO > VIPA ... > ... SLIO System. Binden Sie das Slave-System an die CPU an, indem Sie dies aus dem Hardware-Katalog in die Netzsicht ziehen und dieses über PROFINET an die CPU anbinden.
- 3. Klicken Sie in der Netzsicht auf den PROFINET-Teil der Siemens CPU und geben Sie in "Eigenschaften" unter "Ethernet-Adressen" im Bereich "IP-Protokoll" gültige IP-Adressdaten an.
- **4.** Geben Sie unter "PROFINET" einen "PROFINET Gerätenamen" an. Der Gerätename muss eindeutig am Ethernet-Subnetz sein.

- 5. Wählen Sie in der *Netzsicht* das IO-Device "... *SLIO CPU*" an und wechseln Sie in die *Geräteübersicht*.
 - In der Geräteübersicht des PROFINET-IO-Device "... SLIO CPU" ist auf Steckplatz 0 die CPU bereits vorplatziert.


PtP-Funktionalität aktivieren

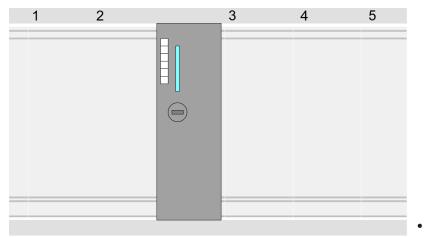
- 1. Öffnen Sie den Eigenschaften-Dialog, indem Sie auf die "... SLIO CPU" doppelklicken
- 2. Stellen Sie unter "Funktion X3" den Wert "PTP" ein.

Ethernet-PG/OP-Kanal parametrieren

- 1. Platzieren Sie für den Ethernet-PG/OP-Kanal auf Steckplatz 4 den Siemens CP 343-1 (6GK7 343-1EX30 0XE0 V3.0).
- Öffnen Sie durch Klick auf den CP 343-1EX30 den "Eigenschaften"-Dialog und geben Sie für den CP in den "Eigenschaften" unter "Ethernet-Adresse" IP-Adress-Daten an. Gültige IP-Adress-Parameter erhalten Sie von Ihrem Systemadministrator.

1 Ethernet-PG/OP-Kanal

Geräteübersicht

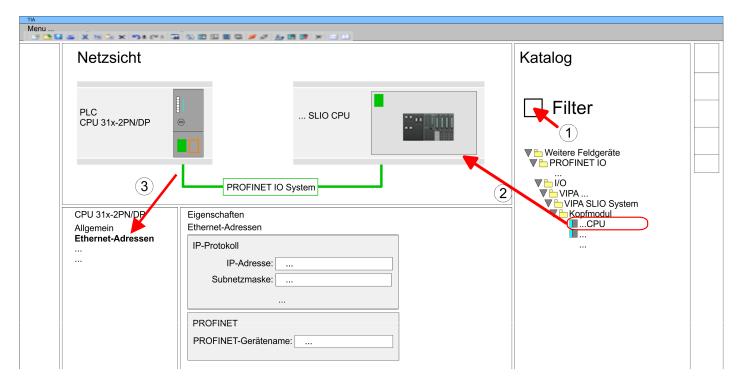

Baugruppe	 Steckplatz	 Тур	
PLC	2	CPU 315-2 PN/DP	
MPI/DP-Schnitt- stelle	2 X1	MPI/DP-Schnittstelle	
PROFINET- Schnittstelle	2 X2	PROFINET-Schnittstelle	
CP 343-1	4	CP 343-1	

13.6.6.2.3 Hardware-Konfiguration System SLIO CPU 014 ... 017

CPU im Projekt anlegen

Um kompatibel mit dem Siemens TIA Portal zu sein, sind folgende Schritte durchzuführen:

- 1. Starten Sie das Siemens TIA Portal mit einem neuen Projekt.
- 2. Wechseln Sie in die *Projektansicht*.
- 3. Klicken Sie in der Projektnavigation auf "Neues Gerät hinzufügen".
- 4. Wählen Sie im Eingabedialog folgende CPU aus: SIMATIC S7-300 > CPU 315-2 PN/DP (315-2EH14-0AB0 V3.2)
 - Die CPU wird mit einer Profilschiene eingefügt.

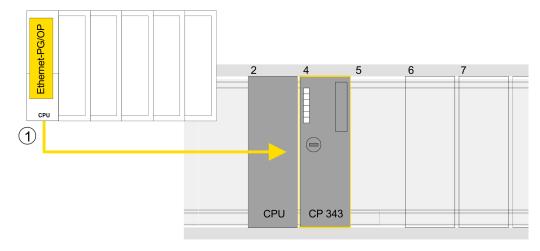


Geräteübersicht

Baugruppe	 Steckplatz	 Тур	
PLC	2	CPU 315-2 PN/DP	
MPI/DP-Schnitt- stelle	2 X1	MPI/DP-Schnittstelle	
PROFINET- Schnittstelle	2 X2	PROFINET-Schnittstelle	
•••			

Anbindung CPU als PROFINET-IO-Device

- 1. Wechseln Sie im *Projektbereich* in die "Netzsicht".
- 2. Nach der Installation der GSDML finden Sie das IO-Device für die SLIO CPU im Hardware-Katalog unter *Weitere Feldgeräte > PROFINET > IO > VIPA ... > ... SLIO System*. Binden Sie das Slave-System an die CPU an, indem Sie dies aus dem Hardware-Katalog in die *Netzsicht* ziehen und dieses über PROFINET an die CPU anbinden.
- 3. Klicken Sie in der *Netzsicht* auf den PROFINET-Teil der Siemens CPU und geben Sie in *"Eigenschaften"* unter *"Ethernet-Adressen"* im Bereich *"IP-Protokoll"* gültige IP-Adressdaten an.
- **4.** Geben Sie unter "PROFINET" einen "PROFINET Gerätenamen" an. Der Gerätename muss eindeutig am Ethernet-Subnetz sein.


- 5. Wählen Sie in der *Netzsicht* das IO-Device "... *SLIO CPU*" an und wechseln Sie in die *Geräteübersicht*.
 - In der Geräteübersicht des PROFINET-IO-Device "... SLIO CPU" ist auf Steckplatz 0 die CPU bereits vorplatziert.

PtP-Funktionalität aktivieren

Bei den System SLIO CPUs 014 ... 017 ist die RS485-Schnittstelle standardmäßig auf PtP-Kommunikation eingestellt. Eine Hardware-Konfiguration zur Einstellung der PtP-Funktionalität ist nicht erforderlich.

Ethernet-PG/OP-Kanal parametrieren

- 1. Platzieren Sie für den Ethernet-PG/OP-Kanal auf Steckplatz 4 den Siemens CP 343-1 (6GK7 343-1EX30 0XE0 V3.0).
- Öffnen Sie durch Klick auf den CP 343-1EX30 den "Eigenschaften"-Dialog und geben Sie für den CP in den "Eigenschaften" unter "Ethernet-Adresse" IP-Adress-Daten an. Gültige IP-Adress-Parameter erhalten Sie von Ihrem Systemadministrator.

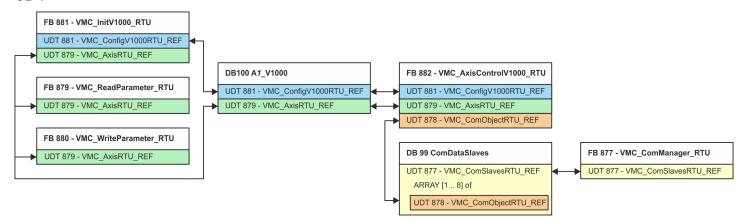
1 Ethernet-PG/OP-Kanal

Geräteübersicht

Baugruppe	 Steckplatz	 Тур	
PLC	2	CPU 315-2 PN/DP	
MPI/DP-Schnitt- stelle	2 X1	MPI/DP-Schnittstelle	
PROFINET- Schnittstelle	2 X2	PROFINET-Schnittstelle	
CP 343-1	4	CP 343-1	

13.6.6.3 Anwender-Programm

13.6.6.3.1 Programmstruktur


OB 100

FB 876 - VMC_ConfigMaster_RTU

SFC 216 - SER CFG

- FB 876 VMC_ConfigMaster_RTU → 618
 - Dieser Baustein dient zur Parametrierung der seriellen Schnittstelle der CPU für Modbus RTU Kommunikation.
 - Intern wird der Baustein SFC 216 SER_CFG aufgerufen.

OB 1

Mit Ausnahme der Bausteine DB 99 und FB 877 müssen Sie für jeden angebundenen Frequenzumrichter die nachfolgend aufgeführten Bausteine anlegen:

- FB 881 VMC InitV1000 RTU → 621
 - Der FB 881 VMC_InitV1000_RTU initialisiert den entsprechenden Frequenzumrichter mit den Nutzerdaten.
 - Bevor ein Frequenzumrichter angesteuert werden kann, muss dieser initialisiert werden.
 - UDT 881 VMC_ConfigV1000RTU_REF → 618
 - UDT 879 VMC_AxisRTU_REF → 618
- FB 879 VMC_ReadParameter_RTU → 620
 - Mit diesem FB haben Sie lesenden Zugriff auf die Parameter eines seriell über Modbus RTU angebundenen Frequenzumrichters.
 - Die gelesenen Daten werden in einem Datenbaustein erfasst.
 - UDT 879 VMC_AxisRTU_REF → 618

- FB 880 VMC_WriteParameter_RTU → 621
 - Mit diesem FB haben Sie schreibenden Zugriff auf die Parameter eines seriell über Modbus RTU angebundenen Frequenzumrichters.
 - Die zu schreibenden Daten sind in einem Datenbaustein abzulegen.
 - UDT 879 VMC_AxisRTU_REF → 618
- DB 100 A1 V1000
 - Für jeden Frequenzumrichter, welcher seriell über Modbus RTU angekoppelt ist, ist jeweils ein Datenbaustein anzulegen.
 - UDT 879 VMC_AxisRTU_REF → 618
 - UDT 881 VMC ConfigV1000RTU REF → 618
- FB 882 VMC AxisControlV1000 RTU→623
 - Mit diesem Baustein k\u00f6nnen Sie einen seriell \u00fcber Modbus RTU angebundenen Frequenzumrichter steuern und dessen Status abrufen.
 - UDT 881 VMC ConfigV1000RTU REF → 618
 - UDT 879 VMC AxisRTU REF → 618
 - UDT 878 VMC_ComObjectRTU_REF → 618
- DB 99 ComDataSlaves
 - Für die Erfassung der Kommunikationsdaten aller Frequenzumrichter (max. 8), welche seriell über Modbus RTU angekoppelt sind, ist ein gemeinsamer Datenbaustein anzulegen.
 - UDT 877 VMC_ComSlavesRTU_REF → 618
 - UDT 878 VMC_ComObjectRTU_REF → 618
- FB 877 VMC_ComManager_RTU → 619
 - Der Baustein sorgt dafür, dass immer nur 1 Frequenzumrichter (Modbus-Slave) die serielle Schnittstelle benutzen kann. Bei Einsatz mehrerer Frequenzumrichter sendet dieser Baustein als Kommunikations-Manager die Aufträge an die jeweiligen Modbus-Slaves und wertet deren Antworten aus.
 - UDT 877 VMC ComSlavesRTU REF → 618

13.6.6.3.2 Bausteine in Projekt kopieren

Bibliothek einbinden

- 1. Gehen Sie in das "Download Center" von www.yaskawa.eu.com.
- Laden Sie unter "Controls Library" die Simple Motion Control Library.
 Die Bibliothek liegt für die entsprechende TIA Portal Version als gepackte zip-Datei vor.
- 3. Starten Sie mit einem Doppelklick auf die Datei ...TIA_Vxx.zip ihr Unzip-Programm, entpacken Sie Dateien und Ordner in ein Arbeitsverzeichnis für das Siemens TIA Portal.
- **4.** Wechseln sie im Siemens TIA Portal in die *Projektansicht*.
- 5. Wählen Sie auf der rechten Seite die Task-Card "Bibliotheken".
- 6. Nlicken Sie auf "Globale Bibliothek".
- 7. Klicken Sie innerhalb der "Globalen Bibliothek" auf die freie Fläche und wählen Sie "Kontextmenü → Bibliothek dearchivieren".
- 8. Navigieren Sie zu ihrem Arbeitsverzeichnis und laden Sie die Datei ...Simple Motion.zalxx.

Bausteine in Projekt kopieren

- Kopieren Sie alle Bausteine aus der Bibliothek in das Verzeichnis "Programmbausteine" in der Projektnavigation Ihres Projekts:
 - FB 876 VMC_ConfigMaster_RTU
 - FB 877 VMC_ComManager_RTU
 - FB 878 VMC_RWParameterSys_RTU
 - FB 879 VMC ReadParameter RTU
 - FB 880 VMC WriteParameter RTU
 - FB 881 VMC_InitV1000_RTU
 - FB 882 VMC AxisControlV1000 RTU
 - FB 60 SEND
 - FB 61 RECEIVE
 - FB 72 RTU MB MASTER
 - FC 216 SER CFG
 - FC 217 SER SND
 - FC 218 SER RCV
 - UDT 877 VMC_ComSlavesRTU_REF
 - UDT 878 VMC_ComObjectRTU_REF
 - UDT 879 VMC AxisRTU REF
 - UDT 881 VMC ConfigV1000RTU REF
 - SFB 4 TON

13.6.6.3.3 OB 100 für serielle Kommunikation anlegen

- 1. ► Klicken Sie auf "Projektnavigation → ...CPU... → Programmbausteine → Neuen Baustein hinzufügen".
 - → Das Dialogfenster "Neuen Baustein hinzufügen" öffnet sich.
- 2. Geben Sie OB 100 an und bestätigen Sie mit [OK].
 - → Der OB 100 wird angelegt und geöffnet.
- 3. Fügen Sie dem OB 100 einen Call FB876, DB876 zu.
 - → Der Bausteinaufruf wird angelegt und es öffnet sich ein Dialog zur Angabe des Instanz-Datenbausteins "VMC_ConfigMaster_RTU_876".
- 4. Bestätigen Sie die Abfrage des Instanz-Datenbausteins mit [OK].
- 5. Geben Sie folgende Parameter vor:

Call FB876, DB876 → "FB 876 - VMC_ConfigMaster_RTU - Modbus RTU CPU-Schnittstelle"...Seite 618

Baudrate	:= B#16#09	// Baudrate: 09h (9600Bit/s)	IN: BYTE
CharLen	:= B#16#03	// Anzahl Datenbits: 03h (8Bit)	IN: BYTE
Parity	:= B#16#00	// Parităt: 0 (none = keine)	IN: BYTE
StopBits	:= B#16#01	// Stopbits: 1 (1Bit)	IN: BYTE
TimeOut	:= W#16#1FFF	// Fehler-Wartezeit: 1FFFh (hoch gewählt)	IN: WORD
Valid	:= "ModbusConfigValid"	// Konfiguration	OUT: BOOL
Error	:= "ModbusConfigError"	// Fehlerrückmeldung	OUT: BOOL
ErrorID	:= "ModbusConfigErrorID"	// Zusätzliche Fehlerinformationen	OUT: WORD

13.6.6.3.4 Datenbaustein für Modbus-Slave anlegen

Für jeden Frequenzumrichter, welcher seriell über Modbus RTU angekoppelt ist, ist jeweils ein Datenbaustein anzulegen.

- 1. Klicken Sie auf "Projektnavigation → ...CPU... → Programmbausteine → Neuen Baustein hinzufügen".
 - ⇒ Das Dialogfenster "Baustein hinzufügen" öffnet sich.
- Wählen Sie den Bausteintyp "DB Baustein" und vergeben Sie diesem den Namen "A1_V1000". Die DB-Nr. können Sie frei wählen wie z.B. DB 100. Geben Sie DB 100 an und legen Sie diesen als globalen DB mit [OK] an.
 - Der Baustein wird angelegt und geöffnet.
- 3. Legen Sie in "A1_V1000" folgende Variablen an:
 - "AxisData" vom Typ UDT 879 VMC_AxisRTU_REF
 - "V1000Data" vom Typ UDT 881 VMC_ConfigV1000RTU_REF

13.6.6.3.5 Datenbaustein für alle Modbus-Slaves anlegen

Für die Erfassung der Kommunikationsdaten aller Frequenzumrichter, welche seriell über Modbus RTU angekoppelt sind, ist ein gemeinsamer Datenbaustein anzulegen.

- 1. Klicken Sie auf "Projektnavigation → ...CPU... → Programmbausteine → Neuen Baustein hinzufügen".
 - ⇒ Das Dialogfenster "Baustein hinzufügen" öffnet sich.
- Wählen Sie den Bausteintyp *"DB Baustein"* und vergeben Sie diesem den Namen "ComDataSlaves". Die DB-Nr. können Sie frei wählen wie z.B. DB 99. Geben Sie DB 99 an und legen Sie diesen als globalen DB mit [OK] an.
 - Der Baustein wird angelegt und geöffnet.
- 3. ▶ Legen Sie in "ComDataSlaves" folgende Variable an:
 - "Slaves" vom Typ UDT 877 VMC_ComSlavesRTU_REF

13.6.6.3.6 OB 1 - Instanz des Kommunikations-Managers anlegen

Der FB 877 - VMC_ComManager_RTU sorgt dafür, dass immer nur 1 Frequenzumrichter (Modbus-Slave) die serielle Schnittstelle benutzen kann. Als Kommunikations-Manager sendet der Baustein die Aufträge and die jeweiligen Modbus-Slaves und wertet deren Antworten aus.

- 1. ▶ Öffnen Sie den OB 1.
- 2. Fügen Sie dem OB 1 einen Call FB877, DB877 hinzu.
 - → Der Bausteinaufruf wird angelegt und es öffnet sich ein Dialog zur Angabe des Instanz-Datenbausteins "VMC_ComManager_RTU_877".
- 3. Bestätigen Sie die Abfrage des Instanz-Datenbausteins mit [OK].
- **4.** Geben Sie folgende Parameter vor:

Call FB877, DB877 → "FB 877 - VMC ComManager RTU - Modbus RTU Kommunikations-Manager"... Seite 619

```
      NumberOfSlaves
      := 1
      // Anzahl angebundener Frequenzumrichter: 1
      IN: INT

      WaitCycles
      := "ComWaitCycles"
      // Mindestanzahl Wartezyklen
      IN: DINT

      SlavesComData
      := "ComDataSlaves.Slave"
      // Referenz zu allen Kommunikationsobjekten
      IN-OUT: UDT 877
```

13.6.6.3.7 OB 1 - Instanz der V1000-Initialisierung anlegen

Der FB 881 - VMC_InitV1000_RTU initialisiert den entsprechenden Frequenzumrichter mit den Nutzerdaten. Bevor ein Frequenzumrichter angesteuert werden kann, muss dieser initialisiert werden.

- 1. Fügen Sie dem OB 1 einen Call FB881, DB881 hinzu.
 - → Der Bausteinaufruf wird angelegt und es öffnet sich ein Dialog zur Angabe des Instanz-Datenbausteins "VMC InitV1000_RTU_881".
- 2. Bestätigen Sie die Abfrage des Instanz-Datenbausteins mit [OK].
- **3.** ▶ Geben Sie folgende Parameter vor:

Call FB881, DB881 → "FB 881 - VMC_InitV1000_RTU - Modbus RTU Initialisierung"... Seite 621

Execute	:= "A1_InitExecute"	// Mit Flanke 0-1 wird der Auftrag ausgeführt.	IN: BOOL
Hardware	:= "A1_InitHardware"	// Angabe der eingesetzten Hardware	IN: BYTE
		// 1: System SLIO CP040, 2: SPEED7 CPU	
Laddr	:= "A1_InitLaddr"	// Logische Adresse bei Einsatz CP040	IN: INT
UnitId	:= "A1_InitUnitId"	// Modbus-Adresse des V1000	IN: BYTE
UserUnitsVelocity	:= "A1_InitUserUnitsVel"	// Benutzereinheit für Geschwindigkeiten	IN: INT
		// 0: Hz, 1: %, 2: U/min	
UserUnitsAcceleration	:= "A1_InitUserUnitsAcc"	// Benutzereinheit Beschleunigung/Verzögerung	IN: INT
		// 0: 0,01s, 1: 0,1s	
MaxVelocityApp	:= "A1_InitMaxVelocityApp"	// Max. Geschwindigkeit in Benutzereinheiten	IN: REAL
Done	:= "A1_InitDone"	// Status Auftrag fertig	OUT: BOOL
Busy	:= "A1_InitBusy"	// Status Auftrag in Bearbeitung	OUT: BOOL
Error	:= "A1_InitError"	// Fehlerrückmeldung	OUT: BOOL
ErrorID	:= "A1_InitErrorID"	// Zusätzliche Fehlerinformationen	OUT: WORD
Axis	:= "A1_V1000".AxisData	// Referenz zu den allgemeinen Achsdaten	IN-OUT: UDT 879
V1000	:= "A1_V1000".V1000Data	// Referenz zu den antriebsspezifischen Daten	IN-OUT: UDT 881

Eingabewerte

Alle Parameter sind mit den entsprechenden Variablen bzw. Operanden zu verschalten. Folgende Eingabe-Parameter sind entsprechend vorzubelegen:

Hardware

Geben Sie hier die Hardware an, über welche Sie Ihre Frequenzumrichter ansteuern:

- 1: System SLIO CP040 dessen logische Adresse über Laddr vorzugeben ist.
- 2: SPEED7 CPU
- Laddr
 - Logische Adresse f
 ür System SLIO CP040 (Hardware = 1). Ansonsten wird dieser Parameter ignoriert.
- UnitId
 - Modbus-Adresse des V1000.
- UserUnitsVelocity

Benutzereinheit für Geschwindigkeiten:

0: Hz

Angabe in Hertz

- 1: %

Angabe als prozentualer Bezug auf die maximale Geschwindigkeit

 $= 2*f_{max}/p$

mit f_{max}: max. Ausgabefrequenz (Parameter E1-04)

p: Anzahl der Motorpole (motorabhängiger Parameter E2-04, E4-04 oder E5-04)

2: U/min

Angabe in Umdrehungen pro Minute

UserUnitsAcceleration

Benutzereinheiten für die Beschleunigung und Verzögerung

- 0: 0,01s (Wertebereich: 0,00s 600,00s)
- 1: 0,1s (Wertebereich: 0,0 6000,0s)
- MaxVelocityApp

Max. Geschwindigkeit für die Applikation. Die Angabe hat in Benutzereinheiten zu erfolgen und wird bei Bewegungskommandos für den Abgleich verwendet.

13.6.6.3.8 OB 1 - Instanz Achskontrolle V1000 anlegen

Mit dem FB 882 - VMC_AxisControlV1000_RTU können Sie einen seriell über Modbus RTU angebundenen Frequenzumrichter steuern und dessen Status abrufen.

- 1. Fügen Sie dem OB 1 einen Call FB882, DB882 hinzu.
 - → Der Bausteinaufruf wird angelegt und es öffnet sich ein Dialog zur Angabe des Instanz-Datenbausteins "VMC_AxisControlV1000_RTU_882".
- 2. Bestätigen Sie die Abfrage des Instanz-Datenbausteins mit [OK].
- **3.** ▶ Geben Sie folgende Parameter vor:

Call FB882, DB882 → "FB 882 - VMC_AxisControlV1000_RTU - Modbus RTU Achskontrolle"...Seite 623

AxisEnable	:= "A1_AxisEnable"	// Aktivierung der Achse	IN: BOOL
AxisReset	:= "A1_AxisReset"	// Kommando: Fehler des V1000 zurücksetzen.	IN: BOOL
StopExecute	:= "A1_StopExecute"	// Kommando: Stop - Achse stoppen	IN: BOOL
MvVelocityExecute	:= "A1_MvVelocityExecute"	// Kommando: MoveVelocity (Geschwindigkeitsregelung)	IN: BOOL
Velocity	:= "A1_Velocity"	// Parameter: Geschwindigkeitsvorgabe für MoveVelocity	IN: REAL
AccelerationTime	:= "A1_AccelerationTime"	// Parameter: Beschleunigungszeit	IN: REAL
DecelerationTime	:= "A1_DecelerationTime"	// Parameter: Verzögerungszeit	IN: REAL
JogPositive	:= "A1_JogPositive"	// Kommando: <i>JogPos</i>	IN: BOOL
JogNegative	:= "A1_JogNegative"	// Kommando: JogNeg	IN: BOOL
JogVelocity	:= "A1_JogVelocity"	// Parameter: Geschwindigkeitsvorgabe für Jogging	IN: REAL
JogAccelerationTime	:= "A1_JogAccelerationTime"	// Parameter: Beschleunigungszeit für Jogging	IN: REAL
JogDecelerationTime	:= "A1_JogDecelerationTime"	// Parameter: Verzögerungszeit für Jogging	IN: REAL
AxisReady	:= "A1_AxisReady"	// Status: Bereitschaft der Achse	OUT: BOOL
AxisEnabled	:= "A1_AxisEnabled"	// Status: Aktivierung der Achse	OUT: BOOL
AxisError	:= "A1_AxisError"	// Status: Achsfehler	OUT: BOOL
AxisErrorID	:= "A1_AxisErrorID"	// Status: Zusätzliche Fehlerinformationen für AxisError	OUT: WORD

DriveError	:= "A1_DriveError"	// Status: Fehler Frequenzumrichter	OUT: BOOL
ActualVelocity	:= "A1_ActualVelocity"	// Status: Aktuelle Geschwindigkeit	OUT: REAL
InVelocity	:= "A1_InVelocity"	// Status Zielgeschwindigkeit	OUT: BOOL
CmdDone	:= "A1_CmdDone"	// Status: Kommando fertig	OUT: BOOL
CmdBusy	:= "A1_CmdBusy"	// Status: Kommando in Bearbeitung	OUT: BOOL
CmdAborted	:= "A1_CmdAborted"	// Status: Kommando abgebrochen	OUT: BOOL
CmdError	:= "A1_CmdError"	// Status: Kommando Fehler	OUT: BOOL
CmdErrorID	:= "A1_CmdErrorID"	// Status: Zusätzliche Fehlerinformationen für CmdError	OUT: WORD
CmdActive	:= "A1_CmdActive"	// Status: Aktives Kommando	OUT: INT
DirectionPositive	:= "A1_DirectionPositive"	// Status: Drehrichtung positiv	OUT: BOOL
DirectionNegative	:= "A1_DirectionNegative"	// Status: Drehrichtung negativ	OUT: BOOL
Axis	:= "A1_V1000".AxisData	// Referenz zu den allgemeinen Achsdaten	IN-OUT: UDT 879
V1000	:= "A1_V1000".V1000Data	// Referenz zu den allgemeinen Daten des	IN-OUT: UDT 881
		// Frequenzumrichters	
AxisComData	:= "ComDataSlaves".Slaves.Slave(1)	// Referenz zu den Kommunikationsdaten	IN-OUT: UDT 878

13.6.6.3.9 OB 1 - Instanz Parameter lesen anlegen

Mit dem FB 879 - VMC_ReadParameter_RTU haben Sie lesenden Zugriff auf die Parameter eines seriell über Modbus RTU angebundenen Frequenzumrichters. Für die Erfassung der Parameterdaten ist ein DB anzulegen.

- 1. Klicken Sie auf "Projektnavigation → ...CPU... → Programmbausteine → Neuen Baustein hinzufügen".
 - Das Dialogfenster "Baustein hinzufügen" öffnet sich.
- Wählen Sie den Bausteintyp "DB Baustein" und vergeben Sie diesem den Namen "A1_TransferData". Die DB-Nr. können Sie frei wählen. Geben Sie DB 98 an und legen Sie diesen als globalen DB mit [OK] an.
 - → Der Baustein wird angelegt und geöffnet.
- 3. ▶ Legen Sie in "A1_TransferData" folgende Variablen an:
 - "Data_0" vom Typ WORD
 - "Data_1" vom Typ WORD
 - "Data_2" vom Typ WORD
 - "Data_3" vom Typ WORD
- **4.** ▶ Fügen Sie dem OB 1 einen Call FB879, DB879 hinzu.
 - → Der Bausteinaufruf wird angelegt und es öffnet sich ein Dialog zur Angabe des Instanz-Datenbausteins "VMC_ReadParameter_RTU".
- **5.** Bestätigen Sie die Abfrage des Instanz-Datenbausteins mit [OK].
- **6.** ▶ Geben Sie folgende Parameter vor:

Call FB879, DB879 → "FB 879 - VMC_ReadParameter_RTU - Modbus RTU Parameter lesen"...Seite 620

Execute	:= "A1_RdParExecute"	// Mit Flanke 0-1 wird der Auftrag ausgeführt.	IN: BOOL
StartAddress	:= "A1_RdParStartAddress"	// Start-Adresse des 1. Registers	IN: INT
Quantity	:= "A1_RdParQuantity"	// Anzahl der zu lesenden Register	IN: INT
Done	:= "A1_RdParDone"	// Status Auftrag fertig	IN: REAL
Busy	:= "A1_RdParBusy"	// Status Auftrag in Bearbeitung	OUT: BOOL
Error	:= "A1_RdParError"	// Fehlerrückmeldung	OUT: BOOL
ErrorID	:= "A1_RdParErrorID"	// Zusätzliche Fehlerinformationen	OUT: BOOL
Data	:= P#DB98.DBX0.0 BYTES 8	// Ablageort der Parameterdaten	OUT: WORD
Axis	:= "A1_V1000".AxisData	// Referenz zu den allgemeinen Achsdaten	IN-OUT: UDT 879

ĭ

Bitte beachten Sie, dass immer nur ganze Register als WORD gelesen werden können. Zur Auswertung einzelner Bits müssen Sie High- und Low-Byte vertauschen!

13.6.6.3.10 OB 1 - Instanz Parameter schreiben anlegen

Mit dem FB 880 - VMC_WriteParameter_RTU haben Sie schreibenden Zugriff auf die Parameter eines seriell über Modbus RTU angebundenen Frequenzumrichters. Für die Erfassung können Sie den für Lesezugriff angelegten DB verwenden - hier DB 98.

- 1. Fügen Sie dem OB 1 einen Call FB880, DB880 hinzu.
 - → Der Bausteinaufruf wird angelegt und es öffnet sich ein Dialog zur Angabe des Instanz-Datenbausteins "VMC WriteParameter RTU".
- 2. Bestätigen Sie die Abfrage des Instanz-Datenbausteins mit [OK].
- **3.** ▶ Geben Sie folgende Parameter vor:

Call FB880, DB880 → "FB 880 - VMC_WriteParameter_RTU - Modbus RTU Parameter schreiben"...Seite 621

Execute	:= "A1_WrParExecute"	// Mit Flanke 0-1 wird der Auftrag ausgeführt.	IN: BOOL
StartAddress	:= "A1_WrParStartAddress"	// Start-Adresse des 1. Registers	IN: INT
Quantity	:= "A1_WrParQuantity"	// Anzahl der zu schreibenden Register	IN: INT
Done	:= "A1_WrParDone"	// Status Auftrag fertig	IN: REAL
Busy	:= "A1_WrParBusy"	// Status Auftrag in Bearbeitung	OUT: BOOL
Error	:= "A1_WrParError"	// Fehlerrückmeldung	OUT: BOOL
ErrorID	:= "A1_WrParErrorID"	// Zusätzliche Fehlerinformationen	OUT: BOOL
Data	:= P#DB98.DBX0.0 BYTES 8	// Ablageort der Parameterdaten	OUT: WORD
Axis	:= "A1_V1000".AxisData	// Referenz zu den allgemeinen Achsdaten	IN-OUT: UDT 879

13.6.6.3.11 Zeitlicher Ablauf

1. Speichern und übersetzen Sie Ihr Projekt.

- 2. Transferieren Sie Ihr Projekt in Ihre CPU.
 - ⇒ Sie können jetzt Ihre Applikation in Betrieb nehmen.

VORSICHT

Bitte beachten Sie immer die Sicherheitshinweise zu ihrem Frequenzumrichter, insbesondere bei der Inbetriebnahme!

- 3. Mittels einer Beobachtungstabelle können Sie den Frequenzumrichter manuell steuern. Zum Anlegen einer Beobachtungstabelle doppelklicken Sie auf "Projektnavigation → ...CPU... → Beobachtungs- und Forcetabellen → Neue Beobachtungstabelle hinzufügen".
 - ➡ Die Beobachtungstabelle wird angelegt und für die Bearbeitung geöffnet.
- Passen Sie zuerst die Wartezeit zwischen 2 Aufträgen an. Diese beträgt für einen V1000-Frequenzumrichter mindestens 200ms. Stellen Sie hierzu in der Beobachtungstabelle unter "Name" den Bezeichner "ComWaitCycles" als "DEZ" ein und geben Sie unter "Steuerwert" einen Wert zwischen 200 und 400 vor.

Zur Performance-Steigerung können Sie diesen Wert später nach unten korrigieren, solange Sie keinen Timeout-Fehler (80C8h) erhalten. Bitte beachten Sie hierbei, dass manche Befehle, wie z.B. MoveVelocity aus mehreren Aufträgen bestehen können.

5. Bevor Sie einen Frequenzumrichter ansteuern k\u00f6nnen, muss dieser mit dem FB 881 - VMC_InitV1000_RTU initialisiert werden. → "FB 881 - VMC_InitV1000_RTU - Modbus RTU Initialisierung"... Seite 621

Stellen Sie hierzu in der Beobachtungstabelle unter "Name" den Bezeichner "A1_InitExecute" als "BOOL" ein und geben Sie unter "Steuerwert" den Wert "True" vor. Aktivieren Sie das Steuern der Variable und starten Sie die Übertragung der Steuerwerte.

→ Der Frequenzumrichter wird initialisiert. Nach Abarbeitung liefert der Ausgang Done TRUE zurück. Im Fehlerfall können Sie durch Auswertung der ErrorID den Fehler ermitteln.

Fahren Sie erst fort, wenn der Init-Baustein keinen Fehler meldet!

- 6. ▶ Bei erfolgreicher Initialisierung erfolgt zyklisch die Abarbeitung der Register der angebundenen Frequenzumrichter d.h. diese erhalten zyklisch Aufträge. Zur manuellen Steuerung können Sie mit dem FB 882 VMC_AxisControlV1000_RTU Steuerbefehle an den entsprechenden Frequenzumrichter senden. → "FB 882 VMC_AxisControlV1000_RTU Modbus RTU Achskontrolle"...Seite 623
- **7.** Legen Sie die Parameter des FB 882 VMC_AxisControlV1000_RTU zur Steuerung und Abfrage in der Beobachtungstabelle an.
- 8. Speichern Sie die Beobachtungstabelle unter einem Namen wie z.B. "V1000".
- <u>9.</u> Aktivieren Sie durch Setzen von *AxisEnable* die entsprechende Achse. Sobald diese *AxisReady* = TRUE zurückmeldet, können Sie diese mit den entsprechenden Fahrbefehlen ansteuern.

13.6.7 Antriebsspezifische Bausteine

13.6.7.1 UDT 877 - VMC ComSlavesRTU REF - Modbus RTU Datenstruktur Kommunikationdaten aller Slaves

Dies ist eine benutzerdefinierte Datenstruktur, für die Kommunikationdaten der angebundenen Modbus RTU Slaves. Die UDT ist speziell angepasst an die Verwendung von Frequenzumrichter, welche über Modbus RTU angebunden sind.

13.6.7.2 UDT 878 - VMC ComObjectRTU REF - Modbus RTU Datenstruktur Kommunikationdaten Slave

Dies ist eine benutzerdefinierte Datenstruktur, für die Kommunikationdaten eines angebundenen Modbus RTU Slaves. Die UDT ist speziell angepasst an die Verwendung von Frequenzumrichter, welche über Modbus RTU angebunden sind.

13.6.7.3 UDT 879 - VMC_AxisRTU_REF - Modbus RTU Datenstruktur Achsdaten

Dies ist eine benutzerdefinierte Datenstruktur, die Statusinformationen des Frequenzumrichters beinhaltet. Diese Struktur dient als Referenz zu den allgemeinen Achsdaten des Frequenzumrichters.

13.6.7.4 UDT 881 - VMC ConfigV1000RTU REF - Modbus RTU Datenstruktur Konfiguration

Dies ist eine benutzerdefinierte Datenstruktur, die Informationen zu den Konfigurationsdaten eines Frequenzumrichters beinhaltet, welcher über Modbus RTU angebunden ist.

13.6.7.5 FB 876 - VMC ConfigMaster RTU - Modbus RTU CPU-Schnittstelle

Beschreibung

Dieser Baustein dient zur Parametrierung der seriellen Schnittstelle der CPU für Modbus RTU Kommunikation.

ĭ

Bitte beachten Sie, dass dieser Baustein intern den SFC 216 aufruft.

Im SPEED7 Studio wird dieser Baustein automatisch in Ihr Projekt eingefügt.

Im Siemens SIMATIC Manager müssen Sie den SFC 216 aus der Motion Control Library in Ihr Projekt kopieren.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung	
Baudrate I	INPUT	BYTE	Geschwindigkeit der Datenübe	rtragung in Bit/s (Baud).
			 04h: 1200Baud 05h: 1800Baud 06h: 2400Baud 07h: 4800Baud 08h: 7200Baud 09h: 9600Baud 	 0Ah: 14400Baud 0Bh: 19200Baud 0Ch: 38400Baud 0Dh: 57600Baud 0Eh: 115200Baud
CharLen	INPUT	ВҮТЕ	Anzahl der Datenbits, auf die e 0: 5Bit 1: 6Bit 2: 7Bit 3: 8Bit	in Zeichen abgebildet wird

Parameter	Deklaration	Datentyp	Beschreibung
Parity	INPUT	ВҮТЕ	Die Parität ist je nach Wert gerade oder ungerade. Zur Paritätskontrolle werden die Informationsbits um das Paritätsbit erweitert, das durch seinen Wert ("0" oder "1") den Wert aller Bits auf einen vereinbarten Zustand ergänzt. Ist keine Parität vereinbart, wird das Paritätsbit auf "1" gesetzt, aber nicht ausgewertet. O: None (keine) 1: Odd (ungerade) 2: Even (gerade)
StopBits	INPUT	ВҮТЕ	Die Stopbits werden jedem zu übertragenden Zeichen nachgesetzt und kennzeichnen das Ende eines Zeichens 1: 1Bit 2: 1.5Bit 3: 2Bit
TimeOut	INPUT	WORD	Wartezeit, bis ein Fehler generiert wird, wenn ein Slave nicht antwortet. Die Zeitangabe für <i>TimeOut</i> ist als hexadezimaler Wert anzugeben. Den hexadezimalen Wert erhalten Sie, indem Sie die gewünschte Zeit in Sekunden mit der Baudrate multiplizieren. Beispiel: Gewünschte Zeit 8ms bei einer Baudrate von 19200Bit/s Berechnung: 19200Bit/s x 0,008s ≈ 154Bit >>>> (9Ah) Als Hex-Wert ist 9Ah vorzugeben.
Valid	OUTPUT	BOOL	Konfiguration■ TRUE: Die Konfiguration ist gültig.■ FALSE: Die Konfiguration ist nicht gültig.
Error	OUTPUT	BOOL	Fehlerrückmeldung ■ TRUE: Es ist ein Fehler aufgetreten - siehe <i>ErrorID</i> . ■ FALSE: Es liegt kein Fehler vor.
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen → "ErrorID - Zusätzliche Fehlerinformationen"Seite 739

13.6.7.6 FB 877 - VMC_ComManager_RTU - Modbus RTU Kommunikations-Manager

Beschreibung

Dieser Baustein regelt, dass nacheinander immer nur ein Slave über die serielle Schnittstelle kommunizieren kann. Über die UDT 877 hat dieser Baustein Zugriff auf die Kommunikationsdaten aller Slaves.

 \int_{1}^{∞}

Pro serielle Schnittstelle dürfen Sie immer nur einen FB 877 in Ihrem Projekt verwenden!

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
NumberOfSlaves	INPUT	INT	Anzahl der aktuell verwendeten Modbus Slaves
WaitCycles	INPUT	DINT	Mindestanzahl an Zyklen, die zwischen zwei Anfragen eines Slaves gewartet werden soll. Hiermit lassen sich Überläufe am Slave und hieraus resultierende Timeouts verhindern.
SlavesComData	IN_OUT	UDT 877	Referenz zum Datenbaustein mit allen Kommunikationobjekten

13.6.7.7 FB 878 - VMC_RWParameterSys_RTU - Modbus RTU Parameter System lesen/schreiben

Beschreibung

Dieser Baustein wird intern vom System für die Parameterübertragung verwendet.

Diesen Baustein dürfen Sie nicht aufrufen, da dies zu einem Fehlverhalten Ihres Systems führen kann!

13.6.7.8 FB 879 - VMC_ReadParameter_RTU - Modbus RTU Parameter lesen

Beschreibung

Mit diesem Baustein können Sie Parameter vom entsprechenden Slave lesen.

Bitte beachten Sie, dass immer nur ganze Register als WORD gelesen werden können. Zur Auswertung einzelner Bits müssen Sie High- und Low-Byte vertauschen!

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
Execute	IN	BOOL	Mit Flanke 0-1 wird der Auftrag ausgeführt.
StartAddress	IN	WORD	Start-Adresse des Registers, ab dem gelesen werden soll.
Quantity	IN	BYTE	Anzahl der Register, die gelesen werden sollen.
Done	OUT	BOOL	Status
			■ TRUE: Auftrag erfolgreich durchgeführt
Busy	OUT	BOOL	Status
			■ TRUE: Auftrag ist in Bearbeitung
Error	OUT	BOOL	Status
			 TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerin- formationen können dem Parameter ErrorID entnommen werden.
ErrorID	OUT	WORD	Zusätzliche Fehlerinformationen
			→ "ErrorID - Zusätzliche Fehlerinformationen"Seite 739
Data	IN-OUT	ANY	Referenz wohin die gelesenen Daten gespeichert werden sollen
Axis	IN-OUT	UDT 879	Referenz zu den allgemeinen Achsdaten des Frequenzumrichters

13.6.7.9 FB 880 - VMC_WriteParameter_RTU - Modbus RTU Parameter schreiben

Beschreibung

Mit diesem Baustein können Sie Parameter in die Register des entsprechenden Slave schreiben.

Bitte beachten Sie, dass immer nur ganze Register als WORD geschrieben werden können. Zum Setzen bzw. Rücksetzen einzelner Bits müssen Sie High- und Low-Byte vertauschen!

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
Execute	INPUT	BOOL	Mit Flanke 0-1 wird der Auftrag ausgeführt.
StartAddress	INPUT	WORD	Start-Adresse des Registers ab dem geschrieben werden soll.
Quantity	INPUT	BYTE	Anzahl der Register, die geschrieben werden sollen.
Done	OUTPUT	BOOL	Status
			■ TRUE: Auftrag erfolgreich durchgeführt
Busy	OUTPUT	BOOL	Status
			■ TRUE: Auftrag ist in Bearbeitung
Error	OUTPUT	BOOL	Status
			■ TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerin- formationen können dem Parameter <i>ErrorID</i> entnommen werden.
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen
			→ "ErrorID - Zusätzliche Fehlerinformationen"Seite 739
Data	IN_OUT	ANY	Referenz zu den Daten, die geschrieben werden sollen.
Axis	IN_OUT	UDT 879	Referenz zu den allgemeinen Achsdaten des Frequenzum- richters

13.6.7.10 FB 881 - VMC_InitV1000_RTU - Modbus RTU Initialisierung

Beschreibung

Dieser Baustein dient zur Initialisierung eines Frequenzumrichters mit den entsprechenden Nutzerdaten und muss vor der Übergabe von Kommandos abgearbeitet sein. Der Baustein ist speziell angepasst an die Verwendung eines Frequenzumrichters, welcher über Modbus RTU angebunden ist.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
Execute	INPUT	BOOL	Mit Flanke 0-1 wird der Auftrag ausgeführt.
Hardware	INPUT	BYTE	Angabe der eingesetzten Hardware
			 1: System SLIO CP040 dessen logische Adresse über Laddr vorzugeben ist. 2: SPEED7 CPU
Laddr	INPUT	INT	Logische Adresse für System SLIO CP040 (<i>Hardware</i> = 1). Ansonsten wird dieser Parameter ignoriert.
Unitld	INPUT	BYTE	Modbus-Adresse des V1000.

Parameter	Deklaration	Datentyp	Beschreibung
UserUnitsVelocity	INPUT	INT	 Benutzereinheit für Geschwindigkeiten □ 0: Hz Angabe in Hertz 1: % Angabe als prozentualer Bezug auf die maximale Geschwindigkeit = 2*f_{max}/p mit f_{max}: max. Ausgabefrequenz (Parameter E1-04) p: Anzahl der Motorpole (motorabhängiger Parameter E2-04, E4-04 oder E5-04) U/min Angabe in Umdrehungen pro Minute
UserUnitsAcceleration	INPUT	INT	Benutzereinheiten für die Beschleunigung und Verzögerung ■ 0: 0,01s (Wertebereich: 0,00s - 600,00s) ■ 1: 0,1s (Wertebereich: 0,0 - 6000,0s)
MaxVelocityApp	INPUT	REAL	Max. Geschwindigkeit für die Applikation. Die Angabe hat in Benutzereinheiten zu erfolgen und wird bei Bewegungskommandos für den Abgleich verwendet.
Done	OUTPUT	BOOL	Status TRUE: Auftrag erfolgreich durchgeführt
Busy	OUTPUT	BOOL	Status TRUE: Auftrag ist in Bearbeitung
Error	OUTPUT	BOOL	Status TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter <i>ErrorID</i> entnommen werden.
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen → "ErrorID - Zusätzliche Fehlerinformationen"Seite 739
Axis	IN_OUT	UDT 879	Referenz zu den allgemeinen Achsdaten des Frequenzumrichters
V1000	IN_OUT	UDT 881	Referenz zu den Nutzerdaten des Frequenzumrichters

13.6.7.11 FB 882 - VMC_AxisControlV1000_RTU - Modbus RTU Achskontrolle

Beschreibung

Mit dem FB 882 *VMC_AxisControlV1000_RTU* können Sie einen über Modbus RTU angebundenen Frequenzumrichter steuern und dessen Status abrufen.

Die Ansteuerung eines V1000-Frequenzumrichters, welcher über Modbus RTU angebunden ist, erfolgt ausschließlich mit dem FB 882 VMC_Axis-ControlV1000_RTU. PLCopen-Bausteine werden nicht unterstützt!

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
AxisEnable	INPUT	BOOL	Aktivierung der Achse
			 ■ TRUE: Achse einschalten → AxisEnabled = 1, Kommandos können ausgeführt werden ■ FALSE: Achse ausschalten → AxisEnabled = 0, es können keine Kommandos ausgeführt werden.
AxisReset	INPUT	BOOL	Kommando: Fehler des Frequenzumrichters zurücksetzen.
			→ CmdActive = 1
StopExecute	INPUT	BOOL	Kommando: <i>Stop</i> - Achse stoppen → <i>CmdActive</i> = 1
MvVelocityExecute	INPUT	BOOL	Kommando: MoveVelocity (Geschwindigkeitsregelung) ausführen \Rightarrow CmdActive = 2
Velocity	INPUT	REAL	Parameter: Geschwindigkeitsvorgabe für MoveVelocity in Benutzereinheiten. Siehe Beispiel nach Tabelle
AccelerationTime	INPUT	REAL	Parameter: Beschleunigungszeit in Sekunden (Genauigkeit je nach <i>UserUnitsAcceleration</i> am Init Baustein). Ist immer bezogen auf die Zeit, vom Stillstand auf die maximal eingestellte Geschwindigkeit. Siehe Beispiel nach Tabelle.
			Dieser Parameter wird für das Kommando MoveVelocity (<i>MvVelocityExecute</i>) verwendet.
DecelerationTime	INPUT	REAL	Parameter: Verzögerungszeit in Sekunden (Genauigkeit je nach <i>UserUnitsAcceleration</i> am Init Baustein). Ist immer bezogen auf die Zeit, vom Stillstand auf die maximal eingestellte Geschwindigkeit. Siehe Beispiel unten.
			Dieser Parameter wird für die Kommandos Stop (<i>StopExecute</i>) und MoveVelocity (<i>MvVelocityExecute</i>) verwendet.
JogPositive	INPUT	BOOL	Kommando: JogPos
			Flanke 0-1: Achse starten in positive Richtung (Jogging positiv)Flanke 1-0: Achse stoppen
JogNegative	INPUT	BOOL	Kommando: JogNeg
			Flanke 0-1: Achse starten in negative Richtung (Jogging negativ)Flanke 1-0: Achse stoppen
JogVelocity	INPUT	REAL	Parameter: Geschwindigkeitsvorgabe für Jogging in Benutzereinheiten.
			Hinweis: Bei <i>JogPositive</i> , <i>JogNegative</i> wird der absolute Wert der Geschwindigkeit verwendet.

Parameter	Deklaration	Datentyp	Beschreibung
JogAcceleration- Time	INPUT	REAL	Parameter: Beschleunigungszeit für Jogging in Sekunden (Genauigkeit je nach <i>UserUnitsAcceleration</i> am Init-Baustein). Ist immer bezogen auf die Zeit, vom Stillstand auf die maximal eingestellte Geschwindigkeit. Siehe Beispiel nach Tabelle
JogDeceleration- Time	INPUT	REAL	Parameter: Verzögerungszeit für Jogging in Sekunden (Genauigkeit je nach <i>UserUnitsAcceleration</i> von FB 881).
			Parameter bezieht sich immer auf die Zeit vom Stillstand auf die maximal eingestellte Geschwindigkeit. Siehe Beispiel nach Tabelle
AxisReady	OUTPUT	BOOL	Status: Bereitschaft der Achse
			TRUE: Achse ist einschaltbereitFALSE: Achse ist nicht einschaltbereit
AxisEnabled	OUTPUT	BOOL	Status: Aktivierung der Achse
			■ TRUE: Achse ist eingeschaltet
			FALSE: Achse ist ausgeschaltet
AxisError	OUTPUT	BOOL	Status: Achsfehler
			 TRUE: Achse meldet einen Fehler und wird gesperrt. N\u00e4here Fehlerinformationen befinden sich in AxisErrorID. FALSE: Achse meldet keine Fehler.
AxisErrorID	OUTPUT	WORD	Status: Zusätzliche Fehlerinformationen für AxisError
			→ "ErrorID - Zusätzliche Fehlerinformationen"Seite 739
DriveError	OUTPUT	BOOL	Status: Fehler Frequenzumrichter
			 TRUE: Frequenzumrichter meldet einen Fehler und wird gesperrt. FALSE: Frequenzumrichter meldet keine Fehler.
ActualVelocity	OUTPUT	REAL	Status: Aktuelle Geschwindigkeit in Benutzereinheiten
InVelocity	OUTPUT	BOOL	Status Zielgeschwindigkeit
,			■ TRUE: Die Zielgeschwindigkeit <i>Velocity</i> wurde erreicht.
			■ FALSE: Die Zielgeschwindigkeit <i>Velocity</i> wurde noch nicht erreicht.
CmdDone	OUTPUT	BOOL	Status: Kommando fertig
			■ TRUE: Kommando wurde erfolgreich ausgeführt.
			FALSE: Kommando wurde noch nicht ausgeführt bzw. befindet sich noch in der Bearbeitung.
CmdBusy	OUTPUT	BOOL	Status: Kommando in Bearbeitung
			TRUE: Kommando befindet sich in der BearbeitungFALSE: Aktuell wird kein Kommando ausgeführt.
CmdAborted	OUTPUT	BOOL	Status: Kommando abgebrochen
			TRUE: Kommando wurde abgebrochen.FALSE: Kommando wurde nicht abgebrochen
CmdError	OUTPUT	BOOL	Status: Kommando Fehler
			■ TRUE: Bei der Ausführung eines Kommandos ist ein Fehler aufgetreten
			■ FALSE: Die Ausführung eines Kommandos verlief fehlerfrei.

Parameter	Deklaration	Datentyp	Beschreibung
CmdErrorID	OUTPUT	WORD	Status: Zusätzliche Fehlerinformationen für <i>CmdError</i> → " <i>ErrorlD</i> - <i>Zusätzliche Fehlerinformationen</i> "Seite 739
CmdActive	OUTPUT	INT	Status: Aktives Kommando 0: NoCmd - kein Kommando aktiv 1: Stop 2: MvVelocity 3: MvRelative 4: JogPos 5: JogNeg
DirectionPositive	OUTPUT	BOOL	Status: Drehrichtung positiv TRUE: Aktuelle Drehrichtung ist positiv FALSE: Aktuelle Drehrichtung ist nicht positiv
DirectionNegative	OUTPUT	BOOL	Status: Drehrichtung negativ TRUE: Aktuelle Drehrichtung ist negative FALSE: Aktuelle Drehrichtung ist nicht negative
Axis	IN_OUT	UDT 879	Referenz zu den allgemeinen Achsdaten des Frequenzumrichters
V1000	IN_OUT	UDT 881	Referenz zu den Nutzerdaten des Frequenzumrichters
AxisComData	IN_OUT	UDT 878	Referenz zu den Kommunikationsdaten des aktuellen Slave

Beispiel AccelerationTime

Die Werte für *Velocity*, *AccelerationTime* und *DecelerationTime* sind in den unter FB 881 - VMC_InitV1000_RTU eingestellten Benutzereinheiten vorzugeben. *AccelerationTime* bzw. *DecelerationTime* beziehen sich immer auf die Zeit vom Stillstand bis zur maximal eingestellten Geschwindigkeit bzw. von der maximalen Geschwindigkeit bis zum Stillstand.

Die maximal Geschwindigkeit ergibt sich über die Formel

$$v_{max} = \frac{2 \cdot f}{p}$$

v_{max} max. Geschwindigkeit in 1/s

f max. Ausgabefrequenz (Parameter E1-04)

p Anzahl der Motorpole (motorabhängiger Parameter E2-04, E4-04 oder E5-04)

Zeitlicher Ablauf

1. Wählen Sie "Projekt → Alles übersetzen" und übertragen Sie das Projekt in Ihre CPU.

Näheres zur Übertragung Ihres Projekt finden Sie in der Onlinehilfe zum *SPEED7 Studio*.

⇒ Sie können jetzt Ihre Applikation in Betrieb nehmen.

VORSICHT

Bitte beachten Sie immer die Sicherheitshinweise zu ihrem Frequenzumrichter, insbesondere bei der Inbetriebnahme!

- 2. Bringen Sie Ihre CPU in RUN und schalten Sie Ihren Frequenzumrichter ein.
 - ⇒ Der FB 882 VMC AxisControlV1000 RTU wird zyklisch abgearbeitet.

Einsatz Frequenzumrichter über EtherCAT > Parameter am Frequenzumrichter einstellen

- 3. Sobald *AxisReady* = TRUE meldet, können Sie mit *AxisEnable* die Achse frei geben.
- **4.** Sie haben jetzt die Möglichkeit über die entsprechenden Parameter Ihre Achse zu steuern und deren Status abzufragen.

13.7 Einsatz Frequenzumrichter über EtherCAT

13.7.1 Übersicht

Voraussetzung

- SPEED7 Studio ab V1.8 oder
- Siemens SIMATIC Manager ab V 5.5 SP2 & SPEED7 EtherCAT Manager & Simple Motion Control Library
- CPU mit EtherCAT-Master wie z.B. CPU 015-CEFNR00
- Frequenzumrichter mit EtherCAT-Optionskarte

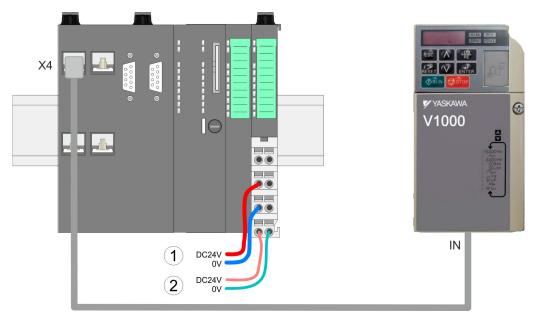
Schritte der Projektierung

- 1. Parameter am Frequenzumrichter einstellen.
 - Die Einstellung der Parameter hat mit dem Softwaretool Drive Wizard+ zu erfolgen.
- 2. Hardwarekonfiguration im SPEED7 Studio oder Siemens SIMATIC Manager
 - Projektierung der CPU.
- 3. Programmierung im SPEED7 Studio oder Siemens SIMATIC Manager.
 - Init-Baustein zur Konfiguration der Achse beschalten.
 - *Kernel*-Baustein zur Kommunikation mit der Achse beschalten.
 - Bausteine für die Bewegungsabläufe beschalten.
 - "Demo-Projekte"...Seite 288

13.7.2 Parameter am Frequenzumrichter einstellen

VORSICHT

Vor der Erstinbetriebnahme müssen Sie Ihren Frequenzumrichter mit dem Softwaretool *Drive Wizard+* an Ihre Applikation anpassen! Näheres hierzu finden Sie im Handbuch zu ihrem Frequenzumrichter.


Die nachfolgende Tabelle zeigt alle Parameter auf, die nicht den Standardwerten entsprechen. Zur Abstimmung auf die Simple Motion Control Library sind diese über Drive Wizard+ einzustellen:

Nr.	Bezeichnung	Wertebereich	Einstellung für Simple Motion Control Library
B1-01	Eingangsquelle Frequenzsollwert 1	0, 1, 2, 3, 4	■ 3: Option card
B1-02	Eingangsquelle Startbefehl 1	0, 1, 2, 3	■ 3: Option card
O1-03	Display Skalierung	0, 1, 2, 3, 4	2: min-1 unit

ĭ

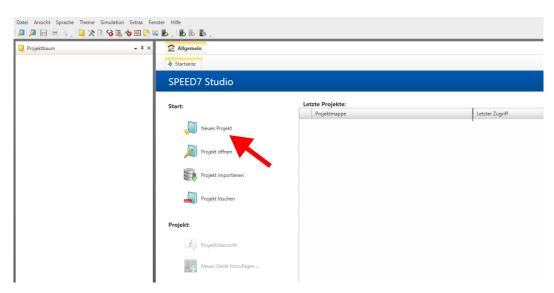
Damit alle Einstellungen übernommen werden, müssen Sie den Frequenzumrichter nach der Parametrierung neu starten!

13.7.3 Beschaltung

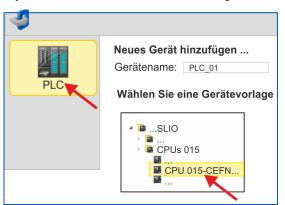
- (1) DC 24V für Leistungsversorgung I/O-Ebene (max. 10A)
- (2) DC 24V für Elektronikversorgung CPU und I/O-Ebene

Vorgehensweise

- 1. Schalten Sie die Stromversorgung von CPU und Frequenzumrichter ab.
- **2.** Montieren Sie, falls nicht schon vorhanden, die EtherCAT-Optionskarte in Ihrem Frequenzumrichter.
- **3.** Verbinden Sie die Optionskarte und den Frequenzumrichter über das beiliegenden Massekabel.
- **4.** Verbinden Sie die EtherCAT-Buchse "X4" der CPU mit der "IN"-Buchse der Optionskarte über ein EtherCAT-Kabel.
 - → Ihr System ist nun bereit für die Inbetriebnahme.


13.7.4 Einsatz im SPEED7 Studio

13.7.4.1 Hardware-Konfiguration


CPU im Projekt anlegen

Bitte verwenden Sie für die Projektierung das SPEED7 Studio ab V1.8

1. Starten Sie das SPEED7 Studio.

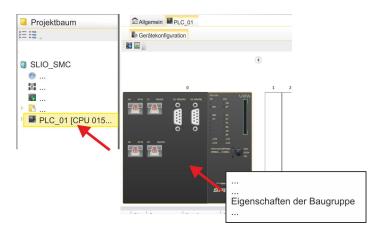
- Erstellen sie auf der Startseite mit "Neues Projekt" ein neues Projekt und vergeben Sie einen "Projektnamen".
 - ➡ Ein neues Projekt wird angelegt und in die Sicht "Geräte und Netze" gewechselt.
- 3. Klicken Sie im Projektbaum auf "Neues Gerät hinzufügen ...".

- ➡ Es öffnet sich ein Dialog für die Geräteauswahl.
- 4. Wählen Sie unter den "Gerätevorlagen" eine CPU mit EtherCAT-Master-Funktionalität wie z.B. die CPU 015-CEFNR00 und klicken Sie auf [OK].
 - ⇒ Die CPU wird in "Geräte und Netze" eingefügt und die "Gerätekonfiguration" geöffnet.

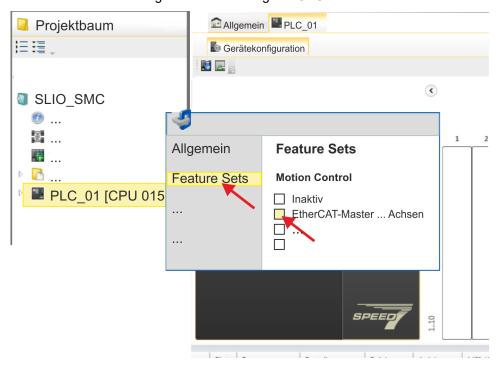
Motion-Control-Funktionen aktivieren

Projektbaum i≡ i≣

SLIO_SMC **...**


Neues Gerät hinzufügen

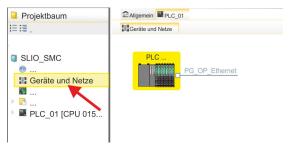
201


9

Sofern bei Ihrer CPU die EtherCAT-Master-Funktionalität noch nicht aktiviert ist, erfolgt

- 1. Klicken Sie in der "Gerätekonfiguration" auf die CPU und wählen Sie "Kontextmenü Eigenschaften der Baugruppe".
 - ⇒ Es öffnet sich der Eigenschaften-Dialog der CPU.

- 2. Klicken Sie auf "Feature Sets" und aktivieren Sie unter "Motion Control" einen der Parameter "EtherCAT-Master ... Achsen". Die Anzahl der Achsen ist in diesem Beispiel nicht relevant.
- 3. Bestätigen Sie Ihre Angaben mit [OK].
 - ➡ Die Motion-Control-Funktionen steht Ihnen nun in Ihrem Projekt zur Verfügung.



VORSICHT

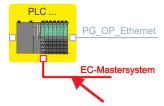
Bitte beachten Sie, dass bei jeder Änderung der Feature-Set-Einstellungen systembedingt das EtherCAT-Feldbus-System zusammen mit der Motion-Control-Konfiguration aus Ihrem Projekt gelöscht werden!

Ethernet-PG/OP-Kanal parametrieren

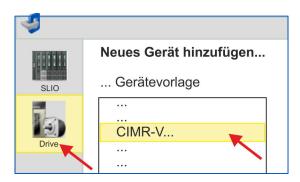
- 1. Klicken Sie im Projektbaum auf "Geräte und Netze".
 - ⇒ Sie erhalten eine grafische Objekt-Ansicht Ihrer CPU.

- 2. Klicken Sie auf das Netzwerk "PG_OP_Ethernet".
- 3. ▶ Wählen Sie "Kontextmenü → Eigenschaften der Schnittstelle".
 - ➡ Es öffnet sich ein Dialogfenster. Hier können Sie IP-Adressdaten für Ihren Ethernet-PG/OP-Kanal angeben. Gültige IP-Adress-Parameter erhalten Sie von Ihrem Systemadministrator.
- 4. Bestätigen Sie Ihre Eingabe mit [OK].
 - → Die IP-Adressdaten werden in Ihr Projekt übernommen und in "Geräte und Netze" unter "Lokale Baugruppen" aufgelistet.

Nach der Übertragung Ihres Projekts ist Ihre CPU über die angegebenen IP-Adressdaten via Ethernet-PG/OP-Kanal erreichbar.


ESI-Datei installieren

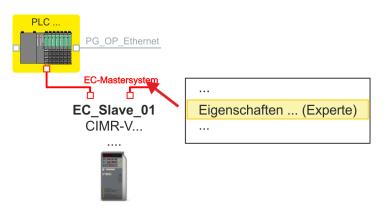
Damit der Frequenzumrichter im *SPEED7 EtherCAT Manager* konfiguriert werden kann, muss die entsprechende ESI-Datei installiert sein. In der Regel wird das *SPEED7 Studio* mit aktuellen ESI-Dateien ausgeliefert und Sie können diesen Teil überspringen. Sollte Ihre ESI-Datei veraltet sein, finden Sie die aktuellste ESI-Datei für den Frequenzumrichter unter www.yaskawa.eu.com im *"Download Center"*.


- 1. Laden Sie die zu Ihrem Frequenzumrichter passende ESI-Datei herunter. Entpacken Sie diese falls erforderlich.
- 2. Gehen Sie in Ihr SPEED7 Studio.
- 3. Öffnen Sie mit "Extras → Gerätebeschreibungsdatei installieren (EtherCAT ESI)" das zugehörige Dialogfenster.
- **4.** Geben Sie unter "Quellpfad" die ESI-Datei an und installieren Sie diese mit [Installieren].
 - Die Geräte der ESI-Datei steht Ihnen nun zur Verfügung.

Frequenzumrichter hinzufügen

- 1. Klicken Sie im Projektbaum auf "Geräte und Netze".
- **2.** Klicken Sie hier auf "EC-Mastersystem" und wählen sie "Kontextmenü → Neues Gerät hinzufügen".

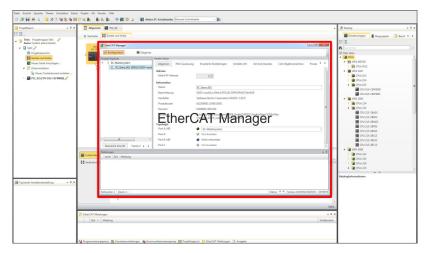
➡ Es öffnet sich die Gerätevorlage zur Auswahl eines EtherCAT-Devices.

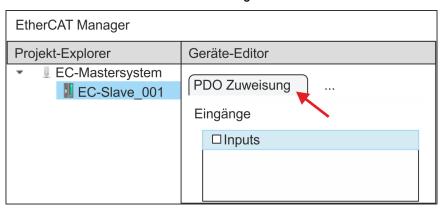

- 3. Wählen Sie Ihren Frequenzumrichter aus:
 - CIMR-Vxxxx...
 - CIPR-GA70xxxx...

Bestätigen Sie Ihre Angaben mit [OK]. Sollte Ihr Antrieb nicht vorhanden sein, müssen Sie die entsprechende ESI-Datei wie weiter oben beschrieben installieren.

→ Der Frequenzumrichter wird an Ihr EC-Mastersystem angebunden.

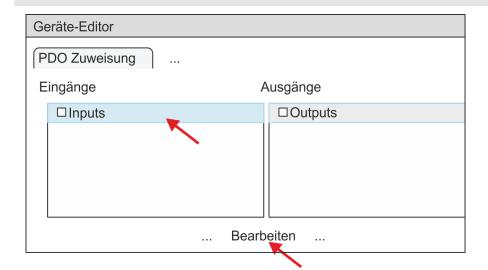
Frequenzumrichter konfigurieren

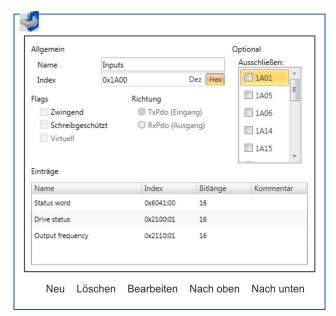

1. Klicken Sie auf "EC-Mastersystem" und wählen sie "Kontextmenü → Eigenschaft des Bussystems (Experte)".


PDOs können Sie nur im "Experten-Modus" bearbeiten! Ansonsten werden die Schaltflächen ausgeblendet.

→ Der SPEED7 EtherCAT Manager wird gestartet. Hier können Sie die EtherCAT-Kommunikation zu Ihrem Frequenzumrichter konfigurieren.

Näheres zum Einsatz des SPEED7 EtherCAT Manager finden Sie in der Onlinehilfe zum SPEED7 Studio.


2. Klicken Sie im SPEED7 EtherCAT Manager auf den Slave und wählen Sie im "Geräte-Editor" den Reiter "PDO-Zuweisung" an.


- ➡ Dieser Dialog zeigt eine Auflistung aller PDOs.
- <u>3.</u> Durch Anwahl des entsprechenden PDO-Mappings können Sie mit [Bearbeiten] die PDOs bearbeiten. Wählen Sie das Mapping "Inputs" an und klicken Sie auf [Bearbeiten].

Bitte beachten Sie, dass aufgrund der Voreinstellung manche PDOs nicht bearbeitet werden können. Durch Deaktivierung bereits aktivierter PDOs können Sie die Bearbeitung von gesperrten PDOs frei geben.

➡ Es öffnet sich der Dialog "PDO bearbeiten". Bitte überprüfen Sie hier die aufgeführten PDO-Einstellungen und passen Sie diese ggf. an. Bitte berücksichtigen Sie hierbei auch die Reihenfolge der "Einträge" und ergänzen Sie diese entsprechend.

Für die Bearbeitung der "Einträge" stehen folgende Funktionen zur Verfügung:

- Neu
 - Hiermit können Sie in einem Dialogfenster einen neuen Eintrag anlegen, indem Sie aus dem "CoE-Objektverzeichnis" den entsprechenden Eintrag auswählen und Ihre Einstellungen vornehmen. Mit [OK] wird der Eintrag übernommen und in der Liste der Einträge aufgeführt.
- Löschen
 - Hiermit können Sie den angewählte Eintrag löschen.
- Bearbeiten
 - Hiermit können Sie allgemeinen Daten eines Eintrags bearbeiten.
- Nach oben/unten
 - Hiermit können Sie den angewählten Eintrag in der Liste nach oben bzw. nach unten bewegen.
- **4.** Führen Sie folgende Einstellungen durch:

Inputs

- Allgemein
 - Name: Inputs
 - Index: 0x1A00
- Flags
 - Alles deaktiviert
- Richtung
 - TxPdo (Eingang): aktiviert
- Ausschließen

Bitte diese Einstellungen beachten, da ansonsten die PDO-Mappings nicht zeitgleich aktiviert werden können!

- Alles deaktiviert
- Einträge

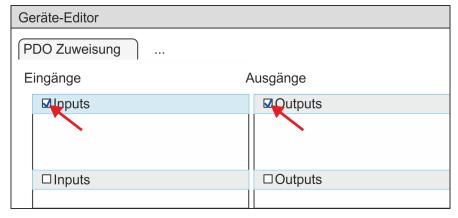
Name	Index	Bitlänge
Status word	0x6041:00	16Bit
Drive status value	0x2100:01	16Bit
Output frequency value	0x2110:01	16Bit

Schließen Sie den Dialog "PDO bearbeiten" mit [OK].

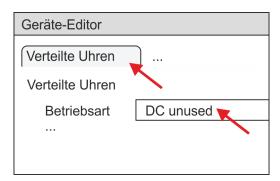
5. Wählen Sie das Mapping "Outputs" an und klicken Sie auf [Bearbeiten]. Führen Sie folgende Einstellungen durch:

Outputs

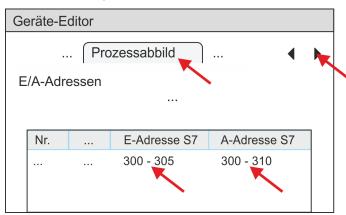
- Allgemein
 - Name: OutputsIndex: 0x1600
- Flags
 - Alles deaktiviert
- Richtung
 - RxPdo (Ausgang): aktiviert
- Ausschließen


Bitte diese Einstellungen beachten, da ansonsten die PDO-Mappings nicht zeitgleich aktiviert werden können!

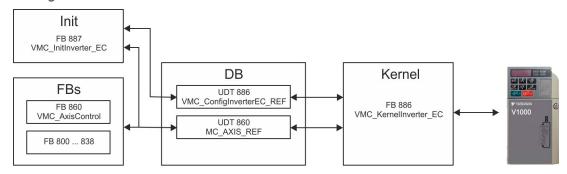
- Alles deaktiviert
- Einträge


Name	Index	Bitlänge
Control word	0x6040:00	16Bit
vl target velocity	0x6042:00	16Bit
vl velocity acceleration: Delta speed	0x6048:01	32Bit
vl velocity acceleration: Delta time	0x6048:02	16Bit

Schließen Sie den Dialog "PDO bearbeiten" mit [OK].


6. Aktivieren Sie in "PDO-Zuweisung" die jeweils 1. PDOs "Inputs" und "Outputs". Alle nachfolgenden PDOs müssen deaktiviert bleiben. Sollte dies nicht möglich sein, überprüfen Sie bitte den jeweiligen PDO-Parameter "Ausschließen".

7. Wählen Sie im "Geräte-Editor" des SPEED7 EtherCAT Manager den Reiter "Verteilte Uhren" an und stellen Sie "DC unused" als "Betriebsart" ein.


- **8.** Wählen Sie im "Geräte-Editor" über die Pfeiltaste den Reiter "Prozessabbild" an und notieren Sie sich für die Parameter des Bausteins FB 887 VMC_InitInverter_EC folgende PDO-Anfangsadressen:
 - "E-Adresse S7" → "InputsStartAddressPDO"
 - "A-Adresse S7" → "OutputsStartAddressPDO"

9. Indem Sie den Dialog des *SPEED7 EtherCAT Manager* mit [X] schließen, wird die Konfiguration in das *SPEED7 Studio* übernommen.

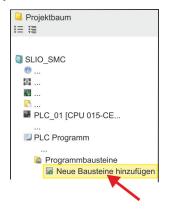
13.7.4.2 Anwender-Programm

13.7.4.2.1 Programmstruktur

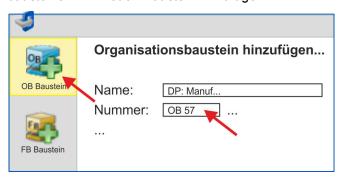
DB

Für jede Achse ist ein Datenbaustein (Achs-DB) für Konfiguration und Statusdaten anzulegen. Der Datenbaustein besteht aus folgenden Datenstrukturen:

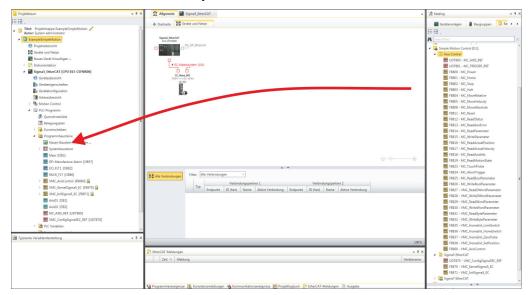
- UDT 886 VMC_ConfigInverterEC_REF
 Die Datenstruktur beschreibt den Aufbau der Konfiguration des Antriebs.
 Spezifische Datenstruktur für Frequenzumrichter mit EtherCAT.
- UDT 860 MC_AXIS_REF


 Die Datenstruktur beschreibt den Aufbau der Parameter und Statusinformationen von Antrieben.

Allgemeine Datenstruktur für alle Antriebe und Bussysteme.


- FB 887 VMC_InitInverter_EC
 - Der Init-Baustein dient zur Konfiguration einer Achse.
 - Spezifischer Baustein für Frequenzumrichter mit EtherCAT.
 - Die Konfigurationsdaten für die Initialisierung sind im Achs-DB abzulegen.
- FB 886 VMC_KernelInverter_EC
 - Der Kernel-Baustein kommuniziert mit dem Antrieb über das entsprechende Bussystem, verarbeitet die Benutzeraufträge und liefert Statusmeldungen zurück.
 - Spezifischer Baustein für Frequenzumrichter mit EtherCAT.
 - Der Austausch der Daten erfolgt mittels des Achs-DB.
- FB 860 VMC_AxisControl
 - Universal-Baustein für alle Antriebe und Bussysteme.
 - Unterstützt einfache Bewegungskommandos und liefert alle relevanten Statusmeldungen.
 - Der Austausch der Daten erfolgt mittels des Achs-DB.
 - Über die Instanzdaten des Bausteins können Sie zur Bewegungssteuerung und Statusabfrage eine Visualisierung anbinden.
 - Zusätzlich zum FB 860 VMC_AxisControl haben Sie die Möglichkeit PLCopen-Bausteine zu nutzen.
- FB 800 ... FB 838 PLCopen
 - Die PLCopen-Bausteine dienen zur Programmierung von Bewegungsabläufen und Statusabfragen.
 - Allgemeine Bausteine für alle Antriebe und Bussysteme.

13.7.4.2.2 Programmierung


Bausteine in Projekt kopieren

1. Klicken Sie im *Projektbaum* innerhalb der CPU unter "PLC-Programm", "Programmbausteine" auf "Neuen Baustein hinzufügen".

- → Das Dialogfenster "Baustein hinzufügen" öffnet sich.
- Wählen Sie den Bausteintyp "OB Baustein" und fügen Sie nacheinander OB 57, OB 82 und OB 86 Ihrem Projekt hinzu.

- 3. Öffnen Sie im "Katalog" unter "Bausteine" "Simple Motion Control" und ziehen Sie per Drag&Drop folgende Bausteine in "Programmbausteine" des Projektbaums:
 - Inverter EtherCAT:
 - UDT 886 VMC_ConfigInverterEC_REF
 - FB 886 VMC KernelInverter EC
 - FB 887 VMC InitInverter EC
 - Axis Control
 - UDT 860 MC AXIS REF
 - Bausteine für die gewünschten Bewegungsabläufe

Achs-DB anlegen

- 1. Fügen Sie Ihrem Projekt einen neuen DB als Achs-DB hinzu. Klicken Sie hierzu im Projektbaum innerhalb der CPU unter "PLC-Programm", "Programmbausteine" auf "Neuen Baustein hinzufügen", wählen Sie den Bausteintyp "DB Baustein" und vergeben Sie diesem den Namen "Axis01". Die DB-Nr. können Sie frei wählen wie z.B. DB 10.
 - Der Baustein wird angelegt und geöffnet.

- **2.** Legen Sie in "Axis01" die Variable "Config" vom Typ UDT 886 an. Dies sind spezifische Achs-Konfigurationsdaten.
 - Legen Sie in "Axis01" die Variable "Axis" vom Typ UDT 860 an. Während des Betriebs werden hier alle Betriebsdaten der Achse abgelegt.

•

Axis01 [DB10]
Bausteinstruktur

Adr	Name	Datentyp	
	Config	UDT	[886]
	Axis	UDT	[860]

OB₁

Konfiguration der Achse

Öffnen Sie den OB 1 und programmieren Sie folgende FB-Aufrufe mit zugehörigen DBs:

```
FB 887 - VMC_InitInverter_EC, DB 887 → "FB 887 - VMC_InitInverter_EC - Frequenzumrichter EtherCAT Initialisierung"...Seite 655
```

Geben Sie unter *InputsStartAddressPDO* bzw. *OutputsStartAddressPDO* die Adresse aus dem *SPEED7 EtherCAT Manager* an. → 635

```
→ CALL "VMC InitInverter EC" , "DI InitInvEC01"
                       :="InitInvEC1_Enable"
 Enable
 LogicalAddress
                       :=300
  InputsStartAddressPDO :=300 (EtherCAT-Man.: E-Adresse S7)
  OutputsStartAddressPDO:=300 (EtherCAT-Man.: A-Adresse S7)
 MaxVelocityDrive :=1.000000e+002
 MaxOutputFrequency
                      :=6.000000e+001
 NumberOfPoles
                       :=6
 Valid
                       :="InitInvEC1 Valid"
 Error
                       :="InitInvEC1 Error"
 ErrorID
                       :="InitInvEC1 ErrorID"
 MaxVelocity
                       :="InitInvEC1 MaxVelocityRPM"
                       :="Axis01".Config
 Config
                       :="Axis01".Axis
```

Kernel für Achse beschalten

Der Kernel verarbeitet die Benutzerkommandos und gibt sie entsprechend aufbereitet an den Antrieb über das jeweilige Bussystem weiter.

```
FB 886 - VMC_KernelInverter_EC, DB 886 → "FB 886 - VMC_KernelInverter_EC - Frequenzumrichter EtherCAT Kernel"... Seite 655
```

```
→ CALL "VMC_KernelInverter_EC" , "DI_KernelInvEC01"
Init :="KernelInvEC1_Init"
Config:="Axis01".Config
Axis :="Axis01".Axis
```

Baustein für Bewegungsabläufe beschalten

Zur Vereinfachung soll hier die Beschaltung des FB 860 - VMC_AxisControl gezeigt werden. Dieser Universalbaustein unterstützt einfache Bewegungskommandos und liefert Statusmeldungen zurück. Die Ein- und Ausgänge können Sie individuell beschalten. Bitte geben Sie unter "Axis" die Referenz zu den entsprechenden Achsdaten im Achs-DB an.

FB 860 - VMC_AxisControl, DB 860 → "FB 860 - VMC_AxisControl - Control-Baustein Achskontrolle"...Seite 659

```
→ CALL "VMC AxisControl" , "DI AxisControl01"
    AxisEnable :="AxCtrll_AxisEnable"
AxisReset :="AxCtrll_AxisReset"
HomeExecute* :="AxCtrll_HomeExecute"
HomePosition* :="AxCtrll_HomePosition"
StopExecute :="AxCtrll_StopExecute"
    MvVelocityExecute :="AxCtrl1 MvVelExecute"
     MvRelativeExecute* :="AxCtrl1 MvRelExecute"
  MyAbsoluteExecute* :="AxCtrll_MyRelExecute"
PositionDistance* :="AxCtrll_PositionDistance"
Velocity :="AxCtrll_Velocity"
Acceleration :="AxCtrll_Acceleration"
Deceleration :="AxCtrll_Deceleration"
JogPositive :="AxCtrll_JogPositive"
JogNegative :="AxCtrll_JogNegative"
JogVelocity :="AxCtrll_JogVelocity"
JogAcceleration :="AxCtrll_JogAcceleration"
JogDeceleration :="AxCtrll_JogDeceleration"
AxisReady :="AxCtrll_JogDeceleration"
AxisEnabled :="AxCtrll_AxisReady"
AxisError :="AxCtrll_AxisError"
AxisError :="AxCtrll_AxisError"
DriveWarning :="AxCtrll_DriveWarning"
DriveError :="AxCtrll_DriveError"
DriveErrorID :="AxCtrll_DriveError"
IsHomed* :="AxCtrll_IsHomed"
ModeOfOperation :="AxCtrll_IsHomed"
    - AXCTTIL_DriveErrorID"

IsHomed* :="AxCtrll_IsHomed"

PLCopenState :="AxCtrll_ModeOfOperation"

PLCopenState :="AxCtrll_PLCopenState"

ActualPosition* :="AxCtrll_ActualPosition"

ActualVelocity :="AxCtrll_ActualVelocity"

CmdDone :="AxCtrll_CmdDone"

CmdBusy :="AxCtrll_CmdDone"
                                                   :="AxCtrl1_CmdBusy"
:="AxCtrl1_CmdAborted"
     CmdAborted
     CmdError :="AxCtrl1_CmdError"
CmdErrorID :="AxCtrl1_CmdErrorID"
     DirectionPositive :="AxCtrll DirectionPos"
     DirectionNegative := "AxCtrl1 DirectionNeg"
     SWLimitMinActive* :="AxCtrl1 SWLimitMinActive"
     SWLimitMaxActive* :="AxCtrl1 SWLimitMaxActive"
     HWLimitMinActive* :="AxCtrl1 HWLimitMinActive"
     HWLimitMaxActive* :="AxCtrl1 HWLimitMaxActive"
     Axis
                                                     :="Axis01".Axis
```

*) Dieser Parameter wird von einem Frequenzumrichter nicht unterstützt.

Für komplexe Bewegungsaufgaben können Sie die PLCopen-Bausteine verwenden. Hier müssen Sie ebenfalls unter Axis die Referenz zu den Achsdaten im Achs-DB angeben.

Ihr Projekt beinhaltet nun folgende Bausteine:

- OB 1 Main
- OB 57 DP Manufacturer Alarm
- OB 82 I/O FLT1
- OB 86 Rack FLT
- FB 860 VMC_AxisControl mit Instanz-DB

- FB 886 VMC_KernelInverter_EC mit Instanz-DB
- FB 887 VMC InitInverter EC mit Instanz-DB
- UDT 860 MC Axis REF
- UDT 886 VMC_ConfigInverterEC_REF

Zeitlicher Ablauf

<u>1.</u> Wählen Sie "Projekt → Alles übersetzen" und übertragen Sie das Projekt in Ihre CPU.

Näheres zur Übertragung Ihres Projekt finden Sie in der Onlinehilfe zum SPEED7 Studio.

Sie können jetzt Ihre Applikation in Betrieb nehmen.

VORSICHT

Bitte beachten Sie immer die Sicherheitshinweise zu ihrem Antrieb, insbesondere bei der Inbetriebnahme!

- **2.** Bevor eine Achse gesteuert werden kann, muss diese initialisiert werden. Rufen Sie hierzu den *Init*-Baustein FB 887 VMC_InitInverter_EC mit *Enable* = TRUE auf.
 - → Der Ausgang Valid meldet TRUE zurück. Im Fehlerfall können Sie durch Auswertung der ErrorID den Fehler ermitteln.

Den *Init*-Baustein müssen Sie erneut aufrufen, wenn Sie einen neuen Achs-DB laden oder Parameter am *Init*-Baustein geändert wurden.

Fahren Sie erst fort, wenn der Init-Baustein keinen Fehler meldet!

- 3. Stellen Sie sicher, dass der *Kernel-*Baustein FB 886 VMC_KernelInverter_EC zyklisch aufgerufen wird. Auf diese Weise werden Steuersignale an den Antrieb übergeben und Statusmeldungen übermittelt.
- **4.** Programmieren Sie Ihre Applikation mit dem FB 860 VMC_AxisControl oder mit den PLCopen Bausteinen.

Steuerung des Antriebs über HMI

Sie haben die Möglichkeit über ein HMI Ihren Antrieb zu steuern. Hierzu gibt es für Movicon eine vorgefertigte Symbolbibliothek für den Zugriff auf den VMC_AxisControl Funktionsbaustein.

"Antrieb über HMI steuern"...Seite 714

13.7.5 Einsatz im Siemens SIMATIC Manager

13.7.5.1 Voraussetzung

Übersicht

- Bitte verwenden Sie für die Projektierung den Siemens SIMATIC Manager ab V 5.5 SP2.
- Die Projektierung der System SLIO CPU erfolgt im Siemens SIMATIC Manager in Form des virtuellen PROFINET IO Devices "... SLIO CPU". Das "... SLIO System" ist mittels GSDML im Hardware-Katalog zu installieren.
- Die Projektierung des EtherCAT-Masters erfolgt im Siemens SIMATIC Manager in Form des virtuellen PROFINET IO Devices "EtherCAT-Netzwerk". Das "EtherCAT-Netzwerk" ist mittels GSDML im Hardware-Katalog zu installieren.
- Das "EtherCAT-Netzwerk" kann mit dem SPEED7 EtherCAT Manager konfiguriert werden.
- Für die Projektierung des Antriebs im *SPEED7 EtherCAT Manager* ist die Installation der zugehörigen ESI-Datei erforderlich.

IO Device "... SLIO System" installieren

Die Installation des PROFINET IO Devices "... SLIO CPU" im Hardware-Katalog erfolgt nach folgender Vorgehensweise:

- 1. Gehen Sie in das "Download Center" von www.yaskawa.eu.com.
- **2.** Laden Sie unter "GSDML SLIO" die Konfigurationsdatei für Ihre CPU.
- 3. Extrahieren Sie die Datei in Ihr Arbeitsverzeichnis.
- **4.** Starten Sie den Hardware-Konfigurator von Siemens.
- 5. Schließen Sie alle Projekte.
- **6.** ▶ Gehen Sie auf "Extras → GSD-Dateien installieren".
- Navigieren Sie in Ihr Arbeitsverzeichnis und installieren Sie die entsprechende GSDML-Datei.
 - Nach der Installation finden Sie das entsprechende PROFINET IO Device unter "PROFINET IO → Weitere Feldgeräte → I/O → ... SLIO System".

IO Device EtherCAT-Netzwerk installieren

Die Installation des PROFINET IO Devices "EtherCAT-Netzwerk" im Hardware-Katalog erfolgt nach folgender Vorgehensweise:

- 1. Gehen Sie in das "Download Center" von www.yaskawa.eu.com.
- 2. Laden Sie unter "GSDML EtherCAT" die GSDML-Datei für Ihren EtherCAT-Master.
- 3. Extrahieren Sie die Dateien in Ihr Arbeitsverzeichnis.
- 4. Starten Sie den Hardware-Konfigurator von Siemens.
- 5. Schließen Sie alle Projekte.
- **6.** ▶ Gehen Sie auf "Extras → GSD-Dateien installieren".
- Navigieren Sie in Ihr Arbeitsverzeichnis und installieren Sie die entsprechende GSDML-Datei.
 - Nach der Installation finden Sie das "EtherCAT-Netzwerk" unter "PROFINET IO
 → Weitere Feldgeräte → I/O → ... EtherCAT System".

SPEED7 EtherCAT Manager installieren

Die Konfiguration des PROFINET IO Devices "EtherCAT-Netzwerk" erfolgt mit dem SPEED7 EtherCAT Manager von Yaskawa. Sie finden diesen im "Download Center" von www.yaskawa.eu.com unter "EtherCAT Manager".

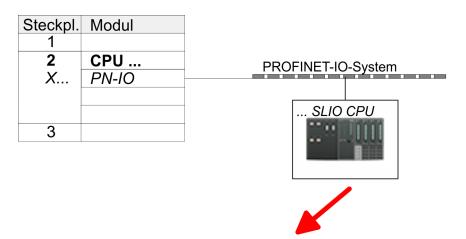
Die Installation erfolgt nach folgender Vorgehensweise:

1. Schließen Sie den Siemens SIMATIC Manager.

- 2. Gehen Sie in das "Download Center" von www.yaskawa.eu.com
- 3. Laden Sie den EtherCAT Manager und entpacken Sie diesen auf Ihren PC.
- **4.** \(\) Zur Installation starten Sie die Datei EtherCATManager_v... .exe.
- **5.** Wählen Sie die Sprache für die Installation aus.
- 6. Stimmen Sie dem Lizenzvertrag zu.
- 7. Wählen Sie das Installationsverzeichnis und starten Sie die Installation.
- 8. Nach der Installation müssen Sie Ihren PC neu starten
 - → Der SPEED7 EtherCAT Manager ist installiert und kann jetzt über das Kontextmenü des Siemens SIMATIC Manager aufgerufen werden.

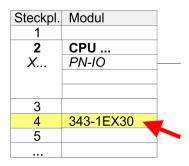
13.7.5.2 Hardware-Konfiguration

CPU im Projekt anlegen

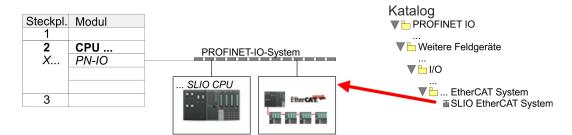

Steckp	Baugruppe
1	
2	CPU 315-2 PN/DP
X1	MPI/DP
X2	PN-IO
X2	Port 1
X2	Port 2
3	

Um kompatibel mit dem Siemens SIMATIC Manager zu sein, sind folgende Schritte durchzuführen:

- 1. Starten Sie den Hardware-Konfigurator von Siemens mit einem neuen Projekt.
- 2. Fügen Sie aus dem Hardware-Katalog eine Profilschiene ein.
- 3. ▶ Platzieren Sie auf "Slot"-Nummer 2 die CPU 315-2 PN/DP (6ES7 315-2EH14 V3.2).
- 4. Über das Submodul "X1 MPI/DP" projektieren und vernetzen Sie den integrierten PROFIBUS-DP-Master (Buchse X3).
- 5. Über das Submodul "X2 PN-IO" projektieren Sie den EtherCAT-Master als virtuelles PROFINET-Netzwerk.
- 6. Klicken Sie auf das Submodul "PN-IO" der CPU.
- 7. ▶ Wählen Sie "Kontextmenü → PROFINET IO-System einfügen".


- **8.** Legen Sie mit [Neu] ein neues Subnetz an und vergeben Sie gültige IP-Adress-Daten.
- <u>9.</u> Klicken Sie auf das Submodul *"PN-IO"* der CPU und öffnen Sie mit *"Kontextmenü* → *Objekteigenschaften"* den Eigenschafts-Dialog.
- **10.** Geben Sie unter "Allgemein" einen "Gerätenamen" an. Der Gerätename muss eindeutig am Ethernet-Subnetz sein.

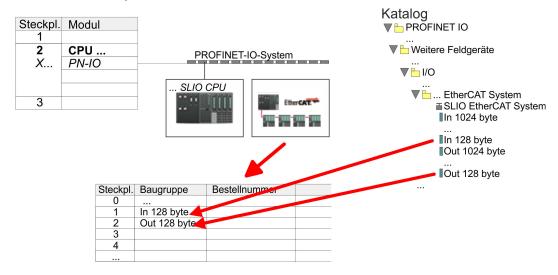
Steckpl.	Baugruppe	Bestellnummer	
0	SLIO CPU	015	
X2	015		
1			
2			
3			


- 11. Navigieren Sie im Hardware-Katalog in das Verzeichnis "PROFINET IO → Weitere Feldgeräte → I/O → ... SLIO System" und binden Sie das IO-Device "015-CEFNR00 CPU" an Ihr PROFINET-System an.
 - ➡ In der Steckplatzübersicht des PROFINET-IO-Device "... SLIO CPU" ist auf Steckplatz 0 die CPU bereits vorplatziert. Ab Steckplatz 1 können Sie Ihre System SLIO Module platzieren.

Ethernet-PG/OP-Kanal parametrieren

- 1. Platzieren Sie für den Ethernet-PG/OP-Kanal auf Steckplatz 4 den Siemens CP 343-1 (SIMATIC 300 \ CP 300 \ Industrial Ethernet \CP 343-1 \ 6GK7 343-1EX30 0XE0 V3.0).
- Öffnen Sie durch Doppelklick auf den CP 343-1EX30 den Eigenschaften-Dialog und geben Sie für den CP unter "Eigenschaften" IP-Adress-Daten an. Gültige IP-Adress-Parameter erhalten Sie von Ihrem Systemadministrator.
- 3. Ordnen Sie den CP einem "Subnetz" zu. Ohne Zuordnung werden die IP-Adress-Daten nicht übernommen!

"EtherCAT-Netzwerk" einfügen

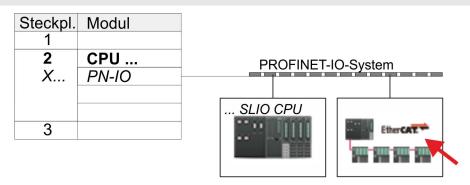


1. Navigieren Sie im Hardware-Katalog in das Verzeichnis "PROFINET IO → Weitere Feldgeräte → I/O → ... EtherCAT System" und binden Sie das IO Device "SLIO EtherCAT System" an Ihr PROFINET-System an.

2. Klicken Sie auf das eingefügte IO Device "EtherCAT-Netzwerk" und definieren Sie die Bereiche für Ein- und Ausgabe, indem Sie den entsprechenden "Out"- bzw. "In"-Bereich auf einen Steckplatz ziehen.

Legen Sie folgende Bereiche an:

- In 128Byte
- Out 128Byte


3. Wählen Sie "Station → Speichern und übersetzen"

Frequenzumrichter konfigurieren

Die Konfiguration des Antriebs erfolgt im SPEED7 EtherCAT Manager.

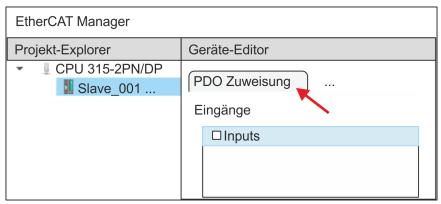
Vor dem Aufruf des SPEED7 EtherCAT Manager müssen Sie immer Ihr Projekt mit "Station → Speichern und übersetzen" speichern.

- 1. ► Klicken Sie auf das eingefügtes IO Device "EtherCAT-Netzwerk" und wählen Sie "Kontextmenü → Device Tool starten → SPEED7 EtherCAT Manager".
 - → Der SPEED7 EtherCAT Manager wird gestartet. Hier können Sie die EtherCAT-Kommunikation zu Ihrem Frequenzumrichter konfigurieren.

Näheres zum Einsatz des *SPEED7 EtherCAT Manager* finden Sie im zugehörigen Handbuch bzw. in der Onlinehilfe.

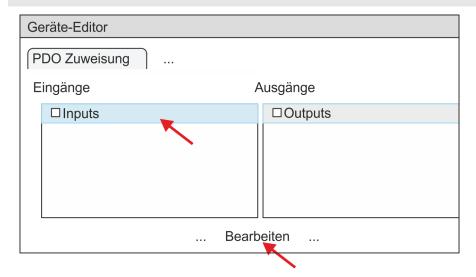
- 2. Damit der Frequenzumrichter im SPEED7 EtherCAT Manager konfiguriert werden kann, ist die entsprechende ESI-Datei zu installieren. Die ESI-Datei für den Frequenzumrichter finden Sie unter www.yaskawa.eu.com im "Download Center". Laden Sie die zu Ihrem Antrieb passende ESI-Datei herunter. Entpacken Sie diese falls erforderlich.
- **4.** Klicken Sie im "ESI-Manager" auf [Datei hinzufügen] und wählen Sie Ihre ESI-Datei aus. Mit [Öffnen] wird die ESI-Datei im SPEED7 EtherCAT Manager installiert.
- 5. Schließen Sie den "ESI-Manager".
 - ➡ Ihr Frequenzumrichter steht Ihnen nun zur Konfiguration zur Verfügung.

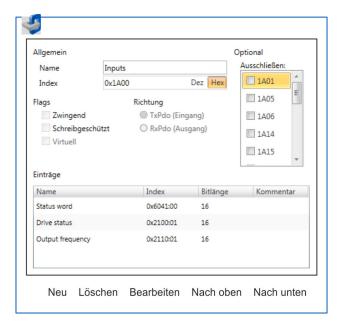
- 6. Klicken Sie im EtherCAT Manager auf ihre CPU und öffnen Sie über "Kontextmenü → Slave anhängen" das Dialogfenster zum Hinzufügen eines EtherCAT-Slave.
 - Das Dialogfenster zur Auswahl eines EtherCAT-Slave wird geöffnet.
- 7. Wählen Sie Ihren Frequenzumrichter und bestätigen Sie Ihre Auswahl mit [OK].
 - → Der Frequenzumrichter wird an den Master angebunden und kann nun konfiguriert werden.



PDOs können Sie nur im "Experten-Modus" bearbeiten! Ansonsten werden die Schaltflächen ausgeblendet. Durch Aktivierung des "Experten-Modus" können Sie in die erweiterte Bearbeitung umschalten.

Aktivieren Sie den Experten-Modus durch Aktivierung von "Ansicht → Experte".


9. Klicken Sie im SPEED7 EtherCAT Manager auf den Frequenzumrichter EtherCAT Slave und wählen Sie im "Geräte-Editor" den Reiter "PDO-Zuweisung" an.


- ➡ Dieser Dialog zeigt eine Auflistung aller PDOs.
- Durch Anwahl des entsprechenden PDO-Mappings können Sie mit [Bearbeiten] die PDOs bearbeiten. Wählen Sie das Mapping "Inputs" an und klicken Sie auf [Bearbeiten].

Bitte beachten Sie, dass aufgrund der Voreinstellung manche PDOs nicht bearbeitet werden können. Durch Deaktivierung bereits aktivierter PDOs können Sie die Bearbeitung von gesperrten PDOs frei geben.

➡ Es öffnet sich der Dialog "PDO bearbeiten". Bitte überprüfen Sie hier die aufgeführten PDO-Einstellungen und passen Sie diese ggf. an. Bitte berücksichtigen Sie hierbei auch die Reihenfolge der "Einträge" und ergänzen Sie diese entsprechend.

Für die Bearbeitung der "Einträge" stehen folgende Funktionen zur Verfügung:

- Neu
 - Hiermit können Sie in einem Dialogfenster einen neuen Eintrag anlegen, indem Sie aus dem "CoE-Objektverzeichnis" den entsprechenden Eintrag auswählen und Ihre Einstellungen vornehmen. Mit [OK] wird der Eintrag übernommen und in der Liste der Einträge aufgeführt.
- Löschen
 - Hiermit können Sie den angewählte Eintrag löschen.
- Bearbeiten
 - Hiermit können Sie allgemeinen Daten eines Eintrags bearbeiten.
- Nach oben/unten
 - Hiermit können Sie den angewählten Eintrag in der List nach oben bzw. nach unten bewegen.

11. ▶ Führen Sie folgende Einstellungen durch:

Inputs

- Allgemein
 - Name: InputsIndex: 0x1A00
- Flags
 - Alles deaktiviert
- Richtung
 - TxPdo (Eingang): aktiviert
- Ausschließen

Bitte diese Einstellungen beachten, da ansonsten die PDO-Mappings nicht zeitgleich aktiviert werden können!

- Alles deaktiviert
- Einträge

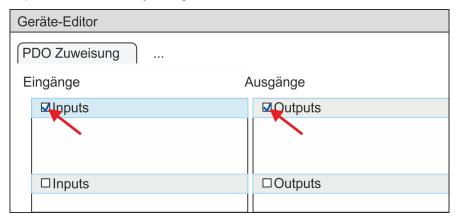
Name	Index	Bitlänge
Status word	0x6041:00	16Bit
Drive status value	0x2100:01	16Bit
Output frequency value	0x2110:01	16Bit

Schließen Sie den Dialog "PDO bearbeiten" mit [OK].

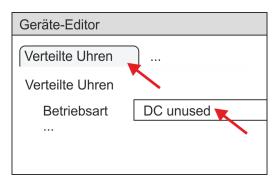
12. Wählen Sie das Mapping "Outputs" an und klicken Sie auf [Bearbeiten]. Führen Sie folgende Einstellungen durch:

Outputs

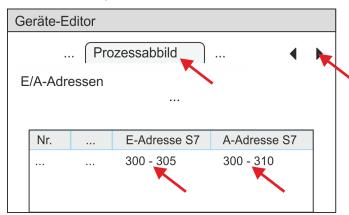
- Allgemein
 - Name: Outputs
 - Index: 0x1600
- Flags
 - Alles deaktiviert
- Richtung
 - RxPdo (Ausgang): aktiviert
- Ausschließen


Bitte diese Einstellungen beachten, da ansonsten die PDO-Mappings nicht zeitgleich aktiviert werden können!

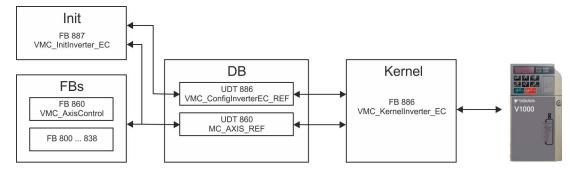
- Alles deaktiviert
- Einträge


Name	Index	Bitlänge
Control word	0x6040:00	16Bit
vl target velocity	0x6042:00	16Bit
vl velocity acceleration: Delta speed	0x6048:01	32Bit
vl velocity acceleration: Delta time	0x6048:02	16Bit

Schließen Sie den Dialog "PDO bearbeiten" mit [OK].


Aktivieren Sie in "PDO-Zuweisung" die jeweils 1. PDOs "Inputs" und "Outputs". Alle nachfolgenden PDOs müssen deaktiviert bleiben. Sollte dies nicht möglich sein, überprüfen Sie bitte den jeweiligen PDO-Parameter "Ausschließen".

14. Wählen Sie im "Geräte-Editor" des SPEED7 EtherCAT Manager den Reiter "Verteilte Uhren" an und stellen Sie "DC unused" als "Betriebsart" ein.


- 15. Wählen Sie im "Geräte-Editor" über die Pfeiltaste den Reiter "Prozessabbild" an und notieren Sie sich für die Parameter des Bausteins FB 887 VMC_InitInverter_EC folgende PDO-Anfangsadressen:
 - "E-Adresse S7" → "InputsStartAddressPDO"
 - "A-Adresse S7" → "OutputsStartAddressPDO"

- 16. Indem Sie den Dialog des SPEED7 EtherCAT Manager mit [X] schließen, wird die Konfiguration in die Projektierung übernommen. Sie können Ihre EtherCAT-Konfiguration jederzeit im SPEED7 EtherCAT Manager wieder bearbeiten, da die Konfiguration in Ihrem Projekt gespeichert wird.
- 17. ▶ Speichern und übersetzen Sie Ihre Konfiguration

13.7.5.3 Anwender-Programm

13.7.5.3.1 Programmstruktur

DB

Für jede Achse ist ein Datenbaustein (Achs-DB) für Konfiguration und Statusdaten anzulegen. Der Datenbaustein besteht aus folgenden Datenstrukturen:

- UDT 886 VMC_ConfigInverterEC_REF
 Die Datenstruktur beschreibt den Aufbau der Konfiguration des Antriebs.
 Spezifische Datenstruktur für Frequenzumrichter mit EtherCAT.
- UDT 860 MC_AXIS_REF

Die Datenstruktur beschreibt den Aufbau der Parameter und Statusinformationen von Antrieben.

Allgemeine Datenstruktur für alle Antriebe und Bussysteme.

- FB 887 VMC_InitInverter_EC
 - Der Init-Baustein dient zur Konfiguration einer Achse.
 - Spezifischer Baustein für Frequenzumrichter mit EtherCAT.
 - Die Konfigurationsdaten für die Initialisierung sind im Achs-DB abzulegen.
- FB 886 VMC KernelInverter EC
 - Der Kernel-Baustein kommuniziert mit dem Antrieb über das entsprechende Bussystem, verarbeitet die Benutzeraufträge und liefert Statusmeldungen zurück.
 - Spezifischer Baustein f
 ür Frequenzumrichter mit EtherCAT.
 - Der Austausch der Daten erfolgt mittels des Achs-DB.
- FB 860 VMC_AxisControl
 - Universal-Baustein f
 ür alle Antriebe und Bussysteme.
 - Unterstützt einfache Bewegungskommandos und liefert alle relevanten Statusmeldungen.
 - Der Austausch der Daten erfolgt mittels des Achs-DB.
 - Über die Instanzdaten des Bausteins können Sie zur Bewegungssteuerung und Statusabfrage eine Visualisierung anbinden.
 - Zusätzlich zum FB 860 VMC_AxisControl haben Sie die Möglichkeit PLCopen-Bausteine zu nutzen.
- FB 800 ... FB 838 PLCopen
 - Die PLCopen-Bausteine dienen zur Programmierung von Bewegungsabläufen und Statusabfragen.
 - Allgemeine Bausteine für alle Antriebe und Bussysteme.

13.7.5.3.2 Programmierung

Bibliothek einbinden

- 1. Gehen Sie in das "Download Center" von www.yaskawa.eu.com.
- 2. Laden Sie unter "Controls Library" die Simple Motion Control Library.
- Öffnen Sie mit "Datei → Dearchivieren" das Dialogfenster zur Auswahl der ZIP-Datei.
- 4. Wählen Sie die entsprechende ZIP-Datei an und klicken Sie auf [Öffnen].
- **5.** Geben Sie ein Zielverzeichnis an, in dem die Bausteine abzulegen sind und starten Sie den Entpackvorgang mit [OK].

Bausteine in Projekt kopieren

- Öffnen Sie die Bibliothek nach dem Entpackvorgang und ziehen Sie per Drag&Drop folgende Bausteine in *"Bausteine"* Ihres Projekts:
 - Inverter EtherCAT:
 - UDT 886 VMC_ConfigInverterEC_REF
 - FB 886 VMC_KernelInverter_EC
 - FB 887 VMC InitInverter EC
 - Axis Control
 - UDT 860 MC AXIS REF
 - Bausteine für die gewünschten Bewegungsabläufe

Alarm-OBs anlegen

- 1. Neues Objekt einfügen → Organisationsbaustein".
 - → Das Dialogfenster "Eigenschaften Organistionsbaustein" öffnet sich.
- 2. Fügen Sie nacheinander OB 57, OB 82 und OB 86 Ihrem Projekt hinzu.

Achs-DB anlegen

1. Klicken Sie in Ihrem Projekt auf "Bausteine" und wählen Sie "Kontextmenü → Neues Objekt einfügen → Datenbaustein".

Geben Sie folgende Parameter an:

- Name und Typ
 - Die DB-Nr. als "Name" können Sie frei wählen wie z.B. DB 10.
 - Stellen Sie "Global-DB" als "Typ" ein.
- Symbolischer Name
 - Geben Sie "Axis01" an.

Bestätigen Sie Ihre Eingaben mit [OK].

- → Der Baustein wird angelegt.
- 2. Öffnen Sie DB 10 "Axis01" durch Doppelklick.
 - Legen Sie in "Axis01" die Variable "Config" vom Typ UDT 886 an. Dies sind spezifische Achs-Konfigurationsdaten.
 - Legen Sie in "Axis01" die Variable "Axis" vom Typ UDT 860 an. Während des Betriebs werden hier alle Betriebsdaten der Achse abgelegt.

>

DB10

Adresse	Name	Тур	
		Struct	
	Config	"VMC_ConfigInverterEC_REF"	
	Axis	"MC_AXIS_REF	
		END STRUCT	

OB₁

Konfiguration der Achse

Öffnen Sie den OB 1 und programmieren Sie folgende FB-Aufrufe mit zugehörigen DBs:

```
FB 887 - VMC_InitInverter_EC, DB 887 → "FB 887 - VMC_InitInverter_EC - Frequenzumrichter EtherCAT Initialisierung"...Seite 655
```

Geben Sie unter *InputsStartAddressPDO* bzw. *OutputsStartAddressPDO* die Adresse aus dem *SPEED7 EtherCAT Manager* an. → 649

```
"VMC InitInverter EC" , "DI_InitInvEC01"
               :="InitInvEC1_Enable"
Enable
LogicalAddress
                     :=300
InputsStartAddressPDO :=300 (EtherCAT-Man.: E-Adresse S7)
OutputsStartAddressPDO:=300 (EtherCAT-Man.: A-Adresse S7)
MaxVelocityDrive :=1.000000e+002
                    :=6.000000e+001
MaxOutputFrequency
                   :=6
NumberOfPoles
Valid
                    :="InitInvEC1 Valid"
                    :="InitInvEC1 Error"
Error
ErrorID
                     :="InitInvEC1 ErrorID"
                     :="InitInvEC1 MaxVelocityRPM"
MaxVelocity
                     :="Axis01".Config
Config
Axis
                     :="Axis01".Axis
```

Kernel für Achse beschalten

Der Kernel verarbeitet die Benutzerkommandos und gibt sie entsprechend aufbereitet an den Antrieb über das jeweilige Bussystem weiter.

```
FB 886 - VMC_KernelInverter_EC, DB 886 → "FB 886 - VMC_KernelInverter_EC - Frequenzumrichter EtherCAT Kernel"... Seite 655
```

```
→ CALL "VMC_KernelInverter_EC" , "DI_KernelInvEC01"
Init :="KernelInvEC1_Init"
Config:="Axis01".Config
Axis :="Axis01".Axis
```

Baustein für Bewegungsabläufe beschalten

Zur Vereinfachung soll hier die Beschaltung des FB 860 - VMC_AxisControl gezeigt werden. Dieser Universalbaustein unterstützt einfache Bewegungskommandos und liefert Statusmeldungen zurück. Die Ein- und Ausgänge können Sie individuell beschalten. Bitte geben Sie unter "Axis" die Referenz zu den entsprechenden Achsdaten im Achs-DB an.

```
FB 860 - VMC_AxisControl, DB 860 → "FB 860 - VMC_AxisControl - Control-Baustein Achskontrolle"...Seite 659
```

```
AxisEnable :="AxCtrl1 AxisEnable"
AxisReset :="AxCtrl1 AxisReset"
HomeExecute :="AxCtrl1 HomeExecute"
HomePosition :="AxCtrl1 HomePosition"
StopExecute :="AxCtrl1 MvVelExecute"
MvVelocityExecute:="AxCtrl1 MvVelExecute"
MvRelativeExecute:="AxCtrl1 MvRelExecute"
MvAbsoluteExecute:="AxCtrl1 MvAbsExecute"
PositionDistance :="AxCtrl1 PositionDistance"
Velocity :="AxCtrl1 Velocity"
Acceleration :="AxCtrl1 Deceleration"
Deceleration :="AxCtrl1 JogPositive"
JogPositive :="AxCtrl1 JogNegative"
JogNegative :="AxCtrl1 JogNegative"
JogVelocity :="AxCtrl1 JogVelocity"
JogAcceleration :="AxCtrl1 JogDeceleration"
AxisReady :="AxCtrl1 JogDeceleration"
AxisReady :="AxCtrl1 AxisReady"
AxisEnabled :="AxCtrl1 AxisEnabled"
AxisError :="AxCtrl1 AxisError"
AxisError :="AxCtrl1 AxisError"
DriveWarning :="AxCtrl1 DriveWarning"
DriveError :="AxCtrl1 DriveError"
DriveError :="AxCtrl1 DriveError"
DriveError :="AxCtrl1 DriveError"
IsHomed :="AxCtrl1 IsHomed"
ModeOfOperation :="AxCtrl1 Ishomed"
```

→ CALL "VMC AxisControl" , "DI AxisControl01"

:="AxCtrl1_PLCopenState" PLCopenState ActualPosition :="AxCtrl1_ActualPosition" ActualVelocity :="AxCtrl1_ActualVelocity" :="AxCtrl1_CmdDone"
:="AxCtrl1_CmdBusy"
:="AxCtrl1_CmdAborted" CmdDone CmdBusy CmdAborted CmdError CmdErrorID :="AxCtrl1 CmdError" :="AxCtrl1 CmdErrorID" DirectionPositive:="AxCtrl1 DirectionPos" DirectionNegative:="AxCtrl1 DirectionNeg" SWLimitMinActive := "AxCtrl1 SWLimitMinActive" SWLimitMaxActive := "AxCtrl1 SWLimitMaxActive" HWLimitMinActive := "AxCtrl1 HWLimitMinActive" HWLimitMaxActive := "AxCtrl1 HWLimitMaxActive" Axis :="Axis01".Axis

Für komplexe Bewegungsaufgaben können Sie die PLCopen-Bausteine verwenden. Hier müssen Sie ebenfalls unter Axis die Referenz zu den Achsdaten im Achs-DB angeben.

Ihr Projekt beinhaltet nun folgende Bausteine:

- OB 1 Main
- OB 57 DP Manufacturer Alarm
- OB 82 I/O FLT1
- OB 86 Rack_FLT
- FB 860 VMC AxisControl mit Instanz-DB
- FB 886 VMC KernelInverter EC mit Instanz-DB
- FB 887 VMC_InitInverter_EC mit Instanz-DB
- UDT 860 MC Axis REF
- UDT 886 VMC ConfigInverterEC REF

Zeitlicher Ablauf

1. Wechseln Sie in den Siemens SIMATIC Manager und übertragen Sie Ihr Projekt in die CPU.

Die Übertragung kann ausschließlich aus dem Siemens SIMATIC Manager erfolgen - nicht Hardware-Konfigurator!

Da Slave- und Modulparameter mittels SDO-Zugriff bzw. SDO-Init-Kommando übertragen werden, bleibt die Parametrierung solange bestehen, bis ein Power-Cycle durchgeführt wird oder neue Parameter für die gleichen SDO-Objekte übertragen werden.

Beim Urlöschen werden Slave- und Modul-Parameter nicht zurückgesetzt!

→ Sie können jetzt Ihre Applikation in Betrieb nehmen.

VORSICHT

Bitte beachten Sie immer die Sicherheitshinweise zu ihrem Antrieb, insbesondere bei der Inbetriebnahme!

- **2.** Bevor eine Achse gesteuert werden kann, muss diese initialisiert werden. Rufen Sie hierzu den *Init*-Baustein FB 887 VMC InitInverter EC mit *Enable* = TRUE auf.
 - ▶ Der Ausgang Valid meldet TRUE zurück. Im Fehlerfall können Sie durch Auswertung der ErrorID den Fehler ermitteln.

Den *Init*-Baustein müssen Sie erneut aufrufen, wenn Sie einen neuen Achs-DB laden oder Parameter am *Init*-Baustein geändert wurden.

Fahren Sie erst fort, wenn der Init-Baustein keinen Fehler meldet!

- 3. Stellen Sie sicher, dass der *Kernel-*Baustein FB 886 VMC_KernelInverter_EC zyklisch aufgerufen wird. Auf diese Weise werden Steuersignale an den Antrieb übergeben und Statusmeldungen übermittelt.
- **4.** Programmieren Sie Ihre Applikation mit dem FB 860 VMC_AxisControl oder mit den PLCopen Bausteinen.

Steuerung des Antriebs über HMI

Sie haben die Möglichkeit über ein HMI Ihren Antrieb zu steuern. Hierzu gibt es für Movicon eine vorgefertigte Symbolbibliothek für den Zugriff auf den VMC_AxisControl Funktionsbaustein. — "Antrieb über HMI steuern"...Seite 714

Einsatz Frequenzumrichter über EtherCAT > Antriebsspezifische Bausteine

13.7.6 Antriebsspezifische Bausteine

Die PLCopen-Bausteine zur Achskontrolle finden Sie hier: → "Bausteine zur Achskontrolle"...Seite 656

13.7.6.1 UDT 886 - VMC ConfigInverterEC REF - Frequenzumrichter EtherCAT Datenstruktur Achskonfiguration

Dies ist eine benutzerdefinierte Datenstruktur, die Informationen zu den Konfigurationsdaten beinhaltet. Die UDT ist speziell angepasst an die Verwendung eines Frequenzumrichters, welcher über EtherCAT angebunden ist.

13.7.6.2 FB 886 - VMC_KernelInverter_EC - Frequenzumrichter EtherCAT Kernel

Beschreibung

Dieser Baustein setzt die Antriebskommandos für einen Frequenzumrichter über EtherCAT um und kommuniziert mit dem Antrieb. Je Frequenzumrichter ist eine Instanz dieses FBs zyklisch aufzurufen.

ĭ

Bitte beachten Sie, dass dieser Baustein intern den SFB 238 aufruft.

Im SPEED7 Studio wird dieser Baustein automatisch in Ihr Projekt eingefügt.

Im Siemens SIMATIC Manager müssen Sie den SFB 238 aus der Motion Control Library in Ihr Projekt kopieren.

Parameter	Deklaration	Datentyp	Beschreibung
Init	INPUT	BOOL	Mit einer Flanke 0-1 wird der Baustein intern zurückgesetzt. Hierbei werden bestehende Bewegungskommandos abgebrochen und der Baustein wird initialisiert.
Config	IN_OUT	UDT 886	Datenstruktur zur Übergabe von achsabhängigen Konfigurationsdaten an den <i>AxisKernel</i> .
Axis	IN_OUT	UDT 860	Datenstruktur zur Übergabe von achsabhängigen Informationen an <i>AxisKernel</i> und PLCopen-Bausteine.

13.7.6.3 FB 887 - VMC_InitInverter_EC - Frequenzumrichter EtherCAT Initialisierung

Beschreibung

Dieser Baustein dient zur Konfiguration der Achse. Der Baustein ist speziell angepasst an die Verwendung eines Frequenzumrichters, welcher über EtherCAT angebunden ist.

Parameter	Deklaration	Datentyp	Beschreibung
Enable	INPUT	BOOL	Freigabe der Initialisierung
LogicalAddress	INPUT	INT	Startadresse der PDO-Eingangsdaten
InputsStartAddressPDO	INPUT	INT	Startadresse der Eingabe-PDOs
OutputsStartAddressPDO	INPUT	INT	Startadresse der Ausgabe-PDOs
MaxVelocityDrive	INPUT	REAL	Maximale Geschwindigkeit der Applikation [u].
MaxOutputFrequency	INPUT	REAL	Maximale Ausgabefrequenz [Hz]. Bitte hier den Wert aus dem Softwaretool <i>Drive Wizard</i> + übernehmen.

Bausteine zur Achskontrolle > Übersicht

Parameter	Deklaration	Datentyp	Beschreibung
NumberOfPoles	INPUT	INT	Anzahl der Pole. Bitte hier den Wert aus dem Softwaretool <i>Drive Wizard</i> + übernehmen.
Valid	OUTPUT	BOOL	Initialisierung
			■ TRUE: Initialisierung ist gültig.
Error	OUTPUT	BOOL	■ Fehler
			 TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter ErrorID entnommen werden. Die Achse wird gesperrt.
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen
			→ "ErrorID - Zusätzliche Fehlerinformationen"Seite 739
MaxVelocity	OUTPUT	INT	Maximale Geschwindigkeit [rpm]. Dieser Wert wird automatisch ermittelt.
Config	IN_OUT	UDT 886	Datenstruktur zur Übergabe von achsabhängigen Konfigurationsdaten an den <i>AxisKernel</i> .
Axis	IN_OUT	UDT 860	Datenstruktur zur Übergabe von achsabhängigen Informationen an AxisKernel und PLCopen-Bausteine.

13.8 Bausteine zur Achskontrolle

13.8.1 Übersicht

Unter Axis Control finden Sie die Bausteine zur Programmierung von Bewegungsaufgaben und Statusabfragen. Die nachfolgend aufgeführten Bausteine können ausschließlich zur Ansteuerung folgender Antriebssysteme verwendet werden.

- System SLIO Motion Module SLIO Motion
- Sigma-5/7 EtherCAT Sig.-5/7 ECAT
- Sigma-5/7 PROFINET Sig.-5/7 PN
- Frequenzumrichter (Inverter) über EtherCAT Inv. ECAT

Bitte beachten Sie, dass es hier ebenfalls zu Einschränkungen kommt. Die unterstützten Bausteine können Sie der nachfolgenden Tabelle entnehmen.

Bitte beachten Sie, dass im Siemens TIA Portal bei Einsatz der Siemens S7-1200 bzw. S7-1500 CPUs ausschließlich Bausteinnamen zum Einsatz kommen. Die Bausteinnummern werden dynamisch vergeben.

Einfache Bewegungsaufgaben

Unterstützte Bausteine		Sig5/7	Sig5/7	Inv.	Seite
	Motion	PN	ECAT	ECAT	
UDT 860 - MC_AXIS_REF - Datenstruktur für Achse	ja	ja	ja	ja	→ 659
FB 860 - VMC_AxisControl - Steuerung von Antriebfunktionen und Auslesen von Antriebszuständen	ja	nein	ja	ja	→ 659

Bausteine zur Achskontrolle > Übersicht

Komplexe Bewegungsaufgaben - PLCopen-Bausteine

Unterstützte Bausteine	SLIO Motion	Sig5/7 PN	Sig5/7 ECAT	Inv. ECAT	Seite
UDT 860 - MC_AXIS_REF - Datenstruktur für Achse	ja	ja	ja	ja	→ 663
UDT 861 - MC_TRIGGER_REF - Datenstruktur	nein	ja	ja	nein	→ 663
FB 800 - MC_Power - Achse freigeben bzw. sperren	ja	nein	ja	ja	→ 663
FB 801 - MC_Home - Achse referenzieren	ja	nein	ja	nein	→ 664
FB 802 - MC_Stop - Achse stoppen	ja	nein	ja	ja	→ 666
FB 803 - MC_Halt - Achse anhalten	ja	nein	ja	ja	→ 667
FB 804 - MC_MoveRelative - Achse relativ verfahren	ja	nein	ja	nein	→ 669
FB 805 - MC_MoveVelocity - Achse verfahren mit konstanter Geschwindigkeit	ja	nein	ja	ja	→ 671
FB 808 - MC_MoveAbsolute - Achse auf absolute Position verfahren	ja	nein	ja	nein	→ 673
FB 811 - MC_Reset - Achse zurücksetzen	ja	nein	ja	ja	→ 675
FB 812 - MC_ReadStatus - PLCopen-State der Achse lesen	ja	nein	ja	ja	→ 677
FB 813 - MC_ReadAxisError - Fehler von Achse lesen	ja	nein	ja	ja	→ 678
FB 814 - MC_ReadParameter - Parameter der Achse lesen	ja	ja	ja	ja	→ 679
FB 815 - MC_WriteParameter - Parameter an Achse schreiben	ja	ja	ja	ja	→ 681
FB 816 - MC_ReadActualPosition - Aktuelle Position der Achse lesen	ja	nein	ja	nein	→ 683
FB 817 - MC_ReadActualVelocity - Aktuelle Geschwindigkeit der Achse lesen	ja	nein	ja	ja	→ 684
FB 818 - MC_ReadAxisInfo - Zusatzinformationen der Achse lesen	ja	nein	ja	ja	→ 685
FB 819 - MC_ReadMotionState - Zustand Bewegungsauftrag lesen	ja	nein	ja	ja	→ 687
FB 823 - MC_TouchProbe - Achsposition erfassen	nein	ja	ja	nein	→ 688
FB 824 - MC_AbortTrigger - Achsposition erfassen abbrechen	nein	ja	ja	nein	→ 689
FB 825 - MC_ReadBoolParameter - Boolean-Parameter von Achse lesen	ja	ja	ja	ja	→ 690
FB 826 - MC_WriteBoolParameter - Boolean-Parameter an Achse schreiben	ja	ja	ja	ja	→ 692
FB 827 - VMC_ReadDWordParameter - Doppelwort-Parameter von Achse lesen	ja	ja	ja	ja	→ 694
FB 828 - VMC_WriteDWordParameter - Doppelwort-Parameter an Achse schreiben	ja	ja	ja	ja	→ 695
FB 829 - VMC_ReadWordParameter - Wort-Parameter von Achse lesen	ja	ja	ja	ja	→ 697
FB 830 - VMC_WriteWordParameter - Wort-Parameter an Achse schreiben	ja	ja	ja	ja	→ 698

Bausteine zur Achskontrolle > Übersicht

Unterstützte Bausteine	SLIO	Sig5/7	Sig5/7	Inv.	Seite
	Motion	PN	ECAT	ECAT	
FB 831 - VMC_ReadByteParameter - Byte-Parameter von Achse lesen	ja	ja	ja	ja	→ 700
FB 832 - VMC_WriteByteParameter - Byte-Parameter an Achse schreiben	ja	ja	ja	ja	→ 701
FB 833 - VMC_ReadDriveParameter - Antriebsparameter lesen	ja	ja	ja	ja	→ 703
FB 834 - VMC_WriteDriveParameter - Antriebsparameter schreiben	ja	ja	ja	ja	→ 704
FB 835 - VMC_HomeInit_LimitSwitch - Initialisierung Referenzfahrt auf Endschalter	nein	ja	ja	nein	→ 706
FB 836 - VMC_HomeInit_HomeSwitch - Initialisierung Referenzfahrt auf Referenzschalter	ja	ja	ja	nein	→ 707
FB 837 - VMC_HomeInit_ZeroPulse - Initialisierung Referenzfahrt auf Nullimpuls	nein	ja	ja	nein	→ 710
FB 838 - VMC_HomeInit_SetPosition - Initialisierung Referenzfahrt setze Position	ja	ja	ja	nein	→ 711

13.8.2 Einfache Bewegungsaufgaben

13.8.2.1 UDT 860 - MC_AXIS_REF - Datenstruktur Achsdaten

Dies ist eine benutzerdefinierte Datenstruktur, die Statusinformationen der Achse beinhaltet.

13.8.2.2 FB 860 - VMC AxisControl - Control-Baustein Achskontrolle

Beschreibung

Mit dem FB VMC_AxisControl können Sie die angebundene Achse steuern. Sie können den Status des Antriebs abrufen, den Antrieb ein- bzw. ausschalten oder verschiedene Bewegungskommandos ausführen. In den Instanzdaten des Bausteins befindet sich ein gesonderter Speicherbereich. Über diesen können Sie mittels eines HMI Ihre Achse steuern. → "Antrieb über HMI steuern"... Seite 714

Der Baustein VMC_AxisControl sollte nie gleichzeitig mit dem PLCopen-Baustein MC_Power verwendet werden. Da der VMC_AxisControl Funktionalitäten des MC_Power beinhaltet und immer der aktuellste Befehl vom VMC_Kernel-Baustein ausgeführt wird, kann dies zu einem Fehlverhalten des Antriebs führen.

Parameter	Deklaration	Datentyp	Beschreibung
AxisEnable	INPUT	BOOL	AchsenfreigabeTRUE: Die Achse wird freigegeben.FALSE: Die Achse wird gesperrt.
AxisReset	INPUT	BOOL	Reset AchseFlanke 0-1: Reset der Achse wird durchgeführt.
HomeExecute	INPUT	BOOL	ReferenzfahrtFlanke 0-1: Referenzfahrt wird gestartet.
HomePosition	INPUT	REAL	Bei erfolgreicher Referenzierung wird die Istposition der Achse einmalig gleich Position gesetzt. Die Position ist in der verwendeten Anwendereinheit anzugeben.
StopExecute	INPUT	BOOL	Achse stoppenFlanke 0-1: Stoppen der Achse wird gestartet.
MvVelocityExecute	INPUT	BOOL	 Verfahren der Achse starten Flanke 0-1: Die Achse wird auf die angegebene Geschwindigkeit beschleunigt / abgebremst.
MvRelativeExecute	INPUT	BOOL	 Verfahren der Achse starten Flanke 0-1: Die relative Positionierung der Achse wird gestartet.
MvAbsoluteExecute	INPUT	BOOL	 Verfahren der Achse starten Flanke 0-1: Die absolute Positionierung der Achse wird gestartet.
Direction ¹	INPUT	ВҮТЕ	Modus für absolute Positionierung: 0: kürzester Weg 1: positive Richtung 2: negative Richtung 3: aktuelle Richtung

Parameter	Deklaration	Datentyp	Beschreibung
PositionDistance	INPUT	REAL	Absolute Position bzw. relative Wegstrecke je nach Kommando in [Anwendereinheiten].
Velocity	INPUT	REAL	Geschwindigkeitsvorgabe (vorzeichenbehafteter Wert) in [Anwendereinheiten/s].
Acceleration	INPUT	REAL	Beschleunigung in [Anwendereinheiten/s²].
Deceleration	INPUT	REAL	Verzögerung in [Anwendereinheiten/s²].
JogPositive	INPUT	BOOL	 Achse mit konstanter Geschwindigkeit in positive Richtung verfahren Flanke 0-1: Das Verfahren der Achse mit konstanter Geschwindigkeit wird gestartet. Flanke 1-0: Die Achse wird gestoppt.
JogNegative	INPUT	BOOL	 Achse mit konstanter Geschwindigkeit in negative Richtung verfahren Flanke 0-1: Das Verfahren der Achse mit konstanter Geschwindigkeit wird gestartet. Flanke 1-0: Die Achse wird gestoppt.
JogVelocity	INPUT	REAL	Geschwindigkeitsvorgabe für Jogging (positiver Wert) in [Anwendereinheiten/s].
JogAcceleration	INPUT	REAL	Beschleunigung in [Anwendereinheiten/s²].
JogDeceleration	INPUT	REAL	Verzögerung für Jogging in [Anwendereinheiten/s²].
AxisReady	OUTPUT	BOOL	 ■ AxisReady TRUE: Die Achse ist einschaltbereit. FALSE: Die Achse ist nicht einschaltbereit. → Prüfe und behebe AxisError (siehe AxisErrorID). → Prüfe und behebe DriveError (siehe DriveErrorID). → Prüfe Initialisierungs FB (Input- und Output Addressen bzw. PDO Mapping richtig?)
AxisEnabled	OUTPUT	BOOL	 Status Achse TRUE: Achse ist eingeschaltet und nimmt Bewegungsaufträge an. FALSE: Achse ist nicht eingeschaltet und nimmt keine Bewegungsaufträge an.
AxisError	OUTPUT	BOOL	 ■ Fehler bei Motion Achse TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter AxisErrorID entnommen werden. → Die Achse wird gesperrt.
AxisErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen → "ErrorID - Zusätzliche Fehlerinformationen"Seite 739
DriveWarning	OUTPUT	BOOL	 Warnung TRUE: Der Antrieb liefert eine Warnung. Zusätzliche Informationen sind aus dem entsprechenden Handbuch des Herstellers zu entnehmen.

Parameter	Deklaration	Datentyp	Beschreibung
DriveError	OUTPUT	BOOL	 Fehler direkt am Antrieb TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter DriveErrorID entnommen werden. → Die Achse wird gesperrt.
DriveErrorID	OUTPUT	WORD	 Fehler TRUE: Der Antrieb liefert einen Fehler. Zusätzliche Informationen sind aus dem entsprechenden Handbuch des Herstellers zu entnehmen.
IsHomed	OUTPUT	BOOL	Information Achse: referenziertTRUE: Die Achse ist referenziert.
ModeOfOperation	OUTPUT	INT	Antriebsspezifischer Modus. Weitere Infos siehe Antriebsmanual. Beispiel Sigma-5: 0: No mode changed/no mode assigned 1: Profile Position mode 2: Reserved (keep last mode) 3: Profile Velocity mode 4: Torque Profile mode 6: Homing mode 7: Interpolated Position mode 8: Cyclic Sync Position mode 9: Cyclic Sync Velocity mode 10: Cyclic Sync Torque mode Other Reserved (keep last mode)
PLCopenState	OUTPUT	INT	Aktueller PLCopenState: 1: Disabled 2: Standstill 3: Homing 4: Discrete Motion 5: Continous Motion 7: Stopping 8: Errorstop
ActualPosition	OUTPUT	REAL	Position der Achse in [Anwendereinheit].
ActualVelocity	OUTPUT	REAL	Geschwindigkeit der Achse in [Anwendereinheit/s].
CmdDone	OUTPUT	BOOL	StatusTRUE: Auftrag wurde ohne Fehler beendet.
CmdBusy	OUTPUT	BOOL	StatusTRUE: Auftrag ist in Bearbeitung.

Parameter	Deklaration	Datentyp	Beschreibung
CmdAborted	OUTPUT	BOOL	 Status TRUE: Der Auftrag wurde während der Bearbeitung von einem anderen Auftrag abgebrochen.
CmdError	OUTPUT	BOOL	 Status TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter CmdErrorID entnommen werden.
CmdErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen → "ErrorID - Zusätzliche Fehlerinformationen"Seite 739
DirectionPositive	OUTPUT	BOOL	Zustand Bewegungsauftrag: Position zunehmendTRUE: Die Position der Achse nimmt zu.
DirectionNegative	OUTPUT	BOOL	Zustand Bewegungsauftrag: Position abnehmendTRUE: Die Position der Achse nimmt ab.
SWLimitMinActive	OUTPUT	BOOL	 Software Endschalter TRUE: Software Endschalter Minimum aktiv (Minimale Position in negative Richtung überschritten).
SWLimitMaxActive	OUTPUT	BOOL	 Software Endschalter TRUE: Software Endschalter Maximum aktiv (Maximale Position in positive Richtung überschritten).
HWLimitMinActive	OUTPUT	BOOL	 Hardware Endschalter TRUE: Negativer Hardware Endschalter am Antrieb aktiv (NOT- Negative Overtravel).
HWLimitMaxActive	OUTPUT	BOOL	 Hardware Endschalter TRUE: Positiver Hardware Endschalter am Antrieb aktiv (POT- Positive Overtravel).
Axis	IN_OUT	MC_AXIS_REF	Referenz zur Achse.

HB00 | OPL_SP7 | Operationsliste | de | 24-02

13.8.3 Komplexe Bewegungsaufgaben - PLCopen-Bausteine

13.8.3.1 UDT 860 - MC_AXIS_REF - Datenstruktur Achsdaten

Dies ist eine benutzerdefinierte Datenstruktur, die Statusinformationen der Achse beinhaltet.

13.8.3.2 UDT 861 - MC_TRIGGER_REF - Datenstruktur Triggersignal

Diese ist eine benutzerdefinierte Datenstruktur, die Informationen zum Triggersignal beinhaltet.

13.8.3.3 FB 800 - MC Power - Achsenfreigabe

Beschreibung

Eine Übersicht der Antriebe, welche mit diesem Baustein angesteuert werden können, finden Sie hier: → "Übersicht"...Seite 656

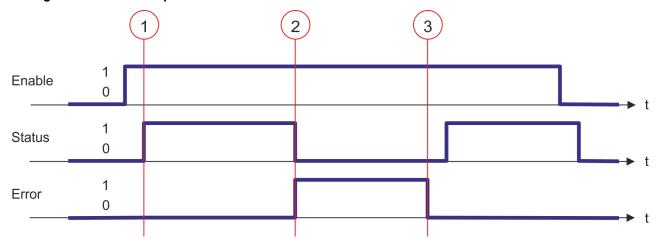
Mit MC_Power kann eine Achse freigegeben bzw. gesperrt werden.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
Enable	INPUT	BOOL	AchsenfreigabeTRUE: Die Achse wird freigegebenFALSE: Die Achse wird gesperrt
EnablePositive	INPUT	BOOL	Parameter aktuell nicht unterstützt; Aufruf mit FALSE
EnableNegative	INPUT	BOOL	Parameter aktuell nicht unterstützt; Aufruf mit FALSE
Status	OUTPUT	BOOL	Status AchseTRUE: Achse nimmt Bewegungsaufträge anFALSE: Achse nimmt keine Bewegungsaufträge an
Valid	OUTPUT	BOOL	Immer FALSE
Error	OUTPUT	BOOL	 Fehler TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter ErrorID entnommen werden. Die Achse wird gesperrt.
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen <i>→ "ErrorID - Zusätzliche Fehlerinformationen"Seite 739</i>
Axis	IN_OUT	MC_AXIS_REF	Referenz zur Achse

Achse freigeben Aufruf von MC_Power mit Enable = TRUE. Sobald Status den Wert TRUE zeigt, ist die

Achse freigegeben. In diesem Zustand können Bewegungsaufträge aktiviert werden.


Achse sperren

Aufruf von MC_Power mit Enable = FALSE. Sobald Status den Wert FALSE zeigt, ist die Achse gesperrt. Bei Sperren der Achse wird ein ggf. aktiver Bewegungsauftrag abgebro-

chen und die Achse gestoppt.

HB00 | OPL_SP7 | Operationsliste | de | 24-02

Zustandsdiagramm der Bausteinparameter

- (1) Die Achse wird mit *Enable* = TRUE freigegeben. Zum Zeitpunkt (1) ist die Freigabe erfolgt. Anschließend können Bewegungsaufträge aktiviert werden.
- (2) Zum Zeitpunkt (2) tritt ein Fehler auf, der das Sperren der Achse zur Folge hat. Ein ggf. aktiver Bewegungsauftrag wird abgebrochen und die Achse gestoppt.
- (3) Der Fehler wird beseitigt und zum Zeitpunkt (3) quittiert. Da *Enable* weiterhin gesetzt ist, wird die Achse wieder freigegeben. Zuletzt wird die Achse mit *Enable* = FALSE gesperrt.

13.8.3.4 FB 801 - MC_Home - Achse referenzieren

Beschreibung

Eine Übersicht der Antriebe, welche mit diesem Baustein angesteuert werden können, finden Sie hier: → "Übersicht"...Seite 656

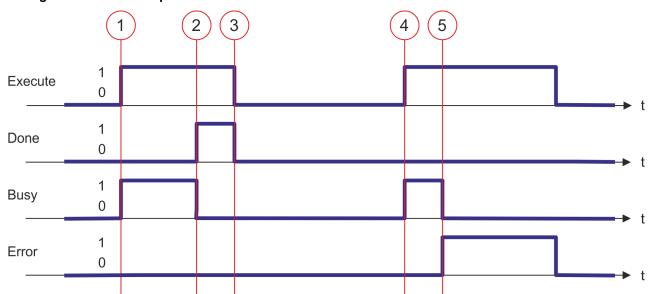
Mit MC_Home kann eine Achse referenziert werden. Dadurch kann ein Bezug zwischen der Position der Achse und der mechanischen Stellung hergestellt werden. Die Referenzfahrt-Methode und die zugehörigen Parameter müssen Sie direkt am Antrieb konfigurieren. Verwenden Sie hierzu die VMC_Homelnit_... Bausteine.

Parameter	Deklaration	Datentyp	Beschreibung
Execute	INPUT	BOOL	ReferenzfahrtFlanke 0-1: Referenzfahrt wird gestartet
Position	INPUT	REAL	Bei erfolgreicher Referenzierung wird die Istposition der Achse einmalig gleich <i>Position</i> gesetzt.
			Position ist in der verwendeten Anwendereinheit anzugeben.
BufferMode	INPUT	BYTE	Parameter aktuell nicht unterstützt; Aufruf mit B#16#0
Done	OUTPUT	BOOL	StatusTRUE: Auftrag erfolgreich durchgeführt
Busy	OUTPUT	BOOL	StatusTRUE: Auftrag ist in Bearbeitung
CommandA- borted	OUTPUT	BOOL	 Status TRUE: Der Auftrag wurde während der Bearbeitung von einem anderen Auftrag abgebrochen.

Parameter	Deklaration	Datentyp	Beschreibung
Error	OUTPUT	BOOL	 Status TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter ErrorID entnommen werden.
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen → "ErrorID - Zusätzliche Fehlerinformationen"Seite 739
Axis	IN_OUT	MC_AXIS_REF	Referenz zur Achse

PLCopen-State

Start des Auftrags nur im PLCopen-State Standstill möglich.


Achse referenzieren

Mit einer Flanke 0-1 an *Execute* wird die Referenzierung gestartet. Solange die Referenzierung läuft zeigt *Busy* den Wert TRUE. Sobald *Done* den Wert TRUE hat, ist die Referenzierung erfolgreich abgeschlossen. Die Istposition der Achse wurde auf den Wert von *Position* gesetzt.

 $\tilde{\mathbb{I}}$

- Ein laufender Auftrag wird auch beim Setzen von Execute gleich FALSE weiterhin ausgeführt.
- Ein laufender Auftrag kann durch einen Bewegungsauftrag (z.B. MC MoveRelative) nicht abgebrochen werden.

Zustandsdiagramm der Bausteinparameter

- (1) Mit Flanke 0-1 an Execute zum Zeitpunkt (1) wird die Referenzierung gestartet und Busy liefert den Wert TRUE.
- (2) Zum Zeitpunkt (2) ist die Referenzierung abgeschlossen. Busy liefert den Wert FALSE und Done den Wert TRUE.
- (3) Zum Zeitpunkt (3) ist der Auftrag abgeschlossen und *Execute* wird gleich FALSE gesetzt und dadurch sämtliche Ausgangsparameter auf FALSE bzw. 0 gesetzt.
- (4) Zum Zeitpunkt (4) wird erneut die Referenzierung mit einer Flanke 0-1 an *Execute* gestartet und *Busy* liefert den Wert TRUE.
- (5) Zum Zeitpunkt (5) tritt ein Fehler bei der Referenzierung auf. Busy liefert den Wert FALSE und Error den Wert TRUE.

13.8.3.5 FB 802 - MC_Stop - Achse stoppen

Beschreibung

Eine Übersicht der Antriebe, welche mit diesem Baustein angesteuert werden können, finden Sie hier: → "Übersicht"...Seite 656

Mit MC_Stop wird die Achse gestoppt. Mit dem Parameter *Deceleration* kann das dynamische Verhalten beim Stoppvorgang bestimmt werden.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
Execute	INPUT	BOOL	Achse stoppenFlanke 0-1: Stoppen der Achse wird gestartet
Deceleration	INPUT	REAL	Verzögerung beim Stoppen in [Anwendereinheiten/s²]
Jerk	INPUT	REAL	Parameter aktuell nicht unterstützt; Aufruf mit 0.0
Done	OUTPUT	BOOL	StatusTRUE: Auftrag erfolgreich durchgeführt
Busy	OUTPUT	BOOL	StatusTRUE: Auftrag ist in Bearbeitung
CommandA- borted	OUTPUT	BOOL	 Status TRUE: Der Auftrag wurde während der Bearbeitung von einem anderen Auftrag abgebrochen
Error	OUTPUT	BOOL	 Status TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter ErrorID entnommen werden.
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen
			→ "ErrorID - Zusätzliche Fehlerinformationen"Seite 739
Axis	IN_OUT	MC_AXIS_REF	Referenz zur Achse

PLCopen-State

- Start des Auftrags in den PLCopen-States Standstill, Homing, Discrete Motion und Continuous Motion möglich.
- MC_Stop führt die Achse in den PLCopen-State Stopping über. In Stopping können keine Bewegungsaufträge gestartet werden. Solange Execute gleich TRUE ist, bleibt die Achse im PLCopen-State Stopping. Wird Execute gleich FALSE gesetzt, geht die Achse in den PLCopen-State Standstill über. In Standstill können Bewegungsaufträge gestartet werden.

Achse stoppen

Mit einer Flanke 0-1 an *Execute* wird das Stoppen der Achse gestartet. Solange das Stoppen der Achse läuft, zeigt *Busy* den Wert TRUE. Nachdem die Achse gestoppt wurde und somit die Geschwindigkeit 0 erreicht hat, wird *Busy* gleich FALSE und *Done* gleich TRUE geliefert.

 \int_{1}^{∞}

- Ein laufender Auftrag wird auch beim Setzen von Execute gleich FALSE bis zum Stopp der Achse ausgeführt.
- Ein laufender Auftrag kann durch einen Bewegungsauftrag (z.B. MC_MoveRelative) nicht abgebrochen werden.

Zustandsdiagramm der Bausteinparameter

- (1) Mit der Flanke 0-1 an *Execute* zum Zeitpunkt (1) wird das Stoppen der Achse gestartet und *Busy* liefert den Wert TRUE. Die Geschwindigkeit der Achse wird unter Berücksichtigung des Parameters *Deceleration* bis auf null verringert.
- (2) Zum Zeitpunkt (2) ist das Stoppen der Achse abgeschlossen, die Achse ist gestoppt. *Busy* liefert den Wert FALSE und *Done* den Wert TRUE.
- (3) Zum Zeitpunkt (3) ist der Auftrag abgeschlossen und *Execute* wird gleich FALSE gesetzt und dadurch sämtliche Ausgangsparameter auf FALSE bzw. 0 gesetzt.

13.8.3.6 FB 803 - MC_Halt - Achse anhalten

Beschreibung

Eine Übersicht der Antriebe, welche mit diesem Baustein angesteuert werden können, finden Sie hier: → "Übersicht"...Seite 656

Mit MC_Halt wird die Achse bis zum Stillstand abgebremst. Mit dem Parameter *Deceleration* kann das dynamische Verhalten beim Bremsvorgang bestimmt werden.

Parameter	Deklaration	Datentyp	Beschreibung
Execute	INPUT	BOOL	Achse anhaltenFlanke 0-1: Anhalten der Achse wird gestartet
Deceleration	INPUT	REAL	Verzögerung beim Bremsen in [Anwendereinheiten/s²]
Jerk	INPUT	REAL	Parameter aktuell nicht unterstützt; Aufruf mit 0.0
BufferMode	INPUT	BYTE	Parameter aktuell nicht unterstützt; Aufruf mit B#16#0

Parameter	Deklaration	Datentyp	Beschreibung
Done	OUTPUT	BOOL	StatusTRUE: Auftrag erfolgreich durchgeführt
Busy	OUTPUT	BOOL	StatusTRUE: Auftrag ist in Bearbeitung
Active	OUTPUT	BOOL	StatusTRUE: Baustein hat die Kontrolle über die Achse
CommandA- borted	OUTPUT	BOOL	StatusTRUE: Der Auftrag wurde während der Bearbeitung von einem anderen Auftrag abgebrochen
Error	OUTPUT	BOOL	 Status TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter ErrorID entnommen werden.
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen → "ErrorID - Zusätzliche Fehlerinformationen"Seite 739
Axis	IN_OUT	MC_AXIS_REF	Referenz zur Achse

PLCopen-State

- Start des Auftrags in den PLCopen-States Discrete Motion und Continuous Motion möglich.
- MC_Halt führt die Achse in den PLCopen-State Discrete Motion über.

Achse anhalten

Mit einer Flanke 0-1 an *Execute* wird das Anhalten der Achse gestartet. Solange das Anhalten der Achse läuft, zeigt *Busy* den Wert TRUE. Nachdem die Achse angehalten wurde und somit die Geschwindigkeit 0 erreicht hat, wird *Busy* gleich FALSE und *Done* gleich TRUE geliefert.

- Ein laufender Auftrag wird auch beim Setzen von Execute gleich FALSE bis zum Anhalten der Achse ausgeführt.
- Ein laufender Auftrag kann durch einen anderen Bewegungsauftrag (z.B. MC_MoveRelative) abgebrochen werden.

Zustandsdiagramm der Bausteinparameter

- (1) Mit der Flanke 0-1 an *Execute* zum Zeitpunkt (1) wird das Anhalten der Achse gestartet und *Busy* liefert den Wert TRUE. Die Geschwindigkeit der Achse wird unter Berücksichtigung des Parameters *Deceleration* bis auf 0 verringert.
- (2) Zum Zeitpunkt (2) ist das Anhalten der Achse abgeschlossen, die Achse steht. *Busy* liefert den Wert FALSE und *Done* den Wert TRUE.
- (3) Zum Zeitpunkt (3) ist der Auftrag abgeschlossen und *Execute* wird gleich FALSE gesetzt und dadurch sämtliche Ausgangsparameter auf FALSE bzw. 0 gesetzt.

13.8.3.7 FB 804 - MC_MoveRelative - Achse relativ verfahren

Beschreibung

Eine Übersicht der Antriebe, welche mit diesem Baustein angesteuert werden können, finden Sie hier: → "Übersicht"...Seite 656

Mit MC_MoveRelative wird die Achse relativ zu der Position bei Auftragsstart um eine spezifizierte Distanz verfahren. Mit den Parametern *Velocity*, *Acceleration* und *Deceleration* wird das dynamische Verhalten beim Bewegungsvorgang bestimmt.

Parameter	Deklaration	Datentyp	Beschreibung
Execute	INPUT	BOOL	 Achse relativ verfahren Flanke 0-1: Das relative Verfahren der Achse wird gestartet
ContinuousUp- date	INPUT	BOOL	Parameter aktuell nicht unterstützt; Aufruf mit FALSE
Distance	INPUT	REAL	Relative Wegstrecke in [Anwendereinheiten]
Velocity	INPUT	REAL	Max. Geschwindigkeit (muss nicht zwingend erreicht werden) in [Anwendereinheiten/s]
Acceleration	INPUT	REAL	Beschleunigung in [Anwendereinheiten/s²]
Deceleration	INPUT	REAL	Verzögerung in [Anwendereinheiten/s²]
Jerk	INPUT	REAL	Parameter aktuell nicht unterstützt; Aufruf mit 0.0

Parameter	Deklaration	Datentyp	Beschreibung
BufferMode	INPUT	BYTE	Parameter aktuell nicht unterstützt; Aufruf mit B#16#0
Done	OUTPUT	BOOL	StatusTRUE: Auftrag erfolgreich durchgeführt; Zielposition erreicht
Busy	OUTPUT	BOOL	StatusTRUE: Auftrag ist in Bearbeitung
Active	OUTPUT	BOOL	StatusTRUE: Baustein hat die Kontrolle über die Achse
CommandA- borted	OUTPUT	BOOL	 Status TRUE: Der Auftrag wurde während der Bearbeitung von einem anderen Auftrag abgebrochen
Error	OUTPUT	BOOL	 Status TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter ErrorID entnommen werden.
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen
			→ "ErrorID - Zusätzliche Fehlerinformationen"Seite 739
Axis	IN_OUT	MC_AXIS_REF	Referenz zur Achse

PLCopen-State

- Start des Auftrags in den PLCopen-States Standstill, Discrete Motion und Continuous Motion möglich.
- MC_MoveRelative führt die Achse in den PLCopen-State Discrete Motion über.

Achse relativ verfahren

Mit einer Flanke 0-1 an *Execute* wird das Verfahren der Achse gestartet. Solange das Verfahren der Achse läuft, zeigt *Busy* den Wert TRUE. Nachdem die Zielposition erreicht wurde, wird *Busy* gleich FALSE und *Done* gleich TRUE geliefert. Die Geschwindigkeit der Achse ist dann gleich 0.

- Ein laufender Auftrag wird auch beim Setzen von Execute gleich FALSE bis die Achse die Zielposition erreicht hat, ausgeführt.
- Ein laufender Auftrag kann durch einen anderen Bewegungsauftrag (z.B. MC_MoveAbsolute) abgebrochen werden.

Zustandsdiagramm der Bausteinparameter

- (1) Die Achse wird mit MC_MoveRelative um eine *Distance* = 1000.0 verfahren (Startposition bei Auftragsstart gleich 0.0). Mit der Flanke 0-1 an *Execute* zum Zeitpunkt (1) wird das Verfahren der Achse gestartet und *Busy* liefert den Wert TRUE.
- (2) Zum Zeitpunkt (2) wurde die Achse um die *Distance* = 1000.0 verfahren, d.h. die Zielposition wurde erreicht. *Busy* liefert den Wert FALSE und *Done* den Wert TRUE.
- (3) Zum Zeitpunkt (3) ist der Auftrag abgeschlossen und *Execute* wird gleich FALSE gesetzt und dadurch sämtliche Ausgangsparameter auf FALSE bzw. 0 gesetzt.

13.8.3.8 FB 805 - MC_MoveVelocity - Achse verfahren mit konstanter Geschwindigkeit

Beschreibung

Eine Übersicht der Antriebe, welche mit diesem Baustein angesteuert werden können, finden Sie hier: → "Übersicht"...Seite 656

Mit MC_MoveVelocity wird die Achse mit einer konstanten Geschwindigkeit verfahren. Mit den Parametern *Velocity*, *Acceleration* und *Deceleration* wird das dynamische Verhalten beim Bewegungsvorgang bestimmt.

Parameter	Deklaration	Datentyp	Beschreibung
Execute	INPUT	BOOL	 Achse mit konstanter Geschwindigkeit verfahren Flanke 0-1: Das Verfahren der Achse mit konstanter Geschwindigkeit wird gestartet
ContinuousUp- date	INPUT	BOOL	Parameter aktuell nicht unterstützt; Aufruf mit FALSE
Velocity	INPUT	REAL	Geschwindigkeitsvorgabe (vorzeichenbehafteter Wert) in [Anwendereinheiten/s]
Acceleration	INPUT	REAL	Beschleunigung in [Anwendereinheiten/s²]

Parameter	Deklaration	Datentyp	Beschreibung
Deceleration	INPUT	REAL	Verzögerung in [Anwendereinheiten/s²]
Jerk	INPUT	REAL	Parameter aktuell nicht unterstützt; Aufruf mit 0.0
BufferMode	INPUT	BYTE	Parameter aktuell nicht unterstützt; Aufruf mit B#16#0
InVelocity	OUTPUT	BOOL	GeschwindigkeitsvorgabeTRUE: Geschwindigkeitsvorgabe erreicht
Busy	OUTPUT	BOOL	StatusTRUE: Auftrag ist in Bearbeitung
Active	OUTPUT	BOOL	StatusTRUE: Baustein hat die Kontrolle über die Achse
CommandA- borted	OUTPUT	BOOL	 Status TRUE: Der Auftrag wurde während der Bearbeitung von einem anderen Auftrag abgebrochen
Error	OUTPUT	BOOL	 Status TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter ErrorID entnommen werden.
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen
			→ "ErrorID - Zusätzliche Fehlerinformationen"Seite 739
Axis	IN_OUT	MC_AXIS_REF	Referenz zur Achse

PLCopen-State

- Start des Auftrags in den PLCopen-States Standstill, Discrete Motion und Continuous Motion möglich.
- MC MoveVelocity führt die Achse in den PLCopen-State Continuous Motion über.

Achse mit Geschwindigkeitsvorgabe verfahren

Mit einer Flanke 0-1 an *Execute* wird das Verfahren der Achse mit Geschwindigkeitsvorgabe gestartet. Solange die Geschwindigkeitsvorgabe nicht erreicht ist, zeigt *Busy* den Wert TRUE und *InVelocity* den Wert FALSE. Ist die Geschwindigkeitsvorgabe erreicht, wird *Busy* gleich FALSE und *InVelocity* gleich TRUE. Die Achse wird mit dieser Geschwindigkeit konstant weiter verfahren.

- Ein laufender Auftrag wird auch beim Setzen von Execute gleich FALSE weiterhin ausgeführt, auch wenn die Geschwindigkeitsvorgabe erreicht wurde.
- Ein laufender Auftrag kann durch einen anderen Bewegungsauftrag (z.B. MC_MoveAbsolute) abgebrochen werden.

Zustandsdiagramm der Bausteinparameter

- (1) Mit der Flanke 0-1 an *Execute* zum Zeitpunkt (1) wird das Verfahren der Achse mit Geschwindigkeitsvorgabe gestartet und *Busy* liefert den Wert TRUE.
- (2) Zum Zeitpunkt (2) erreicht die Achse die Geschwindigkeitsvorgabe und InVelocity liefert den Wert TRUE.
- (3) Das Rücksetzen von Execute auf FALSE zum Zeitpunkt (3) hat keine Auswirkung auf die Achse. Die Achse wird weiterhin konstant mit der Geschwindigkeitsvorgabe verfahren und *InVelocity* liefert weiterhin den Wert TRUE.
- (4) Zum Zeitpunkt (4) wird der MC_Velocity-Auftrag durch einen MC_Halt-Auftrag abgebrochen. Die Achse wird bis zum Halt abgebremst und *Busy* liefert den Wert FALSE.

13.8.3.9 FB 808 - MC_MoveAbsolute - Achse auf absolute Position verfahren

Beschreibung

Eine Übersicht der Antriebe, welche mit diesem Baustein angesteuert werden können, finden Sie hier: → "Übersicht"...Seite 656

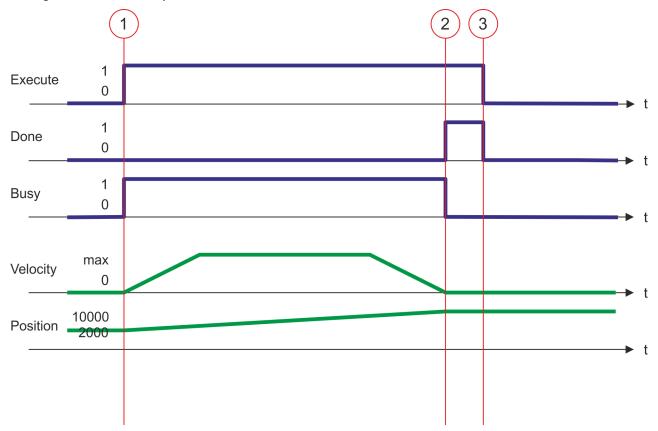
Mit MC_MoveAbsolute wird die Achse auf eine absolute Position verfahren. Mit den Parametern *Velocity*, *Acceleration* und *Deceleration* wird das dynamische Verhalten beim Bewegungsvorgang bestimmt.

Parameter	Deklaration	Datentyp	Beschreibung
Execute	INPUT	BOOL	Verfahren der Achse startenFlanke 0-1: Das Verfahren der Achse wird gestartet
ContinuousUp- date	INPUT	BOOL	Parameter aktuell nicht unterstützt; Aufruf mit FALSE
Position	INPUT	REAL	Absolute Position in [Anwendereinheiten]
Velocity	INPUT	REAL	Maximale Geschwindigkeit (muss nicht zwingend erreicht werden) vorzeichenbehafteter Wert in [Anwendereinheiten/s]
Acceleration	INPUT	REAL	Beschleunigung in [Anwendereinheiten/s²]

Parameter	Deklaration	Datentyp	Beschreibung
Deceleration	INPUT	REAL	Verzögerung in [Anwendereinheiten/s²]
Jerk	INPUT	REAL	Parameter aktuell nicht unterstützt; Aufruf mit 0.0
Direction	INPUT	Byte	 Richtung 0: Kürzeste Entfernung 1: Positive Richtung 2: Negative Richtung 3: Aktuelle Richtung
BufferMode	INPUT	BYTE	Parameter aktuell nicht unterstützt; Aufruf mit B#16#0
Done	OUTPUT	BOOL	 Status TRUE: Auftrag erfolgreich durchgeführt. Die Zielposition wurde erreicht.
Busy	OUTPUT	BOOL	StatusTRUE: Auftrag ist in Bearbeitung
Active	OUTPUT	BOOL	StatusTRUE: Baustein hat die Kontrolle über die Achse
CommandA- borted	OUTPUT	BOOL	 Status TRUE: Der Auftrag wurde während der Bearbeitung von einem anderen Auftrag abgebrochen
Error	OUTPUT	BOOL	 Status TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter ErrorID entnommen werden.
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen → "ErrorID - Zusätzliche Fehlerinformationen"Seite 739
Axis	IN_OUT	MC_AXIS_REF	Referenz zur Achse

PLCopen-State

- Start des Auftrags in den PLCopen-States Standstill, Discrete Motion und Continuous Motion möglich.
- MC_MoveVelocity führt die Achse in den PLCopen-State *Discrete Motion* über.


Achse absolute verfahren

Mit einer Flanke 0-1 an *Execute* wird das Verfahren der Achse gestartet. Solange das Verfahren der Achse läuft, zeigt *Busy* den Wert TRUE. Nachdem die Zielposition erreicht wurde, wird *Busy* = FALSE und *Done* = TRUE geliefert. Die Geschwindigkeit der Achse ist dann gleich 0.

- Mit Sigma-5 EtherCAT wird die Zielposition immer über den Weg angefahren, welcher am kürzesten ist.
- Ein laufender Auftrag wird auch beim Setzen von Execute gleich FALSE, bis die Achse die Zielposition erreicht hat, ausgeführt.
- Ein laufender Auftrag kann durch einen anderen Bewegungsauftrag (z.B. MC MoveVelocity) abgebrochen werden.

Zustandsdiagramm der Bausteinparameter

- (1) Die Achse wird mit MC_MoveAbsolute auf die absolute Position = 10000.0 verfahren (Startposition bei Auftragsstart gleich 2000.0). Mit der Flanke 0-1 an *Execute* zum Zeitpunkt (1) wird das Verfahren der Achse gestartet und *Busy* liefert den Wert TRUE.
- (2) Zum Zeitpunkt (2) hat die Achse die Zielposition erreicht. Busy liefert den Wert FALSE und Done den Wert TRUE.
- (3) Zum Zeitpunkt (3) ist der Auftrag abgeschlossen und *Execute* wird gleich FALSE gesetzt und dadurch sämtliche Ausgangsparameter auf FALSE bzw. 0 gesetzt.

13.8.3.10 FB 811 - MC Reset - Reset Achse

Beschreibung

Eine Übersicht der Antriebe, welche mit diesem Baustein angesteuert werden können, finden Sie hier: → "Übersicht"...Seite 656

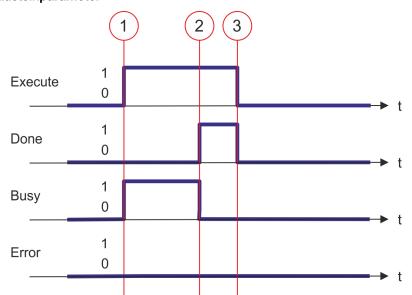
Mit MC_Reset wird ein Reset (Neuinitialisieren) der Achse durchgeführt. Dabei werden alle internen Fehler der Achse zurückgesetzt.

Parameter	Deklaration	Datentyp	Beschreibung
Execute	INPUT	BOOL	Reset AchseFlanke 0-1: Reset der Achse wird durchgeführt
Done	OUTPUT	BOOL	StatusTRUE: Auftrag erfolgreich durchgeführt. Reset wurde durchgeführt

Parameter	Deklaration	Datentyp	Beschreibung
Busy	OUTPUT	BOOL	StatusTRUE: Auftrag ist in Bearbeitung
Error	OUTPUT	BOOL	 Status TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter ErrorID entnommen werden.
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen → "ErrorID - Zusätzliche Fehlerinformationen"Seite 739
Axis	IN_OUT	MC_AXIS_REF	Referenz zur Achse

PLCopen-State

- Start des Auftrags im PLCopen-State ErrorStop möglich.
- MC_Reset führt die Achse in Abhängigkeit von MC_Power entweder in den PLCopen-State Standstill (Aufruf von MC_Power mit Enable = TRUE) oder Disabled (Aufruf von MC_Power mit Enable = FALSE) über.


Reset an Achse durchführen

Mit einer Flanke 0-1 an *Execute* wird der Reset der Achse gestartet. Solange der Reset der Achse läuft, zeigt *Busy* den Wert TRUE. Nachdem die Achse neu initialisiert wurde, wird *Busy* gleich FALSE und *Done* gleich TRUE geliefert.

Ein laufender Auftrag wird auch beim Setzen von Execute gleich FALSE ausgeführt, bis der Auftrag abgeschlossen ist.

Zustandsdiagramm der Bausteinparameter

- (1) Mit der Flanke 0-1 an Execute zum Zeitpunkt (1) wird der Reset der Achse gestartet und Busy liefert den Wert TRUE.
- (2) Zum Zeitpunkt (2) ist der Reset erfolgreich abgeschlossen. Busy liefert den Wert FALSE und Done den Wert TRUE.
- (3) Zum Zeitpunkt (3) ist der Auftrag abgeschlossen und *Execute* wird gleich FALSE gesetzt und dadurch sämtliche Ausgangsparameter auf FALSE bzw. 0 gesetzt.

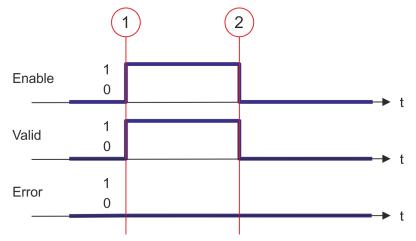
13.8.3.11 FB 812 - MC_ReadStatus - PLCopen Status

Beschreibung

Eine Übersicht der Antriebe, welche mit diesem Baustein angesteuert werden können, finden Sie hier: → "Übersicht"...Seite 656

Mit MC_ReadStatus kann der PLCopen-State der Achse ermittelt werden.

Parameter	Deklaration	Datentyp	Beschreibung
Enable	INPUT	BOOL	 Statusanzeige TRUE: Der Status wird an den Ausgängen permanent angezeigt FALSE: Alle Ausgänge werden gleich FALSE bzw. 0 geliefert
Valid	OUTPUT	BOOL	Status gültigTRUE: Der angezeigte Status ist gültig
Error	OUTPUT	BOOL	 Status TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter ErrorID entnommen werden.
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen
			→ "ErrorID - Zusätzliche Fehlerinformationen"Seite 739
ErrorStop	OUTPUT	BOOL	 Achsfehler TRUE: Achsfehler aufgetreten; ein Bewegungsauftrag kann nicht aktiviert werden
Disabled	OUTPUT	BOOL	Status Achse: SperrungTRUE: Achse ist gesperrt; ein Bewegungsauftrag kann nicht aktiviert werden
Stopping	OUTPUT	BOOL	Status Achse: StopTRUE: Achse wird gestoppt (MC_Stop ist aktiv)
Homing	OUTPUT	BOOL	Status Achse: ReferenzierungTRUE: Achse wird referenziert (MC_Homing ist aktiv)
Standstill	OUTPUT	BOOL	 Status Bewegungsauftrag TRUE: Kein Bewegungsauftrag aktiv; Bewegungsauftrag kann aktiviert werden
DiscreteMotion	OUTPUT	BOOL	 Status Achsbewegung: Diskret TRUE: Achse wird durch eine diskrete Bewegung verfahren (MC_MoveRelative, MC_MoveAbsolute oder MC_Halt ist aktiv)
ContinuousMo- tion	OUTPUT	BOOL	 Status Achsbewegung: Kontinuierlich TRUE: Achse wird durch eine kontinuierliche Bewegung verfahren (MC_MoveVelocity ist aktiv)
Axis	IN_OUT	MC_AXIS_REF	Referenz zur Slave-Achse


PLCopen-State

Start des Auftrags in jedem PLCopen-State möglich.

Status der Achse ermitteln

Mit *Enable* = TRUE wird an den Ausgängen der Zustand der Achse entsprechend dem Zustandsdiagramm nach PLCopen geliefert.

Zustandsdiagramm der Bausteinparameter

- (1) Zum Zeitpunkt (1) wird *Enable* = TRUE gesetzt. Damit liefert *Valid* den Wert TRUE und an den Ausgängen wird der Zustand entsprechend des PLCopen-Zustandsdiagramms angezeigt.
- (2) Zum Zeitpunkt (2) wird Enable = FALSE gesetzt. Damit werden sämtliche Ausgänge gleich FALSE bzw. 0 gesetzt.

13.8.3.12 FB 813 - MC_ReadAxisError - Fehler von Achse lesen

Beschreibung

Eine Übersicht der Antriebe, welche mit diesem Baustein angesteuert werden können, finden Sie hier: → "Übersicht"...Seite 656

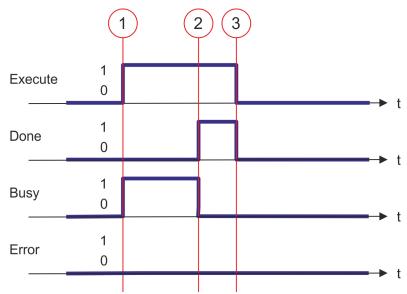
Mit MC ReadAxisError wird der aktuell anstehende Fehler direkt vom Antrieb gelesen.

Parameter	Deklaration	Datentyp	Beschreibung
Execute	INPUT	BOOL	Reset AchseFlanke 0-1: Achsfehler wird gelesen.
Done	OUTPUT	BOOL	 Status TRUE: Auftrag erfolgreich durchgeführt. Achsfehler ausgelesen.
Busy	OUTPUT	BOOL	StatusTRUE: Auftrag ist in Bearbeitung.
Error	OUTPUT	BOOL	 Status TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter ErrorID entnommen werden.
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen <i>→ "ErrorID - Zusätzliche Fehlerinformationen"Seite 739</i>

Parameter	Deklaration	Datentyp	Beschreibung
AxisErrorID	OUTPUT	WORD	Achsfehler-ID; der gelieferte Wert ist Hersteller-spezifisch kodiert.
Axis	IN_OUT	MC_AXIS_REF	Referenz zur Achse

PLCopen-State

Start des Auftrags in jedem PLCopen-State möglich.


Fehler der Achse lesen

Mit einer Flanke 0-1 an *Execute* wird das Lesen des Achsfehlers gestartet. Solange das Lesen des Achsfehlers läuft, zeigt *Busy* den Wert TRUE. Nachdem der Achsfehler gelesen wurde, wird *Busy* gleich FALSE und *Done* gleich TRUE geliefert. Der Ausgang *AxisErrorID* zeigt den aktuell anstehenden Achsfehler an.

ĭ

Ein laufender Auftrag wird auch beim Setzen von Execute gleich FALSE weiterhin ausgeführt.

Zustandsdiagramm der Bausteinparameter

- (1) Mit der Flanke 0-1 an *Execute* zum Zeitpunkt (1) wird das Lesen des Achsfehlers gestartet und *Busy* liefert den Wert TRUE.
- (2) Zum Zeitpunkt (2) ist das Lesen des Achsfehlers erfolgreich abgeschlossen. Busy liefert den Wert FALSE und Done den Wert TRUE.
- (3) Zum Zeitpunkt (3) ist der Auftrag abgeschlossen und *Execute* wird gleich FALSE gesetzt und dadurch sämtliche Ausgangsparameter auf FALSE bzw. 0 gesetzt.

13.8.3.13 FB 814 - MC_ReadParameter - Parameter der Achse lesen

Beschreibung

)] Eine Übersicht der Antriebe, welche mit diesem Baustein angesteuert werden können, finden Sie hier: → "Übersicht"...Seite 656

Mit MC_ReadParameter wird der Parameter, der über die Parameter-Nummer festgelegt ist, von der Achse gelesen. → "PLCopen Parameter"...Seite 712

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
Execute	INPUT	BOOL	 Parameter Achse lesen Flanke 0-1: Das Lesen des Parameters wird durchgeführt
Parameter Number	INPUT	INT	Nummer des Parameters, welcher gelesen werden soll. <i>→ "PLCopen Parameter"Seite 712</i>
Done	OUTPUT	BOOL	StatusTRUE: Auftrag erfolgreich durchgeführt. Parameter wurde ausgelesen
Busy	OUTPUT	BOOL	StatusTRUE: Auftrag ist in Bearbeitung
Error	OUTPUT	BOOL	 Status TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter ErrorID entnommen werden.
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen <i>→ "ErrorID - Zusätzliche Fehlerinformationen"Seite</i> 739
Value	OUTPUT	REAL	Wert des gelesenen Parameters
Axis	IN_OUT	MC_AXIS_REF	Referenz zur Achse

PLCopen-State

Start des Auftrags in jedem PLCopen-State möglich.

Parameter der Achse lesen

Mit einer Flanke 0-1 an *Execute* wird das Lesen des Parameters gestartet. Solange das Lesen des Parameters läuft, zeigt *Busy* den Wert TRUE. Nachdem der Parameter gelesen wurde, wird *Busy* gleich FALSE und *Done* gleich TRUE geliefert. Der Ausgang *Value* zeigt den Wert des Parameters an.

Ein laufender Auftrag wird auch beim Setzen von Execute gleich FALSE weiterhin ausgeführt.

Zustandsdiagramm der Bausteinparameter

- (1) Mit der Flanke 0-1 an *Execute* zum Zeitpunkt (1) wird das Lesen des Parameters gestartet und *Busy* liefert den Wert TRUE.
- (2) Zum Zeitpunkt (2) ist das Lesen des Parameters erfolgreich abgeschlossen. *Busy* liefert den Wert FALSE und *Done* den Wert TRUE.
- (3) Zum Zeitpunkt (3) ist der Auftrag abgeschlossen und *Execute* wird gleich FALSE gesetzt und dadurch sämtliche Ausgangsparameter auf FALSE bzw. 0 gesetzt.

13.8.3.14 FB 815 - MC WriteParameter - Parameter an Achse schreiben

Beschreibung

Eine Übersicht der Antriebe, welche mit diesem Baustein angesteuert werden können, finden Sie hier: → "Übersicht"...Seite 656

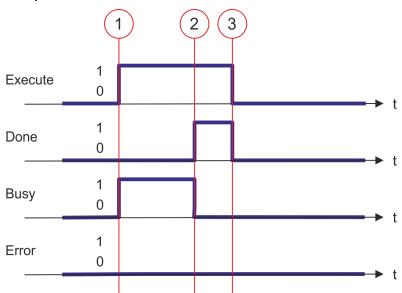
Mit MC_WriteParameter wird der Wert des Parameters, der über die Parameter-Nummer festgelegt ist, zur Achse geschrieben. → "PLCopen Parameter"... Seite 712

Parameter	Deklaration	Datentyp	Beschreibung
Execute	INPUT	BOOL	 Parameter Achse schreiben Flanke 0-1: Das Schreiben des Parameters wird durchgeführt
Parameter Number	INPUT	INT	Nummer des Parameters, welcher geschrieben werden soll. → "PLCopen Parameter"Seite 712
Value	INPUT	REAL	Wert des geschriebenen Parameters
Done	OUTPUT	BOOL	 Status TRUE: Auftrag erfolgreich durchgeführt. Parameter wurde geschrieben
Busy	OUTPUT	BOOL	StatusTRUE: Auftrag ist in Bearbeitung

Parameter	Deklaration	Datentyp	Beschreibung
Error	OUTPUT	BOOL	 Status TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter ErrorID entnommen werden.
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen → "ErrorID - Zusätzliche Fehlerinformationen"Seite 739
Axis	IN_OUT	MC_AXIS_REF	Referenz zur Achse

PLCopen-State

Start des Auftrags in jedem PLCopen-State möglich.


Parameter der Achse schreiben

Mit einer Flanke 0-1 an *Execute* wird das Schreiben des Parameters gestartet. Solange das Schreiben des Parameters läuft, zeigt *Busy* den Wert TRUE. Nachdem der Parameter geschrieben wurde, wird *Busy* gleich FALSE und *Done* gleich TRUE geliefert.

Ein laufender Auftrag wird auch beim Setzen von Execute gleich FALSE weiterhin ausgeführt.

Zustandsdiagramm der Bausteinparameter

- (1) Mit der Flanke 0-1 an *Execute* zum Zeitpunkt (1) wird das Schreiben des Parameters gestartet und *Busy* liefert den Wert TRUE.
- (2) Zum Zeitpunkt (2) ist das Schreiben des Parameters erfolgreich abgeschlossen. Busy liefert den Wert FALSE und Done den Wert TRUE.
- (3) Zum Zeitpunkt (3) ist der Auftrag abgeschlossen und *Execute* wird gleich FALSE gesetzt und dadurch sämtliche Ausgangsparameter auf FALSE bzw. 0 gesetzt.

13.8.3.15 FB 816 - MC_ReadActualPosition - Aktuelle Position der Achse lesen

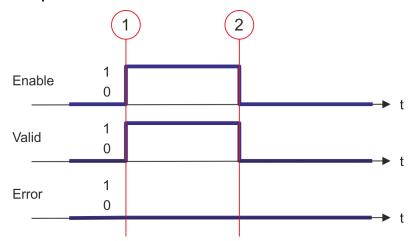
Beschreibung

Eine Übersicht der Antriebe, welche mit diesem Baustein angesteuert werden können, finden Sie hier: → "Übersicht"...Seite 656

Mit MC_ReadActualPosition wird die aktuelle Position der Achse gelesen.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
Enable	INPUT	BOOL	 Position Achse lesen TRUE: Die Position der Achse wird kontinuierlich gelesen FALSE: Alle Ausgänge werden gleich FALSE bzw. 0 geliefert
Valid	OUTPUT	BOOL	Position gültigTRUE: Die gelesene Position ist gültig
Error	OUTPUT	BOOL	 Status TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter ErrorID entnommen werden.
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen → "ErrorID - Zusätzliche Fehlerinformationen"Seite 739
Position	OUTPUT	REAL	Position der Achse in [Anwendereinheit]
Axis	IN_OUT	MC_AXIS_REF	Referenz zur Achse


PLCopen-State

Start des Auftrags in jedem PLCopen-State möglich.

Position der Achse lesen

Mit *Enable* gleich TRUE wird die aktuelle Position der Achse ermittelt und unter *Position* abgelegt.

Zustandsdiagramm der Bausteinparameter

- (1) Zum Zeitpunkt (1) wird *Enable* = TRUE gesetzt. Damit liefert *Valid* den Wert TRUE und am Ausgang *Position* wird die aktuelle Position der Achse angezeigt.
- (2) Zum Zeitpunkt (2) wird Enable = FALSE gesetzt. Damit werden sämtliche Ausgänge gleich FALSE bzw. 0 gesetzt.

13.8.3.16 FB 817 - MC_ReadActualVelocity - Aktuelle Geschwindigkeit der Achse lesen

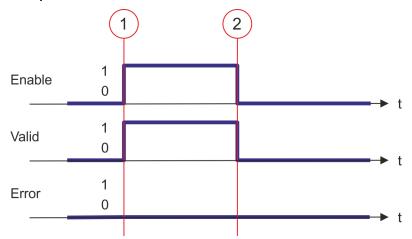
Beschreibung

Eine Übersicht der Antriebe, welche mit diesem Baustein angesteuert werden können, finden Sie hier: → "Übersicht"...Seite 656

Mit MC_ReadActualVelocity wird die aktuelle Geschwindigkeit der Achse gelesen.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
Enable	INPUT	BOOL	 Geschwindigkeit Achse lesen TRUE: Die Geschwindigkeit der Achse wird kontinuierlich gelesen FALSE: Alle Ausgänge werden gleich FALSE bzw. 0 geliefert
Valid	OUTPUT	BOOL	Geschwindigkeit gültigTRUE: Die gelesene Geschwindigkeit ist gültig
Error	OUTPUT	BOOL	 Status TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter ErrorID entnommen werden.
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen → "ErrorID - Zusätzliche Fehlerinformationen"Seite 739
Velocity	OUTPUT	REAL	Geschwindigkeit der Achse in [Anwendereinheit/s]
Axis	IN_OUT	MC_AXIS_REF	Referenz zur Achse


PLCopen-State

Start des Auftrags in jedem PLCopen-State möglich.

Geschwindigkeit der Achse lesen

Mit *Enable* gleich TRUE wird die aktuelle Geschwindigkeit der Achse ermittelt und unter *Velocity* abgelegt.

Zustandsdiagramm der Bausteinparameter

- (1) Zum Zeitpunkt (1) wird *Enable* = TRUE gesetzt. Damit liefert *Valid* den Wert TRUE und am Ausgang *Velocity* wird die aktuelle Geschwindigkeit der Achse angezeigt.
- (2) Zum Zeitpunkt (2) wird Enable = FALSE gesetzt. Damit werden sämtliche Ausgänge gleich FALSE bzw. 0 gesetzt.

13.8.3.17 FB 818 - MC_ReadAxisInfo - Zusatzinformationen der Achse lesen

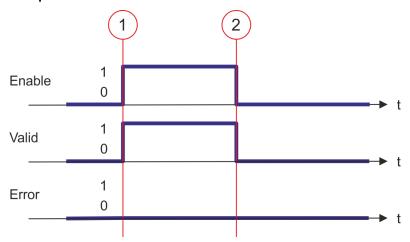
Beschreibung

Eine Übersicht der Antriebe, welche mit diesem Baustein angesteuert werden können, finden Sie hier: → "Übersicht"...Seite 656

Mit MC_ReadAxisInfo werden einige Zusatzinformationen der Achse angezeigt.

Parameter	Deklaration	Datentyp	Beschreibung
Enable	INPUT	BOOL	 Zusatzinformationen Achse lesen TRUE: Die Zusatzinformationen der Achse werden kontinuierlich gelesen FALSE: Alle Ausgänge werden gleich FALSE bzw. 0 geliefert
Valid	OUTPUT	BOOL	Zusatzinformationen gültigTRUE: Die gelesene Zusatzinformationen sind gültig
Error	OUTPUT	BOOL	 Status TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter ErrorID entnommen werden.
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen → "ErrorID - Zusätzliche Fehlerinformationen"Seite 739
HomeAbsSwitch	OUTPUT	BOOL	Referenzschalter TRUE: Der Referenzschalter ist aktiviert

Parameter	Deklaration	Datentyp	Beschreibung
LimitSwitchPos	OUTPUT	BOOL	Endschalter positive Richtung
			■ TRUE: Endschalter positive Richtung ist aktiviert
LimitSwitchNeg	OUTPUT	BOOL	Endschalter negative Richtung (NOT-Bit am Antrieb)
			■ TRUE: Endschalter negative Richtung ist aktiviert
Simulation	OUTPUT	BOOL	Parameter aktuell nicht unterstützt; immer FALSE
Communication-	OUTPUT	BOOL	■ Information Achse: Datenaustausch
Ready			 TRUE: Datenaustausch mit der Achse initialisiert; Achse ist kommunikationsbereit
ReadyForPo- werOn	OUTPUT	BOOL	■ Information Achse: Freigabe möglich
weron			 TRUE: Die Freigabe der Achse ist möglich
PowerOn	OUTPUT	BOOL	■ Information Achse: freigegeben
			 TRUE: Die Freigabe der Achse ist erfolgt
IsHomed	OUTPUT	BOOL	■ Information Achse: referenziert
			TRUE: Die Achse ist referenziert
AxisWarning	OUTPUT	BOOL	■ Information Achse: Fehler
			 TRUE: Mindestens 1 Fehler wird von der Achse gemeldet
Axis	IN_OUT	MC_AXIS_REF	Referenz zur Achse


PLCopen-State

Start des Auftrags in jedem PLCopen-State möglich.

Status der Achse ermitteln

Mit *Enable* gleich TRUE werden an den Ausgängen die Zusatzinformationen zur Achse geliefert.

Zustandsdiagramm der Bausteinparameter

- (1) Zum Zeitpunkt (1) wird *Enable* = TRUE gesetzt. Damit liefert *Valid* den Wert TRUE und an den Ausgängen werden die Zusatzinformationen zur Achse angezeigt.
- (2) Zum Zeitpunkt (2) wird Enable = FALSE gesetzt. Damit werden sämtliche Ausgänge gleich FALSE bzw. 0 gesetzt.

13.8.3.18 FB 819 - MC_ReadMotionState - Zustand Bewegungsauftrag lesen

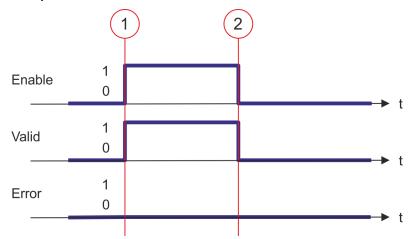
Beschreibung

Eine Übersicht der Antriebe, welche mit diesem Baustein angesteuert werden können, finden Sie hier: → "Übersicht"...Seite 656

Mit MC_ReadMotionState wird der aktuelle Zustand des Bewegungsauftrags angezeigt.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
Enable	INPUT	BOOL	 Zustand Bewegungsauftrag lesen TRUE: Zustand Bewegungsauftrag wird kontinuierlich gelesen FALSE: Alle Ausgänge werden gleich FALSE bzw. 0 geliefert
Source	INPUT	Byte	Nur Source = 0 wird unterstützt; an den Ausgängen werden die Istzustände des Bewegungsauftrags angezeigt.
Valid	OUTPUT	BOOL	Zustand gültigTRUE: Die gelesene Zustand des Bewegungsauftrags ist gültig
Error	OUTPUT	BOOL	 Status TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter ErrorID entnommen werden.
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen
			→ "ErrorID - Zusätzliche Fehlerinformationen"Seite 739
ConstantVelocity	OUTPUT	BOOL	Zustand Bewegungsauftrag: GeschwindigkeitTRUE: Geschwindigkeit ist konstant
Accelerating	OUTPUT	BOOL	Bitte beachten Sie, dass dieser Parameter bei Einsatz von Frequenzumrichter über EtherCAT nicht unterstützt wird! Zustand Bewegungsauftrag: Beschleunigung - TRUE: Achse wird beschleunigt; die Geschwindigkeit der Achse erhöht sich.
Decelerating	OUTPUT	BOOL	Bitte beachten Sie, dass dieser Parameter bei Einsatz von Frequenzumrichter über EtherCAT nicht unterstützt wird! Zustand Bewegungsauftrag: Bremsvorgang TRUE: Achse wird gebremst; die Geschwindigkeit der Achse wird geringer.
DirectionPositive	OUTPUT	BOOL	Zustand Bewegungsauftrag: Position zunehmendTRUE: Die Position der Achse nimmt zu
DirectionNega- tive	OUTPUT	BOOL	Zustand Bewegungsauftrag: Position abnehmendTRUE: Die Position der Achse nimmt ab
Axis	IN_OUT	MC_AXIS_REF	Referenz zur Achse


PLCopen-State

Start des Auftrags in jedem PLCopen-State möglich.

Zustand des Bewegungsauftrags lesen

Mit *Enable* gleich TRUE wird an den Ausgängen der Zustand des Bewegungsauftrags der Achse geliefert.

Zustandsdiagramm der Bausteinparameter

- (1) Zum Zeitpunkt (1) wird *Enable* = TRUE gesetzt. Damit liefert *Valid* den Wert TRUE und an den Ausgängen wird der Zustand des Bewegungsauftrags angezeigt.
- (2) Zum Zeitpunkt (2) wird Enable = FALSE gesetzt. Damit werden sämtliche Ausgänge gleich FALSE bzw. 0 gesetzt.

13.8.3.19 FB 823 - MC_TouchProbe - Achsposition erfassen

Beschreibung

Eine Übersicht der Antriebe, welche mit diesem Baustein angesteuert werden können, finden Sie hier: → "Übersicht"...Seite 656

Dieser Baustein erfasst einmalig die Achsposition in Abhängigkeit eines Trigger-Signals. Das Trigger-Signal kann über die am Eingang *TriggerInput* angegebene Variable konfiguriert werden. Als Trigger-Signal kann z.B. ein Digitaleingang oder die Gebernullspur dienen.

Parameter	Deklaration	Datentyp	Beschreibung
Execute	INPUT	BOOL	Mit einer Flanke 0-1 an <i>Execute</i> wird die Erfassung der Achsposition aktiviert.
Done	OUTPUT	BOOL	 Status TRUE: Auftrag erfolgreich durchgeführt. Die Achsposition wurde erfasst.
Busy	OUTPUT	BOOL	StatusTRUE: Auftrag ist in Bearbeitung.
CommandA- borted	OUTPUT	BOOL	 Status TRUE: Der Auftrag wurde während der Bearbeitung von einem anderen Auftrag abgebrochen.
Error	OUTPUT	BOOL	 Status TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter ErrorID entnommen werden.

Parameter	Deklaration	Datentyp	Beschreibung
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen
			→ "ErrorID - Zusätzliche Fehlerinformationen"Seite 739
RecordedPosition	OUTPUT	REAL	Erfasste Achsposition zum Zeitpunkt des Trigger-Signals [Anwendereinheiten].
Axis	IN_OUT	MC_AXIS_REF	Referenz zur Achse.
TriggerInput	IN_OUT	MC_TRIGGER_REF	Referenz zum Trigger-Eingang.
			Struktur
			■ .Probe
			- 01: TouchProbe-Register 1
			- 02: TouchProbe-Register 2
			■ .TriggerSource
			- 00: Eingang
			- 00: Encoder Nullimpuls
			Triggermode O: SingleTrigger (fix)
			00: SingleTrigger (fix).Reserved (0 fix)
			Neserveu (U IIX)

- Ein laufender Auftrag wird auch beim Setzen von Execute gleich FALSE, solange ausgeführt, bis dieser abgearbeitet ist. Die erfasste Achsposition wird dann für einen Zyklus am Ausgang RecordedPosition ausgegeben. → "Verhalten der Ein- und Ausgänge"...Seite 738
- Damit der Befehl ausgeführt werden kann, muss die Kommunikation mit der Achse OK und der PLCopen-State ungleich Homing sein.
- Ein laufender Auftrag kann durch einen neuen MC_TouchProbe auf der gleichen Achse abgebrochen werden.
- Ein laufender Auftrag kann durch den Befehl MC_AbortTrigger abgebrochen werden.
- Ein laufender Auftrag kann durch den Befehl MC_Home abgebrochen werden.

Achsposition erfassen

Mit einer Flanke 0-1 an *Execute* wir die Erfassung der Achsposition aktiviert. Solange der Befehl abgearbeitet wird, zeigt *Busy* den Wert TRUE. Nach Abarbeitung des Befehls, wird *Busy* gleich FALSE und *Done* gleich TRUE geliefert. Der erfasste Wert wird in *RecordedPosition* ausgegeben.

13.8.3.20 FB 824 - MC_AbortTrigger - Achsposition erfassen abbrechen

Beschreibung

Eine Übersicht der Antriebe, welche mit diesem Baustein angesteuert werden können, finden Sie hier: → "Übersicht"...Seite 656

Dieser Baustein bricht die durch MC_TouchProbe gestartete Erfassung der Achsposition ab.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
Execute	INPUT	BOOL	Mit einer Flanke 0-1 an <i>Execute</i> wird die Erfassung der Achsposition abgebrochen.
Done	OUTPUT	BOOL	 Status TRUE: Auftrag erfolgreich durchgeführt. Die Erfassung der Achsposition wurde abgebrochen.
Busy	OUTPUT	BOOL	StatusTRUE: Auftrag ist in Bearbeitung.
Error	OUTPUT	BOOL	 Status TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter ErrorID entnommen werden.
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen → "ErrorID - Zusätzliche Fehlerinformationen"Seite 739
Axis	IN_OUT	MC_AXIS_REF	Referenz zur Achse.
TriggerInput	IN_OUT	MC_TRIGGER_REF	Referenz zum Trigger-Eingang. Struktur Probe O1: TouchProbe-Register 1 O2: TouchProbe-Register 2 TriggerSource O0: Eingang O0: Encoder Nullimpuls Triggermode O0: SingleTrigger (fix) Reserved (0 fix)

Damit der Befehl ausgeführt werden kann, muss die Kommunikation mit der Achse OK sein.

Erfassung der Achsposition abbrechen

Mit einer Flanke 0-1 an *Execute* wir die Erfassung der Achsposition abgebrochen. Solange der Befehl abgearbeitet wird, zeigt *Busy* den Wert TRUE. Nach Abarbeitung des Befehls, wird *Busy* gleich FALSE und *Done* gleich TRUE geliefert.

13.8.3.21 FB 825 - MC_ReadBoolParameter - Boolean-Parameter von Achse lesen

Beschreibung

Eine Übersicht der Antriebe, welche mit diesem Baustein angesteuert werden können, finden Sie hier: → "Übersicht"...Seite 656

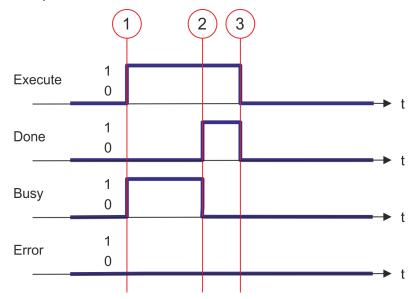
Mit MC_ReadBoolParameter wird der Parameter, der über die Parameter-Nummer festgelegt ist, vom Datentyp BOOL von der Achse gelesen. → "PLCopen Parameter"...Seite 712

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
Execute	INPUT	BOOL	 Parameter Achse lesen Flanke 0-1: Das Lesen des Parameters wird durchgeführt
Parameter Number	INPUT	INT	Nummer des Parameters, welcher gelesen werden soll. <i>⇒ "PLCopen Parameter"Seite 712</i>
Done	OUTPUT	BOOL	StatusTRUE: Auftrag erfolgreich durchgeführt. Parameter wurde ausgelesen
Busy	OUTPUT	BOOL	StatusTRUE: Auftrag ist in Bearbeitung
Error	OUTPUT	BOOL	 Status TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter ErrorID entnommen werden.
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen <i>→ "ErrorID - Zusätzliche Fehlerinformationen"Seite 739</i>
Value	OUTPUT	BOOL	Wert des gelesenen Parameters
Axis	IN_OUT	MC_AXIS_REF	Referenz zur Achse

PLCopen-State

Start des Auftrags in jedem PLCopen-State möglich.


Parameter der Achse lesen

Mit einer Flanke 0-1 an *Execute* wird das Lesen des Parameters gestartet. Solange das Lesen des Parameters läuft, zeigt *Busy* den Wert TRUE. Nachdem der Parameter gelesen wurde, wird *Busy* gleich FALSE und *Done* gleich TRUE geliefert. Der Ausgang *Value* zeigt den Wert des Parameters an.

Ein laufender Auftrag wird auch beim Setzen von Execute gleich FALSE weiterhin ausgeführt.

Zustandsdiagramm der Bausteinparameter

- (1) Mit der Flanke 0-1 an *Execute* zum Zeitpunkt (1) wird das Lesen des Parameters gestartet und *Busy* liefert den Wert TRUE.
- (2) Zum Zeitpunkt (2) ist das Lesen des Parameters erfolgreich abgeschlossen. Busy liefert den Wert FALSE und Done den Wert TRUE.
- (3) Zum Zeitpunkt (3) ist der Auftrag abgeschlossen und *Execute* wird gleich FALSE gesetzt und dadurch sämtliche Ausgangsparameter auf FALSE bzw. 0 gesetzt.

13.8.3.22 FB 826 - MC_WriteBoolParameter - Boolean-Parameter an Achse schreiben

Beschreibung

Eine Übersicht der Antriebe, welche mit diesem Baustein angesteuert werden können, finden Sie hier: → "Übersicht"...Seite 656

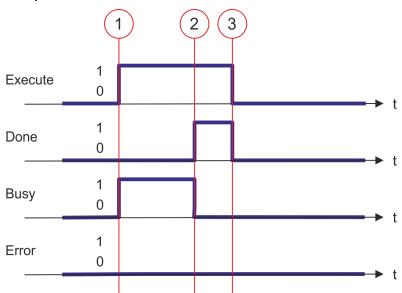
Mit MC_WriteBoolParameter wird der Wert des Parameters, der über die Parameter-Nummer festgelegt ist, vom Datentyp BOOL zur Achse geschrieben. → "PLCopen Parameter"...Seite 712

Parameter	Deklaration	Datentyp	Beschreibung
Execute	INPUT	BOOL	 Parameter Achse schreiben Flanke 0-1: Das Schreiben des Parameters wird durchgeführt
Parameter Number	INPUT	INT	Nummer des Parameters, welcher geschrieben werden soll. <i>→ "PLCopen Parameter"Seite 712</i>
Value	INPUT	BOOL	Wert des geschriebenen Parameters
Done	OUTPUT	BOOL	StatusTRUE: Auftrag erfolgreich durchgeführt. Parameter wurde geschrieben
Busy	OUTPUT	BOOL	StatusTRUE: Auftrag ist in Bearbeitung

Parameter	Deklaration	Datentyp	Beschreibung
Error	OUTPUT	BOOL	 Status TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter ErrorID entnommen werden.
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen <i>→ "ErrorID - Zusätzliche Fehlerinformationen"Seite 739</i>
Axis	IN_OUT	MC_AXIS_REF	Referenz zur Achse

PLCopen-State

Start des Auftrags in jedem PLCopen-State möglich.


Parameter der Achse schreiben

Mit einer Flanke 0-1 an *Execute* wird das Schreiben des Parameters gestartet. Solange das Schreiben des Parameters läuft, zeigt *Busy* den Wert TRUE. Nachdem der Parameter geschrieben wurde, wird *Busy* gleich FALSE und *Done* gleich TRUE geliefert.

Ein laufender Auftrag wird auch beim Setzen von Execute gleich FALSE weiterhin ausgeführt.

Zustandsdiagramm der Bausteinparameter

- (1) Mit der Flanke 0-1 an *Execute* zum Zeitpunkt (1) wird das Schreiben des Parameters gestartet und *Busy* liefert den Wert TRUE.
- (2) Zum Zeitpunkt (2) ist das Schreiben des Parameters erfolgreich abgeschlossen. Busy liefert den Wert FALSE und Done den Wert TRUE.
- (3) Zum Zeitpunkt (3) ist der Auftrag abgeschlossen und *Execute* wird gleich FALSE gesetzt und dadurch sämtliche Ausgangsparameter auf FALSE bzw. 0 gesetzt.

13.8.3.23 FB 827 - VMC_ReadDWordParameter - Doppelwort-Parameter von Achse lesen

Beschreibung

Eine Übersicht der Antriebe, welche mit diesem Baustein angesteuert werden können, finden Sie hier: → "Übersicht"...Seite 656

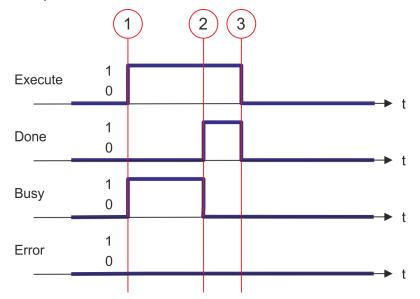
Mit VMC_ReadDWordParameter wird der Parameter, der über die Parameter-Nummer festgelegt ist, vom Datentyp DWORD von der Achse gelesen. → "PLCopen Parameter"...Seite 712

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
Execute	INPUT	BOOL	Parameter Achse lesenFlanke 0-1: Das Lesen des Parameters wird durchgeführt
ParameterN- umber	INPUT	INT	Nummer des Parameters, welcher gelesen werden soll. <i>→ "PLCopen Parameter"Seite 712</i>
Done	OUTPUT	BOOL	StatusTRUE: Auftrag erfolgreich durchgeführt. Parameter wurde ausgelesen
Busy	OUTPUT	BOOL	StatusTRUE: Auftrag ist in Bearbeitung
Error	OUTPUT	BOOL	 Status TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter ErrorID entnommen werden.
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen → "ErrorID - Zusätzliche Fehlerinformationen"Seite 739
Value	OUTPUT	DWORD	Wert des gelesenen Parameters
Axis	IN_OUT	MC_AXIS_REF	Referenz zur Achse

PLCopen-State

Start des Auftrags in jedem PLCopen-State möglich.


Parameter der Achse lesen

Mit einer Flanke 0-1 an *Execute* wird das Lesen des Parameters gestartet. Solange das Lesen des Parameters läuft, zeigt *Busy* den Wert TRUE. Nachdem der Parameter gelesen wurde, wird *Busy* gleich FALSE und *Done* gleich TRUE geliefert. Der Ausgang *Value* zeigt den Wert des Parameters an.

Ein laufender Auftrag wird auch beim Setzen von Execute gleich FALSE weiterhin ausgeführt.

Zustandsdiagramm der Bausteinparameter

- (1) Mit der Flanke 0-1 an *Execute* zum Zeitpunkt (1) wird das Lesen des Parameters gestartet und *Busy* liefert den Wert TRUE.
- (2) Zum Zeitpunkt (2) ist das Lesen des Parameters erfolgreich abgeschlossen. Busy liefert den Wert FALSE und Done den Wert TRUE.
- (3) Zum Zeitpunkt (3) ist der Auftrag abgeschlossen und *Execute* wird gleich FALSE gesetzt und dadurch sämtliche Ausgangsparameter auf FALSE bzw. 0 gesetzt.

13.8.3.24 FB 828 - VMC WriteDWordParameter - Doppelwort-Parameter an Achse schreiben

Beschreibung

Eine Übersicht der Antriebe, welche mit diesem Baustein angesteuert werden können, finden Sie hier: → "Übersicht"...Seite 656

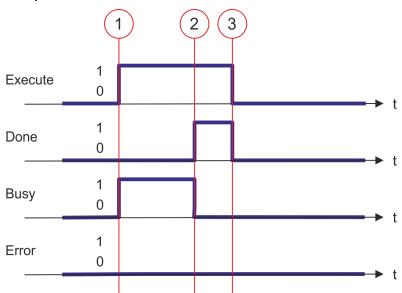
Mit VMC_WriteDWordParameter wird der Wert des Parameters, der über die Parameter-Nummer festgelegt ist, vom Datentyp DWORD zur Achse geschrieben. → "PLCopen Parameter"...Seite 712

Parameter	Deklaration	Datentyp	Beschreibung
Execute	INPUT	BOOL	 Parameter Achse schreiben Flanke 0-1: Das Schreiben des Parameters wird durchgeführt
Parameter Number	INPUT	INT	Nummer des Parameters, welcher geschrieben werden soll. <i>■ "PLCopen Parameter"Seite 712</i>
Value	INPUT	DWORD	Wert des geschriebenen Parameters
Done	OUTPUT	BOOL	StatusTRUE: Auftrag erfolgreich durchgeführt. Parameter wurde geschrieben
Busy	OUTPUT	BOOL	StatusTRUE: Auftrag ist in Bearbeitung

Parameter	Deklaration	Datentyp	Beschreibung
Error	OUTPUT	BOOL	 Status TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter ErrorID entnommen werden.
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen → "ErrorID - Zusätzliche Fehlerinformationen"Seite 739
Axis	IN_OUT	MC_AXIS_REF	Referenz zur Achse

PLCopen-State

Start des Auftrags in jedem PLCopen-State möglich.


Parameter der Achse schreiben

Mit einer Flanke 0-1 an *Execute* wird das Schreiben des Parameters gestartet. Solange das Schreiben des Parameters läuft, zeigt *Busy* den Wert TRUE. Nachdem der Parameter geschrieben wurde, wird *Busy* gleich FALSE und *Done* gleich TRUE geliefert.

Ein laufender Auftrag wird auch beim Setzen von Execute gleich FALSE weiterhin ausgeführt.

Zustandsdiagramm der Bausteinparameter

- (1) Mit der Flanke 0-1 an *Execute* zum Zeitpunkt (1) wird das Schreiben des Parameters gestartet und *Busy* liefert den Wert TRUE.
- (2) Zum Zeitpunkt (2) ist das Schreiben des Parameters erfolgreich abgeschlossen. Busy liefert den Wert FALSE und Done den Wert TRUE.
- (3) Zum Zeitpunkt (3) ist der Auftrag abgeschlossen und *Execute* wird gleich FALSE gesetzt und dadurch sämtliche Ausgangsparameter auf FALSE bzw. 0 gesetzt.

13.8.3.25 FB 829 - VMC_ReadWordParameter - Wort-Parameter von Achse lesen

Beschreibung

Eine Übersicht der Antriebe, welche mit diesem Baustein angesteuert werden können, finden Sie hier: → "Übersicht"...Seite 656

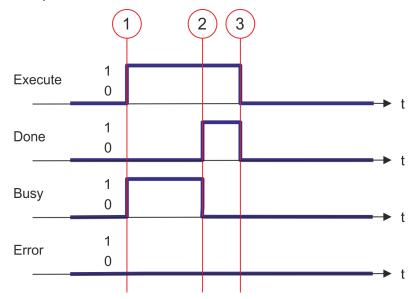
Mit VMC_ReadWordParameter wird der Parameter, der über die Parameter-Nummer festgelegt ist, vom Datentyp WORD von der Achse gelesen. *→ "PLCopen Parameter"...Seite 712*

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
Execute	INPUT	BOOL	 Parameter Achse lesen Flanke 0-1: Das Lesen des Parameters wird durchgeführt
Parameter Number	INPUT	INT	Nummer des Parameters, welcher gelesen werden soll. <i>→ "PLCopen Parameter"Seite 712</i>
Done	OUTPUT	BOOL	StatusTRUE: Auftrag erfolgreich durchgeführt. Parameter wurde ausgelesen
Busy	OUTPUT	BOOL	StatusTRUE: Auftrag ist in Bearbeitung
Error	OUTPUT	BOOL	 Status TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter <i>ErrorID</i> entnommen werden.
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen <i>→ "ErrorID - Zusätzliche Fehlerinformationen"Seite</i> 739
Value	OUTPUT	WORD	Wert des gelesenen Parameters
Axis	IN_OUT	MC_AXIS_REF	Referenz zur Achse

PLCopen-State

Start des Auftrags in jedem PLCopen-State möglich.


Parameter der Achse lesen

Mit einer Flanke 0-1 an *Execute* wird das Lesen des Parameters gestartet. Solange das Lesen des Parameters läuft, zeigt *Busy* den Wert TRUE. Nachdem der Parameter gelesen wurde, wird *Busy* gleich FALSE und *Done* gleich TRUE geliefert. Der Ausgang *Value* zeigt den Wert des Parameters an.

Ein laufender Auftrag wird auch beim Setzen von Execute gleich FALSE weiterhin ausgeführt.

Zustandsdiagramm der Bausteinparameter

- (1) Mit der Flanke 0-1 an *Execute* zum Zeitpunkt (1) wird das Lesen des Parameters gestartet und *Busy* liefert den Wert TRUE.
- (2) Zum Zeitpunkt (2) ist das Lesen des Parameters erfolgreich abgeschlossen. Busy liefert den Wert FALSE und Done den Wert TRUE.
- (3) Zum Zeitpunkt (3) ist der Auftrag abgeschlossen und *Execute* wird gleich FALSE gesetzt und dadurch sämtliche Ausgangsparameter auf FALSE bzw. 0 gesetzt.

13.8.3.26 FB 830 - VMC_WriteWordParameter - Wort-Parameter an Achse schreiben

Beschreibung

Eine Übersicht der Antriebe, welche mit diesem Baustein angesteuert werden können, finden Sie hier: → "Übersicht"...Seite 656

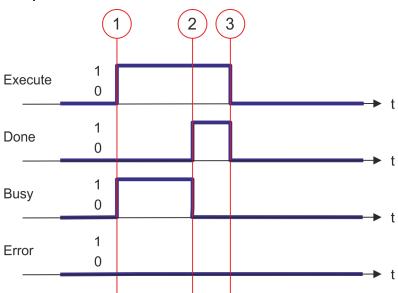
Mit VMC_WriteWordParameter wird der Wert des Parameters, der über die Parameter-Nummer festgelegt ist, vom Datentyp WORD zur Achse geschrieben. → "PLCopen Parameter"...Seite 712

Parameter	Deklaration	Datentyp	Beschreibung
Execute	INPUT	BOOL	 Parameter Achse schreiben Flanke 0-1: Das Schreiben des Parameters wird durchgeführt
Parameter Number	INPUT	INT	Nummer des Parameters, welcher geschrieben werden soll. <i>→ "PLCopen Parameter"Seite 712</i>
Value	INPUT	WORD	Wert des geschriebenen Parameters
Done	OUTPUT	BOOL	StatusTRUE: Auftrag erfolgreich durchgeführt. Parameter wurde geschrieben
Busy	OUTPUT	BOOL	StatusTRUE: Auftrag ist in Bearbeitung

Parameter	Deklaration	Datentyp	Beschreibung
Error	OUTPUT	BOOL	 Status TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter ErrorID entnommen werden.
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen → "ErrorID - Zusätzliche Fehlerinformationen"Seite 739
Axis	IN_OUT	MC_AXIS_REF	Referenz zur Achse

PLCopen-State

Start des Auftrags in jedem PLCopen-State möglich.


Parameter der Achse schreiben

Mit einer Flanke 0-1 an *Execute* wird das Schreiben des Parameters gestartet. Solange das Schreiben des Parameters läuft, zeigt *Busy* den Wert TRUE. Nachdem der Parameter geschrieben wurde, wird *Busy* gleich FALSE und *Done* gleich TRUE geliefert.

Ein laufender Auftrag wird auch beim Setzen von Execute gleich FALSE weiterhin ausgeführt.

Zustandsdiagramm der Bausteinparameter

- (1) Mit der Flanke 0-1 an *Execute* zum Zeitpunkt (1) wird das Schreiben des Parameters gestartet und *Busy* liefert den Wert TRUE.
- (2) Zum Zeitpunkt (2) ist das Schreiben des Parameters erfolgreich abgeschlossen. Busy liefert den Wert FALSE und Done den Wert TRUE.
- (3) Zum Zeitpunkt (3) ist der Auftrag abgeschlossen und *Execute* wird gleich FALSE gesetzt und dadurch sämtliche Ausgangsparameter auf FALSE bzw. 0 gesetzt.

13.8.3.27 FB 831 - VMC_ReadByteParameter - Byte-Parameter von Achse lesen

Beschreibung

Eine Übersicht der Antriebe, welche mit diesem Baustein angesteuert werden können, finden Sie hier: → "Übersicht"...Seite 656

Mit VMC_ReadByteParameter wird der Parameter, der über die Parameter-Nummer festgelegt ist, vom Datentyp BYTE von der Achse gelesen. *→ "PLCopen Parameter"...Seite 712*

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
Execute	INPUT	BOOL	 Parameter Achse lesen Flanke 0-1: Das Lesen des Parameters wird durchgeführt
Parameter Number	INPUT	INT	Nummer des Parameters, welcher gelesen werden soll. <i>⇒ "PLCopen Parameter"Seite 712</i>
Done	OUTPUT	BOOL	StatusTRUE: Auftrag erfolgreich durchgeführt. Parameter wurde ausgelesen
Busy	OUTPUT	BOOL	StatusTRUE: Auftrag ist in Bearbeitung
Error	OUTPUT	BOOL	 Status TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter ErrorID entnommen werden.
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen <i>→ "ErrorID - Zusätzliche Fehlerinformationen"Seite 739</i>
Value	OUTPUT	BYTE	Wert des gelesenen Parameters
Axis	IN_OUT	MC_AXIS_REF	Referenz zur Achse

PLCopen-State

Start des Auftrags in jedem PLCopen-State möglich.

Parameter der Achse lesen

Mit einer Flanke 0-1 an *Execute* wird das Lesen des Parameters gestartet. Solange das Lesen des Parameters läuft, zeigt *Busy* den Wert TRUE. Nachdem der Parameter gelesen wurde, wird *Busy* gleich FALSE und *Done* gleich TRUE geliefert. Der Ausgang *Value* zeigt den Wert des Parameters an.

Ein laufender Auftrag wird auch beim Setzen von Execute gleich FALSE weiterhin ausgeführt.

Zustandsdiagramm der Bausteinparameter

- (1) Mit der Flanke 0-1 an *Execute* zum Zeitpunkt (1) wird das Lesen des Parameters gestartet und *Busy* liefert den Wert TRUE.
- (2) Zum Zeitpunkt (2) ist das Lesen des Parameters erfolgreich abgeschlossen. Busy liefert den Wert FALSE und Done den Wert TRUE.
- (3) Zum Zeitpunkt (3) ist der Auftrag abgeschlossen und *Execute* wird gleich FALSE gesetzt und dadurch sämtliche Ausgangsparameter auf FALSE bzw. 0 gesetzt.

13.8.3.28 FB 832 - VMC_WriteByteParameter - Byte-Parameter an Achse schreiben

Beschreibung

Eine Übersicht der Antriebe, welche mit diesem Baustein angesteuert werden können, finden Sie hier: → "Übersicht"...Seite 656

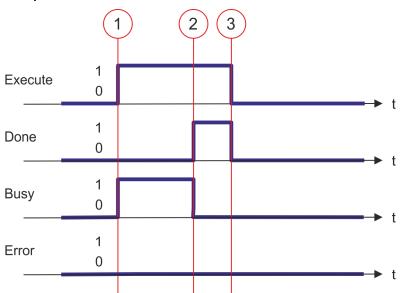
Mit VMC_WriteByteParameter wird der Wert des Parameters, der über die Parameter-Nummer festgelegt ist, vom Datentyp BYTE zur Achse geschrieben.

Parameter	Deklaration	Datentyp	Beschreibung
Execute	INPUT	BOOL	 Parameter Achse schreiben Flanke 0-1: Das Schreiben des Parameters wird durchgeführt
Parameter Number	INPUT	INT	Nummer des Parameters, welcher geschrieben werden soll. → "PLCopen Parameter"Seite 712
Value	INPUT	BYTE	Wert des geschriebenen Parameters
Done	OUTPUT	BOOL	StatusTRUE: Auftrag erfolgreich durchgeführt. Parameter wurde geschrieben
Busy	OUTPUT	BOOL	StatusTRUE: Auftrag ist in Bearbeitung

Parameter	Deklaration	Datentyp	Beschreibung
Error	OUTPUT	BOOL	 Status TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter ErrorID entnommen werden.
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen → "ErrorID - Zusätzliche Fehlerinformationen"Seite 739
Axis	IN_OUT	MC_AXIS_REF	Referenz zur Achse

PLCopen-State

Start des Auftrags in jedem PLCopen-State möglich.


Parameter der Achse schreiben

Mit einer Flanke 0-1 an *Execute* wird das Schreiben des Parameters gestartet. Solange das Schreiben des Parameters läuft, zeigt *Busy* den Wert TRUE. Nachdem der Parameter geschrieben wurde, wird *Busy* gleich FALSE und *Done* gleich TRUE geliefert.

Ein laufender Auftrag wird auch beim Setzen von Execute gleich FALSE weiterhin ausgeführt.

Zustandsdiagramm der Bausteinparameter

- (1) Mit der Flanke 0-1 an *Execute* zum Zeitpunkt (1) wird das Schreiben des Parameters gestartet und *Busy* liefert den Wert TRUE.
- (2) Zum Zeitpunkt (2) ist das Schreiben des Parameters erfolgreich abgeschlossen. Busy liefert den Wert FALSE und Done den Wert TRUE.
- (3) Zum Zeitpunkt (3) ist der Auftrag abgeschlossen und *Execute* wird gleich FALSE gesetzt und dadurch sämtliche Ausgangsparameter auf FALSE bzw. 0 gesetzt.

13.8.3.29 FB 833 - VMC_ReadDriveParameter - Antriebsparameter lesen

Beschreibung

Eine Übersicht der Antriebe, welche mit diesem Baustein angesteuert werden können, finden Sie hier: → "Übersicht"...Seite 656

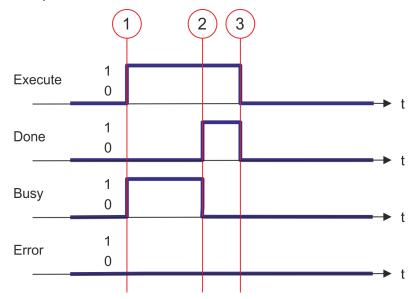
Mit dem VMC_ReadDriveParameter wird ein Parameterwert aus dem angebundenen Antrieb gelesen.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
Execute	INPUT	BOOL	 Antriebsparameter lesen Flanke 0-1: Das Lesen des Antriebsparameters wird durchgeführt.
Index	INPUT	WORD	Index des Antriebsparameters
Subindex	INPUT	BYTE	Subindex des Antriebsparameters
Length	INPUT	ВҮТЕ	Datenlänge ■ 1: BYTE ■ 2: WORD ■ 4: DWORD
Done	OUTPUT	BOOL	StatusTRUE: Auftrag erfolgreich durchgeführt. Parameter wurde ausgelesen
Busy	OUTPUT	BOOL	StatusTRUE: Auftrag ist in Bearbeitung
Error	OUTPUT	BOOL	 Status TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter ErrorID entnommen werden.
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen <i>→ "ErrorID - Zusätzliche Fehlerinformationen"Seite</i> 739
Value	OUTPUT	DWORD	Wert des gelesenen Parameters
Axis	IN_OUT	MC_AXIS_REF	Referenz zur Achse

PLCopen-State

Start des Auftrags in jedem PLCopen-State möglich.


Antriebsparameter lesen

Mit einer Flanke 0-1 an *Execute* wird das Lesen des Antriebsparameters gestartet. Solange das Lesen des Parameters läuft, zeigt *Busy* den Wert TRUE. Nachdem der Parameter gelesen wurde, wird *Busy* gleich FALSE und *Done* gleich TRUE geliefert. Der Ausgang *Value* zeigt den Wert des Parameters an.

Ein laufender Auftrag wird auch beim Setzen von Execute gleich FALSE weiterhin ausgeführt.

Zustandsdiagramm der Bausteinparameter

- (1) Mit der Flanke 0-1 an *Execute* zum Zeitpunkt (1) wird das Lesen des Parameters gestartet und *Busy* liefert den Wert TRUE.
- (2) Zum Zeitpunkt (2) ist das Lesen des Parameters erfolgreich abgeschlossen. Busy liefert den Wert FALSE und Done den Wert TRUE.
- (3) Zum Zeitpunkt (3) ist der Auftrag abgeschlossen und *Execute* wird gleich FALSE gesetzt und dadurch sämtliche Ausgangsparameter auf FALSE bzw. 0 gesetzt.

13.8.3.30 FB 834 - VMC_WriteDriveParameter - Antriebsparameter schreiben

Beschreibung

Eine Übersicht der Antriebe, welche mit diesem Baustein angesteuert werden können, finden Sie hier: → "Übersicht"...Seite 656

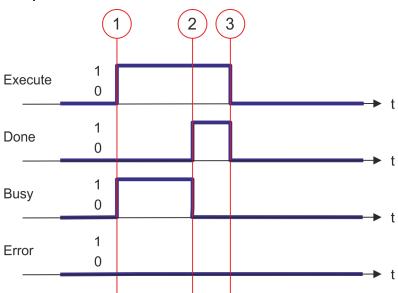
Mit dem VMC_WriteDriveParameter wird ein Parameterwert in den angebundenen Antrieb geschrieben.

Parameter	Deklaration	Datentyp	Beschreibung
Execute	INPUT	BOOL	 Antriebsparameter schreiben Flanke 0-1: Das Schreiben des Antriebsarameters wird durchgeführt.
Index	INPUT	WORD	Index des Antriebsparameters
Subindex	INPUT	BYTE	Subindex des Antriebsparameters
Length	INPUT	BYTE	Datenlänge: 1=BYTE; 2=WORD; 4=DWORD
Value	INPUT	DWORD	Wert des geschriebenen Parameters
Done	OUTPUT	BOOL	StatusTRUE: Auftrag erfolgreich durchgeführt. Parameter wurde ausgelesen
Busy	OUTPUT	BOOL	StatusTRUE: Auftrag ist in Bearbeitung

Parameter	Deklaration	Datentyp	Beschreibung
Error	OUTPUT	BOOL	 Status TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter ErrorID entnommen werden.
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen → "ErrorID - Zusätzliche Fehlerinformationen"Seite 739
Axis	IN_OUT	MC_AXIS_REF	Referenz zur Achse

PLCopen-State

Start des Auftrags in jedem PLCopen-State möglich.


Antriebsparameter schreiben

Mit einer Flanke 0-1 an *Execute* wird das Schreiben des Parameters gestartet. Solange das Schreiben des Parameters läuft, zeigt *Busy* den Wert TRUE. Nachdem der Parameter geschrieben wurde, wird *Busy* gleich FALSE und *Done* gleich TRUE geliefert.

Ein laufender Auftrag wird auch beim Setzen von Execute gleich FALSE weiterhin ausgeführt.

Zustandsdiagramm der Bausteinparameter

- (1) Mit der Flanke 0-1 an *Execute* zum Zeitpunkt (1) wird das Schreiben des Parameters gestartet und *Busy* liefert den Wert TRUE.
- (2) Zum Zeitpunkt (2) ist das Schreiben des Parameters erfolgreich abgeschlossen. Busy liefert den Wert FALSE und Done den Wert TRUE.
- (3) Zum Zeitpunkt (3) ist der Auftrag abgeschlossen und *Execute* wird gleich FALSE gesetzt und dadurch sämtliche Ausgangsparameter auf FALSE bzw. 0 gesetzt.

13.8.3.31 FB 835 - VMC_HomeInit_LimitSwitch - Initialisierung Referenzfahrt auf Endschalter

Beschreibung

Eine Übersicht der Antriebe, welche mit diesem Baustein angesteuert werden können, finden Sie hier: → "Übersicht"...Seite 656

Dieser Baustein initialisiert die Referenzfahrt (Homing) auf den Endschalter.

Für den Einsatz dieses Bausteins müssen sie folgende Bausteine Ihrem Projekt hinzufügen:

- → "FB 828 VMC_WriteDWordParameter Doppelwort-Parameter an Achse schreiben"...Seite 695
- ¬"FB 832 VMC_WriteByteParameter Byte-Parameter an Achse schreiben"...Seite 701

Parameter	Deklaration	Datentyp	Beschreibung
Execute	INPUT	BOOL	 Initialisierung der Referenzfahrt Methode Flanke 0-1: Werte der Eingangsparameter werden übernommen und die Initialisierung der Referenzfahrt Methode gestartet.
Direction	INPUT	BOOL	Richtung der ReferenzfahrtTRUE: auf positiven EndschalterFALSE: auf negativen Endschalter
Velocity- SearchSwitch	INPUT	REAL	Geschwindigkeit für die Suche nach dem Schalter in [Anwendereinheiten/s]
VelocitySearch- Zero	INPUT	REAL	Geschwindigkeit für die Suche nach dem Index in [Anwendereinheiten/s]
Acceleration	INPUT	REAL	Beschleunigung in [Anwendereinheiten/s²]
Done	OUTPUT	BOOL	StatusTRUE: Initialisierung wurde ohne Fehler beendet.
Busy	OUTPUT	BOOL	StatusTRUE: Initialisierung ist aktiv
Error	OUTPUT	BOOL	 Status TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter ErrorID entnommen werden.
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen → "ErrorID - Zusätzliche Fehlerinformationen"Seite 739
AXIS	IN_OUT	MC_AXIS_REF	Referenz zur Achse.

Initialisierung Referenzfahrt auf Endschalter

Mit einer Flanke 0-1 an *Execute* werden die Werte der Eingangsparameter übernommen und die Initialisierung der Referenzfahrt Methode gestartet. So lange die Initialisierung aktiv ist, wird der Ausgang *Busy* auf True gesetzt. Ist die Initialisierung ohne Fehler beendet worden, wird der Ausgang *Done* auf True gesetzt. Tritt bei der Initialisierung ein Fehler auf, wird der Ausgang *Error* auf True gesetzt und am Ausgang *ErrorID* eine Fehlernummer ausgegeben.

Initialisierung der Referenzfahrt Methode

- 1. Uberprüfen der Kommunikation zur Achse.
- 2. Prüfen auf erlaubte PLCopen Zustände.
- 3. Prüfung der Eingangswerte:
 - Eingang VelocitySearchSwitch [UserUnits] > 0.0
 - VelocitySearchSwitch [InternalUnits] > 0
 - VelocitySearchSwitch [InternalUnits] ≤ VelocityMax
 - Eingang VelocitySearchZero [UserUnits] > 0.0
 - VelocitySearchZero [InternalUnits] > 0
 - VelocitySearchZero [InternalUnits] ≤ VelocityMax
 - Eingang Acceleration [UserUnits] > 0.0
 - Acceleration [InternalUnits] > 0
 - Acceleration [InternalUnits] ≤ AccelerationMax
- 4. Dibertragung der Antriebsparameter:
 - "Homing Method" Referenzfahrtmethode in Abhängigkeit vom Eingang "Direction"

Siehe Tabelle unten!

- "Homing Speed during search for switch" [Inc/s]
 Geschwindigkeit für die Schaltersuche
- "Homing Speed during search for zero" [Inc/s]
 Geschwindigkeit für die Indexsuche
- "Homing Acceleration" [Inc/s²]
 Anfahr- und Bremsbeschleunigung für die Referenzfahrt

Homing Method	Direction
1	false
2	true

13.8.3.32 FB 836 - VMC HomeInit HomeSwitch - Initialisierung Referenzfahrt auf Referenzschalter

Beschreibung

Eine Übersicht der Antriebe, welche mit diesem Baustein angesteuert werden können, finden Sie hier: → "Übersicht"...Seite 656

Dieser Baustein initialisiert die Referenzfahrt (Homing) auf den Referenzschalter.

Für den Einsatz dieses Bausteins müssen sie folgende Bausteine Ihrem Projekt hinzufügen:

- → "FB 828 VMC_WriteDWordParameter Doppelwort-Parameter an Achse schreiben"...Seite 695
- → "FB 832 VMC_WriteByteParameter Byte-Parameter an Achse schreiben"...Seite 701

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
Execute	INPUT	BOOL	 Initialisierung der Referenzfahrt Methode Flanke 0-1: Werte der Eingangsparameter werden übernommen und die Initialisierung der Referenzfahrt Methode gestartet.
InitialDirection	INPUT	BOOL	Startrichtung der ReferenzfahrtTRUE: auf positiven EndschalterFALSE: auf negativen Endschalter
WithIndexPulse	INPUT	BOOL	ReferenzfahrtTRUE: mit NullimpulsFALSE: ohne Nullimpuls
OnRisingEdge	INPUT	BOOL	Flanke ReferenzschalterTRUE: Flanke 0-1FALSE: Flanke 1-0
SameDirIndex- Pulse	INPUT	BOOL	 Nullimpulssuche TRUE: Nach dem Erkennen des Referenzschalters ohne Richtungswechsel den Nullimpuls suchen. FALSE: Nach dem Erkennen des Referenzschalters einen Richtungswechsel zur Nullimpulssuche durchführen.
Velocity- SearchSwitch	INPUT	REAL	Geschwindigkeit für die Schaltersuche in [Anwendereinheiten/s]
VelocitySearch- Zero	INPUT	REAL	Geschwindigkeit für die Indexsuche in [Anwendereinheiten/s]
Acceleration	INPUT	REAL	Beschleunigung in [Anwendereinheiten/s²]
Done	OUTPUT	BOOL	StatusTRUE: Initialisierung wurde ohne Fehler beendet.
Busy	OUTPUT	BOOL	StatusTRUE: Initialisierung ist aktiv
Error	OUTPUT	BOOL	 Status TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter ErrorID entnommen werden.
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen "ErrorID - Zusätzliche Fehlerinformationen"Seite 739
AXIS	IN_OUT	MC_AXIS_REF	Referenz zur Achse.

Initialisierung Referenzfahrt auf Referenzschalter

Mit einer Flanke 0-1 an *Execute* werden die Werte der Eingangsparameter übernommen und die Initialisierung der Referenzfahrt Methode gestartet. So lange die Initialisierung aktiv ist, wird der Ausgang *Busy* auf True gesetzt. Ist die Initialisierung ohne Fehler beendet worden, wird der Ausgang *Done* auf True gesetzt. Tritt bei der Initialisierung ein Fehler auf, wird der Ausgang *Error* auf True gesetzt und am Ausgang *ErrorID* eine Fehlernummer ausgegeben.

Initialisierung der Referenzfahrt Methode

1. Uberprüfen der Kommunikation zur Achse.

2. Prüfen auf erlaubte PLCopen Zustände.

3. Prüfung der Eingangswerte:

- Eingang VelocitySearchSwitch [UserUnits] > 0.0
- VelocitySearchSwitch [InternalUnits] > 0
- VelocitySearchSwitch [InternalUnits] ≤ VelocityMax
- Eingang VelocitySearchZero [UserUnits] > 0.0
- VelocitySearchZero [InternalUnits] > 0
- VelocitySearchZero [InternalUnits] ≤ VelocityMax
- Eingang Acceleration [UserUnits] > 0.0
- Acceleration [InternalUnits] > 0
- Acceleration [InternalUnits] ≤ AccelerationMax

4. ▶ Übertragung der Antriebsparameter:

"Homing Method" Referenzfahrtmethode in Abhängigkeit vom Eingang "Direction"

Siehe Tabelle unten!

- "Homing Speed during search for switch" [Inc/s]
 Geschwindigkeit für die Schaltersuche
- "Homing Speed during search for zero" [Inc/s]
 Geschwindigkeit für die Indexsuche
- "Homing Acceleration" [Inc/s²]
 Anfahr- und Bremsbeschleunigung für die Referenzfahrt

Homing Method	InitialDirection	WithIndexPulse	OnRisingEdge	SameDirIndexPulse
7	positive	true	true	false
8	positive	true	true	true
9	positive	true	false	false
10	positive	true	false	true
11	negative	true	true	false
12	negative	true	true	true
13	negative	true	false	false
14	negative	true	false	true
24	positive	false	true	false
24	positive	false	true	true
24	positive	false	false	false
24	positive	false	false	true
28	negative	false	true	false
28	negative	false	true	true
28	negative	false	false	false
28	negative	false	false	true

13.8.3.33 FB 837 - VMC Homelnit ZeroPulse - Initialisierung Referenzfahrt auf Null Impuls

Beschreibung

Eine Übersicht der Antriebe, welche mit diesem Baustein angesteuert werden können, finden Sie hier: → "Übersicht"... Seite 656

Dieser Baustein initialisiert die Referenzfahrt (Homing) auf Null Impuls.

Für den Einsatz dieses Bausteins müssen sie folgende Bausteine Ihrem Projekt hinzufügen:

- → "FB 828 VMC_WriteDWordParameter Doppelwort-Parameter an Achse schreiben"...Seite 695
- ¬"FB 832 VMC_WriteByteParameter Byte-Parameter an Achse schreiben"...Seite 701

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
Execute	INPUT	BOOL	 Initialisierung der Referenzfahrt Methode Flanke 0-1: Werte der Eingangsparameter werden übernommen und die Initialisierung der Referenzfahrt Methode gestartet.
Direction	INPUT	BOOL	Richtung der ReferenzfahrtTRUE: Positive RichtungFALSE: Negative Richtung
VelocitySearch- Zero	INPUT	REAL	Geschwindigkeit für die Indexsuche in [Anwendereinheiten/s]
Acceleration	INPUT	REAL	Beschleunigung in [Anwendereinheiten/s²]
Done	OUTPUT	BOOL	StatusTRUE: Initialisierung wurde ohne Fehler beendet.
Busy	OUTPUT	BOOL	StatusTRUE: Initialisierung ist aktiv
Error	OUTPUT	BOOL	 Status TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter ErrorlD entnommen werden.
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen
			→ "ErrorID - Zusätzliche Fehlerinformationen"Seite 739
AXIS	IN_OUT	MC_AXIS_REF	Referenz zur Achse.

Initialisierung Referenzfahrt auf Nullimpuls

Mit einer Flanke 0-1 an *Execute* werden die Werte der Eingangsparameter übernommen und die Initialisierung der Referenzfahrt Methode gestartet. So lange die Initialisierung aktiv ist, wird der Ausgang *Busy* auf True gesetzt. Ist die Initialisierung ohne Fehler beendet worden, wird der Ausgang *Done* auf True gesetzt. Tritt bei der Initialisierung ein Fehler auf, wird der Ausgang *Error* auf True gesetzt und am Ausgang *ErrorID* eine Fehlernummer ausgegeben.

Initialisierung der Referenzfahrt Methode

- 1. Überprüfen der Kommunikation zur Achse.
- 2. Prüfen auf erlaubte PLCopen Zustände.

3. Prüfung der Eingangswerte:

- Eingang VelocitySearchZero [UserUnits] > 0.0
- VelocitySearchZero [InternalUnits] > 0
- VelocitySearchZero [InternalUnits] ≤ VelocityMax
- Eingang Acceleration [UserUnits] > 0.0
- Acceleration [InternalUnits] > 0
- Acceleration [InternalUnits] ≤ AccelerationMax

4. Dibertragung der Antriebsparameter:

"Homing Method" Referenzfahrtmethode in Abhängigkeit vom Eingang "Direction"

Siehe Tabelle unten!

- "Homing Speed during search for switch" [Inc/s]
 Geschwindigkeit für die Schaltersuche
- "Homing Speed during search for zero" [Inc/s]
 Geschwindigkeit für die Indexsuche
- "Homing Acceleration" [Inc/s²]
 Anfahr- und Bremsbeschleunigung für die Referenzfahrt

Homing Method	Direction
33	false
34	true

13.8.3.34 FB 838 - VMC_HomeInit_SetPosition - Initialisierung Referenzfahrt auf aktuelle Position

Beschreibung

Eine Übersicht der Antriebe, welche mit diesem Baustein angesteuert werden können, finden Sie hier: → "Übersicht"...Seite 656

Dieser Baustein initialisiert die Referenzfahrt (Homing) auf die aktuelle Position.

Für den Einsatz dieses Bausteins müssen sie folgenden Baustein Ihrem Projekt hinzufügen:

■ → "FB 832 - VMC_WriteByteParameter - Byte-Parameter an Achse schreiben"...Seite 701

Parameter	Deklaration	Datentyp	Beschreibung
Execute	INPUT	BOOL	 Initialisierung der Referenzfahrt Methode Flanke 0-1: Werte der Eingangsparameter werden übernommen und die Initialisierung der Referenzfahrt Methode gestartet.
Done	OUTPUT	BOOL	StatusTRUE: Initialisierung wurde ohne Fehler beendet.
Busy	OUTPUT	BOOL	StatusTRUE: Initialisierung ist aktiv

Parameter	Deklaration	Datentyp	Beschreibung
Error	OUTPUT	BOOL	 Status TRUE: Ein Fehler ist aufgetreten. Zusätzliche Fehlerinformationen können dem Parameter ErrorlD entnommen werden.
ErrorID	OUTPUT	WORD	Zusätzliche Fehlerinformationen → "ErrorID - Zusätzliche Fehlerinformationen"Seite 739
AXIS	IN_OUT	MC_AXIS_REF	Referenz zur Achse.

Initialisierung Referenzfahrt auf Endschalter

Mit einer Flanke 0-1 an *Execute* werden die Werte der Eingangsparameter übernommen und die Initialisierung der Referenzfahrt Methode gestartet. So lange die Initialisierung aktiv ist, wird der Ausgang *Busy* auf TRUE gesetzt. Ist die Initialisierung ohne Fehler beendet worden, wird der Ausgang *Done* auf TRUE gesetzt. Tritt bei der Initialisierung ein Fehler auf, wird der Ausgang *Error* auf TRUE gesetzt und am Ausgang *ErrorID* eine Fehlernummer ausgegeben.

Initialisierung der Referenzfahrt Methode

- 1. Überprüfen der Kommunikation zur Achse.
- 2. Prüfen auf erlaubte PLCopen Zustände.
- **3.** ▶ Übertragung der Antriebsparameter:
 - "Homing Method" = 35

13.8.3.35 PLCopen Parameter

PN	Name	Datentyp	R/W	Beschreibung
1 CommandedPosition		REAL	R	Sollposition
				<pre>Zugriff auf: #Axis.Status.Positioning.SetValues.CommandedPo sition</pre>
2	SWLimitPos	REAL	R/W	Positive Software Endschalter Position
				<pre>Zugriff auf: "Axis".AxisConfiguration.PositionLimits.MaxPos ition</pre>
3	SWLimitNeg	REAL	R/W	Negative Software Endschalter Position
				<pre>Zugriff auf: "Axis".AxisConfiguration.PositionLimits.MinPos ition</pre>
4	EnableLimitPos	BOOL	R/W	Positiven Endschalter aktivieren
				<pre>Zugriff auf: "Axis".AxisConfiguration.PositionLimits.Enable MaxPos</pre>
5	EnableLimitNeg	BOOL	R/W	Negativen Endschalter aktivieren
				<pre>Zugriff auf: "Axis".AxisConfiguration.PositionLimits.Enable MinPos</pre>
6	EnablePosLagMonitoring	BOOL	R/W	Überwachung Schleppabstand aktivieren
				Funktion wird nicht unterstützt

PN	Name	Datentyp	R/W	Beschreibung
7	MaxPositionLag	REAL	R/W	Maximaler Schleppabstand
				Funktion wird nicht unterstützt
8	MaxVelocitySystem	REAL	R	Maximal zulässige Geschwindigkeit der Achse im Bewegungssystem
				Dieser Parameter wird aktuell nicht unterstützt
9	MaxVelocityAppl	REAL R/W		Maximal zulässige Geschwindigkeit der Achse in der Anwendung
				<pre>Zugriff auf: #Axis.AxisConfiguration.DynamicLimits.MaxVeloc ityApp</pre>
10	ActualVelocity	REAL	R	Aktuelle Geschwindigkeit
				<pre>Zugriff auf: #Axis.Status.Positioning.ActValues.Velocity</pre>
11	CommandedVelocity	REAL	R	Sollgeschwindigkeit
				<pre>Zugriff auf: #Axis.Status.Positioning.SetValues.Velocity</pre>
12	MaxAccelerationSystem	REAL	R	Maximal zulässige Beschleunigung der Achse im Bewegungssystem
				Dieser Parameter wird aktuell nicht unterstützt
13	MaxAccelerationAppl	REAL	R/W	Maximal zulässige Beschleunigung der Achse in der Anwendung
				<pre>Zugriff auf: #Axis.AxisConfiguration.DynamicLimits.MaxAccel erationApp</pre>
14	MaxDecelerationSystem	REAL	R	Maximal zulässige Verzögerung der Achse im Bewegungssystem
				Dieser Parameter wird aktuell nicht unterstützt
15	MaxDecelerationAppl	REAL	R/W	Maximal zulässige Verzögerung der Achse in der Anwendung
				<pre>Zugriff auf: #Axis.AxisConfiguration.DynamicLimits.MaxDecel erationApp</pre>
16	MaxJerkSystem	REAL	R	Maximal zulässiger Ruck der Achse im Bewegungssystem
				Dieser Parameter wird aktuell nicht unterstützt
17	MaxJerkAppl	REAL	R/W	Maximal zulässiger Ruck der Achse in der Anwendung
				Dieser Parameter wird aktuell nicht unterstützt

Antrieb über HMI steuern > Übersicht

13.8.3.36 Produktspezifische Parameter

Positionierachse: Yaskawa Sigma-5 / Sigma-7 über EtherCAT

Nr.	Name	Datentyp	Index	Subindex	Zugriff
900	HomingDone	BOOL	-	-	R/W 1, 2
901	PositiveTorqueLimit	BOOL	-	-	R/W 1, 2
902	NegativeTorqueLimit	BOOL	-	-	R/W 1, 2
1000	ErrorCode	WORD	603F	0	R ³
1001	HomeOffset	DWORD	607C	0	R/W ^{5, 6}
1002	HomingMethod	WORD	6098	0	R/W ^{3, 4}
1003	SpeedSearchSwitch	DWORD	6099	1	R/W ^{5, 6}
1004	SpeedSearchZero	DWORD	6099	2	R/W ^{5, 6}
1005	HomingAcceleration	DWORD	609A	0	R/W ^{5, 6}
1006	PositiveTorqueLimit	WORD	60E0	0	R/W ^{3, 4}
1007	NegativeTorqueLimit	WORD	0x60E1	0	R/W ^{3, 4}
1008	MotorRatedTorque	DWORD	0x6076	0	R/W ^{5, 6}
1009	FollowingErrorWindow	DWORD	0x6065	0	R/W ^{5, 6}
1010	FollowingErrorTimeOut	WORD	0x6066	0	R/W ^{3, 4}
1011	PositionWindow	DWORD	0x6067	0	R/W ^{5, 6}
1012	PositionTime	WORD	0x6068	0	R/W ^{3, 4}
1013	Min Position Limit	DWORD	0x607D	1	R/W ^{5, 6}
1014	Max Position Limit	DWORD	0x607D	2	R/W ^{5, 6}
1015	Digital outputs/ physical outputs	DWORD	0x60FE	1	R/W ^{5, 6}
1016	Digital outputs/ mask	DWORD	0x60FE	2	R/W ^{5, 6}
1017	Quick stop deceleration	DWORD	0x6085	0	R/W ^{5, 6}
1018	Forward external torque limit	WORD	0x2404	0	R/W ^{3, 4}
1019	Reverse external torque limit	WORD	0x2405	0	R/W ^{3, 4}

¹⁾ Zugriff über _ "FB 825 - MC_ReadBoolParameter - Boolean-Parameter von Achse lesen"...Seite 690

13.9 Antrieb über HMI steuern

13.9.1 Übersicht

Die Antriebssteuerung über ein HMI ist bei folgenden Bibliotheks-Gruppen möglich:

- Sigma-5 EtherCAT → 288
- Sigma-7S EtherCAT → 323

²⁾ Zugriff über , "FB 826 - MC_WriteBoolParameter - Boolean-Parameter an Achse schreiben"...Seite 692

³⁾ Zugriff über _ "FB 829 - VMC_ReadWordParameter - Wort-Parameter von Achse lesen"...Seite 697

⁴⁾ Zugriff über - "FB 830 - VMC_WriteWordParameter - Wort-Parameter an Achse schreiben"...Seite 698

⁵⁾ Zugriff über _ "FB 827 - VMC_ReadDWordParameter - Doppelwort-Parameter von Achse lesen"...Seite 694

⁶⁾ Zugriff über _, "FB 828 - VMC_WriteDWordParameter - Doppelwort-Parameter an Achse schreiben"...Seite 695

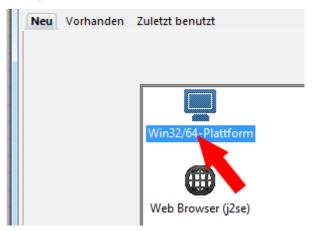
- Sigma-7W EtherCAT → 360
- Sigma-5/7 Pulse Train → 518

Zur Steuerung des entsprechenden Antriebs über ein HMI wie Touch Panel bzw. Panel-PC gibt es für Movicon eine Symbolbibliothek. Hiermit können Sie mit Hilfe von Templates den entsprechenden VMC_AxisControl-Funktionsbaustein ansteuern. Die Symbolbibliothek bietet Ihnen folgende Templates:

- Numeric Touchpad
 - Dies ist ein an die VMC_AxisControl-Templates angepasstes Eingabefeld für verschiedene Displayauflösungen.
 - Das Touchpad können Sie anstelle des Default-Eingabefeldes verwenden.
- VMC AxisControl
 - Template zur Ansteuerung des FB 860 VMC_AxisControl-Funktionsbausteins in der CPU.
 - Das Template gibt es für verschiedene Displayauflösungen.
- VMC AxisControl ... Trend
 - Template zur Ansteuerung des FB 860 VMC_AxisControl-Funktionsbausteins in der CPU mit zusätzlicher Anzeige der Fahrkurve.
 - Der Einsatz dieses Templates kann sich auf die Performance des Panels auswirken.
 - Das Template gibt es für verschiedene Displayauflösungen.
- VMC AxisControl PT
 - Template zur Ansteuerung des FB 875 VMC_AxisControl_PT-Funktionsbausteins in der CPU, dessen Antrieb über Pulse Train angebunden ist.
 - Das Template gibt es für verschiedene Displayauflösungen.

Installation in Movicon

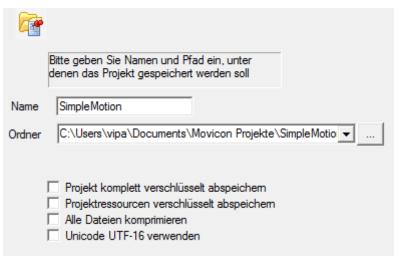
- 1. ▶ Gehen Sie in das "Download Center" von www.yaskawa.eu.com.
- 2. Laden Sie die aktuellste Version der "Motion Library".
- Geben Sie ein Zielverzeichnis an, in dem die Bausteine abzulegen sind und starten Sie den Entpackvorgang.
- **4.** Laden Sie aus der "Motion Library" die "Symbolbibliothek für Movicon" und entpacken Sie diese.
- Öffnen Sie die Bibliothek nach dem Entpackvorgang und ziehen Sie per Drag&Drop die Symbolbibliothek "...simple motion control VX.X.X.msxz" und die Sprachtabelle "... simple motion control VX.X.X.CSV" in das Movicon-Benutzer-Verzeichnis ...\Public\Documents\Progea\Movicon\Symbols.
 - Nach einem Neustart von Movicon steht ihnen in Movicon die Symbolbibliothek über die "Vorlagenbibliothek" zur Verfügung.


Damit die Texte der Templates richtig angezeigt werden, müssen Sie die Sprachtabelle in Ihr Projekt importieren. → "Sprachtabelle importieren"...Seite 720

13.9.2 Neues Projekt erstellen

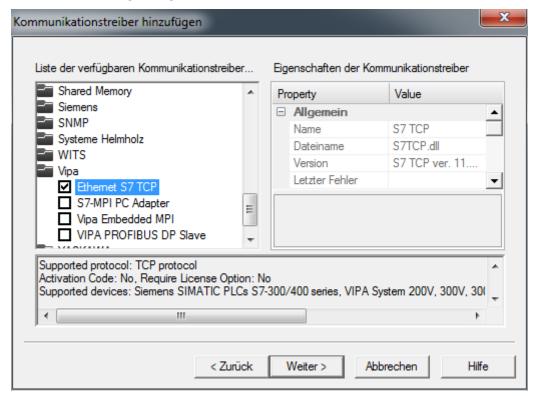
Projekt erstellen

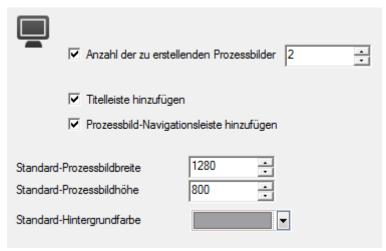
1. Starten Sie Movicon und öffnen Sie den Projekt-Wizard über "Datei → Neu".


2. Wählen Sie als Zielplattform "Win32/64-Plattform" und klicken Sie auf [Öffnen].

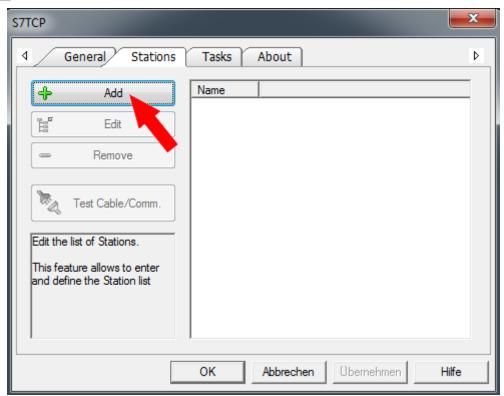
- ➡ Es öffnet sich das Dialogfenster "Projektname".
- ${\underline {f 3.}}$ Geben Sie unter "Name" einen Namen für Ihr Projekt an.

Geben Sie unter "Ordner" einen Speicherort an.


Lassen Sie alle Einstellungen deaktiviert und klicken Sie auf [Weiter].


- ➡ Es öffnet sich das Dialogfenster "Benutzer".
- **4.** Treffen Sie die passenden Benutzereinstellungen, sofern gewünscht, bzw. aktivieren Sie nur "CRF-21-Part..." und klicken Sie auf [Weiter].

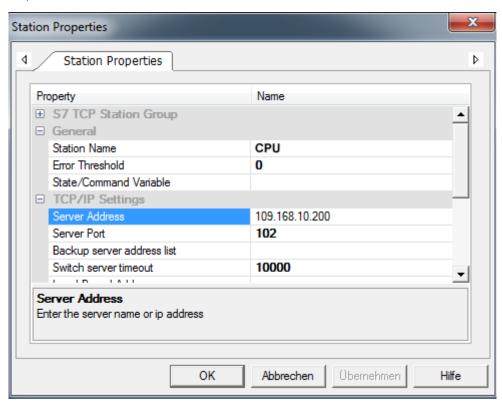
- ⇒ Es öffnet sich das Dialogfenster "Kommunikationstreiber hinzufügen".
- 5. Da die Anbindung zur CPU über TCP/IP erfolgt, aktivieren Sie in der "Liste der verfügbaren Kommunikationstreiber" den Treiber "VIPA" > "Ethernet S7 TCP" und klicken Sie auf [Weiter].



- Es öffnet sich das Dialogfenster "Prozessbilder".
- **6.** Geben Sie 2 Prozessbilder und deren Größe, welche zu ihrem Panel passt an und klicken Sie auf [Weiter].

- ⇒ Es öffnet sich das Dialogfenster "Datenbankeinstellungen (ODBC)".
- **7.** Sofern Sie eine Datenbankanbindung wünschen, können Sie hier die entsprechenden Einstellungen durchführen. Ansonsten klicken sie auf [Weiter].
 - ➡ Es öffnet sich das Dialogfenster "Datenlogger und Rezept-Einstellungen (ODBC)".
- **8.** Sofern Vorlagen generiert werden sollen, können Sie hier die entsprechenden Einstellungen durchführen. Ansonsten klicken sie auf [Weiter].
 - ⇒ Es öffnet sich das Dialogfenster "Alarm-Einstellungen".

- 9. Sofern Alarme generiert werden sollen, können Sie hier die entsprechenden Einstellungen durchführen. Ansonsten klicken sie auf [Fertig stellen].
 - → Ihr Projekt wird mit den getroffenen Einstellungen erstellt und es öffnet sich automatisch der Einstelldialog für den Kommunikationstreiber "S7TCP".
- 10. Wählen Sie den Reiter "Stations".
- 11. Zum Hinzufügen einer neuen Station klicken Sie auf [+ Add].

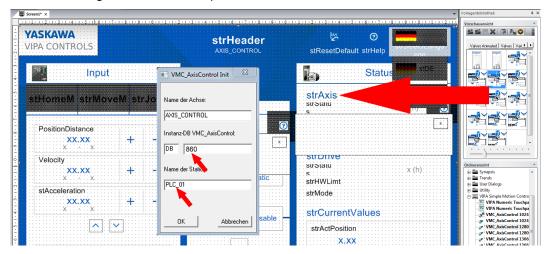

➡ Es öffnet sich das Dialogfenster "Station Properties".

Antrieb über HMI steuern > Projekt in Movicon anpassen

12. Geben Sie unter "Station Name" einen Stationsnamen an. Dieser Name ist weiter unten für das Prozessbild im Initialisierungs-Dialog zu übernehmen. Erlaubte Zeichen: A-Z, a-z, 0-9, Leerzeichen und die Trennzeichen "_" und "-"

Geben Sie unter "Server Address" die IP-Adresse der CPU an und klicken Sie auf [OK].

•


- 13. Verneinen Sie die Abfrage zum Import von Variablen aus der SPS-Datenbank und schließen Sie den "S7TCP"-Dialog mit [OK].
 - → Das Projekt und der Arbeitsbereich sind nun für die Benutzung freigeben. Im Projektbaum wurde unter "Ressourcen > SimpleMotion" zu den Standardelementen folgendes angelegt:
 - Kommunikationsobjekte
 - Kommunikationstreiber
 S7 TCP
 - Prozessbilder
 - Prozessbild1
 - Prozessbild2
 - Schaltflächenleiste

13.9.3 Projekt in Movicon anpassen

Prozessbild konfigurieren 1. ▶ Öffnen Sie über "Ressourcen > SimpleMotion > Prozessbilder" das "Prozessbild1".

Antrieb über HMI steuern > Projekt in Movicon anpassen

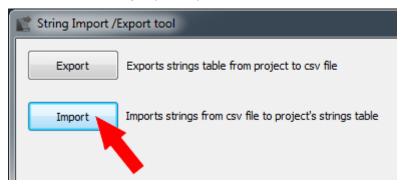
2. Navigieren Sie in der "Ordneransicht" zu "... simple motion control ..." und ziehen Sie aus der "Vorschauansicht" das Template in das "Prozessbild1", welches der Auflösung Ihres Panels entspricht.

- ➡ Es öffnet sich der Initialisierungs-Dialog
- 3. Geben Sie einem Namen für die Achse an. Erlaubte Zeichen: A-Z, a-z, 0-9, Leerzeichen und die Trennzeichen "_" und "-"

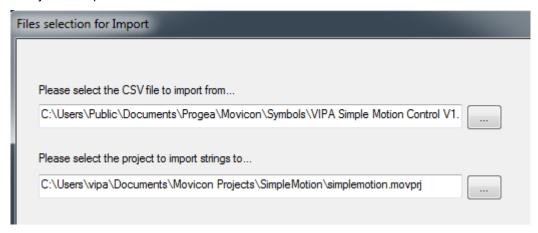
Geben Sie die Nummer des Instanz-DB an, welchen Sie in ihrem SPS-Programm verwenden.

Geben Sie den Stationsnamen an. Dieser muss mit dem *"Station Name"* aus den *"Station Properties"* der *"S7 TCP"*-Kommunikationseinstellungen übereinstimmen. Erlaubte Zeichen: *A-Z*, *a-z*, *0-9*, Leerzeichen und die Trennzeichen "_" und "-"

- ➡ Mit [OK] werden alle Variablen, sowie deren Strukturen erzeugt und die Adressen werden auf die vorgegebene Zieladresse eingestellt.
- 4. Platzieren Sie das Template und passen Sie ggf. dessen Größe an.



Für jedes Template werden Variablen unter dem entsprechenden Namen angelegt. Beim Löschen des Templates sind die entsprechenden Variablen wieder zu löschen. Diese können Sie sich unter "Ressourcen > SimpleMotion > Kommunikationsobjekte > Variablen" markieren lassen. Beim Löschen sind diese zusammen mit dem übergeordneten Verzeichnis zu löschen. Sofern keine weiteren Templates auf die "Strukturdefinitionen" für den Axis-Control zugreifen, sind diese ebenfalls zu löschen.

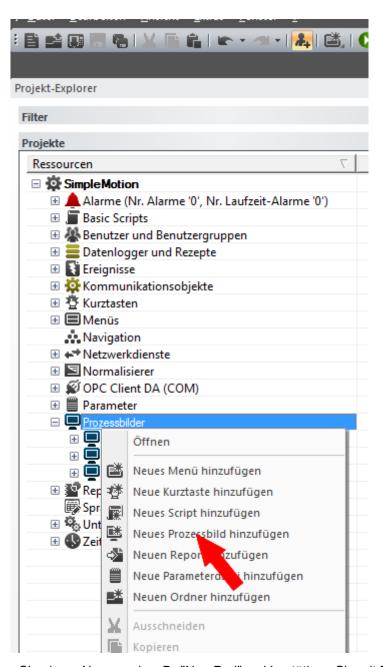

Sprachtabelle importieren

Die Templates beziehen die angezeigten Texte aus einer Sprachtabelle, welche aus dem Arbeitsverzeichnis in Ihr Projekt zu importieren ist.

- 1. ▶ Wählen Sie "Extras → Zeichenfolgen Import/Export".
 - ⇒ Es öffnet sich das "String Import/Export tool".

- 2. Klicken Sie auf [Import].
- **3.** Für die CSV-Datei navigieren Sie mit [...] in Ihr Movicon-Benutzer-Verzeichnis ...\Public\Documents\Progea\Movicon\Symbols und wählen Sie die Datei "... simple motion control VX.X.X.CSV" aus.
- 4. Als Projektverzeichnis geben Sie die Projekt-Datei "simplemotion.movprj" an, welche sich im Benutzer-Verzeichnis wie z.B. ...\vipa\Documents\Movicon Projects\SimpleMotion befindet.

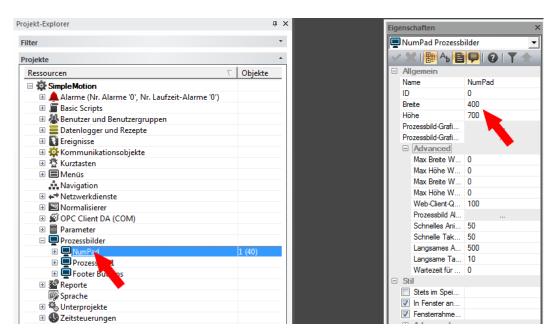
- 5. Klicken Sie auf [Weiter].
 - ⇒ Es öffnet sich "Language selection".
- 6. ▶ Wählen Sie [Select all languages] und klicken Sie auf [Fertig stellen].

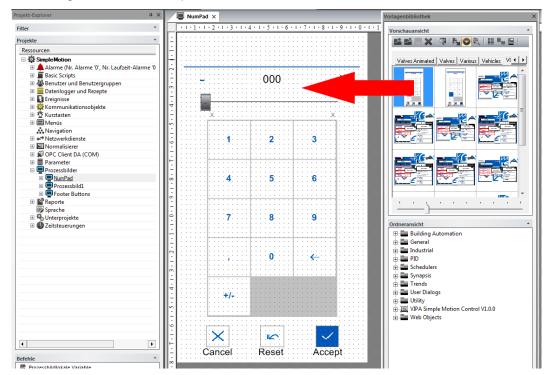


- ➡ Die Sprachtabelle wird in Ihr Projekt importiert.
- 7. Schließen Sie nach erfolgreichem Import das "String Import/Export tool".

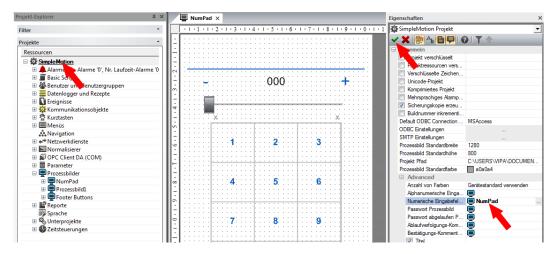
Numerisches Eingabefeld anpassen

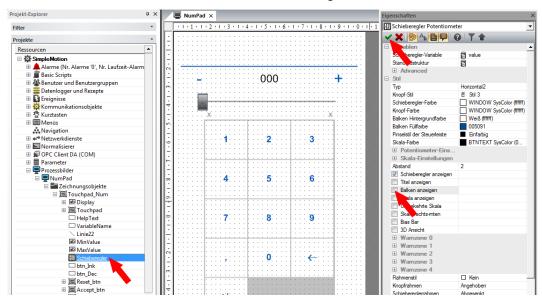
Unter den Templates befindet sich ein "Numeric Touchpad" in verschiedenen Auflösungen. Dies ist ein an die VMC_AxisControl-Templates angepasstes Eingabefeld für verschiedene Displayauflösungen. Mit folgender Vorgehensweise können Sie dieses Touchpad anstelle des Default-Eingabefeldes verwenden.


1. Klicken Sie auf "Ressourcen > SimpleMotion > Prozessbilder" und wählen Sie "Kontextmenü → Neues Prozessbild hinzufügen".


- 2. Vergeben Sie einem Namen wie z.B. "NumPad" und bestätigen Sie mit [OK].
- 3. Klicken Sie auf das Prozessbild "NumPad" und passen Sie über "Kontextmenü

 → Eigenschaften" Breite und Höhe an wie z.B. "Breite" = 400 und "Höhe" = 700.

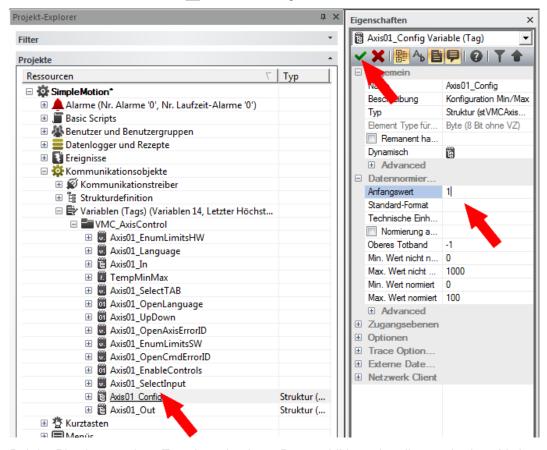

 Übernehmen Sie mit ✓ Ihre Einstellungen.



4. Wählen Sie "Ansicht → Vorlagenbibliothek". Navigieren Sie in der "Ordneransicht" zu "... simple motion control ..." und ziehen Sie aus der "Vorschauansicht" das "Numeric Touchpad"-Template in das Prozessbild "NumPad", welches der Auflösung Ihres Panels entspricht.

- 5. Passen Sie ggf. dessen Größe an.
- 6. ► Klicken Sie auf "Ressourcen > SimpleMotion" und wählen Sie "Kontextmenü → Eigenschaften".
- 7. Stellen Sie unter "Allgemein > Advanced" das numerische Eingabefeld "NumPad" ein. Übernehmen Sie mit ✓ Ihre Einstellungen.

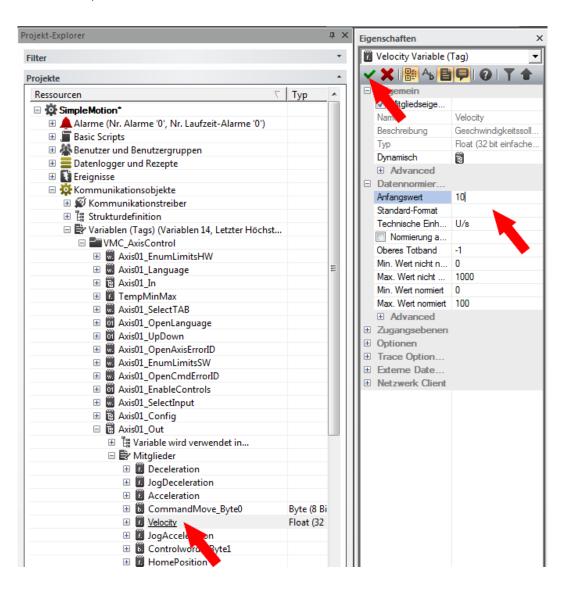
Grenzwerte und Standardwerte anpassen


Bei der Platzierung eines Templates in einem Prozessbild werden die zugehörigen Variablen und Strukturdefinitionen unter "Ressourcen > SimpleMotion > Kommunikationsobjekte > Variablen > VMC_AxisControl > ..._Config" automatisch erzeugt. Hierbei werden folgende Variablen angelegt und mit Initialwerten versehen:

AccelerationMaxValue	Maximaler Beschleunigungswert
AccelerationMinValue	Minimaler Beschleunigungswert
DecelerationMaxValue	Maximaler Verzögerungswert
DecelerationMinValue	Minimaler Verzögerungswert
HomePosMaxValue	Maximale Home-Position
HomePosMinValue	Minimale Home-Position
JogAccelerationMaxValue	Maximale Beschleunigungswert Jog-Modus
JogAccelerationMinValue	Minimaler Beschleunigungswert Jog-Modus
JogDecelerationMaxValue	Maximaler Verzögerungswert Jog-Modus
JogDecelerationMinValue	Minimaler Verzögerungswert Jog-Modus
PositionMaxValue	Maximaler Positionswert

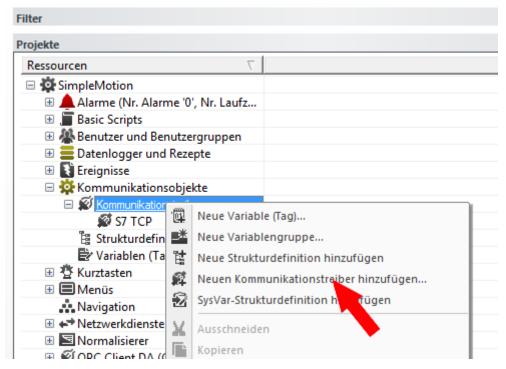
PositionMinValue Minimaler Positionswert

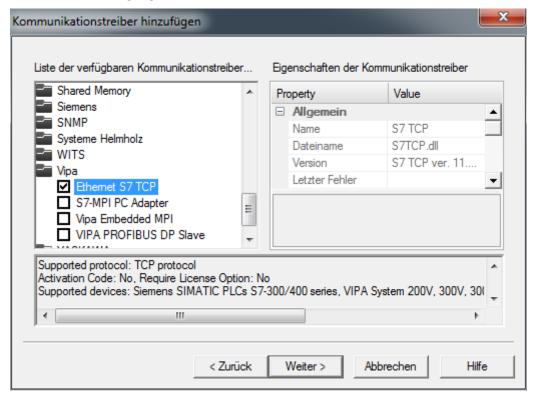
VelocityMaxValue Maximaler Geschwindigkeitswert
VelocityMinValue Minimaler Geschwindigkeitswert


- Zur Anpassung der Grenz-und Standardwerte klicken Sie auf "Ressourcen > SimpleMotion > Kommunikationsobjekte > Variablen > VMC_AxisControl > ..._Config" und wählen Sie "Kontextmenü → Eigenschaften".
 - → Unter "Datennormierung" können Sie die entsprechenden Werte anpassen. Übernehmen Sie mit ✓ Ihre Einstellungen.

Technische Einheiten anpassen

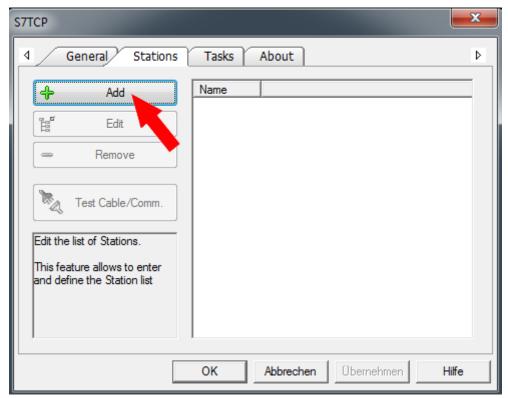
Bei der Platzierung eines Templates in einem Prozessbild werden die zugehörigen Variablen mit ihren technischen Einheiten automatisch erzeugt. Diese können Sie über die Eigenschaften anpassen.


- Zur Anpassung der Technischen Einheiten z.B. für die Geschwindigkeit klicken Sie auf "Ressourcen > SimpleMotion > Kommunikationsobjekte > Variablen > VMC_AxisControl > ..._Out > Mitglieder > Velocity" und wählen Sie "Kontextmenü → Eigenschaften".
 - → Unter "Datennormierung" können Sie die entsprechenden Werte anpassen. Übernehmen Sie mit ✓ Ihre Einstellungen.

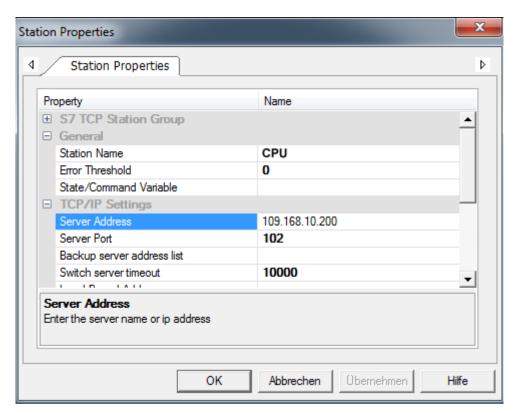

Kommunikationstreiber manuell hinzufügen

Anstelle über Wizard können Sie den Kommunikationstreiber auch manuell hinzufügen:

1. Klicken Sie unter "Ressourcen > SimpleMotion > Kommunikationsobjekte" auf "Kommunikationstreiber" und wählen Sie "Kontexmenü → Neuen Kommunikationstreiber hinzufügen".



- ➡ Es öffnet sich das Dialogfenster "Neuer Komm. E/A-Treiber".
- 2. Da die Anbindung zur CPU über TCP/IP erfolgt, aktivieren Sie in der "Liste der verfügbaren Kommunikationstreiber" den Treiber "VIPA" > "Ethernet S7 TCP" und klicken Sie auf [OK].


Der Kommunikationstreiber "S7 TCP" wird unter "Ressourcen > SimpleMotion > Kommunikationsobjekte > Kommunikationstreiber" aufgeführt.

- 3. Klicken Sie auf "S7 TCP" und wählen Sie "Kontextmenü \rightarrow Kommunikationstreiber-Einstellungen".
 - ⇒ Es öffnet sich das Dialogfenster "S7 TCP".
- 4. Wählen Sie den Reiter "Stations".
- 5. Zum Hinzufügen einer neuen Station klicken Sie auf [+ Add].

- ⇒ Es öffnet sich das Dialogfenster "Station Properties".
- **6.** Geben Sie unter "Station Name" einen Stationsnamen an. Erlaubte Zeichen: A-Z, a-z, 0-9, Leerzeichen und die Trennzeichen "_" und "-"

Geben Sie unter "Server Address" die IP-Adresse der CPU an und klicken Sie auf [OK].

7. Verneinen Sie die Abfrage zum Import von Variablen aus der SPS-Datenbank und schließen Sie den "S7 TCP"-Dialog mit [OK].

13.9.4 Inbetriebnahme

13.9.4.1 Projekt auf Zielgerät übertragen

Ihr Projekt können Sie über Ethernet in Ihr Panel übertragen. Über die in Ihrem Panel vorinstallierte Movicon Runtime-Version wird Ihr Projekt ablauffähig.

- 1. Verbinden Sie Ihren PC und Ihr Panel über Ethernet.
- 2. Starten Sie Ihr Panel und ermitteln Sie im "Startup-Manager" die IP-Adresse Ihres Panels.
- 3. Rufen Sie im "Startup-Manager" den Menüpunkt "Autostart" auf.

4. Damit Sie mit Movicon über Ethernet ein Projekt in Ihr Panel übertragen können, müssen Sie unter "Autostart" die Option "Movicon TCP Upload Server" aktivieren.

- Bestätigen Sie die Abfrage zur Aktivierung.
- 5. Sie können jetzt aus Movicon Ihr Projekt in Ihr Panel übertragen. Klicken Sie hierzu in Movicon in "Ressourcen" auf "SimpleMotion" und wählen Sie "Kontextmenü Projekt zum Zielgerät transferieren".
 - Es öffnet sich der Transfer-Dialog.
- 6. ▶ Wählen Sie unter "PlugIn-Typ" "TCP".

Geben Sie unter "Server" die IP-Adresse des Panels an.

Tragen Sie unter "Benutzername" und "Passwort" die Zugangsdaten zu Ihrem Panel ein.

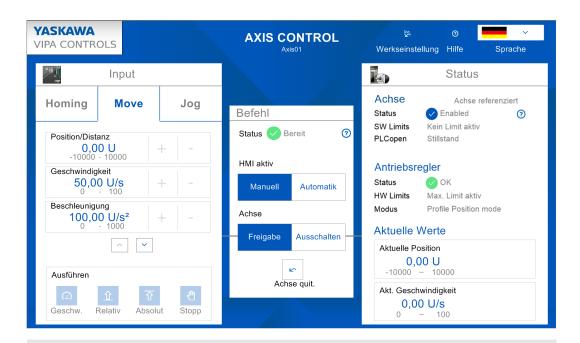
Standardmäßig werden folgende Zugangsdaten verwendet:

- Benutzername: wince
- Passwort: vipatp

Geben Sie unter "Zielpfad" Ihre Speicherkarte an und legen Sie ein Projektverzeichnis an.

- 7. Starten Sie die Übertragung mit [Projekt transferieren].
- 8. Nach erfolgreichem Transfer können Sie Ihr Projekt auf dem Panel im Autostart-Verzeichnis eintragen und in Betrieb nehmen.

VORSICHT


Bitte beachten Sie immer die Sicherheitshinweise zu ihrem Antrieb, insbesondere bei der Inbetriebnahme!

13.9.4.2 VMC_AxisControl über das Panel ansteuern

13.9.4.2.1 Inbetriebnahme

Es wird vorausgesetzt, dass Sie Ihre Applikation aufgebaut haben und Sie Ihren Antrieb mit dem VMC_AxisControl-Funktionsbaustein ansteuern können.

- ▶ Binden Sie Ihre CPU an Ihr Panel an und schalten Sie Ihre Applikation ein.
 - → Das Panel startet mit der Oberfläche zur Steuerung Ihres Antriebs.

Damit Sie Ihren Antrieb über das Panel steuern können, schalten Sie "HMI aktiv" auf [Manuell]. Sofern die Statusanzeige keine Fehler zurückmeldet, können Sie den Antrieb mit [Freigabe] für die Ansteuerung freigeben. Sie können jetzt Ihren Antrieb über die entsprechenden Schaltflächen steuern.

13.9.4.2.2 Bedienung

Oberfläche

"Werkseinstellung"

- Über "Werkseinstellung" werden folgende Werte auf die Defaultwerte der Applikation zurückgesetzt, welche Sie, wie weiter oben beschrieben, entsprechend anpassen können:
 - Geschwindigkeit: 50U/s
 - Beschleunigung/Verzögerung: 100U/s²
 - Position/Home Position: 0U

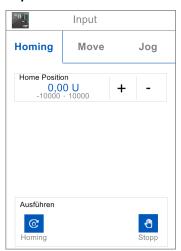
"Hilfe"

■ Über "Hilfe" können Sie Ihre eigene Hilfedatei abrufen. Diese ist in Movicon entsprechend einzubinden.

"Sprache"

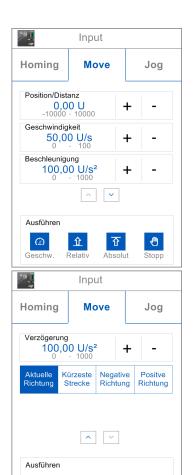
■ Über "Sprache" können Sie die entsprechende Sprache für die Bedienoberfläche vorgeben.

"Befehl"


■ "Status"

- Hier bekommen Sie den aktuellen Status Ihres Fahrbefehls angezeigt.
- "HMI aktiv"
 - "Manuell": Im aktivierten Zustand kann der Antrieb über das Panel gesteuert werden.
 - "Automatik": Im aktivierten Zustand erfolgt die Steuerung des Antriebs über das SPS-Programm Ihrer CPU und kann vom Panel nicht beeinflusst werden.

■ "Achse"


- "Freigabe": Im aktivierten Zustand und bei aktiviertem "Manuell" von "HMI aktiv" ist der Antrieb freigegeben und Sie können diesen über den Bereich "Input" steuern.
- "Ausschalten": Im aktivierten Zustand ist der Antrieb gesperrt und keine Steuerung möglich.
- "Achse quit"
 - Im Fehlerfall werden die Schaltflächen zur Steuerung inaktiv. Mit "Achse quit."
 können Sie Fehler quittieren und Schaltflächen wieder aktivieren.

"Input"

"Homing"

- Über das Eingabefeld bzw. [+] und [-] können Sie eine Homing-Position vorgeben und diese über "Ausführen > Homing" als Referenzpunkt anfahren
- Mit "Ausführen > Stopp" können Sie die Referenzfahrt stoppen.

"Move"

- Über das entsprechende Eingabefeld bzw. [+] und [-] können Sie "Position/Distanz", "Geschwindigkeit", "Beschleunigung" und "Verzögerung" vorgeben und über den entsprechenden Fahrbefehl unter "Ausführen" ausführen lassen. Mit [v] navigieren Sie nach unten.
 - "Geschw": Bei Betätigung führt der Antrieb den Fahrbefehl mit konstanter Geschwindigkeit aus.
 - "Relativ": Bei Betätigung fährt der Antrieb an die relative Position, welche Sie unter "Position/Distanz" vorgeben können.
 - "Absolut": Bei Betätigung fährt der Antrieb an die absolute Position, welche Sie unter "Position/Distanz" vorgeben können.
 - "Stopp": Bei Betätigung wird der Anrieb gestoppt.
 - "Aktuelle Richtung": Im aktivierten Zustand wird die Fahrtrichtung beibehalten.
 - "Kürzeste Strecke": Im aktivierten Zustand wird die kürzeste Entfernung zur vorgegebenen Position verwendet.
 - "Negative Richtung": Im aktivierten Zustand wird die negative Fahrtrichtung verwendet.
 - "Positive Richtung": Im aktivierten Zustand wird die positive Fahrtrichtung verwendet.

②

企

쟙

•

"Jog"

- Über das entsprechende Eingabefeld bzw. [+] und [-] können Sie "Geschwindigkeit", "Beschleunigung" und "Verzögerung" vorgeben und über die Richtungstaste unter "Ausführen" den entsprechenden Fahrbefehl in negative bzw. positive Richtung ausführen lassen.
- Solange Sie eine der Richtungstasten betätigen, wird der Antrieb mit der eingestellten Beschleunigung auf die gewünschte Geschwindigkeit beschleunigt.
- Beim Loslassen der Richtungstaste wird der Antrieb mit der eingestellten Verzögerung gestoppt.

Zustände und Verhalten der Ausgänge > Zustände

"Status"

"Achse"

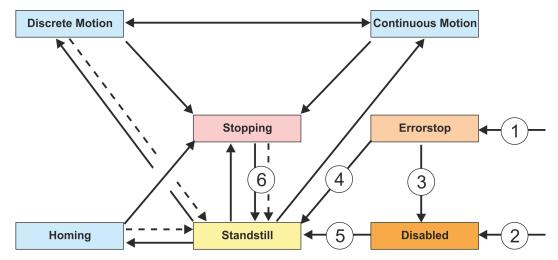
- "Status": Hier wird Ihnen der Status Ihrer Achse angezeigt.
 - "Enabled": Die Achse ist eingeschaltet.
 - "Ready": Die Achse ist einschaltbereit.
 - "Disabled": Die Achse ist deaktiviert.
 - "Achsfehler": Es liegt ein Achsfehler vor mit Angabe der Fehlernummer. → "ErrorID
 Zusätzliche Fehlerinformationen"...Seite 739
- "SW Limits": Sobald SW-Grenzen bestehen, wird dies hier angezeigt.
- "PLCopen": Hier wird Ihnen der PLCopen-Status angezeigt.

"Antriebsregler"

- "Status": Hier wird Ihnen der Status des Antriebsreglers angezeigt.
- "HW-Limits": Hier wird Ihnen eine eventuell eingestellte Begrenzung in Ihrem Antriebsregler angezeigt.
- "Modus": Hier erhalten sie Informationen über das aktuell eingestellt Antriebsprofil.

"Aktuelle Werte"

- Hier werden die aktuellen Werte von "Position" und "Geschwindigkeit" angezeigt.
- Werte, welche außerhalb der definierten Grenzwerte liegen, werden rot eingerahmt.


13.10 Zustände und Verhalten der Ausgänge

13.10.1 Zustände

Zustandsdiagramm

Im *Zustandsdiagramm* sind alle Zustände aufgeführt, die eine Achse annehmen kann. Eine Achse befindet sich immer in einem dieser Zustände. Je nach Ausgangszustand kann ein Zustandswechsel automatisch oder über die Bausteine der Achskontrolle erfolgen. Grundsätzlich werden Bewegungsaufgaben sequenziell abgearbeitet. Mit folgenden Funktionsbausteinen können Sie den Status abfragen:

- → "FB 812 MC ReadStatus PLCopen Status"...Seite 677
- Parameter PLCopenState von → "FB 860 VMC_AxisControl Control-Baustein Achs-kontrolle"...Seite 659

- - → Rücksprung wenn fertig
- (1) Aus jedem Status: An der Achse ist ein Fehler aufgetreten
- (2) Aus jedem Status: MC_Power.Enable = FALSE und es gibt keinen Fehler an der Achse
- (3) MC_Reset und MC_Power.Status = FALSE
- (4) MC_Reset und MC_Power.Status = TRUE und MC_Power.Enable = TRUE
- (5) MC_Power.Enable = TRUE und MC_Power.Status = TRUE
- (6) MC_Stop.Done = TRUE und MC_Stop.Execute = FALSE

Zustände und Verhalten der Ausgänge > Zustände

Й

System SLIO Motion-Module

Bitte beachten Sie bei Einsatz von System SLIO Motion-Modulen, dass der direkte Wechsel zwischen Discrete Motion und Continuous Motion nicht möglich ist. Ein Wechsel kann nur über den Zustand Standstill erfolgen!

Es gibt folgende Zustände

Disabled

- Grundzustand einer Achse.
- Achse kann durch keinen Funktionsbaustein bewegt werden.

Error Stop

- Es ist ein Fehler an der Achse aufgetreten.
- Achse wird gestoppt und ist f
 ür weitere Bewegungsaufgaben gesperrt.
- Achse bleibt in diesem Zustand bis der Fehler behoben ist und ein RESET ausgelöst wird.
- Fehler an einer Achse werden auch über den entsprechenden Funktionsbaustein zurück gemeldet.
- Fehler an einem Funktionsbaustein führen nicht in diesen Zustand

Stand Still

- Bereit für Bewegungsaufgaben
- Es liegt kein Fehler an der Achse vor
- Es sind keine Bewegungsaufgaben an der Achse aktiv
- Achse wird mit Spannung versorgt

Stopping

Achse wird aktuell gestoppt:

```
⇒ "FB 802 - MC_Stop - Achse stoppen"...Seite 666
```

- → "FB 860 VMC_AxisControl Control-Baustein Achskontrolle"...Seite 659
- Der Zustand Stopping ist aktiv solange ein Stop Kommando vom aktiv ist (Execute = 1). Auch wenn die Achse schon gestoppt ist. Danach wechselt der Zustand automatisch nach Standstill.

Homing

- Die Achse führt aktuell eine Referenzfahrt durch:

```
⇒ "FB 801 - MC Home - Achse referenzieren"... Seite 664
```

- ⇒ "FB 860 VMC AxisControl Control-Baustein Achskontrolle"... Seite 659
- Sobald die Achse referenziert ist, wechselt der Zustand automatisch nach Standstill.

Discrete Motion

Die Achse führt aktuell eine Bewegungsaufgabe durch:

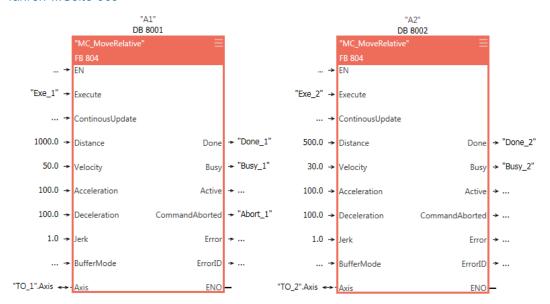
```
→ "FB 808 - MC_MoveAbsolute - Achse auf absolute Position verfahren"...Seite 673
```

- → "FB 804 MC_MoveRelative Achse relativ verfahren"...Seite 669
- ⇒ "FB 803 MC Halt Achse anhalten"... Seite 667
- → "FB 860 VMC_AxisControl Control-Baustein Achskontrolle"...Seite 659
- Sobald das Ziel der Bewegungsaufgabe erreicht ist, wechselt der Zustand automatisch nach Standstill.

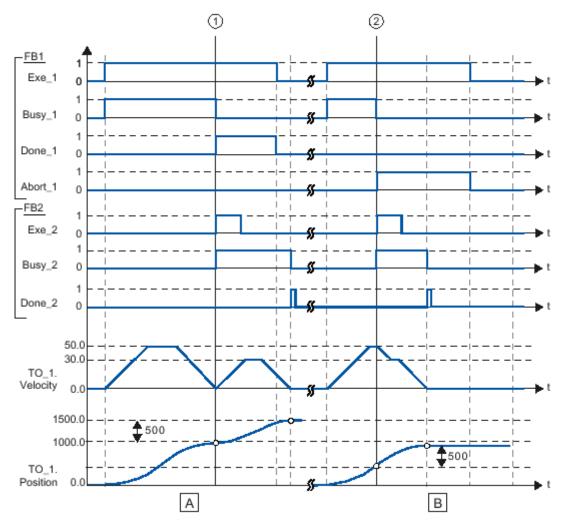
Continuous Motion

- Die Achse führt eine dauerhafte Bewegungsaufgabe durch:

```
→ "FB 805 - MC_MoveVelocity - Achse verfahren mit konstanter Geschwindig-
keit"...Seite 671
```


→ "FB 860 - VMC_AxisControl - Control-Baustein Achskontrolle"...Seite 659

Zustände und Verhalten der Ausgänge > Ablöseverhalten von Bewegungsaufträgen


13.10.2 Ablöseverhalten von Bewegungsaufträgen

Beispiel

Das Ablöseverhalten von Bewegungsaufträgen wird nachfolgend am Beispiel von MC_MoveRelative erklärt. → "FB 804 - MC_MoveRelative - Achse relativ verfahren"... Seite 669

Zustände und Verhalten der Ausgänge > Ablöseverhalten von Bewegungsaufträgen

- (A) Die Achse wird durch einen "MC_MoveRelative"-Auftrag (A1) um die Wegstrecke *Distance* 1000.0 verfahren (Startposition ist hier die Position 0.0).
- (1) Das Erreichen der Zielposition wird zum Zeitpunkt (1) über Done_1 gemeldet. Zu diesem Zeitpunkt (1) wird ein weiterer MC_MoveRelative-Auftrag (A2) mit der Wegstrecke 500.0 gestartet. Das erfolgreiche Erreichen der neuen Zielposition wird über Done_2 gemeldet. Da Exe_2 vorher zurückgesetzt wurde, steht Done_2 nur für einen Zyklus
- (B) Ein laufender MC MoveRelative-Auftrag (A1) wird durch einen weiteren MC MoveRelative-Auftrag (A2) abgelöst.
- (2) Der Abbruch wird zum Zeitpunkt (2) über Abort_1 gemeldet. Die Achse wird anschließend mit der neuen Geschwindigkeit um die Wegstrecke Distance 500.0 verfahren. Das Erreichen der neuen Zielposition wird über Done_2 gemeldet.

Zustände und Verhalten der Ausgänge > Verhalten der Ein- und Ausgänge

13.10.3 Verhalten der Ein- und Ausgänge

Ausschließlichkeit der Ausgänge

- Die Ausgänge Busy, Done, Error und CommandAborted schließen sich gegenseitig aus, es kann also an einem Funktionsbaustein nur einer dieser Ausgänge zu einer Zeit TRUE sein.
- Sobald der Eingang Execute TRUE wird, muss einer der Ausgänge TRUE werden. Ebenfalls kann nur einer der Ausgänge Active, Error, Done und CommandAborted zu einer Zeit TRUE sein.

Ausgangs-Zustand

- Die Ausgänge *Done, InVelocity, Error, ErrorID* und *CommandAborted* werden mit einer Flanke 1-0 am Eingang *Execute* zurückgesetzt, wenn der Funktionsbaustein nicht aktiv ist (*Busy* = FALSE).
- Die Kommandoausführung wird durch eine Flanke 1-0 an Execute nicht beeinflusst.
- Falls *Execute* bereits während der Kommandoausführung zurückgesetzt wird, so ist sichergestellt, dass einer der Ausgänge am Ende des Kommandos für einen SPS-Zyklus gesetzt wird. Erst danach werden die Ausgänge zurückgesetzt.

Eingangs-Parameter

- Die Eingangs-Parameter werden mit Flanke 0-1 an *Execute* übernommen.
- Zur Änderung der Parameter muss das Kommando neu getriggert werden.
- Falls ein Eingangs-Parameter nicht an den Funktionsbaustein übergeben wird, so bleibt der zuletzt an diesen Baustein übergebene Wert gültig.
- Beim ersten Aufruf muss ein sinnvoller Default-Wert übergeben werden.

Position und Distanz

- Der Eingang Position bezeichnet einen absoluten Positionswert.
- Distance bezeichnet ein relatives Maß als Abstand zweier Positionen.
- Sowohl Position, als auch Distance werden in technischen Einheiten, z.B. [mm] oder [°], entsprechend der Skalierung der Achse angegeben.

Parameter für das dynamische Verhalten

- Die Dynamikparameter für Move-Funktionen werden in technischen Einheiten mit der Zeitbasis Sekunde angegeben.
 - Ist eine Achse beispielsweise in Millimetern skaliert, so sind die Einheiten für *Velocity* [mm/s], *Acceleration* [mm/s²], und *Deceleration* [mm/s²].

Fehlerbehandlung

- Alle Funktionsbausteine haben zwei Fehlerausgänge um Fehler während der Kommandoausführung anzuzeigen.
- Error zeigt den Fehler an und ErrorID gibt eine ergänzende Fehlernummer aus.
- Die Ausgänge Done undInVelocity, bezeichnen eine erfolgreiche Kommandoausführung und werden nicht gesetzt, wenn Error TRUE wird.

Fehlertypen

- Funktionsbausteinfehler
 - Funktionsbausteinfehler sind Fehler, die ausschließlich den Funktionsbaustein und nicht die Achse betreffen wie z.B. fehlerhafte Parametrierung.
 - Funktionsbausteinfehler müssen nicht explizit zurückgesetzt werden, sondern werden selbständig zurückgesetzt, wenn der Eingang Execute zurückgesetzt wird.
- Kommunikationsfehler
 - Kommunikationsfehler wie z.B. der Funktionsbaustein kann die Achse nicht adressieren.
 - Kommunikationsfehler deuten oft auf eine fehlerhafte Konfiguration oder Parametrierung hin.
 - Ein Reset ist nicht möglich, sondern der Funktionsbaustein kann neu getriggert werden, nachdem die Konfiguration korrigiert wurde.

Achsfehler

- Achsfehler treten üblicherweise während der Fahrt auf wie z.B. Schleppabstandsfehler
- Ein Achsfehler muss durch MC_Reset zurückgesetzt werden.

Verhalten des *Done*-Ausgangs

- Der *Done*-Ausgang wird gesetzt, wenn ein Kommando erfolgreich ausgeführt wurde.
- Wenn mit mehreren Funktionsbausteinen an einer Achse gearbeitet wird und das laufende Kommando durch einen weiteren Baustein unterbrochen wird, so wird der Done-Ausgang des ersten Bausteins nicht gesetzt.

Verhalten des CommandAborted-Ausgangs

 CommandAborted wird gesetzt, wenn ein Kommando durch einen anderen Baustein unterbrochen wird.

Verhalten des *Busy-*Ausgangs

- Der Busy-Ausgang zeigt an, dass der Funktionsbaustein aktiv ist.
- Busy wird sofort mit Flanke 0-1 an Execute gesetzt und wird erst zurückgesetzt, wenn das Kommando erfolgreich oder auch nicht erfolgreich beendet wurde.
- Solange Busy TRUE ist, muss der Funktionsbaustein zyklisch aufgerufen werden, um das Kommando ausführen zu können.

Verhalten des Active-Ausgangs

Wenn die Bewegung einer Achse durch mehrere Funktionsbausteine gesteuert wird, so zeigt der Active-Ausgang jedes Bausteins an, dass das Kommando durch die Achse ausgeführt wird.

Enable-Eingang und Valid-Ausgang

- Im Gegensatz zu Execute führt der Enable-Eingang dazu, dass eine Aktion permanent und wiederholt ausgeführt wird, solange Enable TRUE ist. MC_ReadStatus aktualisiert beispielsweise zyklisch den Zustand einer Achse solange Enable TRUE ist.
- Ein Funktionsbaustein mit einem *Enable*-Eingang zeigt durch den *Valid*-Ausgang an, dass die an den Ausgängen angezeigten Daten gültig sind. Die Daten können jedoch ständig aktualisiert werden während *Valid* TRUE ist.

BufferMode

BufferMode wird nicht unterstützt.

ErrorID	Beschreibung	Bemerkung
0x0000	Kein Fehler	
0x8y24	Fehler in Baustein-Parameter y, mit y: 1: Fehler in PROTOKOLL 2: Fehler in PARAMETER 3: Fehler in BAUDRATE 4: Fehler in CHARLENGTH 5: Fehler in PARITY 6: Fehler in STOPBITS 7: Fehler in FLOWCONTROL (Parameter fehlt)	VMC_ConfigMaster_RTU
0x8001	Unzulässiger Wert beim Parameter Position.	
0x8002	Unzulässiger Wert beim Parameter Distance.	

ErrorID	Beschreibung	Bemerkung
0x8003	Unzulässiger Wert beim Parameter Velocity.	
0x8004	Unzulässiger Wert beim Parameter Acceleration.	
0x8005	Unzulässiger Wert beim Parameter Deceleration.	
0x8007	Unzulässiger Wert beim Parameter ContinuousUpdate.	
0x8008	Unzulässiger Wert beim Parameter BufferMode.	
0x8009	Unzulässiger Wert beim Parameter EnablePositive.	
A008x0	Unzulässiger Wert beim Parameter EnableNegative.	
0x800B	Unzulässiger Wert beim Parameter MasterOffset.	
0x800C	Unzulässiger Wert beim Parameter SlaveOffset.	
0x800D	Unzulässiger Wert beim Parameter MasterScaling.	
0x800E	Unzulässiger Wert beim Parameter SlaveScaling.	
0x800F	Unzulässiger Wert beim Parameter StartMode.	
0x8010	Unzulässiger Wert beim Parameter ActivationMode.	
0x8011	Unzulässiger Wert beim Parameter Source.	
0x8012	Unzulässiger Wert beim Parameter <i>Direction</i> .	
0x8014	Unzulässiger Parameter der physikalischen Achse.	MC_ReadParameter
0x8015	Unzulässiger Index oder Subindex.	MC_ReadParameter
0x8016	Unzulässige Parameterlänge. MC_ReadParameter	
0x8017	Unzulässige LADDR wenn z.B. das entsprechende Antriebssystem ausgeschaltet ist bzw. nicht erreicht werden kann.	MC_ReadParameter
0x8018	Unzulässiger Wert beim Parameter RatioDenominator.	MC_GearIn
0x8019	Unzulässiger Wert beim Parameter RatioNumerator.	MC_GearIn
0x801A	Parameternummer nicht bekannt.	MC_ReadParameter, MC_Write- Parameter
0x801B	Parameter kann nicht geschrieben werden, Parameter ist schreibgeschützt.	MC_WriteParameter
0x801C	Parameter Kommunikation mit unbekanntem Mode.	MC_Home, MC_WriteParameter
0x801D	Parameterkommunikation mit allgemeinem Fehler. Die Fehlerursache ist nicht näher beschrieben.	
0x801E	SDO-Parameterwert außerhalb des zulässigen Bereichs.	MC_Home, MC_WriteParameter
0x801F	Der Typ in ANY ist nicht BYTE.	Parameter lesen/schreiben
0x8020	Unterschiedliche Konfiguration der Anwendereinheiten in Cam und Master-Achse.	
0x8021	Unterschiedliche Konfiguration der Anwendereinheiten in Cam und Slave-Achse.	
0x8022	Auf der über LADDR angegebenen logischen Adresse gibt es kein PROFIBUS/PROFINET-Device, von dem konsistente Daten gelesen werden können.	Parameter lesen/schreiben
	Es wurde ein Zugriffsfehler beim Zugriff auf ein I/O-Geräte erkannt.	Parameter lesen/schreiben
0x8023	L'S Wurde ein Zugrinsierner beim Zugrin auf ein 1/O-Gerate erkarint.	r arameter lesen/schieben

ErrorID	Beschreibung	Bemerkung
0x8025	Systemfehler an externem DP-Slave.	Parameter lesen/schreiben
0x8026	Systemfehler an externem DP-Slave.	Parameter lesen/schreiben
0x8027	Die Daten wurden noch nicht vom Modul gelesen.	Parameter lesen/schreiben
0x8028	Systemfehler an externem DP-Slave.	Parameter lesen/schreiben
0x8029	Schreibversuch auf eine Objekt, welches nur gelesen werden kann.	Parameter lesen/schreiben
0x802A	Leseversuch auf ein Objekt, welches nur geschrieben werden kann.	Parameter lesen/schreiben
0x802B	Nicht unterstützte Zugriff auf ein Objekt.	Parameter lesen/schreiben
0x802C	Falscher Datentyp.	Parameter lesen/schreiben
0x802D	Fehler im Geräteprofil.	Parameter lesen/schreiben
0x802E	Fehler Kommando-Typ.	Parameter lesen/schreiben
0x802F	Keine Systemressourcen verfügbar.	Parameter lesen/schreiben
0x8030	Unzulässiger Wert beim Parameter <i>Hardware</i> (1 = SLIO CP; 2 = CPU).	Modbus; Init
0x8031	Unzulässiger Wert beim Parameter <i>Unitld</i> . Modbus; Init	
0x8032	Unzulässiger Wert beim Parameter <i>UserUnitsVelocity</i> (0 = Hz, 1 = Modbus; Init %, 2 = U/min).	
0x8033	Unzulässiger Wert beim Parameter <i>UserUnitsAcceleration</i> (0 = 0.00s, 1 = 0.0s).	Modbus; Init
0x8034	Unzulässiger Wert beim Parameter <i>MaxVelocityApp</i> (muss > 0 sein).	Modbus; Init
0x8035	Fehler beim Lesezugriff auf <i>MonitorData</i> . Modbus; Init	
0x8036	Fehler beim Lesezugriff auf NumberOfPoles.	Modbus; Init
0x8037	Fehler beim Schreibzugriff auf UserUnitsVelocity.	Modbus; Init
0x8038	Fehler beim Lesezugriff auf MinOutputFrequency.	Modbus; Init
0x8039	Fehler beim Lesezugriff auf MaxOutputFrequency.	Modbus; Init
0x803A	Fehler beim Schreibzugriff auf StoppingMethodSelection.	Modbus; Init
0x803B	Fehler beim Schreibzugriff auf UserUnitsAcceleration.	Modbus; Init
0x8041	Unzulässiger Wert beim Parameter AccelerationTime.	Modbus V1000
0x8042	Unzulässiger Wert beim Parameter DecelerationTime.	Modbus V1000
0x8043	Unzulässiger Wert beim Parameter JogAccelerationTime.	Modbus V1000
0x8044	Unzulässiger Wert beim Parameter JogDecelerationTime.	Modbus V1000
0x8045	Unzulässiger Wert beim Parameter $JogVelocity$ ($\leq MaxVelocityApp$).	Modbus V1000
0x80C8	Modbus Übertragungsfehler: Keine Antwort des Servers im definierten Zeitraum (Timeout über Schnittstelle parametrierbar).	Modbus V1000

ErrorID	Beschreibung	Bemerkung	
0x809y	Fehler in Wert des Baustein-Parameter y, mit y: 1: Fehler in PROTOKOLL 3: Fehler in BAUDRATE 4: Fehler in CHARLENGTH 5: Fehler in PARITY 6: Fehler in STOPBITS		
0x8092	Zugriffsfehler auf Parameter-DB (DB zu kurz).	VMC_ConfigMaster_RTU	
0x809A	Schnittstelle nicht vorhanden bzw. wird unter PROFIBUS betrieben.	VMC_ConfigMaster_RTU	
0x8101	Keine zyklische Kommunikation mit der Achse möglich.		
0x8102	Befehl ist im aktuellen PLCopen-State nicht zulässig.		
0x8103	Befehl wird von der Achse nicht unterstützt.		
0x8104	 Achse ist nicht einschaltbereit, mögliche Gründe: Kommunikation zur Achse nicht bereit. Antrieb ist nicht im Zustand "eingeschaltet" → Antriebsfehler evtl. mit MC_Reset zurücksetzen. Kommunikation wurde unterbrochen, z.B. durch Aus- Einschalten der CPU. Fehler mit MC_Reset zurücksetzen. 	PreOperational muss auch im Status Operational gesetzt werden.	
0x8105	Kommando wird von virtuellen Achsen nicht unterstützt.		
0x8106	PLCopen-State ist nicht definiert.		
0x8107	Befehl ist bei deaktiviertem Antrieb nicht zulässig. VMC_AxisControl_PT, MobusV1000		
0x8188	Modbus Übertragungsfehler: Interner Fehler MB_FUNCTION Modbus V1000 ungültig.		
0x8189	Modbus Übertragungsfehler: Interner Fehler MB_DATA_ADDR Modbus V1000 ungültig.		
0x818A	Modbus Übertragungsfehler: Interner Fehler MB_DATA_LEN ungültig.	Modbus V1000	
0x818B	Modbus Übertragungsfehler: Interner Fehler MB_DATA_PTR ungültig.	PTR Modbus V1000	
0x8201	Wegen Mangels an internen Ressourcen kann der Befehl aktuell nicht ausgeführt werden (kein freier Slot im CommandBuffer).		
0x8202	Fehler beim Schreiben des Offsets für Referenzfahrt (kein freier Slot im CommandBuffer).	DriveManager → Referenzfahrt (aktives Kommando)	
0x8210	Modbus Übertragungsfehler: Die Hardware ist inkompatibel zur Modbus V1000 Baustein-Bibliothek Modbus RTU/TCP.		
0x828y	Fehler in Parameter y von DB-Parameter, mit y: 1: Fehler im 1. Parameter 2: Fehler im 2. Parameter	VMC_ConfigMaster_RTU	
0x8301	Keine zyklische Kommunikation mit der Master-Achse möglich.		
0.00001	Reine Zykiische Kommunikation mit der Waster-Achse möglich.		

ErrorID	Beschreibung	Bemerkung
0x8302	Befehl ist im aktuellen PLCopen-State der Master-Achse nicht zulässig.	
0x8303	Befehl wird von der Master-Achse nicht unterstützt.	
0x8304	Master-Achse befindet sich nicht im Status Pre-Operational.	
0x8305	Die Nummer des Datenbausteins der Master-Achse hat sich geändert.	
0x8306	Kommunikationsfehler an der Master Achse. Slave Achse wird mit Schnellhalt gestoppt.	
0x8311	Keine zyklische Kommunikation mit der Slave-Achse möglich.	
0x8312	Befehl ist im aktuellen PLCopen-State der Slave-Achse nicht zulässig.	
0x8313	Befehl wird von der Slave-Achse nicht unterstützt.	
0x8314	Slave-Achse befindet sich nicht im Status Pre-Operational.	
0x8315	Die Nummer des Datenbausteins der Slave-Achse hat sich geändert.	
0x8317	Baustein wurde nicht innerhalb des OB 1 aufgerufen	VMC_AxisControl_PT
0x8321	Koppeln mit <i>StartMode</i> = relative und <i>ActivationMode</i> = nextcycle ist nicht zulässig.	
0x8322	Koppeln oder schalten mit <i>StartMode</i> = absolute und <i>Activation-Mode</i> = nextcycle ist nicht zulässig.	
0x8323	Schalten mit einem unterschiedlichen <i>StartMode</i> (<i>StartMode</i> der Kopplung ist zu verwenden).	
0x8331	MC_CamIn ist nicht aktiv.	
0x8332	MC Gearln ist nicht aktiv.	
0x8340	Ungültiger Wert in TriggerInput.Probe.	MC_TouchProbe und MC_AbortT-rigger
0x8341	Ungültiger Wert in TriggerInput.Source.	MC_TouchProbe und MC_AbortT-rigger
0x8342	Ungültiger Wert in TriggerInput.TriggerMode.	MC_TouchProbe und MC_AbortT-rigger
0x8350	Ungültiger Wert in VelocitySearchSwitch.	Referenzfahrt, Initialisierung
0x8351	Ungültiger Wert in VelocitySearchZero.	Referenzfahrt, Initialisierung
0x8352	Ungültige Kombination von Eingängen.	Referenzfahrt, Initialisierung
0x8360	Die CPU unterstützt kein Pulse Train.	VMC_AxisControl_PT
0x8361	Falscher Wert in S_ChannelNumberPWM.	VMC_AxisControl_PT
0x8362	Allgemeiner Fehler bei der Pulse Train Ausgabe.	VMC_AxisControl_PT
0x8363	Fahr-Kommando erhalten bei gesetztem <i>StopExecute</i> .	VMC_AxisControl_PT, Mod-busV1000
0x8381	Modbus Übertragungsfehler: Server liefert Exception-Code 01h.	Modbus V1000

ErrorID	Beschreibung	Bemerkung
0x8382	Modbus Übertragungsfehler: Server liefert Exception-Code 03h oder falsche Startadresse.	
0x8383	Modbus Übertragungsfehler: Server liefert Exception-Code 02h.	Modbus V1000
0x8384	Modbus Übertragungsfehler: Server liefert Exception-Code 04h.	Modbus V1000
0x8386	Modbus Übertragungsfehler: Server liefert falschen Funktions-Code.	Modbus V1000
0x8388	Modbus Übertragungsfehler: Server liefert falschen Wert oder falsche Anzahl.	Modbus V1000
0x8400	MC_Power: Unerwarteter Drive-State	MC_Power
	Drive-State <> Operation enabled	
0x8401	MC_Power: Unerwarteter Drive-State	MC_Power
	Drive-State = Quick stop active	
0x8402	MC_Power: Unerwarteter Drive-State	MC_Power
	Drive-State = Fault reaction active	
0x8403	MC_Power: Unerwarteter Drive-State	MC_Power
	Drive-State = Fault	
0x8410	Zeitüberschreitung beim Versuch den Antrieb zurückzusetzen. Kernel FB> MC_Reset	
0x8500	Falscher Wert in <i>EncoderType</i> (1 oder 2).	Init-Baustein
0x8501	Falscher Wert in <i>EncoderResolutionBits</i> (>0 und ≤32).	Init-Baustein
0x8502	Falscher Wert in <i>LogicalAddress</i> (≥0). Init-Baustein	
0x8503	Falscher Wert in <i>StartInputAddress</i> (≥0). Init-Baustein	
0x8504	Falscher Wert in <i>StartOutputAddress</i> (≥0).	
0x8505	Falscher Wert in FactorPosition (>0.0).	Init-Baustein
0x8506	Falscher Wert in <i>FactorVelocity</i> (>0.0).	Init-Baustein
0x8507	Falscher Wert in FactorAcceleration (>0.0).	Init-Baustein
0x8508	Falscher Wert in <i>MaxVelocityApp</i> (>0.0).	Init-Baustein
0x8509	Falscher Wert in MaxAccelerationApp (>0.0).	Init-Baustein
0x850A	Falscher Wert in MaxDecelerationApp (>0.0).	Init-Baustein
0x850B	Falscher Wert in <i>MaxVelocityDrive</i> (>0.0).	Init-Baustein
0x850C	Falscher Wert in MaxAccelerationDrive (>0.0).	Init-Baustein
0x850D	Falscher Wert in MaxDecelerationDrive (>0.0).	Init-Baustein
0x850E	Falscher Wert in <i>MinPosition</i> (≥MinUserPos).	Init-Baustein
0x850F	Falscher Wert in <i>MaxPosition</i> (≥MaxUserPos).	Init-Baustein
0x8510	Falscher Wert in M2_EncoderType.	VMC_InitSigma7W_EC
0x8511	Falscher Wert in M2_EncoderResolutionBits.	VMC_InitSigma7W_EC
0x8513	Falscher Wert in M2_PdoInputs.	VMC_InitSigma7W_EC
0x8514	Falscher Wert in M2_PdoOutputs.	VMC_InitSigma7W_EC
0x8515	Falscher Wert in M2_FactorPosition.	VMC_InitSigma7W_EC

ErrorID	Beschreibung	Bemerkung	
0x8516	Falscher Wert in M2_FactorVelocity.	VMC_InitSigma7W_EC	
0x8517	Falscher Wert in M2_FactorAcceleration. VMC_InitSigma7W_EC		
0x8518	Falscher Wert in M2_MaxVelocityApp. VMC_InitSigma7W_EC		
0x8519	Falscher Wert in M2_MaxAccelerationApp. VMC_InitSigma7W_EC		
0x8520	Falscher Wert in MaxVelocityApp bzw. FactorVelocity	MC_InitSigma_PN	
	(MaxVelocityApp * FactorVelocity > 2147483647 DINT _{max})		
0x8521	Falscher Wert in MaxAccelerationApp bzw. FactorAcceleration	VMC_InitSigma_PN	
	(MaxAccelerationApp * FactorAcceleration > 2147483647 DINT _{max})		
0x8522	Falscher Wert in MaxDecelerationApp bzw. FactorAcceleration	VMC_InitSigma_PN	
	(MaxDecelerationApp * FactorAcceleration > 2147483647 DINT _{max})		
0x851A	Falscher Wert in M2_MaxDecelerationApp.	VMC_InitSigma7W_EC	
0x851D	Falscher Wert in ParaAccessPointAddress.	VMC_InitSigma_PN	
0x851E	Falscher Wert in <i>CurrentSetPoint</i> > 0.0	VMC_InitST, VMC_InitDC, CMC_InitPT	
0x8603	Fehler Referenzfahrt am Antrieb, Geschwindigkeit <> 0. MC_Home		
0x8604	Fehler Referenzfahrt am Antrieb, Geschwindigkeit = 0.	MC_Home	
0x8700	Fehler: Unzulässige Größe.		
0x8710	SDO-Fehler: Toggle-Bit hat nicht gewechselt.		
0x8711	SDO-Fehler: SDO-Protokoll Timeout.		
0x8712	SDO-Fehler: Client/Server-Kommando nicht gültig oder unbekannt.		
0x8713	SDO-Fehler: Unzulässige Blockgröße (nur im Blockmodus).		
0x8714	SDO-Fehler: Unzulässige Sequenznummer (nur im Blockmodus).		
0x8715	SDO-Fehler: CRC-Fehler (nur im Block-Modus).		
0x8716	SDO-Fehler: Nicht genügend Arbeitsspeicher.		
0x8717	SDO-Fehler: Nicht unterstützter Zugriff auf ein Objekt.		
0x8718	SDO-Fehler: Leseversuch auf ein Objekt, welches nur geschrieben werden kann.		
0x8719	SDO-Fehler: Schreibversuch auf ein Objekt, welches nur gelesen werden kann.		
0x871A	SDO-Fehler: Objekt existiert nicht im Objektverzeichnis.		
0x871B	SDO-Fehler: Objekt kann nicht auf ein PDO gemappt werden.		
0x871C	SDO-Fehler: Anzahl und Länge der zu mappenden Objekte übersteigt die PDO-Länge.		
0x871D	SDO-Fehler: Allgemeine Parameter-Inkompatibilität.		
0x871E	SDO-Fehler: Allgemeine interne Inkompatibilität im Gerät.		
0x871F	SDO-Fehler: Zugriff fehlgeschlagen aufgrund eines Hardwarefehlers.		
0x8720	SDO-Fehler: Datentyp passt nicht, Länge Service- Parameter passt nicht.		
0x8721	SDO-Fehler: Datentyp passt nicht, Service-Parameter ist zu lang.		

ErrorID	Beschreibung	Bemerkung
0x8722	SDO-Fehler: Datentyp passt nicht, Service-Parameter ist zu kurz.	
0x8723	SDO-Fehler: Es existiert kein Subindex.	
0x8724	SDO-Fehler: Schreibzugriff - Parameterwert liegt außerhalb des zulässigen Bereichs.	
0x8725	SDO-Fehler: Schreibzugriff - Parameterwert überschreitet den zulässigen Bereich.	
0x8726	SDO-Fehler: Schreibzugriff - Parameterwert unterschreitet den zulässigen Bereich.	
0x8727	SDO-Fehler: Maximaler Wert < Minimaler Wert.	
0x8728	SDO-Fehler: Allgemeiner Fehler.	
0x8729	SDO-Fehler: Daten können nicht in die Anwendung übertragen oder dort gespeichert werden.	
0x872A	SDO-Fehler: Daten können nicht in die Anwendung übertragen oder dort gespeichert werden, da die lokale Steuerung aktiviert ist.	
0x872B	SDO-Fehler: Aufgrund des aktuellen Gerätezustands können keine Daten in die Anwendung übertragen oder dort gespeichert werden.	
0x872C	SDO-Fehler: Die dynamische Generierung des Objektverzeichnisses konnte nicht durchgeführt werden bzw. das Objektverzeichnis ist nicht vorhanden.	
0x872D	SDO-Fehler: Unbekannter Code.	
0x8750	Falscher Wert in LADDR.	
0x8751	Typ in ANY-Pointer weicht von BYTE ab.	
0x8752	Auf der über <i>LADDR</i> spezifizierten Adresse gibt es kein PRO-FIBUS-DP-Modul bzw. PROFINET-IO-Device, von dem konsistente Daten gelesen werden können.	
0x8753	Zugriffsfehler beim Zugriff auf ein PROFINET-IO-Device.	
0x8754	Slave-Fehler am externen PROFIBUS-DP-Slave.	
0x8755	Länge der SFB-Daten passt nicht zur Länge der Benutzerdaten.	
0x8756	Fehler auf externem PROFIBUS-DP-Slave.	
0x8757	Systemfehler auf externem PROFIBUS-DP-Slave.	
0x8758	Die Daten wurden vom Gerät noch nicht gelesen.	
0x8759	Systemfehler auf externem PROFIBUS-DP-Slave.	
0x875A	Es sind keine Systemressourcen verfügbar.	
0x8799	SDO-Fehler: Es ist ein anderer Fehler aufgetreten, nähere Informationen finden Sie in den Daten von <i>Info1</i> und <i>Info2</i> .	
0x8888	Intern: BufferIndex-Fehler	VMC_AxisControl
0x8A00	Zugriff auf einen nicht vorhandenen Parameter.	VMC_AxisControlSigma_PN
0x8A01	Zugriff auf einen Parameter, welcher nicht geändert werden kann.	VMC_AxisControlSigma_PN
0x8A02	Zugriff mit einem Wert, welcher außerhalb des Wertebereichs liegt.	VMC_AxisControlSigma_PN
0x8A03	Zugriff auf einen nicht vorhandenen Subindex.	VMC_AxisControlSigma_PN
0x8A04	Zugriff über Subindex auf einen nicht indizierten Parameter.	VMC_AxisControlSigma_PN

ErrorID	Beschreibung	Bemerkung
0x8A05	Unzulässiger Datentyp	VMC_AxisControlSigma_PN
0x8A06	Zugriff mit einem Wert ≠ 0, sofern dies nicht zulässig ist.	VMC_AxisControlSigma_PN
0x8A07	Zugriff auf eine beschreibendes Element, welches nicht geändert werden kann.	VMC_AxisControlSigma_PN
0x8A09	Zugriff auf Beschreibungsdaten, welche nicht vorhanden sind.	VMC_AxisControlSigma_PN
0x8A0B	Zugriff ohne das Recht Parameter zu ändern.	VMC_AxisControlSigma_PN
0x8A0F	Zugriff auf Textfeld, welches nicht verfügbar ist.	VMC_AxisControlSigma_PN
0x8A11	Zugriff ist aktuell nicht möglich.	VMC_AxisControlSigma_PN
0x8A14	Zugriff mit einem Wert, der innerhalb der Grenzen liegt, jedoch aktuell nicht möglich ist.	VMC_AxisControlSigma_PN
0x8A15	Die Länge der aktuellen Antwort überschreitet die maximal mögliche Länge.	VMC_AxisControlSigma_PN
0x8A16	Unzulässiger Wert bzw. Wert wird vom Paramater-Typ nicht unterstützt. VMC_AxisControlSigma_PN	
0x8A17	Fehler beim Schreibzugriff auf Parameter: Unzulässiges Format VMC_AxisControlSigm	
0x8A18	Fehler beim Schreibzugriff auf Parameter: Parameteranzahl stimmt nicht mit der Anzahl der Elemente auf der Parameter-Adresse überein.	VMC_AxisControlSigma_PN
0x8A19	Fehler beim Schreibzugriff auf einen digitalen Ausgang, welcher nicht existiert.	VMC_AxisControlSigma_PN
0x8A20	Schreibzugriff auf einen Parametertext, welcher nicht geändert werden kann.	VMC_AxisControlSigma_PN
0x8A21	Unzulässige Auftrags-ID VMC_AxisControlSigma_PN	
0x8A22	Maximale Anzahl von Parameterabrufen ist erreicht	VMC_AxisControlSigma_PN
0xC000	Interner Fehler: Status Init ist undefiniert.	Modbus; Init
0xC001	Interner Fehler: Unzulässiger Wert beim Parameter Cmd.Active-Type.	Modbus V1000
0xC002	Internal Error: Unzulässiger Wert beim Parameter Cmd. State.	Modbus V1000

System-SFCs - "System Functions" > SFC 1 - READ CLK - Uhrzeit lesen

14 Integrierte Standardfunktionen - "Integrated Standard"

14.1 System-SFCs - "System Functions"

14.1.1 SFC 0 - SET_CLK - Uhrzeit stellen

Beschreibung

Mit dem SFC 0 SET_CLK (set system clock) werden Uhrzeit und Datum der CPU-Uhr gestellt, wobei die Uhr dann ab der eingestellten Uhrzeit und dem eingestellten Datum läuft.

Handelt es sich um eine Master-Uhr, dann wird beim Aufruf des SFC 0 zusätzlich die Synchronisation der Uhrzeit gestartet. Die Synchronisationsintervalle werden in der Hardwarekonfiguration eingestellt.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
PDT	INPUT	DT	D, L	Über <i>PDT</i> geben Sie das Datum und die Uhrzeit ein, die Sie einstellen möchten.
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.

PDT Datum und Uhrzeit sind als Datentyp DT einzugeben.

Beispiel:

Datum: 27.04.2006, Uhrzeit: 14:15:55 → DT#2006-04-27-14:15:55

Die Uhrzeit kann nur sekundengranular eingegeben werden. Der Wochentag wird vom SFC 0 automatisch aus dem Datum errechnet.

SFC 0 automatisch aus dem Datum errechnet.

Beachten Sie, dass Sie den Datentyp DT mit dem FC 3 D_TOD_DT erst bilden müssen, bevor Sie ihn dem Eingangsparameter übergeben können

(siehe Uhrzeitfunktionen; FC 3, FC 6, FC 7, FC 8, FC 33, FC 40, FC 1, FC 35, FC 34).

RET_VAL (Rückgabewert)

Wert	Beschreibung
0000h	kein Fehler
8080h	Fehler im Datum
8081h	Fehler in der Uhrzeit

14.1.2 SFC 1 - READ_CLK - Uhrzeit lesen

Beschreibung

Mit dem SFC 1 READ_CLK (read system clock) wird die Uhr in der CPU ausgelesen. Dadurch erhalten Sie das aktuelle Datum und die Uhrzeit.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.

System-SFCs - "System Functions" > SFC 2 - SET_RTM - Betriebsstundenzähler setzen

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
CDT	OUTPUT	DT	D, L	Am Ausgang CDT werden das aktuelle Datum und die aktuelle Uhrzeit ausgegeben.

RET VAL (Rückgabewert)

Der SFC 1 liefert keine spezifischen Fehlerinformationen aus.

CDT

Am Ausgang CDT wird das aktuelle Datum und die aktuelle Uhrzeit im Format DT ausgegeben.

14.1.3 SFC 2 ... 4 - Betriebsstundenzähler

Beschreibung

CPUs von Yaskawa verfügen über 8 Betriebsstundenzähler.

Sie können über:

SFC 2	SET_RTM	Betriebsstundenzähler setzen
SFC 3	CTRL_RTM	Betriebsstundenzähler starten/stoppen
SFC 4	READ_RTM	Betriebsstundenzähler auslesen

Über einen Betriebsstundenzähler können Sie:

- die Betriebsdauer der CPU berechnen.
- die Betriebsdauer von angesteuerten Betriebsmitteln berechnen.

Eigenschaften

Mit dem Start beginnt der Betriebsstundenzähler immer ab dem letzten Zählerstand zu zählen. Soll er ab einem anderen Anfangswert beginnen, dann müssen Sie diesen Wert mit dem SFC 2 zuweisen.

Geht die CPU in STOP oder Sie stoppen den Betriebsstundenzähler, dann merkt sich die CPU den aktuellen Wert. Bei Neustart der CPU muss der Betriebsstundenzähler erneut mit dem SFC 3 gestartet werden.

Wertebereich

Der Betriebsstundenzähler hat einen Wertebereich von 0 ... 32767 Stunden.

14.1.4 SFC 2 - SET RTM - Betriebsstundenzähler setzen

Beschreibung

Mit dem SFC 2 SET_RTM (set run-time meter) wird ein Betriebsstundenzähler der CPU auf einen vorgegebenen Wert gestellt. Bei CPUs von Yaskawa sind maximal 8 Betriebsstundenzähler verfügbar.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
NR	INPUT	BYTE	E, A, M, D, L, Konstante	Eingang <i>NR</i> enthält die Nummer des Betriebsstundenzählers, den Sie einstellen möchten. Mögliche Werte: 0 7
PV	INPUT	INT	E, A, M, D, L, Konstante	Eingang <i>PV</i> enthält die Einstellung für den Betriebsstundenzähler.

System-SFCs - "System Functions" > SFC 4 - READ RTM - Betriebsstundenzähler auslesen

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.

RET_VAL (Rückgabewert)

Wert	Beschreibung
0000h	kein Fehler
8080h	Falsche Nummer des Betriebsstundenzählers
8081h	Ein negativer Wert wurde dem Parameter PV übergeben.

14.1.5 SFC 3 - CTRL_RTM - Betriebsstundenzähler starten/stoppen

Beschreibung

Mit dem SFC 3 CTRL_RTM (control run-time meter) wird ein Betriebsstundenzähler in Abhängigkeit des Zustandes von Eingang S gestartet oder gestoppt.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
NR	INPUT	ВҮТЕ	E, A, M, D, L, Konstante	Eingang <i>NR</i> enthält die Nummer des Betriebsstundenzählers, den Sie starten bzw. stoppen möchten.
				Mögliche Werte: 0 7
S	INPUT	BOOL	E, A, M, D, L, Konstante	Eingang S startet bzw. stoppt den Betriebs- stundenzähler. Setzen Sie den Signalzustand auf "0", wenn Sie den Zähler stoppen möchten. Setzen Sie den Signalzustand auf "1", wenn Sie den Zähler starten möchten.
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.

RET_VAL (Rückgabewert)

Wert	Beschreibung
0000h	kein Fehler
8080h	Falsche Nummer des Betriebsstundenzählers

14.1.6 SFC 4 - READ_RTM - Betriebsstundenzähler auslesen

Beschreibung

Mit dem SFC 4 READ_RTM (read run-time meter) wird ein Betriebsstundenzähler ausgelesen. Als Ausgangsdaten werden die aktuelle Betriebsstundenzahl und der Status des Zählers ("gestoppt" bzw. "zählt") ausgegeben.

Wenn der Betriebsstundenzähler länger als 32767 Stunden läuft, dann bleibt er bei diesem Wert stehen und der Rückgabewert *RET_VAL* enthält die Fehlermeldung "8081h: Überlauf".

System-SFCs - "System Functions" > SFC 5 - GADR LGC - Logische Adresse eines Kanals ermitteln

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
NR	INPUT	BYTE	E, A, M, D, L, Konstante	Eingang <i>NR</i> enthält die Nummer des Betriebsstundenzählers, den Sie auslesen möchten.
				Mögliche Werte: 0 7
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.
CQ	OUTPUT	BOOL	E, A, M, D, L	Ausgang CQ gibt an, ob der Betriebsstundenzähler läuft oder angehalten ist.
				"0": Betriebsstundenzähler gestoppt"1": Betriebsstundenzähler läuft
CV	OUTPUT	INT	E, A, M, D, L	Ausgang <i>CV</i> gibt den aktuellen Wert des Betriebsstundenzählers an.

RET_VAL (Rückgabewert)

Wert	Beschreibung
0000h	kein Fehler
8080h	Falsche Nummer des Betriebsstundenzählers
8081h	Überlauf des Betriebsstundenzählers

14.1.7 SFC 5 - GADR_LGC - Logische Adresse eines Kanals ermitteln

Beschreibung

Mit dem SFC 5 GADR_LGC (convert geographical address to logical address) ermitteln Sie die logische Adresse des Moduls.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
SUBNETID	INPUT	BYTE	E, A, M, D, L, Konstante	Bereichskennung
RACK	INPUT	WORD	E, A, M, D, L, Konstante	Nr. des Racks
SLOT	INPUT	WORD	E, A, M, D, L, Konstante	Steckplatz-Nummer
SUBSLOT	INPUT	BYTE	E, A, M, D, L, Konstante	Submodulsteckplatz
SUBADDR	INPUT	WORD	E, A, M, D, L, Konstante	Offset im Nutzdatenadressraum des Moduls
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.
IOID	OUTPUT	BYTE	E, A, M, D, L	Bereichskennung
LADDR	OUTPUT	WORD	E, A, M, D, L	Logische Basisadresse des Moduls

System-SFCs - "System Functions" > SFC 6 - RD SINFO - Startinformation auslesen

SUBNETID Bereichskennung:

"0": falls das Modul lokal gesteckt ist (inklusive Zeilenanschaltung)

DP-Mastersystem-ID des zugehörigen dezentralen Peripheriesystems, falls sich der

Steckplatz in einem dezentralen Peripheriegerät befindet.

Rack Nr. des Racks, falls Bereichskennung 0

Stations-Nr. des dezentralen Peripheriegeräts, falls Bereichskennung > 0.

SLOT Steckplatz-Nummer

SUBSLOT Submodulsteckplatz

(falls kein Submodul gesteckt werden kann, ist hier 0 anzugeben).

SUBADDR Offset im Nutzdatenadressraum des Moduls.

Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert RET_VAL (Rückgabewert)

einen Fehlercode.

Wert	Beschreibung
0000h	kein Fehler
8094h	Es wurde kein Subnetz mit der angegebenen SUBNETID konfiguriert.
8095h	Unzulässiger Wert beim Parameter RACK
8096h	Unzulässiger Wert beim Parameter SLOT
8097h	Unzulässiger Wert beim Parameter SUBSLOT
8098h	Unzulässiger Wert beim Parameter SUBADDR
8099h	Der Steckplatz ist nicht projektiert.
809Ah	Die Subadresse für den ausgewählten Steckplatz ist nicht projektiert.

IOID Bereichskennung:

> 54h: Peripherie-Eingang (PE) 55h: Peripherie-Ausgang (PA)

Im Fall eines Mischmoduls liefert der SFC die Bereichskennung der niedrigeren Adresse.

Bei gleichen Adressen liefert der SFC die Kennung 54h.

LADDR Logische Basisadresse des Moduls.

14.1.8 SFC 6 - RD SINFO - Startinformation auslesen

Beschreibung

Mit dem SFC 6 RD SINFO (read start information) werden die Startinformationen des zuletzt aufgerufenen OBs, der noch nicht vollständig abgearbeitet wurde, und des zuletzt gestarteten Anlauf-OBs ausgelesen. Beide Startinformationen enthalten keinen Zeitstempel. Erfolgt der Aufruf im OB 100, dann werden zwei identische Startinformationen zurückgeliefert.

System-SFCs - "System Functions" > SFC 6 - RD_SINFO - Startinformation auslesen

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.
TOP_SI	OUTPUT	STRUCT	D, L	Startinformation des aktuellen OBs
START_UP_SI	OUTPUT	STRUCT	D, L	Startinformation des zuletzt gestarteten Anlauf-OBs

TOP_SI und START_UP_SI

Hierbei handelt es sich um zwei identisch aufgebaute Strukturen, deren Aufbau nachfolgend dargestellt ist.

Strukturelement	Datentyp	Beschreibung
EV_CLASS	BYTE	Bits 3 0: Ereigniskennung
		Bits 7 4: Ereignisklasse:
		1: Startereignisse von Standard-OBs
		2: Startereignisse von Synchronfehler-OBs
		3: Startereignisse von Asynchronfehler-OBs
EV_NUM	BYTE	Ereignisnummer
PRIORITY	BYTE	Das Strukturelement PRIORITY liefert die zum aktuellen OB gehörige Prioritätsklasse.
NUM	BYTE	OB-Nummer
		NUM enthält die Nummer des aktuellen OBs bzw. des zuletzt gestarteten Anlauf-OBs.
TYP2_3	BYTE	Datenkennung 2_3: kennzeichnet die in ZI2_3 eingetragene Information
TYP1	BYTE	Datenkennung 1: kennzeichnet die in ZI1 eingetragene Information
ZI1	WORD	Zusatzinformation 1
ZI2 3	DWORD	Zusatzinformation 2 3

ĭ

Die Strukturelemente entsprechen inhaltlich genau den temporären Variablen eines OBs.

Die temporären Variablen können in den einzelnen OBs andere Namen und andere Datentypen haben. Beachten Sie, dass die Aufrufschnittstelle der OBs zusätzlich Datum und Uhrzeit enthält.

RET_VAL (Rückgabewert)

Der SFC 6 liefert keine spezifischen, sondern nur allgemeine Fehlerinformationen zurück.

Beispiel

Der zuletzt aufgerufene, noch nicht vollständig abgearbeitet OB, ist der OB 80, der zuletzt gestartete Anlauf-OB ist der OB 100.

Die folgende Tabelle zeigt die Zuordnung zwischen den Strukturelementen des Parameters *TOP_SI* des SFC 6 und den lokalen Variablen des OB 80.

System-SFCs - "System Functions" > SFC 7 - DP PRAL - Prozessalarm beim DP-Master auslösen

TOP_SI	Datentyp	Lokale Variable	Datentyp
Strukturelement			
EV_CLASS	BYTE	OB100_EV_CLASS	BYTE
EV_NUM	BYTE	OB80_FLT_ID	BYTE
PRIORITY	BYTE	OB80_PRIORITY	BYTE
NUM	BYTE	OB80_OB_NUMBR	BYTE
TYP2_3	BYTE	OB80_RESERVED_1	BYTE
TYP1	BYTE	OB80_RESERVED_2	BYTE
ZI1	WORD	OB80_ERROR_INFO	WORD
ZI2_3	DWORD	OB80_ERR_EV_CLASS	BYTE
		OB80_ERR_EV_NUM	BYTE
		OB80_OB_PRIORITY	BYTE
		OB80_OB_NUM	BYTE

Die folgende Tabelle zeigt die Zuordnung zwischen den Strukturelementen des Parameters *START_UP_SI* des SFC 6 und den lokalen Variablen des OB 100.

START_UP_SI	Datentyp	Lokale Variable	Datentyp
Strukturelement			
EV_CLASS	BYTE	OB100_EV_CLASS	BYTE
EV_NUM	BYTE	OB100_STRTUP	BYTE
PRIORITY	BYTE	OB100_PRIORITY	BYTE
NUM	BYTE	OB100_OB_NUMBR	BYTE
TYP2_3	BYTE	OB100_RESERVED_1	BYTE
TYP1	BYTE	OB100_RESERVED_2	BYTE
ZI1	WORD	OB100_STOP	WORD
ZI2_3	DWORD	OB100_STRT_INFO	DWORD

14.1.9 SFC 7 - DP PRAL - Prozessalarm beim DP-Master auslösen

Beschreibung

Mit dem SFC 7 DP_PRAL lösen Sie aus dem Anwenderprogramm eines intelligenten Slaves beim zugehörigen DP-Master einen Prozessalarm aus. Das führt zum Start des OB 40 beim DP-Master. Mit dem Eingangsparameter *AL_INFO* können Sie die Ursache für den von Ihnen gewünschten Prozessalarm kennzeichnen. Diese Alarmkennung wird an den DP-Master übertragen und kann von Ihnen im OB 40 (Variable OB40_POINT_ADDR) ausgewertet werden. Der angeforderte Prozessalarm wird durch die Eingangsparameter *IOID* und *LADDR* eindeutig festgelegt. Für jeden projektierten Adressbereich im Übergabespeicher können Sie zu einem beliebigen Zeitpunkt genau einen Prozessalarm auslösen.

Arbeitsweise

Der SFC 7 DP_PRAL ist ein asynchron arbeitender SFC, d. h. die Bearbeitung erstreckt sich über mehrere SFC-Aufrufe. Sie starten die Prozessalarmanforderung, indem Sie den SFC 7 mit *REQ* = 1 aufrufen. Über die Ausgangsparameter *RET_VAL* und *BUSY* wird der Zustand des Auftrags angezeigt, siehe auch Bedeutung von *REQ*, *RET_VAL* und *BUSY* bei asynchron arbeitenden SFCs. Der Auftrag ist abgeschlossen, wenn die Bearbeitung des OB 40 im DP-Master beendet ist.

System-SFCs - "System Functions" > SFC 7 - DP PRAL - Prozessalarm beim DP-Master auslösen

Betreiben Sie den DP-Slave als Normslave, ist der Auftrag abgeschlossen, sobald das Diagnosetelegramm vom DP-Master abgeholt wurde.

Identifikation eines Auftrags

Die Eingangsparameter *IOID* und *LADDR* legen einen Auftrag eindeutig fest. Falls Sie den SFC 7 DP_PRAL auf einem DP-Slave aufgerufen haben und Sie diesen SFC erneut aufrufen, bevor der DP-Master den angeforderten Prozessalarm quittiert hat, dann hängt das weitere Verhalten des SFC entscheidend davon ab, ob es sich beim erneuten Aufruf um denselben Auftrag handelt: Stimmen die Parameter *IOID* und *LADDR* mit einem noch nicht abgeschlossenen Auftrag überein, so wird der SFC-Aufruf unabhängig vom Wert des Parameters *AL_INFO* als Folgeaufruf interpretiert, und in *RET_VAL* wird der Wert W#16#7002 eingetragen.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
REQ	INPUT	BOOL	E, A, M, D, L, Konstante	REQ = 1: Prozessalarm auf dem zugehörigen DP-Master auslösen.
IOID	IOID INPUT	BYTE	E, A, M, D, L, Konstante	Kennung des Adressbereichs im Übergabespeicher (aus Sicht des DP-Slaves):
				■ B#16#00: Bit15 von <i>LADDR</i> gibt an, ob Ein- (Bit15=0) oder Ausgangsadresse (Bit15=1) vorliegt.
				■ B#16#54: Peripherie Eingang (PE)
				■ B#16#55: Peripherie Ausgang (PA)
				Handelt es sich um eine Mischbaugruppe, ist die Bereichskennung der niedrigeren Adresse anzugeben. Bei gleichen Adressen ist B#16#54 anzugeben.
LAADR	LAADR INPUT	WORD	E, A, M, D, L, Konstante	Anfangsadresse des Adressbereich im Übergabespeicher (aus Sicht des DP-Slaves).
				Handelt es sich um einen Bereich, der zu einer Mischbaugruppe gehört, ist die kleinere der beiden Adressen anzugeben.
AL_INFO	AL_INFO INPUT		E, A, M, D, L,	Alarmkennung
			Konstante	Diese wird dem OB 40, der auf dem zugehörigen DP-Master gestartet werden soll, mitgegeben (Variable OB40_POINT_ADDR).
				Falls Sie den intelligenten Slave an einem Fremd- master betreiben, müssen Sie im Master das Diagnosetelegramm auswerten.
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.
BUSY	OUTPUT	BOOL	E, A, M, D, L	BUSY = 1: Der ausgelöste Prozessalarm wurde vom DP-Master noch nicht quittiert.

System-SFCs - "System Functions" > SFC 12 - D ACT DP - DP-Slave aktivieren und deaktivieren

RET_VAL (Rückgabewert)

Wert	Beschreibung
0000h	Der Auftrag wurde fehlerfrei durchgeführt.
7000h	Erstaufruf mit <i>REQ</i> = 0. Es ist keine Prozessalarmanforderung aktiv; <i>BUSY</i> hat den Wert 0.
7001h	Erstaufruf mit <i>REQ</i> = 1. Eine Prozessalarmanforderung an den DP-Master wurde gestellt; <i>BUSY</i> hat den Wert 1.
7002h	Zwischenaufruf (<i>REQ</i> irrelevant). Der ausgelöste Prozessalarm wurde vom DP-Master noch nicht quittiert; <i>BUSY</i> hat den Wert 1.
8090h	Anfangsadresse des Adressbereichs im Übergabespeicher fehlerhaft
8091h	Alarm durch Projektierung gesperrt
8093h	Über das <i>IOID</i> und <i>LADDR</i> wird ein Modul angesprochen, von der aus eine Prozessalarmanforderung nicht möglich ist.
80B5h	Aufruf in DP-Master nicht zulässig
80C3h	Erforderliche Betriebsmittel (Speicher usw.) sind momentan belegt.
80C5h	Dezentrale Peripherie ist momentan nicht verfügbar (z.B. Stationsausfall).
80C8h	Die Funktion ist im aktuellen Betriebszustand des DP-Masters nicht erlaubt.
8xyyh	Allgemeine Fehlerinformation
	→ "Allgemeine und spezifische Fehlercodes RET_VAL"Seite 65

14.1.10 SFC 12 - D ACT DP - DP-Slave aktivieren und deaktivieren

Beschreibung

Mit dem SFC 12 D_ACT_DP können Sie projektierte DP-Slaves gezielt deaktivieren und wieder aktivieren. Darüber hinaus können Sie für jeden eingesetzten DP-Slave ermitteln, ob dieser momentan aktiviert oder deaktiviert ist.

Der SFC 12 ist nicht anwendbar auf PROFIBUS PA-Feldgeräte, die über DP/PA Link an ein DP-Mastersystem angeschlossen sind.

So lange ein oder mehrere SFC 12 Aufträge aktiv sind, können Sie keine geänderte Konfiguration vom PG in die CPU laden. Während des Ladens einer geänderten Konfiguration vom PG in die CPU weist die CPU die Aktivierung eines SFC 12-Auftrages ab.

Anwendung

Wenn Sie in einer CPU DP-Slaves konfigurieren, die real nicht vorhanden sind oder aktuell nicht benötigt werden, greift die CPU dennoch regelmäßig auf diese DP-Slaves zu. Nach deren Deaktivierung unterbleiben weitere CPU-Zugriffe. Dadurch kann der schnellstmögliche DP-Buszyklus erreicht werden, und die entsprechende Fehlerereignisse treten nicht mehr auf.

Beispiel

Sämtliche mögliche Maschinenoptionen sind vom Hersteller als DP-Slaves projektiert, um ein gemeinsames Anwenderprogramm über alle möglichen Optionen erstellen und pflegen zu können. Mit dem SFC 12 können Sie im Anlauf der Maschine alle nicht vorhandenen DP-Slaves deaktivieren.

Arbeitsweise

Der SFC 12 ist ein asynchron arbeitender SFC, d.h. die Bearbeitung erstreckt sich über mehrere SFC-Aufrufe. Sie starten den Auftrag, indem Sie den SFC 12 mit *REQ* = 1 aufrufen.

System-SFCs - "System Functions" > SFC 12 - D ACT DP - DP-Slave aktivieren und deaktivieren

Über die Ausgangsparameter *RET_VAL* und *BUSY* wird der Zustand des Auftrages angezeigt.

Identifikation eines Auftrages

Falls Sie einen Deaktivierungs- bzw. Aktivierungsauftrag angestoßen haben und den SFC 12 erneut aufrufen, bevor dieser beendet wurde, hängt das weitere Verhalten des SFC entscheidend davon ab, ob es sich beim erneuten Aufruf um denselben Auftrag handelt. Stimmt der Eingangsparameter *LADDR* überein, so gilt der SFC-Aufruf als Folgeaufruf.

Deaktivieren von DP-Slaves

Wenn Sie einen DP-Slave mit dem SFC 12 deaktivieren, werden dadurch dessen Prozessausgänge auf die projektierten Ersatzwerte bzw. auf "0" gesetzt (sicherer Zustand).

Der zugehörige DP-Master spricht diesen DP-Slave im weiteren nicht mehr an. Deaktivierte DP-Slaves werden an den Fehler-LEDs des DP-Masters oder der CPU nicht als gestört oder fehlend gekennzeichnet.

Das Prozessabbild der Eingänge von deaktivierten DP-Slaves wird mit 0 aktualisiert, d.h. es wird wie bei ausgefallenen DP-Slaves behandelt.

 $\tilde{\mathbb{J}}$

Sie können nicht alle DP-Slaves deaktivieren. Mindestens 1 Slave muss am Bus aktiviert bleiben.

Falls Sie in Ihrem Programm mittels Direktzugriff auf die Nutzdaten eines zuvor deaktivierten DP-Slaves zugreifen, wird der Peripheriezugriffsfehler- OB (OB 122) aufgerufen und das zugehörige Startereignis in den Diagnosepuffer eingetragen.

Falls Sie per SFC (z.B. SFC 59 RD_REC) auf einen deaktivierten DP-Slave zugreifen, erhalten Sie in *RET_VAL* dieselbe Fehlerinformation wie bei einem nicht verfügbaren DP-Slave.

Das Deaktivieren eines DP-Slaves verursacht keinen Start des Programmablauffehler-OB 85, auch wenn dessen Ein- bzw. Ausgänge zum systemseitig zu aktualisierenden Prozessabbild gehören. Es erfolgt auch kein Eintrag in den Diagnosepuffer.

Das Deaktivieren eines DP-Slaves hat keinen Start des Slave-Ausfall-OB 86 zur Folge, und das Betriebssystem veranlasst auch keinen Eintrag in den Diagnosepuffer.

Fällt eine DP-Station aus, nachdem Sie diese mit dem SFC 12 deaktiviert haben, wird der Ausfall vom Betriebssystem nicht erkannt. Es erfolgt daher weder ein OB 86-Start noch ein Diagnosepuffereintrag. Der Stationsausfall wird erst beim erneuten Aktivieren der Station festgestellt und Ihnen über den zugehörigen *RET_VAL* mitgeteilt.

Falls Sie DP-Slaves deaktivieren wollen, die als Sender am Querverkehr beteiligt sind, wird empfohlen, zuerst die Empfänger (Mithörer) zu deaktivieren, die mithören, welche Eingangsdaten der Sender seinem DPMaster schickt. Erst im Anschluss daran deaktivieren Sie den Sender.

Aktivieren von DP-Slaves

Wenn Sie einen DP-Slave mit dem SFC 12 wieder aktivieren, wird dieser vom zugehörigen DP-Master konfiguriert und parametriert (wie bei der Wiederkehr einer ausgefallenen DP-Station). Die Aktivierung ist abgeschlossen, wenn der Slave Nutzdaten transferieren kann.

Das Aktivieren eines DP-Slaves verursacht keinen Start des Programmablauffehler- OB 85, auch wenn dessen Ein- bzw. Ausgänge zum systemseitig zu aktualisierenden Prozessabbild gehören. Es erfolgt auch kein Eintrag in den Diagnosepuffer.

System-SFCs - "System Functions" > SFC 12 - D ACT DP - DP-Slave aktivieren und deaktivieren

Das Aktivieren eines DP-Slaves hat keinen Start des Slave-Ausfall-OB 86 zur Folge, und das Betriebssystem veranlasst auch keinen Eintrag in den Diagnosepuffer.

Wenn Sie versuchen, einen deaktivierten Slave, der physikalisch vom DP-Bus getrennt ist, mit dem SFC 12 zu aktivieren läuft eine Überwachungszeit von 10sec ab. Nach Ablauf dieser Überwachungszeit liefert der SFC den Fehlercode 80A2h, und der Slave bleibt deaktiviert. Falls er zu einem späteren Zeitpunkt wieder Verbindung zum DP-Bus hat, müssen Sie den Slave mit dem SFC 12 wieder aktivieren.

 \int_{0}^{∞}

Das Aktivieren eines DP-Slaves kann geraume Zeit dauern. Falls Sie einen laufenden Aktivierungsauftrag abbrechen wollen, starten Sie den SFC 12 mit dem gleichen Wert für LADDR und MODE = 2. Sie wiederholen den Aufruf des SFC 12 mit MODE = 2 so lange, bis der erfolgreiche Abbruch des Aktivierungsauftrags mit RET_VAL = 0 angezeigt wird.

Falls Sie DP-Slaves aktivieren wollen, die am Querverkehr beteiligt sind, wird empfohlen, zuerst die Sender und anschließend die Empfänger (Mithörer) zu aktivieren.

CPU-Anlauf

Bei einem Neustart werden deaktivierte Slaves automatisch wieder aktiviert. Nach dem CPU-Anlauf versucht die CPU zyklisch zu allen projektierten und nicht deaktivierten Slaves, die nicht vorhanden oder nicht ansprechbar sind, Kontakt aufzunehmen.

Ein Aufruf des SFC 12 im Anlauf-OB 100 wird nicht unterstützt.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
REQ	INPUT	BOOL	Konstante	Pegelgetriggerter Steuerparameter
				REQ = 1: Aktivieren bzw. Deaktivieren durch- führen
MODE	INPUT	BYTE	E, A, M, D, L,	Auftragskennung
			Konstante	Mögliche Werte:
				0: Auskunft einholen, ob der angesprochene DP- Slave aktiviert oder deaktiviert ist.
			1: DP-Slave aktivieren	
				2: DP-Slave deaktivieren
LAADR	INPUT	WORD	E, A, M, D, L, Konstante	Beliebige logische Adresse des DP-Slaves
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.

System-SFCs - "System Functions" > SFC 12 - D_ACT_DP - DP-Slave aktivieren und deaktivieren

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
BUSY	OUTPUT	BOOL	E, A, M, D, L	Aktivkennung:
				BUSY = 1: Der Auftrag ist noch aktiv.
				BUSY = 0: Der Auftrag wurde beendet.

RET_VAL (Rückgabewert)

Wert	Beschreibung				
0000h	Der Auftrag wurde fehlerfrei durchgeführt.				
0001h	DP-Slave aktiviert (Dieser Fehlercode ist nur möglich bei MODE = 0.)				
0002h	DP-Slave deaktiviert (Dieser Fehlercode ist nur möglich bei MODE = 0.)				
7000h	Erstaufruf mit <i>REQ</i> = 0. Der über <i>LADDR</i> festgelegte Auftrag ist nicht aktiv; BUSY hat den Wert 0.				
7001h	Erstaufruf mit REQ = 1. Der über LADDR festgelegte Auftrag wurde angestoßen; BUSY hat den Wert 1.				
7002h	Zwischenaufruf (REQ irrelevant). Der aktivierte Auftrag ist noch in Bearbeitung; BUSY hat den Wert 1.				
8090h	Sie haben kein Modul mit der in <i>LADDR</i> angegebenen Adresse projektiert.				
	Sie betreiben Ihre CPU als I-Slave und haben in LADDR eine Adresse dieses Slaves angegeben.				
8092h	Der laufende Deaktivierungsvorgang eines DP-Slaves (<i>MODE</i> = 2) kann nicht durch seine Aktivierung (<i>MODE</i> = 1) abgebrochen werden. Aktivieren Sie den DP-Slave zu einem späteren Zeitpunkt.				
8093h	Zu der in <i>LADDR</i> angegebenen Adresse gehört kein DP-Slave (es liegt keine Projektierung vor), oder der Parameter <i>MODE</i> ist nicht bekannt.				
80A1h	Der angesprochene DP-Slave konnte nicht parametriert werden.				
	(Dieser Fehlercode ist nur möglich bei <i>MODE</i> = 1.)				
	Hinweis!				
	Diese Fehlerinformation liefert der SFC nur dann, wenn während der Parametrierung des aktivierten Slaves dieser wieder ausfällt. Wenn nur die Parametrierung eines einzelnen Moduls nicht erfolgreich war, liefert der SFC die Fehlerinformation 0000h.				
80A2h	Der angesprochene DP-Slave gibt keine Rückmeldung.				
80A3h	Der betroffene DP-Master unterstützt diese Funktion nicht.				
80A4h	Die CPU unterstützt diese Funktion bei externen DP-Mastern nicht.				
80A6h	Steckplatzfehler im DP-Slave; es kann nicht auf alle Nutzdaten zugegriffen werden.				
	(Dieser Fehlercode ist nur möglich bei MODE = 1.)				
	Hinweis!				
	Diese Fehlerinformation liefert der SFC nur dann, wenn nach der Parametrierung des aktivierten Slaves und vor dem Ende des SFC der Slave wieder ausfällt. Wenn nur ein einzelnes Modul nicht verfügbar ist, liefert der SFC die Fehlerinformation 0000h.				
80C1h	Der SFC 12 wurde gestartet und wird mit einer anderen logischen Adresse fortgesetzt.				
	(Dieser Fehlercode ist nur möglich bei MODE = 1.)				
80C3h	 Temporärer Ressourcenfehler: die CPU bearbeitet momentan das mögliche Maximum an Aktivierungs-/Deaktivierungsaufträgen. (Dieser Fehlercode ist nur möglich bei MODE = 1 und MODE = 2.) Die CPU erhält gerade eine geänderte Konfiguration. Das Aktivieren und Deaktivieren von DP-Slaves ist daher momentan nicht möglich. 				
F001h	Es dürfen nicht alle Slaves deaktiviert werden. Mindestens 1 Slave muss noch aktiv bleiben.				

System-SFCs - "System Functions" > SFC 13 - DPNRM DG - Slave-Diagnosedaten lesen

Wert	Beschreibung
F002h	Unbekannte Slaveadresse

14.1.11 SFC 13 - DPNRM DG - Slave-Diagnosedaten lesen

Beschreibung

Mit dem SFC 13 DPNRM_DG (read diagnosis data of a DP slave) werden die aktuellen Diagnosedaten eines DP-Slaves gelesen. Die Diagnosedaten eines jeden DP-Slave sind durch EN 50 170 Volume 2, PROFIBUS festgelegt.

Durch den Eingangsparameter *RECORD* wird der Zielbereich festgelegt, in den die gelesenen Daten nach fehlerfreier Datenübertragung eingetragen werden. Der Lesevorgang wird gestartet, wenn am Eingangsparameter *REQ* der Wert 1 anliegt.

Die nachfolgende Tabelle enthält Informationen zum prinzipiellen Aufbau der Slave-Diagnose.

Weitergehende Informationen entnehmen Sie bitte den Handbüchern zu den von Ihnen verwendeten DP-Slaves.

Byte	Bedeutung
0	Stationsstatus 1
1	Stationsstatus 2
2	Stationsstatus 3
3	Master-Stationsnummer
4	Herstellerkennung (High-Byte)
5	Herstellerkennung (Low-Byte)
6	Weitere slavespezifische Diagnose

Arbeitsweise

Beim SFC 13 handelt es sich um einen asynchron arbeitenden SFC, d.h. dass sich die Bearbeitung über mehrere SFC-Aufrufe erstreckt. Die Ausgangsparameter *RET_VAL* und *BUSY* zeigen den Zustand des Auftrags an.

Zusammenhang zwischen Aufruf, REQ, RET_VAL und BUSY:

Lfd. Nr. des Aufrufs	Aufrufart	REQ	RET_VAL	BUSY
1	erster Aufruf	1	7001h bzw. Fehlercode	1 0
2 (n-1)	Zwischenaufruf	irrelevant	7002h	1
n	letzter Aufruf	irrelevant	Falls keine Fehler aufgetreten sind, wird die Anzahl gelieferter Daten in Bytes als positive Zahl eingetragen bzw. Fehlercode, falls Fehler aufgetreten sind.	0

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
REQ	INPUT	BOOL	E, A, M, D, L, Konstante	REQ = 1: Anforderung zum Lesen

System-SFCs - "System Functions" > SFC 13 - DPNRM DG - Slave-Diagnosedaten lesen

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
LADDR	INPUT	WORD	E, A, M, D, L, Konstante	Projektierte Diagnoseadresse des DP-Slaves
RET_VAL	OUTPUT	INT	E, A, M, D, L	Rückgabewert
RECORD	OUTPUT	ANY	E, A, M, D, L	Zielbereich für die gelesenen Diagnosedaten. Es ist nur der Datentyp BYTE zulässig. Die Mindestlänge des zu lesenden Datensatzes bzw. des Zielbereichs beträgt 6. Die Maximallänge des zu lesenden Datensatzes beträgt 240. Bei Normslaves, bei denen die Anzahl der Normdiagnosedaten größer als 240 Bytes ist und maximal 244Bytes beträgt, werden die ersten 240Bytes in den Zielbereich übertragen und das entsprechende Overflow-Bit in den Daten gesetzt.
BUSY	OUTPUT	BOOL	E, A, M, D, L	BUSY = 1: Der Lesevorgang ist noch nicht beendet.

RECORD

Von der CPU wird die tatsächliche Länge der gelesenen Diagnosedaten ausgewertet:

Wenn die Längenangabe von RECORD

- kleiner als die Anzahl der gelieferten Daten ist, werden die Daten verworfen, und in RET_VAL wird die zugehörige Fehlerinformation eingetragen.
- größer oder gleich der Anzahl der gelieferten Daten ist, werden die Daten in den Zielbereich übernommen, und in RET_VAL wird die tatsächliche Länge als positiver Wert eingetragen.

Sie müssen darauf achten, dass die Aktualparameter von RECORD bei allen Aufrufen, die zu einem Auftrag gehören, übereinstimmen. Ein Auftrag ist eindeutig festgelegt durch den Eingangsparameter LADDR und RECORD.

Normslaves

Bei Normslaves, bei denen die Anzahl der Normdiagnosedaten zwischen 241 und 244Bytes liegt, ist folgendes beachten:

Falls die Längenangabe von RECORD

- kleiner als 240Bytes ist, werden die Daten verworfen und in RET_VAL wird die zugehörige Fehlerinformation eingetragen.
- größer oder gleich 240Bytes ist, werden die ersten Bytes der Normdiagnosedaten in den Zielbereich übertragen und das entsprechende Overflow-Bit in den Daten gesetzt.

RET_VAL (Rückgabewert)

Trat während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.

Falls kein Fehler auftrat, steht in *RET_VAL* die Länge der tatsächlich übertragenen Daten.

Die Anzahl der gelesenen Daten ist bei einem DP-Slave von seinem Diagnosezustand abhängig.

System-SFCs - "System Functions" > SFC 14 - DPRD DAT - Konsistente Nutzdaten lesen

Fehlerinformation

Nähere Informationen zu allgemeinen Fehlerinformationen finden Sie am Anfang dieses Kapitels.

Die für den SFC 13 spezifischen Fehlerinformationen sind eine Teilmenge der Fehlerinformationen für den SFC 59 RD REC.

Nähere Informationen finden Sie im SFC 59.

14.1.12 SFC 14 - DPRD DAT - Konsistente Nutzdaten lesen

Beschreibung

Mit dem SFC 14 DPRD_DAT (read consistent data of a DP-normslave) werden die konsistenten Daten eines DP-Normslaves ausgelesen. Dabei muss die Länge der konsistenten Daten drei oder mehr als vier Bytes betragen, wobei die Maximallänge 128Byte beträgt. Der Eingangsparameter *RECORD* legt den Zielbereich fest, in den die gelesenen Daten nach einer fehlerfreien Datenübertragung eingetragen werden. Dabei muss der Zielbereich dieselbe Länge aufweisen wie von Ihnen für das selektierte Modul projektiert worden ist.

Handelt es sich um einen DP-Normslave mit modularem Aufbau bzw. mit mehreren DP-Kennungen, so kann mit einem SFC 14-Aufruf jeweils nur auf die Daten eines Moduls / DP-Kennung unter der projektierten Anfangsadresse zugegriffen werden.

Der SFC 14 wird verwendet, da mit den Ladebefehlen, die auf die Peripherie bzw. auf das Prozessabbild der Eingänge zugreifen, maximal vier Bytes zusammenhängend ausgelesen werden können.

Definition

Konsistente Daten

Als konsistente Daten werden Daten bezeichnet, die inhaltlich zusammengehören und nicht getrennt werden dürfen. Z.B. ist es wichtig die Werte von Analogmodulen immer konsistent zu behandeln, denn der Wert eines Analogmoduls darf durch das Auslesen zu zwei verschiedenen Zeitpunkten nicht verfälscht werden.

Parameter

Parameter	Deklaration	Datentyp	Speicherbe- reich	Beschreibung
LADDR	INPUT	WORD	E, A, M, D, L, Konstante	Projektierte Anfangsadresse aus dem E-Bereich des Moduls, aus dem gelesen werden soll
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.
RECORD	OUTPUT	ANY	E, A, M, D, L	Zielbereich für die gelesenen Nutzdaten. Er muss genauso lang sein, wie für das selektierte Modul projektiert wurde. Es ist nur der Datentyp BYTE zulässig.

RET_VAL (Rückgabewert)

Wert	Beschreibung
0000h	Es ist kein Fehler aufgetreten.
8090h	Für die angegebene logische Basisadresse haben sie kein Modul projektiert, oder Sie haben die Einschränkung über die Länge der konsistenten Daten nicht beachtet.
8092h	In ANY-Referenz ist eine Typangabe ungleich BYTE angegeben.
8093h	Für die unter <i>LADDR</i> angegebene logische Adresse existiert kein DP-Modul, von der Sie konsistente Daten lesen können.

System-SFCs - "System Functions" > SFC 15 - DPWR DAT - Konsistente Nutzdaten schreiben

Wert	Beschreibung
80A0h	Anfangsadresse des Adressbereichs im Übergabespeicher fehlerhaft.
80B0h	Slaveausfall an externer DP-Anschaltung
80B1h	Die Länge des angegebenen Zielbereichs ist ungleich der projektierten Nutzdatenlänge.
80B2h	Systemfehler bei externer DP-Anschaltung
80B3h	Systemfehler bei externer DP-Anschaltung
80C0h	Systemfehler bei externer DP-Anschaltung
80C2h	Systemfehler bei externer DP-Anschaltung
80Fxh	Systemfehler bei externer DP-Anschaltung
87xyh	Systemfehler bei externer DP-Anschaltung
808xh	Systemfehler bei externer DP-Anschaltung

14.1.13 SFC 15 - DPWR_DAT - Konsistente Nutzdaten schreiben

Beschreibung

Mit dem SFC 15 DPWR_DAT (write consistent data to a DP-normslave) werden die Daten, die im Eingangsparameter *RECORD* stehen, konsistent zum adressierten DP-Normslave übertragen. Dabei muss die Länge der konsistenten Daten drei oder mehr als vier Bytes betragen, wobei die Maximallänge 128Byte beträgt. Die Datenübertragung erfolgt synchron, d.h. nach Beendigung des SFC ist der Schreibvorgang abgeschlossen. Es ist darauf zu achten, dass der Quellbereich dieselbe Länge aufweist, wie von Ihnen für das selektierte Modul projektiert worden ist.

Handelt es sich um einen DP-Normslave mit modularem Aufbau, kann nur auf ein Modul des DP-Slaves zugegriffen werden.

Der SFC 15 wird verwendet, da mit den Transferbefehlen, die auf die Peripherie bzw. auf das Prozessabbild der Ausgänge zugreifen, maximal vier Bytes zusammenhängend geschrieben werden können.

Definition

Konsistente Daten

Als konsistente Daten werden Daten bezeichnet, die inhaltlich zusammengehören und nicht getrennt werden dürfen. Beispielsweise ist es wichtig die Werte von Analogmodulen immer konsistent zu behandeln, denn der Wert eines Analogmoduls darf durch das Auslesen zu zwei verschiedenen Zeitpunkten nicht verfälscht werden.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
LADDR	INPUT	WORD	E, A, M, D, L, Konstante	Projektierte Anfangsadresse aus dem A-Bereich des Moduls, auf die geschrieben werden soll
RECORD	INPUT	ANY	E, A, M, D, L	Quellbereich für die zu schreibenden Nutzdaten. Er muss genauso lang sein, wie für das selektierte Modul projektiert wurde. Es ist nur der Datentyp BYTE zulässig.
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.

System-SFCs - "System Functions" > SFC 17 - ALARM SQ und SFC 18 - ALARM S

RET_VAL (Rückgabewert)

Wert	Beschreibung
0000h	Es ist kein Fehler aufgetreten.
8090h	Für die angegebene logische Basisadresse haben sie kein Modul projektiert, oder Sie haben die Einschränkung über die Länge der konsistenten Daten nicht beachtet.
8092h	In ANY-Referenz ist eine Typangabe ungleich BYTE angegeben.
8093h	Für die unter <i>LADDR</i> angegebene logische Adresse existiert kein DP-Modul, auf die Sie konsistente Daten schreiben können.
80A1h	Das selektierte Modul ist fehlerhaft.
80B0h	Slaveausfall an externer DP-Anschaltung
80B1h	Die Länge des angegebenen Quellbereichs ist ungleich der projektierten Nutzdatenlänge.
80B2h	Systemfehler bei externer DP-Anschaltung
80B3h	Systemfehler bei externer DP-Anschaltung
80C1h	Die Daten des auf dem Modul vorangegangenen Schreibauftrags sind von dem Modul noch nicht bearbeitet.
80C2h	Systemfehler bei externer DP-Anschaltung
80Fxh	Systemfehler bei externer DP-Anschaltung
85xyh	Systemfehler bei externer DP-Anschaltung
808xh	Systemfehler bei externer DP-Anschaltung

14.1.14 SFC 17 - ALARM SQ und SFC 18 - ALARM S

Beschreibung

Der SFC 17 ALARM_SQ (Erzeugung quittierbarer bausteinbezogener Meldungen) und der SFC 18 ALARM_S (Erzeugung stets quittierbarer bausteinbezogener Meldungen) generieren bei jedem Aufruf eine Meldung, an die Sie einen Begleitwert anhängen können. Die Meldung wird an alle dafür angemeldeten Teilnehmer gesendet. Der SFC 17 und SFC 18 stellen Ihnen also einen einfachen Meldemechanismus zur Verfügung. Bitte beachten Sie hierbei, dass Sie den SFC 17 und SFC 18 nur dann aufrufen, wenn der Wert des meldeauslösenden Signals SIG gegenüber dem letzten Aufruf invertiert ist. Ist dies nicht der Fall, so wird Ihnen dies über *RET_VAL* mitgeteilt, und es wird keine Meldung gesendet. Beim ersten Aufruf des SFC 17 und SFC 18 müssen Sie dafür Sorge tragen, dass am Eingang SIG "1" anliegt. Sonst bekommen Sie über *RET-VAL* eine Fehlerinformation, und es wird keine Meldung gesendet.

Rufen Sie den SFC 17 und den SFC 18 aus einem FB heraus auf, dem Sie zuvor die entsprechenden Systemattribute zugewiesen haben!

Systemressourcen

Bei der Meldungserzeugung mit dem SFC 17 und dem SFC 18 belegt das Betriebssystem für die Dauer eines Signalzyklus eine Systemressource.

Der Signalzyklus dauert beim SFC 18 vom SFC-Aufruf mit *SIG* = "1" bis zum erneuten Aufruf mit *SIG* = "0".

Beim SFC 17 kommt zu dieser Zeitspanne ggf. noch die Zeit bis zur Quittierung des kommenden Signals durch eines der angemeldeten Anzeigegeräte hinzu.

System-SFCs - "System Functions" > SFC 17 - ALARM SQ und SFC 18 - ALARM S

Falls innerhalb des Signalzyklus ein Überladen oder Löschen des meldungserzeugenden Bausteins erfolgt, bleibt die zugehörige Systemressource bis zum nächsten Neustart belegt.

Meldungs-Quittierung

Sie können die vom SFC 17 gesendeten Meldungen mit Signalzustand "1" an einem angemeldeten Anzeigegerät quittieren. Den Quittierzustand der letzten "Gekommen-Meldung" und den Signalzustand beim letzten SFC 17-Aufruf können Sie mit Hilfe des SFC 19 ALARM_SC ermitteln.

Meldungen, die Sie mit dem SFC 18 gesendet haben, sind immer implizit quittiert. Den Signalzustand beim letzten SFC 18-Aufruf können Sie mit Hilfe des SFC 19 ALARM_SC ermitteln.

Zwischenspeicherung

Die SFCs 17 und 18 belegen Systemressourcen. Darin werden unter anderem die letzten beiden Signalzustände inklusiv Zeitstempel und Begleitwert zwischengespeichert. Erfolgt ein Aufruf des SFC 17 oder SFC 18 zu einem Zeitpunkt, an dem die Signalzustände der beiden letzten "gültigen" SFC-Aufrufe noch nicht gesendet sind (Signaloverflow), werden der aktuelle und der letzte Signalzustand verworfen und eine Overflow- Kennung im Zwischenspeicher gesetzt. Zum nächstmöglichen Zeitpunkt wird das vorletzte Signal samt Overflow-Kennung gesendet.

Instanzoverflow

Falls die Anzahl von SFC 17- und SFC 18-Aufrufen größer ist als die maximale Anzahl von Systemressourcen Ihrer CPU, kann es zu einem Ressourcenengpass (Instanzoverflow) kommen. Dies wird Ihnen sowohl durch eine Fehlerinformation in *RET_VAL* als auch an den angemeldeten Anzeigegeräten mitgeteilt.

Die maximale Anzahl von SFC 17- oder SFC 18-Aufrufen ist CPUabhängig.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
SIG	INPUT	BOOL	E, A, M, D, L	Das meldungsauslösende Signal
ID	INPUT	WORD	E, A, M, D, L	Datenkanal für Meldungen: EEEEh
EV_ID	INPUT	DWORD	Konstante	Meldungsnummer
			(E, A, M, D, L)	(nicht erlaubt: 0)
SD	INPUT	ANY	E, A, M, D, T, Z	Begleitwert
RET_VAL	OUTPUT	INT	E, A, M, D, L	Rückgabewert

SD Begleitwert

Maximale Länge: 12Byte

Zulässig sind nur die Datentypen:

BOOL (nicht erlaubt Bitfeld), BYTE, CHAR, WORD, INT, DWORD, DINT, REAL, DATE,

TOD, TIME, S5TIME, DATE_AND_TIME

RET_VAL (Rückgabewert)

Wert	Beschreibung
0000h	kein Fehler

System-SFCs - "System Functions" > SFC 19 - ALARM SC - Quittierzustand der letzten Meldung

Wert	Beschreibung
0001h	 Der Begleitwert ist länger als die maximal zulässige Länge oder Der Zugriff auf den Anwenderspeicher ist nicht möglich (z.B. Zugriff auf gelöschten DB). Die Meldung wird gesendet. Der Begleitwert zeigt auf einen Wert im Lokaldatenbereich. Die Meldung wird gesendet.
0002h	Warnung: Der letzte freie Meldequittierspeicher wurde belegt.
8081h	Der angegebene EV_ID liegt außerhalb des zulässigen Bereiches.
8082h	Meldungsverlust, da Ihre CPU keine Ressourcen für die Erzeugung bausteinbezogener Meldungen durch SFCs mehr hat.
8083h	Meldungsverlust, da derselbe Signalwechsel bereits vorliegt, aber noch nicht gesendet werden konnte (Signaloverflow).
8084h	Beim aktuellen und beim vorangegangenen SFC 17- / SFC 18-Aufruf hat das meldungsauslösende Signal <i>SIG</i> denselben Wert.
8085h	Für die angegebene <i>EV_ID</i> liegt keine Anmeldung vor.
8086h	Ein SFC-Aufruf für die angegebene EV_ID ist bereits in einer Prioritätsklasse niedriger Priorität in Bearbeitung.
8087h	Beim ersten Aufruf des SFC 17, SFC 18 hatte das meldungsauslösende Signal den Wert "0".
8088h	Die angegebene EV_ID wird bereits von einer anderen Systemressource (zu SFC 17, SFC 18) belegt.
8xyyh	Allgemeine Fehlerinformation
	→ "Allgemeine und spezifische Fehlercodes RET_VAL"Seite 65

14.1.15 SFC 19 - ALARM SC - Quittierzustand der letzten Meldung

Beschreibung

Mit Hilfe des SFC 19 ALARM_SC können Sie:

- Den Quittierzustand der letzten ALARM_SQ-Gekommen-Meldung und den Zustand des meldungsauslösenden Signals beim letzten Aufruf des SFC 17 ermitteln
- Den Zustand des meldungsauslösenden Signals beim letzten Aufruf des SFC 18 ermitteln

Die Meldung bzw. das Signal ist über die von Ihnen vorgegebene Meldungsnummer eindeutig referenziert, falls Sie die Meldungsnummern mit Hilfe der Meldungsprojektierung vergeben haben.

Der SFC 19 greift auf die temporär belegten Speicher des SFC 17 und SFC 18 zu.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
EV_ID	INPUT	DWORD	E, A, M, D, L, Konstante	Meldungsnummer, zu der Sie den Signalzustand beim letzten SFC-Aufruf bzw. den Quittierzustand der letzten Gekommen-Meldung (nur bei SFC 17) ermitteln möchten
RET_VAL	OUTPUT	INT	E, A, M, D, L	Rückgabewert
STATE	OUTPUT	BOOL	E, A, M, D, L	Zustand des meldungsauslösendenSignals beim letzten SFC-Aufruf
Q_STATE	OUTPUT	BOOL	E, A, M, D, L	Falls der angegebene Parameter <i>EV_ID</i> zu einem SFC 18-Aufruf gehört: "1"

System-SFCs - "System Functions" > SFC 20 - BLKMOV - Variable kopieren

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
				Falls der angegebene Parameter <i>EV_ID</i> zu einem SFC 17-Aufruf gehört:
				Quittierzustand der letzten Gekommen-Meldung:
				"0": nicht quittiert
				"1": quittiert

RET_VAL (Rückgabewert)

Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.

Wert	Beschreibung
0000h	kein Fehler
8081h	Der angegebene EV_ID liegt außerhalb des zulässigen Bereiches.
8082h	Zu dieser EV_ID ist momentan kein Speicherplatz belegt
	(Mögliche Ursache: Das zugehörige Signal hatte noch nie den Zustand "1", oder es hat bereits wieder den Zustand "0" angenommen).
8xyyh	Allgemeine Fehlerinformation
	→ "Allgemeine und spezifische Fehlercodes RET_VAL"Seite 65

14.1.16 SFC 20 - BLKMOV - Variable kopieren

Beschreibung

Mit dem SFC 20 BLKMOV (block move) wird der Inhalt eines Speicherbereiches (Quellfeld) in einen anderen Speicherbereich (Zielfeld) kopiert.

Es können alle Speicherbereiche kopiert werden, außer:

- folgende Bausteine: FC, SFC, FB, SFB, OB, SDB
- Zähler
- Zeiten
- Speicherbereiche des Peripheriebereiches.

Es besteht die Möglichkeit, das der Quellparameter auch in einem nichtablaufrelevanten Datenbaustein (DB, der mit dem Schlüsselwort UNLINKED kompiliert wurde) im Ladespeicher liegen kann.

Unterbrechbarkeit

Die Schachtelungstiefe ist nicht begrenzt, solange das Quellfeld nicht Teil eines Datenbausteins ist, der nur im Ladespeicher vorhanden ist. Wird jedoch eine SFC 20-Bearbeitung unterbrochen, bei der aus einem nicht ablaufrelevanten DB kopiert wird, kann eine solche SFC 20-Bearbeitung nicht mehr eingeschachtelt werden.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
SRCBLK	INPUT	ANY	E, A, M, D, L	Angabe des Speicherbereichs, der kopiert werden soll (Quellfeld). Arrays vom Datentyp STRING sind nicht erlaubt.
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.

System-SFCs - "System Functions" > SFC 21 - FILL - Feld vorbesetzen

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
DSTBLK	OUTPUT	ANY	E, A, M, D, L	Angabe des Speicherbereichs, in den kopiert werden soll (Zielfeld). Arrays vom Datentyp STRING sind nicht erlaubt.

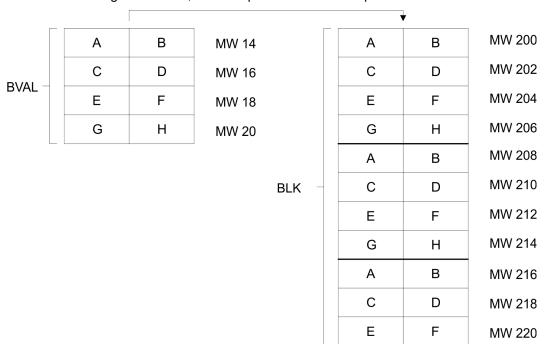
Д

Quell- und Zielfeld dürfen sich nicht überlappen. Wenn das angegebene Zielfeld größer als das Quellfeld ist, dann werden auch nur so viele Daten in das Zielfeld kopiert, wie im Quellfeld stehen. Wenn das angegebene Zielfeld jedoch kleiner als das Quellfeld ist, dann werden nur so viele Daten kopiert, wie das Zielfeld aufnehmen kann.

Wenn der ANY-Pointer (Quelle oder Ziel) vom Typ BOOL ist, so muss die angegebene Länge durch 8 teilbar sein, da ansonsten der SFC nicht ausgeführt wird.

Wenn der ANY-Pointer vom Typ STRING ist, so muss die angegebene Länge 1 sein.

RET_VAL (Rückgabewert)


Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.

Wert	Beschreibung
0000h	kein Fehler
8091h	Die Schachtelungstiefe wurde überschritten.

14.1.17 SFC 21 - FILL - Feld vorbesetzen

Beschreibung

Mit dem SFC 21 FILL können Sie einen Speicherbereich (Zielfeld) mit dem Inhalt eines anderen Speicherbereiches (Quellfeld) vorbesetzen. In das angegebene Zielfeld kopiert der SFC 21 solange den Inhalt, bis der Speicherbereich komplett beschrieben ist.

System-SFCs - "System Functions" > SFC 21 - FILL - Feld vorbesetzen

 \int_{1}^{∞}

Quell- und Zielfeld dürfen sich nicht überlappen.

Wenn das vorzubelegende Zielfeld kein ganzzahliges Vielfaches der Länge des Eingangsparameters BVAL ist, wird das Zielfeld trotzdem bis zum letzten Byte beschrieben.

Wenn das vorzubelegende Zielfeld kleiner als das Quellfeld ist, dann werden nur so viele Daten kopiert, wie das Zielfeld aufnehmen kann.

Mit dem SFC 21 können Sie keine Werte schreiben in:

- folgende Bausteine: FB, SFB; FC, SFC, OB, SDB
- Zähler
- Zeiten
- Speicherbereiche des Peripheriebereiches

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
BVAL	INPUT	ANY	E, A, M, D, L	Enthält den Wert bzw. die Beschreibung des Feldes, mit dessen Inhalt das Zielfeld vorbesetzt werden soll (Quellfeld). Arrays vom Datentyp STRING sind nicht erlaubt.
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.
BLK	OUTPUT	ANY	E, A, M, D, L	Enthält die Beschreibung des Feldes, das vorbesetzt werden soll (Zielfeld). Arrays vom Datentyp STRING sind nicht erlaubt.

Parameter ist eine Struktur

Wenn als Eingangsparameter eine Struktur übergeben wird, muss folgende Besonderheit berücksichtigt werden: Die Länge einer Struktur wird immer auf eine gerade Anzahl von Bytes ausgerichtet. Wenn also eine Struktur mit einer ungeraden Anzahl Bytes deklariert wird, benötigt die Struktur ein Byte zusätzlichen Speicherplatz.

Beispiel:

Die Struktur wird folgendermaßen deklariert:

STRUKTUR_7_BYTE: STRUCT

BYTE_1_2: WORD BYTE_3_4: WORD BYTE_5_6: WORD BYTE_7: BYTE END_STRUCT

Die deklarierte Struktur "STRUKTUR_7_BYTE" benötigt 8Bytes Speicherplatz.

RET VAL (Rückgabewert)

Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.

Der SFC 21 gibt keine spezifischen Fehlerinformationen aus.

System-SFCs - "System Functions" > SFC 22 - CREAT DB - Datenbaustein erzeugen

14.1.18 SFC 22 - CREAT DB - Datenbaustein erzeugen

Beschreibung

Mit dem SFC 22 CREAT_DB (create data block) wird im Anwenderprogramm ein Datenbaustein erzeugt, der keine vorbesetzten Werte enthält. Es wird ein Datenbaustein mit einer Nummer aus einem angegebenen Bereich und mit vorgegebener Größe erzeugt, wobei aus dem angegebenen Bereich immer die kleinste mögliche Nummer an den DB vergeben wird. Um einen DB mit bestimmter Nummer zu erzeugen wird der Oberund Untergrenze des vorzugebenden Bereichs die gleiche Nummer gegeben. Sind im Anwenderprogramm bereits DBs enthalten, können diese Nummern nicht mehr vergeben werden. Die Länge des DBs muss in einer geraden Zahl angegeben werden.

Unterbrechbarkeit

Der SFC 22 kann durch höherpriore OBs unterbrochen werden. Wird ein SFC 22 in einem höherprioren OB aufgerufen, wird dieser Aufruf mit dem Fehlercode 8091h abgewiesen.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
LOW_LIMIT	INPUT	WORD	E, A, M, D, L, Konstante	Der untere Grenzwert ist die kleinste Nummer in dem Bereich der Nummern, die Sie Ihrem Daten- baustein zuordnen können.
UP_LIMIT	INPUT	WORD	E, A, M, D, L, Konstante	Der obere Grenzwert ist die größte Nummer in dem Bereich der Nummern, die Sie Ihrem Daten- baustein zuordnen können.
COUNT	INPUT	WORD	E, A, M, D, L, Konstante	Der Zählwert gibt die Anzahl der Datenbytes an, die Sie für ihren Datenbaustein reservieren möchten. Sie müssen hier eine gerade Zahl an Bytes (maximal 65534) angeben.
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.
DB_NUMBER	OUTPUT	WORD	E, A, M, D, L	Die Datenbausteinnummer ist die Nummer des erstellten Datenbausteins. Im Fehlerfall (Bit 15 von <i>RET_VAL</i> wurde gesetzt) wird in <i>DB_NUMBER</i> der Wert 0 eingetragen.

RET_VAL (Rückgabewert)

Wert	Beschreibung
0000h	kein Fehler
8091h	Sie haben den SFC 22 geschachtelt aufgerufen.
8092h	Die Funktion "Erzeugen eines DB" ist momentan nicht durchführbar, weil ■ die Funktion "Komprimieren des Anwenderspeichers" gerade aktiv ist.
80A1h	Fehler in der Nummer des DBs: ■ die Nummer ist 0 ■ die Nummer überschreitet die CPU-spezifische DB-Anzahl ■ Untergrenze > Obergrenze

System-SFCs - "System Functions" > SFC 23 - DEL DB - Datenbaustein löschen

Wert	Beschreibung
80A2h	Fehler in der Länge des DBs:
	die Länge ist 0
	die Länge wurde als ungerade Zahl angegeben
	die Länge ist größer als die CPU zulässt
80B1h	Es ist keine DB-Nummer frei.
80B2h	Es steht nicht genügend freier Speicherplatz zur Verfügung.
80B3h	Es steht nicht genügend zusammenhängender Speicher zur Verfügung.
	(Komprimieren durchführen!)

14.1.19 SFC 23 - DEL_DB - Datenbaustein löschen

Beschreibung

Mit dem SFC 23 DEL_DB (delete data block) wird ein Datenbaustein im Arbeitsspeicher und gegebenenfalls im Ladespeicher der CPU gelöscht. Der angegebene DB darf weder in der aktuellen Ablaufebene noch in einer Ablaufebene mit niederer Priorität aufgeschlagen sein, also weder in einem der beiden DB-Register noch im B-Stack eingetragen sein, ansonsten wechselt die CPU beim Aufruf des SFC 23 in den Betriebszustand STOP.

In der folgenden Tabelle ist aufgeführt, wann ein DB mit dem SFC 23 gelöscht werden kann.

Wenn der DB	dann ist er mit dem SFC 23
durch Aufruf des SFC 22 "CREAT_DB" erzeugt wurde,	löschbar.
nicht mit dem Schlüsselwort UNLINKED erzeugt wurde,	löschbar.

Unterbrechbarkeit

Der SFC 23 kann von höher prioren Ablaufebenen unterbrochen werden. Wird dort der SFC erneut aufgerufen, dann wird dieser zweite Aufruf abgebrochen, und in *RET_VAL* wird der Fehlercode 8091h eingetragen.

Parameter

Parameter	Deklaration	Datentyp	Speicherbe- reich	Beschreibung
DB_NUMBER	INPUT	WORD	E, A, M, D, L, Konstante	Nummer des zu löschenden DB.
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.

RET_VAL (Rückgabewert)

Wert	Beschreibung
0000h	kein Fehler
8091h	Bei ineinandergeschachtelten SFC 23-Aufrufen wurde die maximale Schachtelungstiefe überschritten.

System-SFCs - "System Functions" > FC/SFC 25 - COMPRESS - Komprimieren Anwenderspeicher

Wert	Beschreibung
8092h	Die Funktion "Löschen eines DB" ist momentan nicht durchführbar, weil die Funktion:
	"Komprimieren des Anwenderspeichers" oder"Anwenderprogramm sichern" gerade aktiv ist.
80A1h	Fehler in der Nummer des DBs:
	 die Nummer ist 0 die Nummer ist größer als die maximal mögliche DB-Anzahl
80B1h	Der DB mit der angegebenen Nummer ist auf der CPU nicht vorhanden.
80B2h	Der DB mit der angegebenen Nummer wurde mit dem Schlüsselwort UNLINKED erzeugt.
80B3h	Der DB befindet sich auf der Flashcard.

14.1.20 SFC 24 - TEST_DB - Datenbaustein testen

Beschreibung

Mit dem SFC 24 TEST_DB (test data block) können Informationen über einen im Arbeitsspeicher der CPU liegenden Datenbaustein abgerufen werden. Der SFC ermittelt die Anzahl der Datenbytes und stellt fest, ob der ausgewählte DB schreibgeschützt ist.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
DB_NUMBER	INPUT	WORD	E, A, M, D, L, Konstante	Nummer des zu überprüfenden DBs
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.
DB_LENGTH	OUTPUT	WORD	E, A, M, D, L	Anzahl der Datenbytes, die der ausgewählte DB enthält.
WRITE_PROT	OUTPUT	BOOL	E, A, M, D, L	Information über die Schreibschutzkennung des ausgewählten DB (1 bedeutet schreibgeschützt).

RET_VAL (Rückgabewert)

Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.

Wert	Beschreibung
0000h	kein Fehler
80A1h	Fehler beim Eingangsparameter DB_NUMBER:
	die Nummer ist 0
	die Nummer ist größer als die maximal mögliche DB-Anzahl
80B1h	Der DB mit der angegebenen Nummer ist auf der CPU nicht vorhanden.
80B2h	Der DB mit der angegebenen Nummer wurde mit dem Schlüsselwort UNLINKED erzeugt.

14.1.21 FC/SFC 25 - COMPRESS - Komprimieren Anwenderspeicher

Entstehen von Speicherlücken

Durch mehrfaches Löschen und Nachladen von Bausteinen können sowohl im Ladeals auch im Arbeitsspeicher Lücken entstehen, die den nutzbaren Speicherbereich verringern.

System-SFCs - "System Functions" > SFC 28 ... SFC 31 - Uhrzeitalarm

Beschreibung

Bitte beachten Sie, dass dieser Baustein in der Bibliothek für den Siemens SIMATIC Manager nicht enthalten ist.

Mit der FC/SFC 25 COMPRESS stoßen Sie die Komprimierung sowohl des RAM-Anteils des Ladespeichers als auch des Arbeitsspeichers an. Der Komprimiervorgang ist derselbe wie nach einem externen Anstoß im Betriebszustand RUN (Stellung des Betriebsartenschalters).

Ist die Komprimierung aufgrund eines externen Anstoßes (über Baugruppenzustand) bereits aktiv, führt der Aufruf der FC/SFC 25 zur Fehleranzeige.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
RET_VAL	OUTPUT	INT	E, A, M, D, L	Fehlerinformation
BUSY	OUTPUT	BOOL	E, A, M, D, L	Information, ob Komprimierung aufgrund der FC/SFC 25 aktiv ist. (1 bedeutet aktiv)
DONE	OUTPUT	BOOL	E, A, M, D, L	Information, ob der Komprimiervorgang, der durch die FC/SFC 25 angestoßen wurde, erfolgreich beendet wurde.
				(1 bedeutet erfolgreich beendet)

Kontrolle über Komprimiervorgang

Bei einem einmaligen Aufruf der FC/SFC 25 COMPRESS stoßen Sie den Komprimiervorgang an.

Der FC/SFC 25 ist im Zyklus aufzurufen. Nach jedem Aufruf ist zunächst der Parameter *RET_VAL* zu bewerten. Für den Fall, dass er den Wert 0 hat, sind die Parameter *BUSY* und *DONE* zu bewerten. Ist *BUSY* = 1 und *DONE* = 0, so weist dies darauf hin, dass der Komprimiervorgang noch aktiv ist. Erst wenn *BUSY* den Wert 0 und *DONE* den Wert 1 annimmt, wurde der Komprimiervorgang erfolgreich beendet.

Falls danach die FC/SFC 25 wieder aufgerufen wird, wird erneut ein Komprimieren angestoßen.

14.1.22 SFC 28 ... SFC 31 - Uhrzeitalarm

14.1.22.1 Übersicht

Voraussetzungen

Ein Uhrzeitalarm ist die Ursache für den uhrzeitgesteuerten Aufruf des Uhrzeitalarm-OB 10. Hierzu müssen folgende Voraussetzungen erfüllt sein:

- Der Uhrzeitalarm-OB ist parametriert über Hardware-Konfiguration oder mittels des SFC 28 (SET_TINT) im Anwenderprogramm.
- Der Uhrzeitalarm-OB ist aktiviert über Hardware-Konfiguration oder mittels des SFC 30 (ACT_TINT) im Anwenderprogramm.
- Der Uhrzeitalarm-OB darf nicht abgewählt worden sein.
- Der Uhrzeitalarm-OB muss in der CPU geladen sein.
- Falls das Stellen über den SFC 30 erfolgt, dürfen Startdatum und Startuhrzeit bei einmaliger Ausführung nicht abgelaufen sein, bei periodischer Ausführung wird der Uhrzeitalarm-OB zur nächsten abgelaufenen Periode aufgerufen (Startzeitpunkt + Vielfaches der Periodendauer).

System-SFCs - "System Functions" > SFC 28 ... SFC 31 - Uhrzeitalarm

SFCs 28 ... 31 Folgende SFCs kommen bei Uhrzeitalarmen zum Einsatz:

Stellen: SFC 28
Stornieren: SFC 29
Aktivieren: SFC 30
Abfragen: SFC 31

14.1.22.2 SFC 28 - SET_TINT - Uhrzeitalarm stellen

Mit dem SFC 28 SET_TINT (set time-of-day interrupt) können Startdatum und -uhrzeit der Uhrzeitalarm-Organisationsbausteine eingestellt werden. Bei der Startuhrzeit werden die Angaben für Sekunden und Millisekunden ignoriert und auf 0 gesetzt.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
OB_NR	INPUT	INT	E, A, M, D, L, Konstante	Nummer des OBs, der zum Zeitpunkt <i>SDT</i> + Vielfaches von <i>PERIOD</i> gestartet wird
				(OB 10, OB 11).
SDT	INPUT	DT	D, L	Startdatum und Startuhrzeit
PERIOD	INPUT	WORD	E, A, M, D, L,	Periode vom Ausgangspunkt SDT an:
			Konstante	0000h = Einmal
				0201h = Minütlich
				0401h = Stündlich
				1001h = Täglich
				1201h = Wöchentlich
				1401h = Monatlich
				1801h = Jährlich
				2001h = Monatsende
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.

RET_VAL (Rückgabewert)

Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.

Wert	Beschreibung
0000h	kein Fehler
8090h	Fehlerhafter Parameter OB_NR
8091h	Fehlerhafter Parameter SDT
8092h	Fehlerhafter Parameter PERIOD
80A1h	Der eingestellte Startzeitpunkt liegt in der Vergangenheit.

14.1.22.3 SFC 29 - CAN_TINT - Uhrzeitalarm stornieren

Mit dem SFC 29 CAN_TINT (cancel time-of-day interrupt) können Startdatum und -uhrzeit eines angegebenen Uhrzeitalarm - Organisationsbausteins gelöscht werden.

System-SFCs - "System Functions" > SFC 28 ... SFC 31 - Uhrzeitalarm

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
OB_NR	INPUT	INT	E, A, M, D, L, Konstante	Nummer des OBs, dessen Startdatum und -uhrzeit gelöscht werden soll (OB 10, OB 11).
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.

RET_VAL (Rückgabewert)

Wert	Beschreibung
0000h	Es ist kein Fehler aufgetreten.
8090h	Fehlerhafter Parameter OB_NR
80A0h	Kein Startdatum/-uhrzeit festgelegt für den betreffenden Uhrzeitalarm-OB

14.1.22.4 SFC 30 - ACT_TINT - Uhrzeitalarm aktivieren

Mit dem SFC 30 ACT_TINT (activate time-of-day interrupt) kann ein angegebener Uhrzeitalarm-Organisationsbaustein aktiviert werden.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
OB_NR	INPUT	INT	E, A, M, D, L, Konstante	Nummer des OBs, der aktiviert werden soll (OB 10, OB 11)
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.

RET_VAL (Rückgabewert)

Wert	Beschreibung
0000h	Es ist kein Fehler aufgetreten.
8090h	Fehlerhafter Parameter OB_NR
80A0h	Kein Startdatum/-uhrzeit festgelegt für den betreffendenUhrzeitalarm-OB
80A1h	Die aktivierte Zeit liegt in der Vergangenheit; Fehler tritt nur bei einmaliger Ausführung auf.

14.1.22.5 SFC 31 - QRY_TINT - Uhrzeitalarm abfragen

Mit dem SFC 31 QRY_TINT (query time-of-day interrupt) kann der Status des angegebenen Uhrzeitalarm-Organisationsbausteins am Ausgangsparameter STATUS angezeigt werden.

System-SFCs - "System Functions" > SFC 32 - SRT DINT - Verzögerungsalarm starten

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
OB_NR	INPUT	INT	E, A, M, D, L,	Nummer des OBs, dessen Status abgefragt wird
			Konstante	(OB 10, OB 11)
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.
STATUS	OUTPUT	WORD	E, A, M, D, L	Status des Uhrzeitalarms

RET_VAL (Rückgabewert)

Wert	Beschreibung
0000h	Es ist kein Fehler aufgetreten.
8090h	Fehlerhafter Parameter OB_NR

STATUS

Bit	Wert	Beschreibung			
0	0	Uhrzeitalarm ist vom Betriebssystem freigegeben.			
1	0	Neue Uhrzeitalarme werden nicht verworfen.			
2	0	Uhrzeitalarm ist nicht aktiviert oder abgelaufen.			
3	-	reserviert			
4	0	Uhrzeitalarm-OB ist nicht geladen.			
5	0	Die Ausführung des Uhrzeitalarm-OBs ist durch eine laufende Testfunktion gesperrt.			

14.1.23 SFC 32 - SRT DINT - Verzögerungsalarm starten

Beschreibung

Mit dem SFC 32 SRT_DINT (start time-delay interrupt) kann ein Verzögerungsalarm gestartet werden, der nach Ablauf der parametrierten Verzögerungszeit (Parameter *DTIME*) einen Verzögerungsalarm-OB aufruft. Am Parameter *SIGN* kann ein anwenderspezifisches Kennzeichen angeben werden, um den Start des Verzögerungsalarms zu kennzeichnen. Während der Ausführung erscheinen die Werte von *DTIME* und *SIGN* in der Startereignisinformation des angegebenen OB.

Voraussetzungen

Damit ein Verzögerungsalarm aufgerufen werden kann, müssen folgende Voraussetzungen erfüllt werden:

- Der Verzögerungsalarm-OB muss gestartet sein (mit dem SFC 32).
- Der Verzögerungsalarm-OB darf nicht abgewählt worden sein.
- Der Verzögerungsalarm-OB muss in der CPU vorhanden sein.

System-SFCs - "System Functions" > SFC 33 - CAN DINT - Verzögerungsalarm stornieren

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
OB_NR	INPUT	INT	E, A, M, D, L, Konstante	Nummer des OB, der nach einer Verzögerungszeit gestartet wird
				(OB 20, OB 21)
DTIME	INPUT	TIME	E, A, M, D, L,	Zeitwert der Verzögerung
			Konstante	(1 60 000 ms)
SIGN	INPUT	WORD	E, A, M, D, L, Konstante	Kennzeichen, das beim Aufruf des Verzögerungs- alarm-OBs in der Startereignisinformation des OBs erscheint
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.

Genauigkeit

Die Zeit zwischen dem Aufruf des SFC 32 und dem Start des Verzögerungsalarm-OBs ist maximal eine Millisekunde kleiner als die parametrierte Zeit, sofern keine Unterbrechungsereignisse den Aufruf verzögern.

RET_VAL (Rückgabewert)

Wert	Beschreibung
0000h	Es ist kein Fehler aufgetreten.
8090h	Fehlerhafter Parameter OB_NR
8091h	Fehlerhafter Parameter DTIME

14.1.24 SFC 33 - CAN_DINT - Verzögerungsalarm stornieren

Beschreibung

Mit dem SFC 33 CAN_DINT (cancel time-delay interrupt) kann ein bereits gestarteter Verzögerungsalarm storniert werden. In diesem Fall wird der Verzögerungsalarm-OB nicht aufgerufen.

System-SFCs - "System Functions" > SFC 34 - QRY DINT - Verzögerungsalarm Status abfragen

Voraussetzungen

Damit ein Verzögerungsalarm aufgerufen werden kann, müssen folgende Voraussetzungen erfüllt werden:

- Der Verzögerungsalarm-OB muss gestartet sein (mit dem SFC 32).
- Der Verzögerungsalarm-OB darf nicht abgewählt worden sein.
- Der Verzögerungsalarm-OB muss in der CPU vorhanden sein.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
OB_NR	INPUT	INT	E, A, M, D, L, Konstante	Nummer des OBs, der storniert werden soll (OB 20, OB 21).
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.

RET_VAL (Rückgabewert)

Wert	Beschreibung
0000h	Es ist kein Fehler aufgetreten.
8090h	Fehlerhafter Parameter OB_NR
80A0h	Verzögerungsalarm ist nicht gestartet.

14.1.25 SFC 34 - QRY_DINT - Verzögerungsalarm Status abfragen

Beschreibung

Mit dem SFC 34 QRY_DINT (query time-delay interrupt) kann der Zustand eines Verzögerungsalarms am Ausgangsparameter *STATUS* angezeigt werden.

Voraussetzungen

Damit ein Verzögerungsalarm aufgerufen werden kann, müssen folgende Voraussetzungen erfüllt werden:

- Der Verzögerungsalarm-OB muss gestartet sein (mit dem SFC 32).
- Der Verzögerungsalarm-OB darf nicht abgewählt worden sein.
- Der Verzögerungsalarm-OB muss in der CPU vorhanden sein.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
OB_NR	INPUT	INT	E, A, M, D, L, Konstante	Nummer des OB, dessen Zustand abgefragt wird (OB 20, OB 21)
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.
STATUS	OUTPUT	WORD	E, A, M, D, L	Zustand des Verzögerungsalarms

RET_VAL (Rückgabewert)

Wert	Beschreibung
0000h	Es ist kein Fehler aufgetreten.

System-SFCs - "System Functions" > SFC 36 - MSK FLT - Synchronfehlerereignisse maskieren

Wert	Beschreibung
8090h	Fehlerhafter Parameter OB_NR

STATUS

Bit	Wert	Beschreibung
0	0	Verzögerungsalarm ist vom Betriebssystem freigegeben.
1	0	Neue Verzögerungsalarm werden nicht verworfen.
2	0	Verzögerungsalarm ist nicht aktiviert oder abgelaufen.
3	-	-
4	0	Verzögerungsalarm -OB ist nicht geladen.
5	0	Die Ausführung des Verzögerungsalarm-OBs ist durch eine laufende Testfunktion gesperrt.

14.1.26 SFC 36 - MSK FLT - Synchronfehlerereignisse maskieren

Beschreibung

Mit dem SFC 36 MSK_FLT (mask synchronous faults) können Sie die Reaktion der CPU auf Synchronfehlerereignisse steuern, indem die jeweiligen Synchronfehlerereignisse maskiert werden.

Mit dem Aufruf des SFC 36 werden die Synchronfehlerereignisse in der aktuellen Prioritätsklasse maskiert. Wenn in den Eingangsparametern einzelne Bits der Synchronfehlermasken auf "1" gesetzt werden, dann behalten andere, vorher bereits gesetzte Bits ihre Wertigkeit "1". Dadurch erhält man neue Fehlermasken, die über die Ausgangsparameter ausgelesen werden können. Die maskierten Synchronfehlerereignisse werden in einem Ereignisstatusregister eingetragen und rufen keinen OB auf. Das Auslesen des Ereignisstatusregisters erfolgt mit dem SFC 38 READ_ERR.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
PRGFLT_SET_MASK	INPUT	DWORD	E, A, M, D, L, Konstante	Zu maskierende Programmierfehler
ACCFLT_SET_MASK	INPUT	DWORD	E, A, M, D, L, Konstante	Zu maskierende Zugriffsfehler
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.
PRGFLT_MASKED	OUTPUT	DWORD	E, A, M, D, L	Maskierte Programmierfehler
ACCFLT_MASKED	OUTPUT	DWORD	E, A, M, D, L	Maskierte Zugriffsfehler

RET_VAL (Rückgabewert)

Wert	Beschreibung
0000h	Keiner der Fehler war bereits maskiert.
0001h	Mindestens einer der Fehler war bereits maskiert, trotzdem werden die anderen Fehler maskiert.

System-SFCs - "System Functions" > SFC 38 - READ ERR - Ereignisstatusregister lesen

14.1.27 SFC 37 - DMSK FLT - Synchronfehlerereignisse demaskieren

Beschreibung

Mit dem SFC 37 DMSK_FLT (unmask synchronous faults) werden bereits maskierte Synchronfehlerereignisse demaskiert. Mit dem Aufruf des SFC 37 werden die Synchronfehlerereignisse in der aktuellen Prioritätsklasse demaskiert. Hierzu werden in den Eingangsparametern die entsprechenden Bits der Fehlermasken auf "1" gesetzt. Dadurch erhält man neue Fehlermasken, die über die Ausgangsparameter ausgelesen werden können. Die abgefragten Einträge im Ereignisstatusregister werden gelöscht.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
PRGFLT_RESET_MASK	INPUT	DWORD	E, A, M, D, L, Konstante	Zu demaskierende Programmierfehler
ACCFLT_RESET_MASK	INPUT	DWORD	E, A, M, D, L, Konstante	Zu demaskierende Zugriffsfehler
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.
PRGFLT_MASKED	OUTPUT	DWORD	E, A, M, D, L	Noch maskierte Programmierfehler
ACCFLT_MASKED	OUTPUT	DWORD	E, A, M, D, L	Noch maskierte Zugriffsfehler

RET_VAL (Rückgabewert)

Wert	Beschreibung
0000h	Alle angegebenen Fehler wurden demaskiert.
0001h	Mindestens einer der Fehler war nicht maskiert, trotzdem werden die anderen Fehler demaskiert.

14.1.28 SFC 38 - READ ERR - Ereignisstatusregister lesen

Beschreibung

Mit dem SFC 38 READ_ERR (read error registers) wird das Ereignisstatusregister ausgelesen. Im Aufbau entspricht das Ereignisstatusregister den Programmier- und Zugriffsfehlermasken, die mit dem SFC 36 und 37 als Eingangsparameter programmiert wurden. Mit dem Aufruf des SFC 38 werden die gewünschten Einträge aus dem Ereignisstatusregister gelesen und gleichzeitig gelöscht. Über die Eingangsparameter wird festgelegt, welche Synchronfehlerereignisse aus dem Ereignisstatusregister abgefragt werden sollen. Sie erhalten die Information, welche der maskierten Synchronfehler in der aktuellen Prioritätsklasse mindestens einmal aufgetreten sind. Ein gesetztes Bit bedeutet, dass der zugehörige maskierte Synchronfehler mindestens einmal aufgetreten ist.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
PRGFLT_QUERY	INPUT	DWORD	E, A, M, D, L, Konstante	Abfrage der Programmierfehler
ACCFLT_QUERY	INPUT	DWORD	E, A, M, D, L, Konstante	Abfrage der Zugriffsfehler
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.
PRGFLT_ESR	OUTPUT	DWORD	E, A, M, D, L	Aufgetretene Programmierfehler
ACCFLT_ESR	OUTPUT	DWORD	E, A, M, D, L	Aufgetretene Zugriffsfehler

System-SFCs - "System Functions" > SFC 39 - DIS_IRT - Alarmereignisse sperren

RET_VAL (Rückgabewert)

Wert	Beschreibung
0000h	Alle abgefragten Fehler sind maskiert.
0001h	Mindestens einer der abgefragten Fehler ist nicht maskiert.

14.1.29 SFC 39 - DIS_IRT - Alarmereignisse sperren

Beschreibung

Mit dem SFC 39 DIS_IRT (disable interrupt) sperren Sie die Bearbeitung neuer Alarmund Asynchronfehlerereignisse. Sperren heißt, dass das Betriebssystem der CPU bei einem Unterbrechungsereignis

- weder einen Alarm-OB bzw. einen Asynchronfehler-OB aufruft,
- noch die festgelegte Reaktion bei nicht programmiertem Alarm-OB bzw. Asynchronfehler-OB auslöst.

Die Sperre der Bearbeitung von Alarm- und Asynchronfehlerereignissen bleibt über alle Prioritätsklassen gültig. Die Sperre kann nur mit dem SFC 40 aufgehoben werden bzw. auch bei Neustart.

Ob das Betriebssystem das aufgetretene Alarm- bzw. Asynchronfehlerereignis in den Diagnosepuffer einträgt, ist abhängig von Ihrer Wahl des Eingangsparameters *MODE*.

Bitte beachten Sie, dass bei der Programmierung des SFC 39 alle eintreffenden Alarme verworfen werden.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
MODE	INPUT	BYTE	E, A, M, D, L, Konstante	Gibt an, welche Alarm- und Asynchronfehlerereignisse gesperrt werden.
OB_NR	INPUT	INT	E, A, M, D, L, Konstante	OB-Nummer
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.

MODE

MODE	Beschreibung
00	Alle neu aufgetretenen Alarm- und Asynchronfehlerereignisse werden gesperrt
	(nicht gesperrt werden Synchronfehlerereignisse).

System-SFCs - "System Functions" > SFC 40 - EN IRT - Gesperrte Alarmereignisse freigeben

MODE	Beschreibung
01	Alle neu auftretenden Ereignisse einer angegebenen Alarmklasse werden gesperrt.
	Die Alarmklasse kennzeichnen Sie wie folgt:
	■ Uhrzeitalarme: 10
	■ Verzögerungsalarme: 20
	Weckalarme: 30Prozessalarme: 40
	■ Alarme für DP-V1: 50
	■ Asynchrone Fehleralarme: 80
	Die Einträge in den Diagnosepuffer erfolgen weiterhin.
02	Alle neu auftretenden Ereignisse eines angegebenen Alarms werden gesperrt. Den Alarm kennzeichnen Sie durch die OB-Nummer.
	Die Einträge in den Diagnosepuffer erfolgen weiterhin.
80	Alle neu auftretenden Alarm- und Asynchronfehlerereignisse werden gesperrt und sie werden auch nicht mehr in den Diagnosepuffer eingetragen.
	Das Betriebssystem trägt das Ereignis 5380h in den Diagnosepuffer ein.
81	Alle neu auftretenden Ereignisse einer angegebenen Alarmklasse werden gesperrt und sie werden auch nicht mehr in den Diagnosepuffer eingetragen.
	Das Betriebssystem trägt das Ereignis 5380h in den Diagnosepuffer ein.
82	Alle neu auftretenden Ereignisse einer angegebenen Alarms werden gesperrt und sie werden auch nicht mehr in den Diagnosepuffer eingetragen.
	Das Betriebssystem trägt das Ereignis 5380h in den Diagnosepuffer ein.

RET_VAL (Rückgabewert)

Wert	Beschreibung
0000h	Es ist kein Fehler aufgetreten.
8090h	Der Eingangsparameter OB_NR enthält einen unzulässigen Wert.
8091h	Der Eingangsparameter MODE enthält einen unzulässigen Wert.
8xyyh	Allgemeine Fehlerinformation,
	→ "Allgemeine und spezifische Fehlercodes RET_VAL"Seite 65

14.1.30 SFC 40 - EN_IRT - Gesperrte Alarmereignisse freigeben

Beschreibung

Mit dem SFC 40 EN_IRT (enable interrupt) geben Sie die mit dem SFC 39 gesperrte Bearbeitung neuer Alarm- und Asynchronfehlerereignisse wieder frei. Freigeben heißt, dass das Betriebssystem der CPU bei einem Unterbrechungsereignis:

- einen Alarm-OB bzw. einen Asynchronfehler-OB aufruft, oder
- die festgelegte Reaktion bei nicht programmiertem Alarm-OB bzw. Asynchronfehler-OB auslöst.

System-SFCs - "System Functions" > SFC 41 - DIS_AIRT - Alarmereignisse verzögern

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
MODE	INPUT	BYTE	E, A, M, D, L, Konstante	Gibt an, welche Alarm- und Asynchronfehlerereignisse freigegeben werden.
OB_NR	INPUT	INT	E, A, M, D, L, Konstante	OB-Nummer
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.

MODE

MODE	Beschreibung
00	Alle neu aufgetretenen Alarm- und Asynchronfehlerereignisse werden freigegeben.
01	Alle neu auftretenden Ereignisse einer angegebenen Alarmklasse werden freigegeben. Die Alarmklasse kennzeichnen Sie wie folgt: Uhrzeitalarme: 10 Verzögerungsalarme: 20 Weckalarme: 30 Prozessalarme: 40 Alarme für DP-V1: 50 Asynchrone Fehleralarme: 80
02	Alle neu auftretenden Ereignisse eines angegebenen Alarms werden freigegeben. Den Alarm kennzeichnen Sie durch die OB-Nummer.

RET_VAL (Rückgabewert)

Wert	Beschreibung
0000h	Es ist kein Fehler aufgetreten.
8090h	Der Eingangsparameter OB_NR enthält einen unzulässigen Wert.
8091h	Der Eingangsparameter MODE enthält einen unzulässigen Wert.
8xyyh	Allgemeine Fehlerinformation
	→ "Allgemeine und spezifische Fehlercodes RET_VAL"Seite 65

14.1.31 SFC 41 - DIS AIRT - Alarmereignisse verzögern

Beschreibung

Mit dem SFC 41 DIS_AIRT (disable alarm interrupts) wird die Bearbeitung von Alarm-OBs und Asynchronfehler-OBs, deren Priorität höher ist als die des aktuellen OBs verzögert. Innerhalb eines OBs kann der SFC 41 mehrmals aufgerufen werden, wobei die Aufrufe vom Betriebssystem gezählt werden. Die Bearbeitungsverzögerung ist solange gültig, bis mit dem SFC 42 EN_AIRT jede mit einem SFC 41 verzögerte Bearbeitung von Alarm-OBs und Asynchronfehler-OBs aufgehoben wird oder der aktuelle OB abgearbeitet ist

Die Bearbeitung der anstehenden Alarm- oder Asynchronfehlerereignisse findet statt, sobald die Bearbeitungsverzögerung mit dem SFC 42 EN_AIRT aufgehoben wurde oder die aktuelle OB-Bearbeitung beendet ist.

System-SFCs - "System Functions" > SFC 44 - REPL VAL - Ersatzwert in AKKU1 übertragen

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
RET_VAL	OUTPUT	INT	E, A, M, D, L	Anzahl der Verzögerungen
				(= Anzahl der Aufrufe des SFC 41)

RET_VAL (Rückgabewert)

Der Rückgabewert *RET_VAL* zeigt nach Ablauf des SFC die Anzahl der Bearbeitungsverzögerungen, also der Aufrufe des SFC 41 an. (Die Alarmbearbeitung ist erst wieder freigegeben, wenn *RET_VAL* = 0 ist.)

14.1.32 SFC 42 - EN_AIRT - Verzögerte Alarmereignissen freigeben

Beschreibung

Mit dem SFC 42 EN_AIRT (enable alarm interrupts) wird die mit dem SFC 41 verzögerte Bearbeitung von höherprioren Alarm- bzw. Asynchronfehlerereignissen wieder freigegeben.

Dabei muss jede einzelne Bearbeitungsverzögerung mit dem SFC 42 beendet werden. Wenn also z.B. mit 5 SFC 41-Aufrufen 5 verschiedene Alarme verzögert wurden, so muss mit 5 SFC 42-Aufrufen jede dieser Alarmverzögerungen auch wieder aufgehoben werden.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
RET_VAL	OUTPUT	INT	E, A, M, D, L	Anzahl der noch programmierten Verzögerungen nach Ablauf des SFC 42 bzw. wenn während der Bearbeitung der Funktion ein Fehler auftritt, enthält der Rückgabewert einen Fehlercode.

RET_VAL (Rückgabewert)

Der Rückgabewert *RET_VAL* zeigt nach Ablauf des SFC die Anzahl der Bearbeitungsverzögerungen, also der Aufrufe des SFC 41 an. (Die Alarmbearbeitung ist erst wieder freigegeben, wenn *RET_VAL* = 0 ist.)

Wert	Beschreibung
8080h	Obwohl die Alarmbearbeitung bereits freigegeben war, wurde die Funktion aufgerufen.

14.1.33 SFC 43 - RE_TRIGR - Zykluszeitüberwachung neu starten

Beschreibung

Mit dem SFC 43 RE_TRIGR (retrigger watchdog) wird die Zykluszeitüberwachung der CPU neu gestartet.

Parameter und Rückmeldungen

Der SFC 43 besitzt weder Parameter noch werden Fehlerinformationen zurückgeliefert.

14.1.34 SFC 44 - REPL_VAL - Ersatzwert in AKKU1 übertragen

Beschreibung

Mit dem SFC 44 REPL_VAL (replace value) wird ein Wert in den AKKU1 der fehlerverursachenden Programmebene übertragen. Der SFC 44 darf nur in Synchronfehler-OBs (OB 121, OB 122) aufgerufen werden.

Anwendungsbeispiel des SFC 44:

System-SFCs - "System Functions" > SFC 47 - WAIT - Verzögern des Anwenderprogramms

Wenn an einem Eingabemodul eine Störung vorhanden ist, die dazu führt, dass von dem Modul keine Werte mehr gelesen werden können, so wird nach jedem Zugriffsversuch auf dieses Modul der OB 122 gestartet. Mit Hilfe des SFC 44 REPL_VAL kann im OB 122 ein geeigneter Ersatzwert in den AKKU1 der unterbrochenen Programmebene übertragen werden, wobei die Programmbearbeitung dann mit diesem Ersatzwert fortgesetzt wird. Die Informationen, die für die Auswahl des Ersatzwertes notwendig sind (z.B. Baustein, in dem der Fehler auftrat, betroffene Adresse), können den lokalen Variablen des OB 122 entnommen werden.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
VAL	INPUT	DWORD	E, A, M, D, L, Konstante	Ersatzwert
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.

RET VAL (Rückgabewert)

Wert	Beschreibung
0000h	Es ist kein Fehler aufgetreten. Ein Ersatzwert wurde eingegeben.
8080h	Der SFC 44 wurde nicht von einem Synchronfehler-OB (OB 121, OB 122) aus aufgerufen.

14.1.35 SFC 46 - STP - CPU in STOP überführen

Beschreibung Mit dem SFC 46 STP wird die CPU in den Betriebszustand STOP überführt.

Parameter und Rückmeldungen

Der SFC 46 besitzt weder Parameter noch werden Fehlerinformationen zurückgeliefert.

14.1.36 SFC 47 - WAIT - Verzögern des Anwenderprogramms

Beschreibung

Mit dem SFC 47 WAIT werden Zeitverzögerungen bzw. Wartezeiten von 1 bis zu 32767µs in Ihrem Anwenderprogramm programmiert.

Unterbrechbarkeit

Der SFC 47 kann durch höherpriore OBs unterbrochen werden.

ĭ

Bei der mit dem SFC 47 programmierten Verzögerungszeit handelt es sich um eine Mindestzeit, die um die Ausführungszeit der eingeschachtelten Prioritätsklassen sowie um Systemlasten verlängert werden kann!

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
WT	INPUT	INT	E, A, M, D, L, Konstante	Der Parameter WT enthält die Verzögerungszeit in μ s.

System-SFCs - "System Functions" > SFC 49 - LGC GADR - Steckplatz ermitteln

Fehlerinformationen

Der SFC 47 gibt keine spezifischen Fehlerinformationen aus.

14.1.37 SFC 49 - LGC_GADR - Steckplatz ermitteln

Beschreibung

Mit dem SFC 49 LGC_GADR (convert logical address to geographical address) wird der zu einer logischen Adresse gehörende Modulsteckplatz sowie der Offset im Nutzdatenadressraum des Moduls ermittelt.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
IOID	INPUT	BYTE	E, A, M, D, L,	Kennung des Adressbereichs:
			Konstante	54h = Peripherie-Eingang (PE)
				55h = Peripherie-Ausgang (PA)
				Handelt es sich um ein Mischmodul, ist die Bereichskennung der niedrigeren Adresse anzu- geben. Bei gleichen Adressen ist 54h anzu- geben.
LADDR	INPUT	WORD	E, A, M, D, L, Konstante	Logische Adresse. Bei einem Mischmodul ist die kleinere der beiden Adressen anzugeben.
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.
AREA	OUTPUT	BYTE	E, A, M, D, L	Bereichskennung: Sie gibt an, wie die restlichen Ausgangsparameter zu interpretieren sind.
RACK	OUTPUT	WORD	E, A, M, D, L	Siehe AREA unten
SLOT	OUTPUT	WORD	E, A, M, D, L	
SUBADDR	OUTPUT	WORD	E, A, M, D, L	

AREA

AREA gibt an, wie die Ausgangsparameter RACK, SLOT und SUBADDR zu interpretieren sind. Diese Abhängigkeit ist nachfolgend aufgeführt.

Wert von AREA	System	Bedeutung von RACK, SLOT und SUBADDR
0	-	reserviert
1	Siemens S7-300	RACK: Nummer Baugruppenträger SLOT: Nummer Steckplatz SUBADDR: Adressoffset zur Anfangsadresse
2	Dezentrale Peripherie	RACK (Low-Byte): Stationsnummer RACK (High-Byte): DP-Mastersystem-ID SLOT: Nummer Steckplatz in Station SUBADDR: Adressoffset zur Anfangsadresse
3 6	-	reserviert

RET_VAL (Rückgabewert)

System-SFCs - "System Functions" > SFC 50 - RD_LGADR - Alle Adressen eines Moduls lesen

Wert	Beschreibung
0000h	Es ist kein Fehler aufgetreten.
8090h	Angegebene logische Adresse ungültig oder unzulässiger Wert beim Parameter IOID.

14.1.38 SFC 50 - RD_LGADR - Alle Adressen eines Moduls lesen

Beschreibung

Mit dem SFC 50 RD_LGADR (read module logical addresses) werden alle vereinbarten logischen Adressen eines Moduls ermittelt, ausgehend von einer logischen Adresse dieses Moduls.

Die Zuordnung von logischen Adressen zum Modul muss vorher von Ihnen projektiert worden sein. Die ermittelten logischen Adressen werden in das Feld *PEADDR* bzw. in das Feld *PAADDR* in aufsteigender Reihenfolge eingetragen.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
IOID	INPUT	BYTE	E, A, M, D, L, Konstante	Bereichskennung:
				54h = Peripherie-Eingang (PE)
				55h = Peripherie-Ausgang (PA)
LADDR	INPUT	WORD	E, A, M, D, L, Konstante	Eine logische Adresse
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.
PEADDR	OUTPUT	ANY	E, A, M, D, L	Feld für die PE-Adressen, Feldelemente müssen vom Datentyp WORD sein.
PECOUNT	OUTPUT	INT	E, A, M, D, L	Anzahl der zurückgelieferten PE-Adressen
PAADDR	OUTPUT	ANY	E, A, M, D, L	Feld für die PA-Adressen, Feldelemente müssen vom Datentyp WORD sein.
PACOUNT	OUTPUT	INT	E, A, M, D, L	Anzahl der zurückgelieferten PA-Adressen

RET_VAL (Rückgabewert)

Wert	Beschreibung				
0000h	Es ist kein Fehler aufgetreten.				
8090h	Angegebene logische Adresse ungültig oder unzulässiger Wert beim Parameter IOID.				
80A0h	Fehler beim Ausgangsparameter PEADDR:				
	Der Datentyp der Feldelemente ist nicht WORD.				
80A1h	Fehler beim Ausgangsparameter PAADDR:				
	Der Datentyp der Feldelemente ist nicht WORD.				
80A2h	Fehler beim Ausgangsparameter PEADDR:				
	Das angegebene Feld konnte nicht alle logischen Adressen aufnehmen.				
80A3h	Fehler beim Ausgangsparameter PAADDR:				
	Das angegebene Feld konnte nicht alle logischen Adressen aufnehmen.				

System-SFCs - "System Functions" > SFC 51 - RDSYSST - Auslesen der Informationen der SZL

14.1.39 SFC 51 - RDSYSST - Auslesen der Informationen der SZL

Beschreibung

Mit dem SFC 51 RDSYSST (read system status) können Sie eine Teilliste bzw. einen Teillistenauszug der SZL (**S**ystem**z**ustandsliste) anfordern. Hierbei bestimmen Sie mit den Parametern *SZL ID* und *INDEX* was Sie auslesen möchten.

Der *INDEX* ist nicht immer erforderlich. Er dient der Bestimmung eines Objekts innerhalb einer Teilliste.

Durch Setzen von *REQ* starten Sie die Abfrage. Sobald *BUSY* = 0 zurückgemeldet wird, liegen die Daten im Zielbereich DR ab.

Informationen zur SZL finden Sie im Teil "Systemzustandsliste SZL".

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
REQ	INPUT	BOOL	E, A, M, D, L, Konstante	REQ = 1: Anstoß der Bearbeitung
SZL_ID	INPUT	WORD	E, A, M, D, L, Konstante	SZL_ID der Teilliste oder des Teillistenauszugs
INDEX	INPUT	WORD	E, A, M, D, L, Konstante	Typ oder Nummer eines Objekts in einer Teilliste
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode
BUSY	OUTPUT	BOOL	E, A, M, D, L	BUSY = 1: Lesevorgang noch nicht abgeschlossen
SZL_HEADER	OUTPUT	STRUCT	D, L	Struktur mit 2 WORD-Typen:
				LENGTHDR: Länge Datensatz WORDN_DR: Anzahl vorhandener zugehöriger Datensätze (bei Zugriff auf Teillistenkopfinfo) oder Anzahl der in DR übertragenen Datensätze.
DR	OUTPUT	ANY	E, A, M, D, L	Zielbereich für die gelesene SZL-Teilliste bzw. den gelesenen SZL-Teillistenauszug:
				Falls Sie nur die SZL-Teillistenkopfinfo einer SZL-Teilliste ausgelesen haben, dürfen Sie DR nicht auswerten, sondern nur SZL_HEADER.
				Andernfalls gibt das Produkt aus LENGTHDR und N_DR an, wie viele Bytes in DR eingetragen wurden.

RET_VAL (Rückgabewert)

Wert	Beschreibung			
0000h	kein Fehler			
0081h	Länge des Ergebnisfeldes zu klein.			
	Es werden trotzdem so viele Datensätze wie möglich geliefert.			
	Der SZL-Header zeigt diese Anzahl an.			
7000h	Erstaufruf mit <i>REQ</i> = 0: keine Datenübertragung aktiv; <i>BUSY</i> = 0.			
7001h	Erstaufruf mit <i>REQ</i> = 1: Datenübertragung angestoßen; <i>BUSY</i> = 1.			

System-SFCs - "System Functions" > SFC 52 - WR USMSG - Eintrag in Diagnosepuffer schreiben

Wert	Beschreibung				
7002h	Zwischenaufruf (<i>REQ</i> irrelevant): Datenübertragung bereits aktiv; <i>BUSY</i> = 1.				
8081h	Länge des Ergebnisfeldes zu klein. Platz reicht nicht für einen Datensatz.				
8082h	SZL_ID ist falsch oder in der CPU bzw. in dem SFC unbekannt.				
8083h	INDEX ist falsch oder nicht erlaubt.				
8085h	Die Information ist systembedingt momentan nicht verfügbar, z.B. wegen Ressourcenmangels.				
8086h	Datensatz ist nicht lesbar wegen eines Systemfehlers.				
8087h	Datensatz ist nicht lesbar, weil das Modul nicht vorhanden ist oder nicht quittiert.				
8088h	Datensatz ist nicht lesbar, weil die tatsächliche Typkennung von der Solltypkennung abweicht.				
8089h	Datensatz ist nicht lesbar, weil das Modul nicht diagnosefähig ist.				
80A2h	DP-Protokollfehler - Layer-2-Fehler (temporärer Fehler).				
80A3h	DP-Protokollfehler bei User-Interface/User (temporärer Fehler)				
80A4h	Kommunikation am Bus ist gestört. Fehler tritt auf zwischen CPU und externer DP-Anschaltung (temporärer Fehler).				
80C5h	Dezentrale Peripherie nicht verfügbar (temporärer Fehler).				

14.1.40 SFC 52 - WR USMSG - Eintrag in Diagnosepuffer schreiben

Beschreibung

Mit dem SFC 52 WR_USMSG (write user element in diagnosis buffer) wird ein anwenderdefiniertes Diagnoseereignis in den Diagnosepuffer geschrieben.

Diagnosemeldung senden

Um zu prüfen, ob das Senden von anwenderdefinierten Diagnosemeldungen momentan möglich ist, rufen Sie den SFC 51 "RDSYSST" mit den Parametern *SZL_ID* = 0132h und *INDEX* = 0005h auf. Enthält das vierte Wort des dabei gelieferten Datensatzes den Wert 1 ist das Senden möglich, enthält es den Wert 0 ist das Senden nicht möglich.

Sendepuffer voll

Die Diagnosemeldung kann nur dann in den Sendepuffer eingetragen werden, wenn der Sendepuffer nicht voll ist. Maximal können 50 Einträge im Sendepuffer abgelegt werden.

Ist der Sendepuffer voll, dann:

- erfolgt trotzdem der Eintrag des Diagnoseereignisses in den Diagnosepuffer.
- wird die entsprechende Fehlermeldung (8092h) im Parameter RET_VAL angezeigt.

Teilnehmer nicht angemeldet

Wenn eine anwenderdefinierte Diagnosemeldung gesendet werden soll und kein Teilnehmer angemeldet ist, dann

- erfolgt trotzdem der Eintrag des anwenderdefinierten Diagnoseereignisses in den Diagnosepuffer,
- wird die entsprechende Fehlermeldung (0091h oder 8091h) im Parameter RET_VAL angezeigt.

System-SFCs - "System Functions" > SFC 52 - WR_USMSG - Eintrag in Diagnosepuffer schreiben

Aufbau eines Eintrags

Ein Eintrag in den Diagnosepuffer hat intern den folgenden Aufbau:

Byte	Inhalt
1, 2	Ereignis-ID
3	Prioritätsklasse
4	OB-Nummer
5, 6	reserviert
7, 8	Zusatzinformation 1
9, 10, 11, 12	Zusatzinformation 2
13 20	Zeitstempel:
	Der Zeitstempel ist vom Datentyp Date_and_Time.

Ereignis-ID

Jedem Ereignis ist eine Ereignis-ID zugeordnet.

Zusatzinformationen

Die Zusatzinformationen beinhalten zusätzliche Informationen zum Ereignis. Diese Zusatzinformationen können für jedes Ereignis unterschiedlich sein. Wenn ein Diagnoseereignis erzeugt wird, dann kann der Inhalt dieser Einträge selbst bestimmt werden.

Wenn eine anwenderdefinierte Diagnosemeldung versendet wird, können die Zusatzinformationen als Begleitwerte in den (Ereignis-ID-spezifischen) Meldetext integriert werden.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
SEND	INPUT	BOOL	E, A, M, D, L, Konstante	Senden der anwenderdefinierten Diagnosemeldung an alle angemeldeten Teilnehmer freigeben
EVENTN	INPUT	WORD	E, A, M, D, L, Konstante	Ereignis-ID. Sie vergeben die Ereignis-ID. Die Vorgabe erfolgt nicht durch den Meldeserver.
INFO1	INPUT	ANY	E, A, M, D, L	Zusatzinformation 1 Wort lang
INFO2	INPUT	ANY	E, A, M, D, L	Zusatzinformation 2 Worte lang
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.

SEND

Wenn *SEND* den Wert 1 hat, wird die anwenderdefinierte Diagnosemeldung an alle dafür angemeldeten Teilnehmer gesendet. Das Senden erfolgt nur unter der Voraussetzung, dass mindestens ein Teilnehmer angemeldet und der Sendepuffer nicht voll ist. Das Senden erfolgt asynchron zum Anwenderprogramm.

EVENTN

In *EVENTN* wird die Ereignis-ID des Anwenderereignisses eingetragen. Die Ereignis-IDs dürfen nur in der Form 8xyzh , 9xyzh, Axyzh und Bxyzh eingetragen werden, wobei die IDs der Form 8xyzh und 9xyzh zu den vordefinierten Ereignissen und die IDs der Form Axyzh und Bxyzh zu den frei definierten Ereignissen gehören.

Ein kommendes Ereignis wird durch x = 1,

ein gehendes Ereignis durch x = 0 gekennzeichnet.

Bei den Ereignissen der Klasse A und B ist yz die in der Meldungsprojektierung für die zugehörige Meldung vergebene Meldungsnummer in hexadezimaler Darstellung.

System-SFCs - "System Functions" > FC/SFC 54 - RD_DPARM - Vordefinierte Parameter lesen

INFO₁

INFO1 enthält eine Information, die ein Wort lang ist. Folgende Datentypen sind zulässig:

- WORD
- INT
- ARRAY [0...1] OF CHAR

INFO1 kann als Begleitwert in den Meldetext integriert werden und damit können der Meldung aktuelle Informationen hinzugefügt werden.

INF₀₂

INFO2 enthält eine Information, die zwei Worte lang ist. Folgende Datentypen sind zulässig:

- DWORD
- DINT
- REAL
- TIME
- ARRAY [0...3] OF CHAR

INFO2 kann als Begleitwert in den Meldetext integriert werden und damit können der Meldung aktuelle Informationen hinzugefügt werden.

RET_VAL (Rückgabewert)

Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.

Wert	Beschreibung
0000h	kein Fehler
0091h	kein Teilnehmer angemeldet (Eintrag des Diagnoseereignisses in den Diagnosepuffer erfolgt)
8083h	Datentyp INFO1 nicht zulässig
8084h	Datentyp INFO2 nicht zulässig
8085h	EVENTN nicht zulässig
8086h	Länge von INFO1 nicht zulässig
8087h	Länge von INFO2 nicht zulässig
8091h	Fehlermeldung identisch mit Fehlercode 0091h
8092h	Senden derzeit nicht möglich, Sendepuffer ist voll
	(Eintrag des Diagnoseereignisses in den Diagnosepuffer erfolgt)

14.1.41 FC/SFC 54 - RD_DPARM - Vordefinierte Parameter lesen

Beschreibung

Bitte beachten Sie, dass dieser Baustein in der Bibliothek für den Siemens SIMATIC Manager nicht enthalten ist.

Mit dem SFC 54 RD_DPARM (read defined parameter) wird der Datensatz mit der Nummer *RECNUM* des adressierten Moduls aus dem zugehörigen SDB1xy gelesen.

Durch den Parameter *RECORD* wird der Zielbereich festgelegt, in den der gelesene Datensatz eingetragen wird.

System-SFCs - "System Functions" > FC/SFC 54 - RD DPARM - Vordefinierte Parameter lesen

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
IOID	INPUT	BYTE	E, A, M, D, L, Konstante	Kennung des Adressbereichs:
				54h = Peripherie Eingang (PE)
				55h = Peripherie Ausgang (PA)
				Handelt es sich um ein Mischmodul, ist die Bereichskennung der niedrigeren Adresse anzu- geben. Bei gleichen Adressen ist 54h anzu- geben.
LADDR	ADDR INPUT WORD	WORD	Konstante	Logische Basisadresse des Moduls.
				Bei einem Mischmodul ist die kleinere der beiden Adressen anzugeben.
RECNUM INPUT	INPUT	BYTE	E, A, M, D, L,	Datensatznummer
			Konstante	(zulässige Werte: 0 240)
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode. Zusätzlich: Länge des gelesenen Datensatzes in Bytes, falls der gelesene Datensatz in den Zielbereich passt und bei der Übertragung kein Fehler auftrat.
RECORD	OUTPUT	ANY	E, A, M, D, L	Zielbereich für den gelesenen Datensatz. Es ist nur der Datentyp BYTE zulässig.

RET_VAL (Rückgabewert)

Bei *RET_VAL* = 8xxxh sind zwei Fälle zu unterscheiden:

- Temporäre Fehler (Fehlercodes 80A2h ... 80A4h, 80Cxh):

 Bei dieser Fehlerart besteht die Möglichkeit, dass sich der Fehler ohne Ihr Zutun behebt, es wäre also sinnvoll, den SFC erneut (ggf. mehrfach) aufzurufen.

 Beispiel für temporäre Fehler: Benötigte Betriebsmittel sind momentan belegt (80C3h).
- Permanente Fehler (Fehlercodes 809xh, 80A1h, 80Bxh, 80Dxh):

 Bei dieser Fehlerart kann der Fehler nicht ohne Ihr Zutun behoben werden. Ein erneuter Aufruf des SFC ist erst wieder sinnvoll, wenn der Fehler beseitigt wurde.

 Beispiel für permanente Fehler: Falsche Länge des zu übertragenden Datensatzes (80B1h).

Wert	Beschreibung
7000h	Erstaufruf mit <i>REQ</i> = 0: keine Datenübertragung aktiv;
	BUSY hat den Wert 0.
7001h	Erstaufruf mit REQ = 1: Datenübertragung angestoßen;
	BUSY hat den Wert 1.
7002h	Zwischenaufruf (REQ irrelevant): Datenübertragung bereits aktiv;
	BUSY hat den Wert 1.
8090h	Angegebene logische Basisadresse ungültig: Es ist keine Zuordnung im SDB1/SDB2x vorhanden, oder es ist keine Basisadresse.
8092h	In ANY-Referenz ist eine Typangabe ungleich BYTE angegeben.

System-SFCs - "System Functions" > SFC 55 - WR_PARM - Dynamische Parameter schreiben

Wert	Beschreibung
8093h	Für das über LADDR und IOID ausgewählte Modul ist dieser SFC nicht zulässig.
80B1h	Die Länge des durch RECORD festgelegten Zielbereichs ist zu klein.
80D0h	Im zugehörigen SDB ist kein Eintrag für das Modul vorhanden.
80D1h	Die Datensatznummer ist im zugehörigen SDB für das Modul nicht projektiert.
80D2h	Das Modul ist laut Typkennung nicht parametrierbar.
80D3h	Auf den SDB kann nicht zugegriffen werden, da er nicht vorhanden ist.
80D4h	SDB-Strukturfehler: SDB-interner Zeiger zeigt außerhalb SDB.

14.1.42 SFC 55 - WR_PARM - Dynamische Parameter schreiben

Beschreibung

Mit dem SFC 55 WR_PARM (write parameter) wird der Datensatz *RECORD* zum adressierten Modul übertragen. Die Parameter dieses Moduls im zugehörigen SDB werden, falls diese dort vorhanden sind, nicht durch die Parameter, die zum Modul übertragen werden, überschrieben.

Dieser SFC kann für Digital-, Analogmodule, FMs, CPs und über PROFIBUS DP-V1 eingesetzt werden.

Voraussetzungen

Es ist darauf zu achten das der zu übertragende Datensatz nicht statisch ist:

- Datensatz 0 darf nicht verwendet werden, da Datensatz 0 systemweit statisch ist.
- Ist der Datensatz in den SDBs 100 ... 129 vermerkt, dann darf das Statisch-Bit nicht gesetzt sein.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
REQ	INPUT	BOOL	E, A, M, D, L, Konstante	REQ = 1: Anforderung zum Schreiben
IOID	INPUT	BYTE	E, A, M, D, L,	Kennung des Adressbereichs:
			Konstante	54h = Peripherie Eingang (PE)
				55h = Peripherie Ausgang (PA)
				Handelt es sich um ein Mischmodul, ist die Bereichskennung der niedrigeren Adresse anzu- geben. Bei gleichen Adressen ist 54h anzu- geben.
LADDR	INPUT	WORD	E, A, M, D, L, Konstante	Logische Basisadresse des Moduls. Bei einem Mischmodul ist die kleinere der beiden Adressen anzugeben.
RECNUM	INPUT	BYTE	E, A, M, D, L,	Datensatznummer
			Konstante	(zulässige Werte: 0 240)
RECORD	INPUT	ANY	E, A, M, D, L	Datensatz
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.
BUSY	OUTPUT	BOOL	E, A, M, D, L	BUSY = 1: Der Schreibvorgang ist noch nicht beendet.

System-SFCs - "System Functions" > SFC 55 - WR PARM - Dynamische Parameter schreiben

RECORD

Beim ersten Aufruf des SFC werden die zu übertragenden Daten aus dem Parameter *RECORD* gelesen. Sollte die Übertragung des Datensatzes jedoch länger als einen Aufruf dauern, dann ist bei den Folgeaufrufen des SFC (zum gleichen Auftrag) der Inhalt des Parameters *RECORD* nicht mehr relevant.

RET_VAL (Rückgabewert)

Bei RET VAL = 8xxxh sind zwei Fälle zu unterscheiden:

- Temporäre Fehler (Fehlercodes 80A2h ... 80A4h, 80Cxh): Bei dieser Fehlerart besteht die Möglichkeit, dass sich der Fehler ohne Ihr Zutun behebt, es wäre also sinnvoll, den SFC erneut (ggf. mehrfach) aufzurufen. Beispiel für temporäre Fehler: Benötigte Betriebsmittel sind momentan belegt (80C3h).
- Permanente Fehler (Fehlercodes 809xh, 80A1h, 80Bxh, 80Dxh): Bei dieser Fehlerart kann der Fehler nicht ohne Ihr Zutun behoben werden. Ein erneuter Aufruf des SFC ist erst wieder sinnvoll, wenn der Fehler beseitigt wurde. Beispiel für permanente Fehler: Falsche Länge des zu übertragenden Datensatzes (80B1h).

Fritaufruif mit REQ = 0: keine Datenübertragung aktiv; BUSY hat den Wert 0. 7001h Erstaufruf mit REQ = 1: Datenübertragung angestoßen; BUSY hat den Wert 1. 7002h Zwischenaufruf (REQ irrelevant): Datenübertragung bereits aktiv; BUSY hat den Wert 1. 8090h Angegebene logische Basisadresse ungültig: Es ist keine Zuordnung im SDB1/SDB2x vorhanden, oder es ist keine Basisadresse. 8092h In ANY-Referenz ist eine Typangabe ungleich BYTE angegeben. 8093h Für die über LADDR und IOID ausgewählte Modul ist dieser SFC nicht zulässig. 804h Negative Quittung beim Senden des Datensatzes zum Modul (Modul während des Sendens gezogen oder Modul defekt) 80A2h DP-Protokollfehler bei Layer 2, evtl. Hardware- / Schnittstellenfehler im DP-Slave 80A3h DP-Protokollfehler bei User Interface/User 80A4h Kommunikation gestört (Fehler tritt auf zwischen CPU und externer DP-Anschaltung) 80B0h SFC für Modultyp nicht möglich oder Modul kennt den Datensatz nicht 80B1h Die Länge des durch RECORD festgelegten Zielbereichs ist zu klein. 80B2h Der projektierte Steckplatz ist nicht belegt. 80B3h Ist-Modultyp ungleich Soll-Modultyp im SDB1. 80C1h Die Daten des auf dem Modul vorangegangenen Schreibauftrags für denselben Datensatz sind von dem Modul noch nicht verarbeitet. 80C2h Das Modul bearbeitet momentan das mögliche Maximum an Aufträgen für eine CPU. 80C3h Benötigte Betriebsmittel (Speicher etc.) sind momentan belegt. 80C5h Dezentrale Peripherie nicht verfügbar.	Wert	Beschreibung
Erstaufruf mit REQ = 1: Datenübertragung angestoßen; BUSY hat den Wert 1. 7002h Zwischenaufruf (REQ irrelevant): Datenübertragung bereits aktiv; BUSY hat den Wert 1. 8090h Angegebene logische Basisadresse ungültig: Es ist keine Zuordnung im SDB1/SDB2x vorhanden, oder es ist keine Basisadresse. 8092h In ANY-Referenz ist eine Typangabe ungleich BYTE angegeben. 8093h Für die über LADDR und IOID ausgewählte Modul ist dieser SFC nicht zulässig. 80A1h Negative Quittung beim Senden des Datensatzes zum Modul (Modul während des Sendens gezogen oder Modul defekt) 80A2h DP-Protokollfehler bei Layer 2, evtl. Hardware- / Schnittstellenfehler im DP-Slave 80A3h DP-Protokollfehler bei User Interface/User 80A4h Kommunikation gestört (Fehler tritt auf zwischen CPU und externer DP-Anschaltung) 80B0h SFC für Modultyp nicht möglich oder Modul kennt den Datensatz nicht 80B1h Die Länge des durch RECORD festgelegten Zielbereichs ist zu klein. 80B2h Der projektierte Steckplatz ist nicht belegt. 80B3h Ist-Modultyp ungleich Soll-Modultyp im SDB1. 80C1h Die Daten des auf dem Modul vorangegangenen Schreibauftrags für denselben Datensatz sind von dem Modul noch nicht verarbeitet. 80C2h Das Modul bearbeitet momentan das mögliche Maximum an Aufträgen für eine CPU. 80C3h Benötigte Betriebsmittel (Speicher etc.) sind momentan belegt.	7000h	Erstaufruf mit <i>REQ</i> = 0: keine Datenübertragung aktiv;
BUSY hat den Wert 1. Zwischenaufruf (REQ irrelevant): Datenübertragung bereits aktiv; BUSY hat den Wert 1. Angegebene logische Basisadresse ungültig: Es ist keine Zuordnung im SDB1/SDB2x vorhanden, oder es ist keine Basisadresse. In ANY-Referenz ist eine Typangabe ungleich BYTE angegeben. Für die über LADDR und IOID ausgewählte Modul ist dieser SFC nicht zulässig. Negative Quittung beim Senden des Datensatzes zum Modul (Modul während des Sendens gezogen oder Modul defekt) DP-Protokollfehler bei Layer 2, evtl. Hardware- / Schnittstellenfehler im DP-Slave DP-Protokollfehler bei User Interface/User Kommunikation gestört (Fehler tritt auf zwischen CPU und externer DP-Anschaltung) SFC für Modultyp nicht möglich oder Modul kennt den Datensatz nicht Die Länge des durch RECORD festgelegten Zielbereichs ist zu klein. Der projektierte Steckplatz ist nicht belegt. Ist-Modultyp ungleich Soll-Modultyp im SDB1. Die Daten des auf dem Modul vorangegangenen Schreibauftrags für denselben Datensatz sind von dem Modul noch nicht verarbeitet. Das Modul bearbeitet momentan das mögliche Maximum an Aufträgen für eine CPU. Benötigte Betriebsmittel (Speicher etc.) sind momentan belegt.		BUSY hat den Wert 0.
Zwischenaufruf (<i>REQ</i> irrelevant): Datenübertragung bereits aktiv; <i>BUSY</i> hat den Wert 1. 8090h Angegebene logische Basisadresse ungültig: Es ist keine Zuordnung im SDB1/SDB2x vorhanden, oder es ist keine Basisadresse. 8092h In ANY-Referenz ist eine Typangabe ungleich BYTE angegeben. 8093h Für die über <i>LADDR</i> und <i>IOID</i> ausgewählte Modul ist dieser SFC nicht zulässig. 80A1h Negative Quittung beim Senden des Datensatzes zum Modul (Modul während des Sendens gezogen oder Modul defekt) 80A2h DP-Protokollfehler bei Layer 2, evtl. Hardware- / Schnittstellenfehler im DP-Slave 80A3h DP-Protokollfehler bei User Interface/User 80A4h Kommunikation gestört (Fehler tritt auf zwischen CPU und externer DP-Anschaltung) 80B0h SFC für Modultyp nicht möglich oder Modul kennt den Datensatz nicht 80B1h Die Länge des durch <i>RECORD</i> festgelegten Zielbereichs ist zu klein. 80B2h Der projektierte Steckplatz ist nicht belegt. 80B3h Ist-Modultyp ungleich Soll-Modultyp im SDB1. 80C1h Die Daten des auf dem Modul vorangegangenen Schreibauftrags für denselben Datensatz sind von dem Modul noch nicht verarbeitet. 80C2h Das Modul bearbeitet momentan das mögliche Maximum an Aufträgen für eine CPU. 80C3h Benötigte Betriebsmittel (Speicher etc.) sind momentan belegt. Kommunikationsfehler	7001h	Erstaufruf mit REQ = 1: Datenübertragung angestoßen;
BUSY hat den Wert 1. 8090h Angegebene logische Basisadresse ungültig: Es ist keine Zuordnung im SDB1/SDB2x vorhanden, oder es ist keine Basisadresse. 8092h In ANY-Referenz ist eine Typangabe ungleich BYTE angegeben. 8093h Für die über LADDR und IOID ausgewählte Modul ist dieser SFC nicht zulässig. 80A1h Negative Quittung beim Senden des Datensatzes zum Modul (Modul während des Sendens gezogen oder Modul defekt) 80A2h DP-Protokollfehler bei Layer 2, evtl. Hardware- / Schnittstellenfehler im DP-Slave 80A3h DP-Protokollfehler bei User Interface/User 80A4h Kommunikation gestört (Fehler tritt auf zwischen CPU und externer DP-Anschaltung) 80B0h SFC für Modultyp nicht möglich oder Modul kennt den Datensatz nicht 80B1h Die Länge des durch RECORD festgelegten Zielbereichs ist zu klein. 80B2h Der projektierte Steckplatz ist nicht belegt. 80B3h Ist-Modultyp ungleich Soll-Modultyp im SDB1. 80C1h Die Daten des auf dem Modul vorangegangenen Schreibauftrags für denselben Datensatz sind von dem Modul noch nicht verarbeitet. 80C2h Das Modul bearbeitet momentan das mögliche Maximum an Aufträgen für eine CPU. 80C3h Benötigte Betriebsmittel (Speicher etc.) sind momentan belegt.		BUSY hat den Wert 1.
Angegebene logische Basisadresse ungültig: Es ist keine Zuordnung im SDB1/SDB2x vorhanden, oder es ist keine Basisadresse. 8092h In ANY-Referenz ist eine Typangabe ungleich BYTE angegeben. 8093h Für die über LADDR und IOID ausgewählte Modul ist dieser SFC nicht zulässig. 80A1h Negative Quittung beim Senden des Datensatzes zum Modul (Modul während des Sendens gezogen oder Modul defekt) 80A2h DP-Protokollfehler bei Layer 2, evtl. Hardware- / Schnittstellenfehler im DP-Slave 80A3h DP-Protokollfehler bei User Interface/User 80A4h Kommunikation gestört (Fehler tritt auf zwischen CPU und externer DP-Anschaltung) 80B0h SFC für Modultyp nicht möglich oder Modul kennt den Datensatz nicht 80B1h Die Länge des durch RECORD festgelegten Zielbereichs ist zu klein. 80B2h Der projektierte Steckplatz ist nicht belegt. 80B3h Ist-Modultyp ungleich Soll-Modultyp im SDB1. 80C1h Die Daten des auf dem Modul vorangegangenen Schreibauftrags für denselben Datensatz sind von dem Modul noch nicht verarbeitet. 80C2h Das Modul bearbeitet momentan das mögliche Maximum an Aufträgen für eine CPU. 80C3h Benötigte Betriebsmittel (Speicher etc.) sind momentan belegt.	7002h	Zwischenaufruf (REQ irrelevant): Datenübertragung bereits aktiv;
es ist keine Basisadresse. 8092h In ANY-Referenz ist eine Typangabe ungleich BYTE angegeben. 8093h Für die über LADDR und IOID ausgewählte Modul ist dieser SFC nicht zulässig. 80A1h Negative Quittung beim Senden des Datensatzes zum Modul (Modul während des Sendens gezogen oder Modul defekt) 80A2h DP-Protokollfehler bei Layer 2, evtl. Hardware- / Schnittstellenfehler im DP-Slave 80A3h DP-Protokollfehler bei User Interface/User 80A4h Kommunikation gestört (Fehler tritt auf zwischen CPU und externer DP-Anschaltung) 80B0h SFC für Modultyp nicht möglich oder Modul kennt den Datensatz nicht 80B1h Die Länge des durch RECORD festgelegten Zielbereichs ist zu klein. 80B2h Der projektierte Steckplatz ist nicht belegt. 80B3h Ist-Modultyp ungleich Soll-Modultyp im SDB1. 80C1h Die Daten des auf dem Modul vorangegangenen Schreibauftrags für denselben Datensatz sind von dem Modul noch nicht verarbeitet. 80C2h Das Modul bearbeitet momentan das mögliche Maximum an Aufträgen für eine CPU. 80C3h Benötigte Betriebsmittel (Speicher etc.) sind momentan belegt.		BUSY hat den Wert 1.
Für die über LADDR und IOID ausgewählte Modul ist dieser SFC nicht zulässig. 80A1h Negative Quittung beim Senden des Datensatzes zum Modul (Modul während des Sendens gezogen oder Modul defekt) 80A2h DP-Protokollfehler bei Layer 2, evtl. Hardware- / Schnittstellenfehler im DP-Slave 80A3h DP-Protokollfehler bei User Interface/User 80A4h Kommunikation gestört (Fehler tritt auf zwischen CPU und externer DP-Anschaltung) 80B0h SFC für Modultyp nicht möglich oder Modul kennt den Datensatz nicht 80B1h Die Länge des durch RECORD festgelegten Zielbereichs ist zu klein. 80B2h Der projektierte Steckplatz ist nicht belegt. 80B3h Ist-Modultyp ungleich Soll-Modultyp im SDB1. 80C1h Die Daten des auf dem Modul vorangegangenen Schreibauftrags für denselben Datensatz sind von dem Modul noch nicht verarbeitet. 80C2h Das Modul bearbeitet momentan das mögliche Maximum an Aufträgen für eine CPU. 80C3h Benötigte Betriebsmittel (Speicher etc.) sind momentan belegt. Kommunikationsfehler	8090h	
Negative Quittung beim Senden des Datensatzes zum Modul (Modul während des Sendens gezogen oder Modul defekt) DP-Protokollfehler bei Layer 2, evtl. Hardware- / Schnittstellenfehler im DP-Slave DP-Protokollfehler bei User Interface/User Nomunikation gestört (Fehler tritt auf zwischen CPU und externer DP-Anschaltung) SFC für Modultyp nicht möglich oder Modul kennt den Datensatz nicht Die Länge des durch RECORD festgelegten Zielbereichs ist zu klein. Der projektierte Steckplatz ist nicht belegt. Ist-Modultyp ungleich Soll-Modultyp im SDB1. Character in Die Daten des auf dem Modul vorangegangenen Schreibauftrags für denselben Datensatz sind von dem Modul noch nicht verarbeitet. Das Modul bearbeitet momentan das mögliche Maximum an Aufträgen für eine CPU. Benötigte Betriebsmittel (Speicher etc.) sind momentan belegt. Kommunikationsfehler	8092h	In ANY-Referenz ist eine Typangabe ungleich BYTE angegeben.
(Modul während des Sendens gezogen oder Modul defekt) 80A2h DP-Protokollfehler bei Layer 2, evtl. Hardware- / Schnittstellenfehler im DP-Slave 80A3h DP-Protokollfehler bei User Interface/User 80A4h Kommunikation gestört (Fehler tritt auf zwischen CPU und externer DP-Anschaltung) 80B0h SFC für Modultyp nicht möglich oder Modul kennt den Datensatz nicht 80B1h Die Länge des durch RECORD festgelegten Zielbereichs ist zu klein. 80B2h Der projektierte Steckplatz ist nicht belegt. 80B3h Ist-Modultyp ungleich Soll-Modultyp im SDB1. 80C1h Die Daten des auf dem Modul vorangegangenen Schreibauftrags für denselben Datensatz sind von dem Modul noch nicht verarbeitet. 80C2h Das Modul bearbeitet momentan das mögliche Maximum an Aufträgen für eine CPU. 80C3h Benötigte Betriebsmittel (Speicher etc.) sind momentan belegt. Kommunikationsfehler	8093h	Für die über LADDR und IOID ausgewählte Modul ist dieser SFC nicht zulässig.
DP-Protokollfehler bei Layer 2, evtl. Hardware- / Schnittstellenfehler im DP-Slave BOA3h DP-Protokollfehler bei User Interface/User Kommunikation gestört (Fehler tritt auf zwischen CPU und externer DP-Anschaltung) SFC für Modultyp nicht möglich oder Modul kennt den Datensatz nicht BOB1h Die Länge des durch RECORD festgelegten Zielbereichs ist zu klein. Der projektierte Steckplatz ist nicht belegt. BOB3h Ist-Modultyp ungleich Soll-Modultyp im SDB1. BOC1h Die Daten des auf dem Modul vorangegangenen Schreibauftrags für denselben Datensatz sind von dem Modul noch nicht verarbeitet. BOC2h Das Modul bearbeitet momentan das mögliche Maximum an Aufträgen für eine CPU. BOC3h Benötigte Betriebsmittel (Speicher etc.) sind momentan belegt. Kommunikationsfehler	80A1h	Negative Quittung beim Senden des Datensatzes zum Modul
80A3h DP-Protokollfehler bei User Interface/User 80A4h Kommunikation gestört (Fehler tritt auf zwischen CPU und externer DP-Anschaltung) 80B0h SFC für Modultyp nicht möglich oder Modul kennt den Datensatz nicht 80B1h Die Länge des durch RECORD festgelegten Zielbereichs ist zu klein. 80B2h Der projektierte Steckplatz ist nicht belegt. 80B3h Ist-Modultyp ungleich Soll-Modultyp im SDB1. 80C1h Die Daten des auf dem Modul vorangegangenen Schreibauftrags für denselben Datensatz sind von dem Modul noch nicht verarbeitet. 80C2h Das Modul bearbeitet momentan das mögliche Maximum an Aufträgen für eine CPU. 80C3h Benötigte Betriebsmittel (Speicher etc.) sind momentan belegt. 80C4h Kommunikationsfehler		(Modul während des Sendens gezogen oder Modul defekt)
80A4h Kommunikation gestört (Fehler tritt auf zwischen CPU und externer DP-Anschaltung) 80B0h SFC für Modultyp nicht möglich oder Modul kennt den Datensatz nicht 80B1h Die Länge des durch RECORD festgelegten Zielbereichs ist zu klein. 80B2h Der projektierte Steckplatz ist nicht belegt. 80B3h Ist-Modultyp ungleich Soll-Modultyp im SDB1. 80C1h Die Daten des auf dem Modul vorangegangenen Schreibauftrags für denselben Datensatz sind von dem Modul noch nicht verarbeitet. 80C2h Das Modul bearbeitet momentan das mögliche Maximum an Aufträgen für eine CPU. 80C3h Benötigte Betriebsmittel (Speicher etc.) sind momentan belegt. 80C4h Kommunikationsfehler	80A2h	DP-Protokollfehler bei Layer 2, evtl. Hardware- / Schnittstellenfehler im DP-Slave
80B0h SFC für Modultyp nicht möglich oder Modul kennt den Datensatz nicht 80B1h Die Länge des durch <i>RECORD</i> festgelegten Zielbereichs ist zu klein. 80B2h Der projektierte Steckplatz ist nicht belegt. 80B3h Ist-Modultyp ungleich Soll-Modultyp im SDB1. 80C1h Die Daten des auf dem Modul vorangegangenen Schreibauftrags für denselben Datensatz sind von dem Modul noch nicht verarbeitet. 80C2h Das Modul bearbeitet momentan das mögliche Maximum an Aufträgen für eine CPU. 80C3h Benötigte Betriebsmittel (Speicher etc.) sind momentan belegt. 80C4h Kommunikationsfehler	80A3h	DP-Protokollfehler bei User Interface/User
Die Länge des durch <i>RECORD</i> festgelegten Zielbereichs ist zu klein. Der projektierte Steckplatz ist nicht belegt. Ist-Modultyp ungleich Soll-Modultyp im SDB1. Die Daten des auf dem Modul vorangegangenen Schreibauftrags für denselben Datensatz sind von dem Modul noch nicht verarbeitet. Das Modul bearbeitet momentan das mögliche Maximum an Aufträgen für eine CPU. Benötigte Betriebsmittel (Speicher etc.) sind momentan belegt. Kommunikationsfehler	80A4h	Kommunikation gestört (Fehler tritt auf zwischen CPU und externer DP-Anschaltung)
B0B2h Der projektierte Steckplatz ist nicht belegt. 80B3h Ist-Modultyp ungleich Soll-Modultyp im SDB1. 80C1h Die Daten des auf dem Modul vorangegangenen Schreibauftrags für denselben Datensatz sind von dem Modul noch nicht verarbeitet. 80C2h Das Modul bearbeitet momentan das mögliche Maximum an Aufträgen für eine CPU. 80C3h Benötigte Betriebsmittel (Speicher etc.) sind momentan belegt. 80C4h Kommunikationsfehler	80B0h	SFC für Modultyp nicht möglich oder Modul kennt den Datensatz nicht
Ist-Modultyp ungleich Soll-Modultyp im SDB1. BOC1h Die Daten des auf dem Modul vorangegangenen Schreibauftrags für denselben Datensatz sind von dem Modul noch nicht verarbeitet. BOC2h Das Modul bearbeitet momentan das mögliche Maximum an Aufträgen für eine CPU. Benötigte Betriebsmittel (Speicher etc.) sind momentan belegt. Kommunikationsfehler	80B1h	Die Länge des durch RECORD festgelegten Zielbereichs ist zu klein.
Die Daten des auf dem Modul vorangegangenen Schreibauftrags für denselben Datensatz sind von dem Modul noch nicht verarbeitet. Das Modul bearbeitet momentan das mögliche Maximum an Aufträgen für eine CPU. Benötigte Betriebsmittel (Speicher etc.) sind momentan belegt. Kommunikationsfehler	80B2h	Der projektierte Steckplatz ist nicht belegt.
Modul noch nicht verarbeitet. 80C2h Das Modul bearbeitet momentan das mögliche Maximum an Aufträgen für eine CPU. 80C3h Benötigte Betriebsmittel (Speicher etc.) sind momentan belegt. 80C4h Kommunikationsfehler	80B3h	Ist-Modultyp ungleich Soll-Modultyp im SDB1.
80C3h Benötigte Betriebsmittel (Speicher etc.) sind momentan belegt. 80C4h Kommunikationsfehler	80C1h	
80C4h Kommunikationsfehler	80C2h	Das Modul bearbeitet momentan das mögliche Maximum an Aufträgen für eine CPU.
	80C3h	Benötigte Betriebsmittel (Speicher etc.) sind momentan belegt.
80C5h Dezentrale Peripherie nicht verfügbar.	80C4h	Kommunikationsfehler
	80C5h	Dezentrale Peripherie nicht verfügbar.

System-SFCs - "System Functions" > SFC 56 - WR_DPARM - Vordefinierte Parameter schreiben

Wert	Beschreibung
80C6h	Datensatzübertragung wurde abgebrochen wegen Prioritätsklassenabbruchs
80D0h	Im zugehörigen SDB ist kein Eintrag für das Modul vorhanden.
80D1h	Die Datensatznummer ist im zugehörigen SDB für das Modul nicht projektiert.
80D2h	Das Modul ist laut Typkennung nicht parametrierbar.
80D3h	Auf den SDB kann nicht zugegriffen werden, da er nicht vorhanden ist.
80D4h	SDB-Strukturfehler: SDB-interner Zeiger zeigt außerhalb SDB.
80D5h	Der Datensatz ist statisch.

14.1.43 SFC 56 - WR_DPARM - Vordefinierte Parameter schreiben

Beschreibung

Mit dem SFC 56 WR_DPARM (write default parameter) wird der Datensatz mit der Nummer *RECNUM* aus dem zuständigen SDB zum adressierten Modul übertragen. Ob es sich dabei um einen statischen oder dynamischen Datensatz handelt ist ohne Bedeutung.

Dieser SFC kann für Digital-, Analogmodule, FMs, CPs und über PROFIBUS DP-V1 eingesetzt werden.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
REQ	INPUT	BOOL	E, A, M, D, L, Konstante	REQ = 1: Anforderung zum Schreiben
IOID	INPUT	BYTE	E, A, M, D, L,	Kennung des Adressbereichs:
			Konstante	54h = Peripherie Eingang (PE)
				55h = Peripherie Ausgang (PA)
				Handelt es sich um ein Mischmodul, ist die Bereichskennung der niedrigeren Adresse anzu- geben. Bei gleichen Adressen ist 54h anzu- geben.
LADDR	INPUT	WORD	E, A, M, D, L, Konstante	Logische Basisadresse des Moduls. Bei einem Mischmodul ist die kleinere der beiden Adressen anzugeben.
RECNUM	, , , , ,	Datensatznummer		
			Konstante	(zulässige Werte: 0 240)
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.
BUSY	OUTPUT	BOOL	E, A ,M, D, L	BUSY = 1: Der Schreibvorgang ist noch nicht beendet.

RET_VAL (Rückgabewert)

Bei *RET_VAL* = 8xxxh sind zwei Fälle zu unterscheiden:

Temporäre Fehler (Fehlercodes 80A2h ... 80A4h, 80Cxh): Bei dieser Fehlerart besteht die Möglichkeit, dass sich der Fehler ohne Ihr Zutun behebt, es wäre also sinnvoll den SFC erneut (ggf. mehrfach) aufzurufen. System-SFCs - "System Functions" > SFC 56 - WR DPARM - Vordefinierte Parameter schreiben

Beispiel für temporäre Fehler: Benötigte Betriebsmittel sind momentan belegt (80C3h).

■ Permanente Fehler (Fehlercodes 809xh, 80A1h, 80Bxh, 80Dxh):
Bei dieser Fehlerart kann der Fehler nicht ohne Ihr Zutun behoben werden. Ein erneuter Aufruf des SFC ist erst wieder sinnvoll, wenn der Fehler beseitigt wurde.
Beispiel für permanente Fehler: Falsche Länge des zu übertragenden Datensatzes (80B1h).

7000h Erstaufruf mit <i>REQ</i> = 0: keine Datenübertragung aktiv;	
BUSY hat den Wert 0.	
7001h Erstaufruf mit <i>REQ</i> = 1: Datenübertragung angestoßen;	
BUSY hat den Wert 1.	
7002h Zwischenaufruf (<i>REQ</i> irrelevant): Datenübertragung bereits aktiv;	
BUSY hat den Wert 1.	
8090h Angegebene logische Basisadresse ungültig: Es ist keine Zuordnur es ist keine Basisadresse.	ng im SDB1/SDB2x vorhanden, oder
8093h Für das über <i>LADDR</i> und <i>IOID</i> ausgewählte Modul ist dieser SFC r	nicht zulässig.
80A1h Negative Quittung beim Senden des Datensatzes zum Modul (Mod oder Modul defekt).	dul während des Sendens gezogen
80A2h DP-Protokollfehler bei Layer 2, evtl. Hardware- / Schnittstellenfehle	er im DP-Slave
80A3h DP-Protokollfehler bei User Interface/User	
80A4h Kommunikation gestört	
(Fehler tritt auf zwischen CPU und externer DP-Anschaltung).	
80B0h SFC für Modultyp nicht möglich, oder das Modul kennt den Datens	atz nicht.
80B1h Die Länge des durch RECORD festgelegten Zielbereichs ist zu klei	in.
80B2h Der projektierte Steckplatz ist nicht belegt.	
80B3h Ist-Modultyp ungleich Soll-Modultyp im SDB1.	
80C1h Die Daten des auf dem Modul vorangegangenen Schreibauftrags fi dem Modul noch nicht verarbeitet.	ür denselben Datensatz sind von
80C2h Das Modul bearbeitet momentan das mögliche Maximum an Aufträ	igen für eine CPU.
80C3h Benötigte Betriebsmittel (Speicher etc.) sind momentan belegt.	
80C4h Kommunikationsfehler	
80C5h Dezentrale Peripherie nicht verfügbar.	
80C6h Datensatzübertragung wurde abgebrochen wegen Prioritätsklasser	nabbruchs.
80D0h Im zugehörigen SDB ist kein Eintrag für das Modul vorhanden.	
80D1h Die Datensatznummer ist im zugehörigen SDB für das Modul nicht	projektiert.
80D2h Das Modul ist laut Typkennung nicht parametrierbar.	
80D3h Auf den SDB kann nicht zugegriffen werden, da er nicht vorhanden	ı ist.
80D4h SDB-Strukturfehler: SDB-interner Zeiger zeigt außerhalb SDB.	

System-SFCs - "System Functions" > SFC 57 - PARM MOD - Modul parametrieren

14.1.44 SFC 57 - PARM_MOD - Modul parametrieren

Beschreibung

Mit dem SFC 57 PARM_MOD (parameterize module) werden alle Datensätze eines Moduls, die im zugehörigen SDB projektiert wurden, zum Modul übertragen. Ob es sich dabei um statische oder dynamische Datensätze handelt ist ohne Bedeutung.

Dieser SFC kann für Digital-, Analogmodule, FMs, CPs und über PROFIBUS DP-V1 eingesetzt werden.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
REQ	INPUT	BOOL	E, A, M, D, L, Konstante	REQ = 1: Anforderung zum Schreiben
IOID	INPUT	BYTE	E, A, M, D, L,	Kennung des Adressbereichs:
			Konstante	54h = Peripherie Eingang (PE)
				55h = Peripherie Ausgang (PA)
				Handelt es sich um eine Mischmodul, ist die Bereichskennung der niedrigeren Adresse anzu- geben. Bei gleichen Adressen ist 54h anzu- geben.
LADDR	INPUT	WORD	E, A, M, D, L, Konstante	Logische Basisadresse des Moduls. Bei einem Mischmodul ist die kleinere der beiden Adressen anzugeben.
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.
BUSY	OUTPUT	BOOL	E, A, M, D, L	BUSY = 1: Der Schreibvorgang ist noch nicht beendet.

System-SFCs - "System Functions" > SFC 57 - PARM MOD - Modul parametrieren

RET_VAL (Rückgabewert)

Bei RET_VAL = 8xxxh sind zwei Fälle zu unterscheiden:

- Temporäre Fehler (Fehlercodes 80A2h ... 80A4h, 80Cxh):
 Bei dieser Fehlerart besteht die Möglichkeit, dass sich der Fehler ohne Ihr Zutun behebt, es wäre also sinnvoll den SFC erneut (ggf. mehrfach) aufzurufen.
 Beispiel für temporäre Fehler: Benötigte Betriebsmittel sind momentan belegt (80C3h).
- Permanente Fehler (Fehlercodes 809xh, 80A1h, 80Bxh, 80Dxh):
 Bei dieser Fehlerart kann der Fehler nicht ohne Ihr Zutun behoben werden. Ein erneuter Aufruf des SFC ist erst wieder sinnvoll, wenn der Fehler beseitigt wurde.
 Beispiel für permanente Fehler: Falsche Länge des zu übertragenden Datensatzes (80B1h).

Wert	Beschreibung
7000h	Erstaufruf mit REQ = 0: keine Datenübertragung aktiv;
	BUSY hat Wert 0.
7001h	Erstaufruf mit REQ = 1: Datenübertragung angestoßen;
	BUSY hat den Wert 1.
7002h	Zwischenaufruf (REQ irrelevant): Datenübertragung bereits aktiv;
	BUSY hat den Wert 1.
8090h	Angegebene logische Basisadresse ungültig: Es ist keine Zuordnung im SDB1/SDB2x vorhanden, oder es ist keine Basisadresse.
8093h	Für das über LADDR und IOID ausgewählte Modul ist dieser SFC nicht zulässig.
80A1h	Negative Quittung beim Senden des Datensatzes zum Modul (Modul während des Sendens gezogen oder Modul defekt)
80A2h	DP-Protokollfehler bei Layer 2, evtl. Hardware- / Schnittstellenfehler im DP-Slave
80A3h	DP-Protokollfehler bei User Interface/User
80A4h	Kommunikation gestört
	(Fehler tritt auf zwischen CPU und externer DP-Anschaltung)
80B0h	SFC für Modultyp nicht möglich, oder das Modul kennt Datensatz nicht.
80B1h	Die Länge des durch RECORD festgelegten Zielbereichs ist zu klein.
80B2h	Der projektierte Steckplatz ist nicht belegt.
80B3h	Ist-Modultyp ungleich Soll-Modultyp im SDB1
80C1h	Die Daten des auf dem Modul vorangegangenen Schreibauftrags für denselben Datensatz sind von dem Modul noch nicht verarbeitet.
80C2h	Das Modul bearbeitet momentan das mögliche Maximum an Aufträgen für eine CPU.
80C3h	Benötigte Betriebsmittel (Speicher etc.) sind momentan belegt.
80C4h	Kommunikationsfehler
80C5h	Dezentrale Peripherie nicht verfügbar
80C6h	Datensatzübertragung wurde abgebrochen wegen Prioritätsklassenabbruchs.
80D0h	Im zugehörigen SDB ist kein Eintrag für das Modul vorhanden.
80D1h	Die Datensatznummer ist im zugehörigen SDB für das Modul nicht projektiert.
80D2h	Das Modul ist laut Typkennung nicht parametrierbar.
80D3h	Auf den SDB kann nicht zugegriffen werden, da er nicht vorhanden ist.

System-SFCs - "System Functions" > SFC 58 - WR_REC - Datensatz schreiben

Wert	Beschreibung
80D4h	SDB-Strukturfehler: SDB-interner Zeiger zeigt außerhalb SDB.

14.1.45 SFC 58 - WR REC - Datensatz schreiben

Beschreibung

Mit dem SFC 58 WR_REC (write record) wird der Datensatz *RECORD* zum adressierten Modul übertragen.

Der Schreibvorgang wird gestartet, wenn beim Aufruf des SFC 58 der Eingangsparameter *REQ* mit 1 belegt wird. Der Ausgangsparameter *BUSY* liefert den Wert 0, wenn der Schreibvorgang sofort ausgeführt werden konnte. Wenn der Schreibvorgang noch nicht abgeschlossen ist, liefert *BUSY* den Wert 1.

Dieser SFC kann für Digital-, Analogmodule, FMs, CPs und über PROFIBUS DP-V1 eingesetzt werden.

Systembedingt ist dieser Baustein nicht unterbrechbar!

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
REQ	INPUT	BOOL	E, A, M, D, L, Konstante	REQ = 1: Anforderung zum Schreiben
IOID	INPUT	BYTE	E, A, M, D, L,	Kennung des Adressbereichs:
			Konstante	54h = Peripherie Eingang (PE)
				55h = Peripherie Ausgang (PA)
			Handelt es sich um eine Mischmodul, ist die Bereichskennung der niedrigeren Adresse anzu- geben. Bei gleichen Adressen ist 54h anzugeben.	
LADDR	INPUT	WORD	E, A, M, D, L, Konstante	Logische Basisadresse des Moduls. Bei einem Mischmodul ist die kleinere der beiden Adressen anzugeben.
RECNUM	INPUT	BYTE	E, A, M, D, L,	Datensatznummer
			Konstante	(zulässige Werte: 2 240)
RECORD	INPUT	ANY	E, A, M, D, L	Datensatz
				Es ist nur der Datentyp BYTE zulässig.
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.
BUSY	OUTPUT	BOOL	E, A, M, D, L	BUSY = 1: Der Schreibvorgang ist noch nicht beendet.

RECORD

Beim ersten Aufruf des SFC werden die zu übertragenden Daten aus dem Parameter *RECORD* gelesen. Sollte die Übertragung des Datensatzes jedoch länger als einen Aufruf dauern, dann ist bei den Folgeaufrufen des SFC (zum gleichen Auftrag) der Inhalt des Parameters *RECORD* nicht mehr relevant.

RET VAL (Rückgabewert)

Bei *RET VAL* = 8xxxh sind zwei Fälle zu unterscheiden:

■ Temporäre Fehler (Fehlercodes 80A2h ... 80A4h, 80Cxh):

System-SFCs - "System Functions" > SFC 58 - WR REC - Datensatz schreiben

Bei dieser Fehlerart besteht die Möglichkeit, dass sich der Fehler ohne Ihr Zutun behebt, es wäre also sinnvoll den SFC erneut (ggf. mehrfach) aufzurufen. Beispiel für temporäre Fehler: Benötigte Betriebsmittel sind momentan belegt (80C3h).

■ Permanente Fehler (Fehlercodes 809xh, 80A0h, 80A1h, 80Bxh):
Bei dieser Fehlerart kann der Fehler nicht ohne Ihr Zutun behoben werden. Ein erneuter Aufruf des SFC ist erst wieder sinnvoll, wenn der Fehler beseitigt wurde.
Beispiel für permanente Fehler: Falsche Länge des zu übertragenden Datensatzes (80B1h).

Wert	Beschreibung				
7000h	Erstaufruf mit <i>REQ</i> = 0: keine Datenübertragung aktiv;				
	BUSY hat den Wert 0.				
7001h	Erstaufruf mit REQ = 1: Datenübertragung angestoßen;				
	BUSY hat den Wert 1.				
7002h	Zwischenaufruf (REQ irrelevant): Datenübertragung bereits aktiv;				
	BUSY hat den Wert 1.				
8090h	Angegebene logische Basisadresse ungültig: Es ist keine Zuordnung im SDB1/SDB2x vorhanden, oder es ist keine Basisadresse.				
8092h	In ANY-Referenz ist eine Typangabe ungleich BYTE angegeben.				
8093h	Für das über LADDR und IOID ausgewählte Modul ist dieser SFC nicht zulässig.				
80A1h	Negative Quittung beim Schreiben zum Modul				
	(Modul während des Schreibvorgangs gezogen oder Modul defekt).				
80A2h	DP-Protokollfehler bei Layer 2, evtl. Hardware- / Schnittstellenfehler im DP-Slave				
80A3h	DP-Protokollfehler bei User Interface/User				
80A4h	Kommunikation gestört				
	(Fehler tritt auf zwischen CPU und externer DP-Anschaltung)				
80B0h	■ SFC für Modultyp nicht möglich.				
	 ■ Modul kennt den Datensatz nicht. ■ Datensatznummer ≥ 241 ist unzulässig. 				
	■ Die Datensätze 0 und 1 sind nicht erlaubt.				
80B1h	Die Längenangabe im Parameter <i>RECORD</i> ist falsch.				
80B2h	Der projektierte Steckplatz ist nicht belegt.				
80B3h	Ist-Modultyp ungleich Soll-Modultyp im SDB1				
80C1h	Die Daten des auf dem Modul vorangegangenen Schreibauftrags für denselben Datensatz sind von dem Modul noch nicht verarbeitet.				
80C2h	Das Modul bearbeitet momentan das mögliche Maximum an Aufträgen für eine CPU.				
80C3h	Benötigte Betriebsmittel (Speicher etc.) sind momentan belegt.				
80C4h	Kommunikationsfehler				
80C5h	Dezentrale Peripherie nicht verfügbar.				
80C6h	Datensatzübertragung wurde abgebrochen wegen Prioritätsklassenabbruchs.				

System-SFCs - "System Functions" > SFC 59 - RD REC - Datensatz lesen

j

Sollte der allgemeine Fehler 8544h auftreten, wird dadurch nur angezeigt, dass der Zugriff auf mindestens ein Byte des den Datensatz enthaltenden E/A-Speicherbereichs gesperrt war. Die Datenübertragung wurde jedoch fortgesetzt.

14.1.46 SFC 59 - RD REC - Datensatz lesen

Beschreibung

Mit dem SFC 59 RD_REC (read record) wird der Datensatz mit der Nummer *RECNUM* von dem adressierten Modul gelesen.

Dieser SFC kann für Digital-, Analogmodule, FMs, CPs und über PROFIBUS DP-V1 eingesetzt werden.

Der Lesevorgang wird gestartet, wenn beim Aufruf des SFC 59 der Eingangsparameter *REQ* mit 1 belegt wird. Der Ausgangsparameter *BUSY* liefert den Wert 0, wenn der Lesevorgang sofort ausgeführt werden konnte. Wenn der Lesevorgang noch nicht abgeschlossen ist, liefert *BUSY* den Wert 1. Durch den Parameter *RECORD* wird der Zielbereich festgelegt, in den der gelesene Datensatz nach fehlerfreier Datenübertragung eingetragen wird.

Systembedingt ist dieser Baustein nicht unterbrechbar!

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
REQ	INPUT	BOOL	E, A, M, D, L, Konstante	REQ = 1: Anforderung zum Lesen
IOID	INPUT	BYTE	E, A, M, D, L,	Kennung des Adressbereichs:
			Konstante	54h = Peripherie Eingang (PE)
				55h = Peripherie Ausgang (PA)
				Handelt es sich um ein Mischmodul, ist die Bereichskennung der niedrigeren Adresse anzu- geben. Bei gleichen Adressen ist 54h anzu- geben.
LADDR	INPUT	WORD	E, A, M, D, L, Konstante	Logische Basisadresse des Moduls. Bei einem Mischmodul ist die kleinere der beiden Adressen anzugeben.
RECNUM	INPUT	BYTE	E, A, M, D, L, Konstante	Datensatznummer
				(zulässige Werte: 0 240)
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode. Zusätzlich: Länge des tatsächlich übertragenen Datensatzes in Bytes (mögliche Werte: +1 +240), falls der Zielbereich größer ist als der übertragene Datensatz und bei der Übertragung kein Fehler auftrat.
BUSY	OUTPUT	BOOL	E, A, M, D, L	BUSY = 1: Der Schreibvorgang ist noch nicht beendet.

System-SFCs - "System Functions" > SFC 59 - RD REC - Datensatz lesen

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
RECORD	OUTPUT	ANY	E, A, M, D, L	Zielbereich für den gelesenen Datensatz. Sie müssen bei asynchroner Bearbeitung des SFC 59 darauf achten, dass die Aktualparameter von <i>RECORD</i> bei allen Aufrufen dieselbe Längeninformation haben. Es ist nur der Datentyp BYTE zulässig.

Geeignete Wahl von RECORD

Wenn Sie sicherstellen wollen, dass immer der gesamte Datensatz gelesen wird, wählen Sie einen Zielbereich mit der Länge 241Bytes. Bei einer fehlerfreien Datenübertragung steht dann in *RET_VAL* die tatsächliche Datensatzlänge.

RET_VAL (Rückgabewert)

RET_VAL enthält einen Fehlercode, wenn während der Bearbeitung der Funktion ein Fehler auftrat.

Bei einer fehlerfreien Übertragung enthält RET_VAL:

- den Wert 0 wenn der gesamte Zielbereich mit Daten aus dem selektierten Datensatz gefüllt wurde (Der Datensatz kann aber unvollständig sein).
- die Länge des tatsächlich übertragenen Datensatzes in Bytes (mögliche Werte: 1 ...
 240), wenn der Zielbereich größer ist als der übertragene Datensatz.

Fehlerinformationen

Bei RET VAL = 8xxxh sind zwei Fälle zu unterscheiden:

- Temporäre Fehler (Fehlercodes 80A2h ... 80A4h, 80Cxh): Bei dieser Fehlerart besteht die Möglichkeit, dass sich der Fehler ohne Ihr Zutun behebt. Es wäre also sinnvoll, den SFC erneut (ggf. mehrfach) aufzurufen. Beispiel für temporäre Fehler: Benötigte Betriebsmittel sind momentan belegt (80C3h).
- Permanente Fehler (Fehlercodes 809xh, 80A0h, 80A1h, 80Bxh): Bei dieser Fehlerart kann der Fehler nicht ohne Ihr Zutun behoben werden. Ein erneuter Aufruf des SFC ist erst wieder sinnvoll, wenn der Fehler beseitigt wurde. Beispiel für permanente Fehler: Falsche Länge des zu übertragenden Datensatzes (80B1h).

Fehlerinformationen

Wert	Beschreibung
7000h	Erstaufruf mit <i>REQ</i> = 0: keine Datenübertragung aktiv;
	BUSY hat den Wert 0.
7001h	Erstaufruf mit REQ = 1: Datenübertragung angestoßen;
	BUSY hat den Wert 1.
7002h	Zwischenaufruf (REQ irrelevant): Datenübertragung bereits aktiv;
	BUSY hat den Wert 1.
8090h	Angegebene logische Basisadresse ungültig: Es ist keine Zuordnung im SDB1/SDB2x vorhanden, oder es ist keine Basisadresse.
8092h	In ANY-Referenz ist eine Typangabe ungleich BYTE angegeben.
8093h	Für das über LADDR und IOID ausgewählte Modul ist dieser SFC nicht zulässig.
80A0h	Negative Quittung beim Lesen vom Modul (Modul während des Lesevorgangs gezogen oder Modul defekt)
80A2h	DP-Protokollfehler bei Layer 2, evtl. Hardware- / Schnittstellenfehler im DP-Slave
80A3h	DP-Protokollfehler bei User Interface/User

System-SFCs - "System Functions" > SFC 64 - TIME_TCK - Systemzeit lesen

Wert	Beschreibung
80A4h	Kommunikation gestört (Fehler tritt auf zwischen CPU und externer DP-Anschaltung)
80B0h	 SFC für Modultyp nicht möglich Modul kennt den Datensatz nicht. Datensatznummer ≥ 241 ist unzulässig.
80B1h	Die Längenangabe im Parameter RECORD ist falsch.
80B2h	Der projektierte Steckplatz ist nicht belegt.
80B3h	Ist-Modultyp ungleich Soll-Modultyp im SDB1
80C0h	Das Modul führt den Datensatz, aber es sind noch keine Lesedaten da.
80C1h	Die Daten des auf dem Modul vorangegangenen Schreibauftrags für denselben Datensatz sind von dem Modul noch nicht verarbeitet.
80C2h	Das Modul bearbeitet momentan das mögliche Maximum an Aufträgen für eine CPU.
80C3h	Benötigte Betriebsmittel (Speicher etc.) sind momentan belegt.
80C4h	Kommunikationsfehler
80C5h	Dezentrale Peripherie nicht verfügbar.
80C6h	Datensatzübertragung wurde abgebrochen wegen Prioritätsklassenabbruchs.

Sollte der allgemeine Fehler 8745h auftreten, wird dadurch nur angezeigt, dass beim Schreibvorgang auf das Prozessabbild der Zugriff auf mindestens ein Byte nicht möglich war. Der Datensatz wurde jedoch ordnungsgemäß von dem Modul gelesen und in den E/A-Speicherbereich geschrieben.

14.1.47 SFC 64 - TIME TCK - Systemzeit lesen

Beschreibung

Mit dem SFC 64 TIME_TCK (time tick) wird die Systemzeit der CPU ausgelesen. Das kann zum Beispiel dazu genutzt werden, die Dauer von Vorgängen zu messen, indem eine Differenzbildung der Ergebnisse von zwei SFC 64-Aufrufen vorgenommen wird. Bei der Systemzeit handelt es sich um einen "Zeitzähler", der von 0 bis max. 2147483647ms zählt und bei einem Überlauf der Systemzeit wieder von 0 beginnt. Das Zeitraster und die Genauigkeit der Systemzeit hängen von der jeweiligen CPU ab. Die Systemzeit kann nur von den Betriebszuständen der CPU beeinflusst werden.

Systemzeit und Betriebszustände

Betriebzustand	Systemzeit
Anlauf RUN	wird ständig aktualisiert.
STOP	wird angehalten und behält den aktuellen Wert.
Neustart	wird gelöscht und beginnt wieder von "0" an zu laufen.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
RET_VAL	OUTPUT	TIME	E, A, M, D, L	Der Parameter <i>RET_VAL</i> enthält die gelesene Systemzeit im Bereich von 0 2 ³¹ -1ms.

System-SFCs - "System Functions" > SFC 65 - X SEND - Daten senden

RET_VAL (Rückgabewert)

Der SFC 64 gibt keine spezifischen Fehlerinformationen aus.

14.1.48 SFC 65 - X_SEND - Daten senden

Beschreibung

Mit dem SFC 65 X_SEND können Daten an einen außerhalb der eigenen Station liegenden Kommunikationspartner gesendet werden. Der Kommunikationspartner empfängt die Daten mit Hilfe des SFC 66 X_RCV. Die Kennzeichnung der Sendedaten erfolgt über den Eingangsparameter REQ_ID . Diese Auftragskennung wird mit übertragen und kann beim Kommunikationspartner ausgewertet werden, um die Herkunft der Daten zu ermitteln. Der Auftrag wird gestartet, wenn am Eingangsparameter REQ der Wert 1 anliegt. Der über den Parameter SD definierte Sendebereich (auf der sendenden CPU) muss kleiner oder gleich dem über den Parameter RD definierten Empfangsbereich (beim Kommunikationspartner) sein, des Weiteren müssen die Datentypen von Sendebereich und Empfangsbereich übereinstimmen.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
REQ	INPUT	BOOL	E, A, M, D, L, Konstante	Steuerparameter "request to activate", dient dazu, den Auftrag anzustoßen
CONT	INPUT	BOOL	E, A, M, D, L, Konstante	Steuerparameter "continue", legt fest, ob die Verbindung zum Kommunikationspartner nach Abschluss des Auftrags bestehen bleibt
DEST_ID	INPUT	WORD	E, A, M, D, L, Konstante	Adressierungsparameter "destination ID". Er enthält die MPI-Adresse des Kommunikationspartners.
REQ_ID	INPUT	DWORD	E, A, M, D, L, Konstante	Auftragskennung. Sie dient zur Identifizierung der Daten beim Kommunikationspartner.
SD	INPUT	ANY	E, A, M, D	Referenz auf den Sendebereich. Folgende Datentypen sind erlaubt: BOOL, BYTE, CHAR, WORD, INT, DWORD, DINT, REAL, DATE, TOD, TIME, S5_TIME, DATE_AND_TIME sowie Arrays der genannten Datentypen mit Ausnahme von BOOL.
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.
BUSY	OUTPUT	BOOL	E, A, M, D, L	BUSY = 1: Der Sendevorgang ist noch nicht abgeschlossen.
				BUSY = 0: Der Sendevorgang ist abgeschlossen, bzw. es ist kein Sendevorgang aktiv.

REQ_ID

Der Eingangsparameter REQ_ID dient zur Kennzeichnung der Sendedaten.

Auf Empfängerseite wird der Parameter REQ ID benötigt, wenn

- auf einer Sende-CPU mehrere SFC 65 mit unterschiedlichen Parametern REQ_ID aufgerufen und die Daten an einen Kommunikationspartner übertragen werden.
- von mehreren Sende-CPUs Daten mit Hilfe des SFC 65 an einen Kommunikationspartner übertragen werden.

Die Empfangsdaten können mit Hilfe der Auswertung des Parameters *REQ_ID* in unterschiedlichen Speicherbereichen abgelegt werden.

System-SFCs - "System Functions" > SFC 65 - X SEND - Daten senden

Datenkonsistenz

Da die Sendedaten beim ersten Aufruf des SFC in einen internen Puffer des Betriebssystems umkopiert werden, ist darauf zu achten, dass der Sendebereich nicht beschrieben wird, bevor der Erstaufruf abgeschlossen ist, da ansonsten inkonsistente Daten übertragen werden können.

Bei einem schreibenden Zugriff auf die Sendedaten nach dem Erstaufruf wird die Datenkonsistenz nicht beeinträchtigt.

RET_VAL (Rückgabewert)

Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.

Die in der Tabelle "Spezifische Fehlerinformationen" unter anderem angegebenen "echten" Fehlerinformationen können wie folgt klassifiziert werden:

Wert	Beschreibung
809xh	Fehler der CPU, in der SFC abläuft
80Axh	Permanenter Kommunikationsfehler
80Bxh	Fehler beim Kommunikationspartner
80Cxh	Temporärer Fehler

Spezifische Fehlerinformationen:

Wert	Beschreibung
0000h	Die Bearbeitung wurde fehlerfrei abgeschlossen.
7000h	Erstaufruf mit REQ = 0: keine Datenübertragung aktiv; BUSY hat Wert 0.
7001h	Erstaufruf mit REQ = 1: Datenübertragung angestoßen; BUSY hat den Wert 1.
7002h	Zwischenaufruf (REQ irrelevant): Datenübertragung bereits aktiv; BUSY hat den Wert 1.
8090h	Angegebene Zieladresse des Kommunikationspartners ist ungültig, z.B. falsche IOID falsche Basisadresse vorhanden falsche MPI-Adresse (> 126)
8092h	Fehler bei <i>SD</i> oder <i>RD</i> , z.B.: ■ unzulässige Länge von <i>SD</i> ■ <i>SD</i> = NIL ist unzulässig
8095h	Baustein wird bereits in einer Prioritätsklasse mit niedrigerer Priorität bearbeitet.
80A0h	Fehler in empfangener Quittung
80A1h	Kommunikationsprobleme: SFC-Aufruf nach Abbruch einer bestehenden Verbindung.
80B1h	Fehler im ANY-Pointer. Die Länge des zu übertragenden Datenbereichs ist falsch.
80B4h	Datentypfehler bei ANY-Pointer, oder ARRAY des angegebenen Datentyps nicht erlaubt.
80B5h	Bearbeitung wegen unzulässigem Betriebszustand abgelehnt.
80B6h	In der empfangenen Quittung steht ein unbekannter Fehlercode.
80B8h	Der SFC 66 "X_RCV" des Kommunikationspartners hat die Datenübernahme abgelehnt (RD = NIL).
80B9h	Der Datenblock wurde vom Kommunikationspartner identifiziert (Aufruf des SFC 66 "X_RCV" mit EN_DT = 0), jedoch wegen Betriebszustand STOP noch nicht ins Anwenderprogramm übernommen.

System-SFCs - "System Functions" > SFC 66 - X RCV - Daten empfangen

Wert	Beschreibung
80BAh	Antwort des Kommunikationspartners passt nicht ins Kommunikationstelegramm.
80C0h	Die angegebene Verbindung ist durch einen anderen Auftrag bereits belegt.
80C1h	Ressourcenengpass bei der CPU, in der SFC abläuft, z.B.:
	 Die maximale Anzahl verschiedener Sendeaufträge des Moduls wird bereits bearbeitet. Die Verbindungsressource ist z.B. durch Empfang belegt.
80C2h	Temporärer Ressourcenmangel des Kommunikationspartners, z.B.:
	 Der Kommunikationspartner bearbeitet momentan das Maximum an Aufträgen. Die benötigten Betriebsmittel (Speicher etc.) sind belegt. Zu wenig Arbeitsspeicher vorhanden. (Stoßen Sie Komprimiervorgang an.)
80C3h	Fehler beim Verbindungsaufbau, z.B.:
	 Die eigene Station befindet sich nicht am MPI-Subnetz. Sie haben die eigene Station am MPI-Subnetz adressiert. Der Kommunikationspartner ist nicht mehr erreichbar. Temporärer Ressourcenmangel des Kommunikationspartners.

14.1.49 SFC 66 - X_RCV - Daten empfangen

Beschreibung

Mit dem SFC 66 X_RCV können Daten empfangen werden, die ein oder mehrere außerhalb der eigenen Station liegende Kommunikationspartner mit Hilfe des SFC 65 X_SEND gesendet haben.

Mit dem SFC 66 kann festgestellt werden, ob zum aktuellen Zeitpunkt gesendete Daten bereitstehen. Diese Daten wurden vom Betriebssystem gegebenenfalls in eine interne Warteschlange gestellt. Sind in dieser Warteschlange Daten vorhanden, so kann der älteste Datenblock in der Warteschlange in einen vorgegebenen Empfangsbereich kopiert werden.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
EN_DT	INPUT	BOOL	E, A, M, D, L, Konstante	Steuerparameter "enable data transfer". Mit dem Wert 0 überprüfen Sie, ob mindestens ein Datenblock bereitsteht. Der Wert 1 bewirkt das Umkopieren des ältesten in der Warteschlange vorhandenen Datenblocks in den Bereich des Arbeitsspeichers, den Sie durch <i>RD</i> vorgegeben haben.
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.
REQ_ID	OUTPUT	DWORD	E, A, M, D, L	Auftragskennung desjenigen SFC 65 "X_SEND", dessen gesendete Daten in der Warteschlange an erster Stelle stehen, d.h. die ältesten Daten in der Warteschlange. Falls kein Datenblock in der Warteschlange steht, enthält <i>REQ_ID</i> den Wert 0.

System-SFCs - "System Functions" > SFC 66 - X RCV - Daten empfangen

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
NDA	OUTPUT	BOOL	E, A, M, D, L	Zustandsparameter "new data arrived".
				<i>NDA</i> = 0:
				In der Warteschlange ist kein Datenblock vorhanden.
				<i>NDA</i> = 1:
				■ In der Warteschlange ist mindestens ein Datenblock vorhanden. (Aufruf des SFC 66 mit <i>EN_DT</i> = 0).
				Der älteste Datenblock in der Warteschlange wurde ins Anwenderprogramm kopiert. (Aufruf des SFC 66 mit EN_DT = 1).
RD	OUTPUT	ANY	E, A, M, D	Referenz auf den Empfangsbereich (receive data area).
				Folgende Datentypen sind erlaubt: BOOL, BYTE, CHAR, WORD, INT, DWORD, DINT, REAL, DATE, TOD, TIME, S5_TIME, DATE_AND_TIME sowie Arrays der genannten Datentypen mit Ausnahme von BOOL. Falls Sie den ältesten in der Warteschlange vorhandenen Datenblock verwerfen wollen, belegen Sie <i>RD</i> mit dem Wert NIL.

Datenempfang anzeigen

$mit EN_DT = 0$

Die empfangenen Daten eines Kommunikationspartners werden vom Betriebssystem in der Reihenfolge ihres Empfangs in die Warteschlange eingereiht.

Zur Überprüfung, ob mindestens ein Datenblock bereitsteht, wird der SFC 66 mit *EN_DT* = 0 aufgerufen und der Ausgangsparameter NDA ausgewertet.

- NDA = 0 bedeutet, in der Warteschlange ist kein Datenblock enthalten. REQ_ID ist irrelevant, RET_VAL enthält den Wert 7000h.
- *NDA* = 1 bedeutet, in der Warteschlange ist mindestens ein Datenblock enthalten.

Ist ein Datenblock in der Warteschlange enthalten, sollten zusätzlich die Ausgangsparameter *RET_VAL* und *REQ_ID* ausgewertet werden. *RET_VAL* enthält die Länge des Datenblocks in Byte, *REQ_ID* die Auftragskennung des Sendebausteins. Wenn sich in der Warteschlange mehrere Datenblöcke befinden, so gehören *REQ_ID* und *RET_VAL* zum ältesten in der Warteschlange liegenden Datenblock.

Daten in Empfangsbereich übernehmen

$mit EN_DT = 1$

Wenn der Eingangsparameter *EN_DT* = 1 ist, wird der älteste in der Warteschlange vorhandene Datenblock in den durch *RD* vorgegebenen Bereich kopiert. Es ist darauf zu achten, das *RD* größer oder gleich dem über den Parameter SD definierten Sendebereich des zugehörigen SFC 65 X_SEND ist und das die Datentypen übereinstimmen. Wenn die empfangenen Daten in unterschiedlichen Bereichen abgelegt werden sollen, kann im Erstaufruf *REQ_ID* ermittelt (SFC-Aufruf mit *EN_DT* = 0) und im Folgeaufruf (mit *EN_DT* = 1) RD geeignet gewählt werden. Wurde der Auftrag fehlerfrei bearbeitet, enthält *RET_VAL* die Länge des kopierten Datenblocks in Byte und der Sender erhält eine positive Quittung.

System-SFCs - "System Functions" > SFC 66 - X RCV - Daten empfangen

Daten verwerfen

Wenn die empfangenen Daten nicht übernommen werden sollen, belegen Sie *RD* mit dem Wert NIL. Der zugehörige Kommunikationspartner erhält dann eine negative Quittung (*RET_VAL* des zugehörigen SFC 65 X_SEND hat den Wert 80B8h) und der Parameter *RET_VAL* hat den Wert 0.

Datenkonsistenz

Es ist darauf zu achten, das der Empfangsbereich nicht ausgelesen wird, bevor der Auftrag nicht abgeschlossen ist, da ansonsten inkonsistente Daten ausgelesen werden können.

Betriebszustandsübergang nach STOP

Wenn die CPU in den Betriebszustand STOP übergeht,

- werden alle neu ankommenden Aufträge negativ quittiert.
- gilt für bereits angekommene Aufträge: Alle in der Empfangswarteschlange eingetragenen Aufträge werden negativ quittiert.
- werden bei einem anschließenden Neustart alle Datenblöcke verworfen.

Verbindungsabbruch

Sollte es zu einem Abbruch der Verbindung kommen, wird ein in der Empfangswarteschlange bereits eingetragener Auftrag, der zu dieser Verbindung gehört, verworfen.

Ausnahme: Falls es sich bei diesem Auftrag um den ältesten Auftrag in der Warteschlange handelt und er durch einen SFC-Aufruf mit *EN_DT* = 0 bereits erkannt wurde, kann er mit *EN_DT* = 1 in den Empfangsbereich übernommen werden.

RET_VAL (Rückgabewert)

Tritt kein Fehler auf, enthält RET VAL:

- bei EN_DT = 0/1 und NDA = 0: 7000h. In diesem Fall steht kein Datenblock in der Warteschlange.
- bei EN_DT = 0 und NDA = 1 die L\u00e4nge des \u00e4ltesten in der Warteschlange eingetragenen Datenblocks in Byte als positive Zahl.
- bei EN_DT = 1 und NDA = 1 die L\u00e4nge des in den Empfangsbereich RD kopierten Datenblocks in Byte als positive Zahl.

Fehlerinformationen

Die in der Tabelle "Spezifische Fehlerinformationen" u.a. angegebenen "echten" Fehlerinformationen können wie folgt klassifiziert werden:

Wert	Beschreibung
809xh	Fehler auf der CPU, auf der der SFC abläuft
80Axh	Permanenter Kommunikationsfehler
80Bxh	Fehler beim Kommunikationspartner
80Cxh	Temporärer Fehler

Spezifische Fehlerinformationen:

Wert	Beschreibung
0000h	Die Bearbeitung wurde fehlerfrei abgeschlossen.
00xyh	Bei NDA = 1 und $RD \Leftrightarrow$ NIL: RET_VAL enthält die Länge des empfangenen (bei $EN_DT = 0$) bzw. des in RD kopierten Datenblocks (bei $EN_DT = 1$).
7000h	$EN_DT = 0/1 \text{ und } NDA = 0$
7001h	Erstaufruf mit <i>REQ</i> = 1: Datenübertragung angestoßen; <i>BUSY</i> hat den Wert 1.

System-SFCs - "System Functions" > SFC 67 - X_GET - Daten lesen

Wert	Beschreibung
7002h	Zwischenaufruf (<i>REQ</i> irrelevant): Datenübertragung bereits aktiv; <i>BUSY</i> = Wert 1.
8090h	Angegebene Zieladresse des Kommunikationspartners ist ungültig, z.B.: falsche IOID falsche Basisadresse vorhanden falsche MPI-Adresse (> 126)
8092h	Fehler bei <i>SD</i> oder <i>RD</i> , z.B.: ■ Es wurden mehr Daten empfangen als in den durch <i>RD</i> vorgegebenen Bereich hineinpassen. ■ <i>RD</i> ist vom Datentyp BOOL, die Länge der empfangenen Daten ist jedoch größer als ein Byte.
8095h	Der Baustein wird bereits in einer Prioritätsklasse mit niedrigerer Priorität bearbeitet.
80A0h	Fehler in empfangener Quittung.
80A1h	Kommunikationsprobleme: SFC-Aufruf nach Abbruch einer bestehenden Verbindung.
80B1h	Fehler im ANY-Pointer. Die Länge des zu übertragenden Datenbereichs falsch.
80B4h	Datentypfehler bei ANY-Pointer, oder ARRAY des angegebenen Datentyps nicht erlaubt.
80B6h	In der empfangenen Quittung steht ein unbekannter Fehlercode.
80BAh	Die Antwort des Kommunikationspartners passt nicht in das Kommunikationstelegramm.
80C0h	Die angegebene Verbindung ist durch einen anderen Auftrag bereits belegt.
80C1h	Ressourcenengpass bei der CPU, auf der der SFC abläuft, z.B.: Die maximale Anzahl verschiedener Sendeaufträge des Moduls wird bereits bearbeitet. Die Verbindungsressource ist z.B. durch Empfang belegt.
80C2h	 Temporärer Ressourcenmangel des Kommunikationspartners, z.B.: Der Kommunikationspartner bearbeitet momentan das Maximum an Aufträgen. Die benötigten Betriebsmittel (Speicher etc.) sind belegt. Zu wenig Arbeitsspeicher vorhanden. (Stoßen Sie Komprimiervorgang an.)
80C3h	 Fehler beim Verbindungsaufbau, z.B.: Die eigene Station befindet sich nicht am MPI-Subnetz. Sie haben die eigene Station am MPI-Subnetz adressiert. Der Kommunikationspartner ist nicht mehr erreichbar. Temporärer Ressourcenmangel des Kommunikationspartners.

14.1.50 SFC 67 - X_GET - Daten lesen

Beschreibung

Mit dem SFC 67 X_GET können Daten aus einem Kommunikationspartner, der außerhalb der eigenen Station liegt, gelesen werden, wobei auf dem Kommunikationspartner kein zugehöriger SFC existiert. Der Auftrag wird gestartet, wenn am Eingangsparameter *REQ* der Wert 1 anliegt. Danach wird der SFC 67 so lange aufgerufen, bis am Ausgangsparameter BUSY der Wert 0 anliegt. Der Ausgangsparameter *RET_VAL* enthält die Länge des empfangenen Datenblocks in Byte.

Der über den Parameter *RD* definierte Empfangsbereich (auf der empfangenden CPU) muss mindestens so lang wie der über den Parameter *VAR_ADDR* definierte Lesebereich (beim Kommunikationspartner) sein, des Weiteren müssen die Datentypen von *RD* und *VAR_ADDR* übereinstimmen.

System-SFCs - "System Functions" > SFC 67 - X GET - Daten lesen

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
REQ	INPUT	BOOL	E, A, M, D, L, Konstante	Steuerparameter "request to activate", dient dazu, den Auftrag anzustoßen.
CONT	INPUT	BOOL	E, A, M, D, L, Konstante	Steuerparameter "continue", legt fest, ob die Verbindung zum Kommunikationspartner nach Abschluss des Auftrags bestehen bleibt.
DEST_ID	INPUT	WORD	E, A, M, D, L, Konstante	Adressierungsparameter "destination ID". Er enthält die MPI-Adresse des Kommunikationspartners.
VAR_ADDR	INPUT	ANY	E, A, M, D	Referenz auf den Bereich in der Partner-CPU, der gelesen werden soll. Sie müssen einen Datentyp wählen, der vom Kommunikationspartner unterstützt wird.
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode. Tritt kein Fehler auf, enthält <i>RET_VAL</i> die Länge des in den Empfangsbereich <i>RD</i> kopierten Datenblocks in Byte als positive Zahl.
BUSY	OUTPUT	BOOL	E, A, M, D, L	BUSY = 1: Der Empfangsvorgang ist noch nicht abgeschlossen.
				BUSY = 0: Der Empfangsvorgang ist abgeschlossen, bzw. es ist kein Empfangsvorgang aktiv.
RD	OUTPUT	ANY	E, A, M, D	Referenz auf den Empfangsbereich (receive data area).
				Folgende Datentypen sind erlaubt: BOOL, BYTE, CHAR, WORD, INT, DWORD, DINT, REAL, DATE, TOD, TIME, S5_TIME, DATE_AND_TIME sowie Arrays der genannten Datentypen mit Ausnahme von BOOL

Datenkonsistenz

Um sicherzustellen, dass die Datenkonsistenz nicht beeinträchtigt wird sollten folgende Konsistenzregeln beachtet werden:

- Aktive CPU (Datenempfänger):
 - Der Empfangsbereich sollte in dem OB ausgelesen werden, in dem der entsprechende SFC aufgerufen wird. Sollte dies nicht möglich sein, so sollte der Empfangsbereich erst dann ausgelesen werden, wenn die Bearbeitung des zugehörigen SFC abgeschlossen ist.
- Passive CPU (Datensender):
 - Es dürfen höchstens so viele Daten in den Sendebereich geschrieben werden, wie die Blockgröße der passiven CPU (Datensender) angibt.
- Passive CPU (Datensender):
 - Die zu sendenden Daten sollten unter Interrupt-Sperre in den Sendebereich geschrieben werden.

Betriebszustandsübergang nach STOP

Wenn die CPU in den Betriebszustand STOP übergeht, wird die vom SFC 67 aufgebaute Verbindung abgebaut. Von der Art des anschließenden Anlaufs hängt ab, ob die bereits empfangenen Daten, die in einem Zwischenspeicher des Betriebssystems stehen, verloren gehen.

Bei einem anschließenden Neustart werden die Daten verworfen.

System-SFCs - "System Functions" > SFC 67 - X GET - Daten lesen

Betriebszustandsübergang des Partners nach STOP

Da die Daten auch im Betriebszustand STOP gelesen werden können, hat ein Übergang der CPU des Kommunikationspartners in den Betriebszustand STOP keine Auswirkung auf die Datenübertragung.

RET_VAL (Rückgabewert)

Die in der Tabelle "Spezifische Fehlerinformationen" u.a. angegebenen "echten Fehlerinformationen" können wie folgt klassifiziert werden:

Wert	Beschreibung
809xh	Fehler auf der CPU, auf der der SFC abläuft
80Axh	Permanenter Kommunikationsfehler
80Bxh	Fehler beim Kommunikationspartner
80Cxh	Temporärer Fehler

Spezifische Fehlerinformationen:

Wert	Beschreibung
0000h	Die Bearbeitung wurde fehlerfrei abgeschlossen.
00xyh	RET_VAL enthält die Länge des empfangenen Datenblocks.
7000h	Aufruf mit REQ = 0 (Aufruf ohne Bearbeitung),
	BUSY hat den Wert 0, es ist keine Datenübertragung aktiv.
7001h	Erstaufruf mit <i>REQ</i> = 1: Datenübertragung angestoßen; <i>BUSY</i> hat den Wert 1.
7002h	Zwischenaufruf (REQ irrelevant): Datenübertragung bereits aktiv; BUSY hat den Wert 1.
8090h	Angegebene Zieladresse des Kommunikationspartners ist ungültig, z.B.: falsche IOID falsche Basisadresse vorhanden falsche MPI-Adresse (> 126)
8092h	Fehler bei SD oder RD, z.B.:
	 unzulässige Länge bei RD Die Länge oder der Datentyp von RD stimmt mit den empfangenen Daten nicht überein. RD = NIL ist unzulässig
8095h	Der Baustein wird bereits in einer Prioritätsklasse mit niedrigerer Priorität bearbeitet.
80A0h	Fehler in empfangener Quittung
80A1h	Kommunikationsprobleme: SFC-Aufruf nach Abbruch einer bestehenden Verbindung.
80B0h	Objekt ist nicht erreichbar, z.B. DB nicht geladen.
80B1h	Fehler im ANY-Pointer. Die Länge des zu übertragenden Datenbereichs ist falsch.
80B2h	HW-Fehler: Modul nicht vorhanden
	 Der projektierte Steckplatz ist nicht belegt. Ist-Modultyp ungleich Soll-Modultyp Dezentrale Peripherie ist nicht verfügbar. Im zugehörigen SDB ist kein Eintrag für das Modul vorhanden.
80B3h	Daten dürfen entweder nur gelesen oder nur geschrieben werden, z.B. schreibgeschützter DB
80B4h	Der in VAR_ADDR angegebene Datentyp wird vom Kommunikationspartner nicht unterstützt.
80B6h	In der empfangenen Quittung steht ein unbekannter Fehlercode.

System-SFCs - "System Functions" > SFC 68 - X PUT - Daten schreiben

Wert	Beschreibung			
80BAh	Die Antwort des Kommunikationspartners passt nicht in das Kommunikationstelegramm.			
80C0h	Die angegebene Verbindung ist durch einen anderen Auftrag bereits belegt.			
80C1h	Ressourcenengpass bei der CPU, auf der der SFC abläuft, z.B.:			
	 Die maximale Anzahl verschiedener Sendeaufträge des Moduls wird bereits bearbeitet. Die Verbindungsressource ist z.B. durch Empfang belegt. 			
80C2h	Temporärer Ressourcenmangel des Kommunikationspartners, z.B.:			
	 Der Kommunikationspartner bearbeitet momentan das Maximum an Aufträgen. Die benötigten Betriebsmittel (Speicher etc.) sind belegt. Zu wenig Arbeitsspeicher vorhanden. (Stoßen Sie einen Komprimiervorgang an.) 			
80C3h	Fehler beim Verbindungsaufbau, z.B.:			
	 Die eigene Station befindet sich nicht am MPI-Subnetz. Sie haben die eigene Station am MPI-Subnetz adressiert. Der Kommunikationspartner ist nicht mehr erreichbar. Temporärer Ressourcenmangel des Kommunikationspartners. 			

14.1.51 SFC 68 - X_PUT - Daten schreiben

Beschreibung

Mit dem SFC 68 X_PUT können Daten in einen Kommunikationspartner, der außerhalb der eigenen Station liegt, geschrieben werden, wobei auf dem Kommunikationspartner kein zugehöriger SFC existiert. Der Auftrag wird gestartet, wenn am Eingangsparameter *REQ* der Wert 1 anliegt. Danach wird der SFC 68 so lange aufgerufen, bis am Ausgangsparameter *BUSY* der Wert 0 anliegt. Der über den Parameter *SD* definierte Sendebereich (auf der sendenden CPU) muss mindestens so lang wie der über den Parameter *VAR_ADDR* definierte Empfangsbereich (beim Kommunikationspartner) sein, des Weiteren müssen die Datentypen von *SD* und *VAR_ADDR* übereinstimmen.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
REQ	INPUT	BOOL	E, A, M, D, L, Konstante	Steuerparameter "request to activate", dient dazu, den Auftrag anzustoßen.
CONT	INPUT	BOOL	E, A, M, D, L, Konstante	Steuerparameter "continue", legt fest, ob die Verbindung zum Kommunikationspartner nach Abschluss des Auftrags bestehen bleibt
DEST_ID	INPUT	WORD	E, A, M, D, L, Konstante	Adressierungsparameter "destination ID". Er enthält die MPI-Adresse des Kommunikationspartners.
VAR_ADDR	INPUT	ANY	E, A, M, D	Referenz auf den Bereich in der Partner-CPU, in den geschrieben werden soll. Sie müssen einen Datentyp wählen, der vom Kommunikationspartner unterstützt wird.
SD	INPUT	ANY	E, A, M, D	Referenz auf den Bereich in der eigenen CPU, der die zu versendenden Daten enthält.
				Folgende Datentypen sind erlaubt: BOOL, BYTE, CHAR, WORD, INT, DWORD, DINT, REAL, DATE, TOD, TIME, S5_TIME, DATE_AND_TIME sowie Arrays der genannten Datentypen mit Ausnahme von BOOL.

System-SFCs - "System Functions" > SFC 68 - X PUT - Daten schreiben

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.
BUSY	OUTPUT	BOOL	E, A, M, D, L	BUSY = 1: Der Sendevorgang ist noch nicht abgeschlossen.
				BUSY = 0: Der Sendevorgang ist abgeschlossen, bzw. es ist kein Sendevorgang aktiv.

Datenkonsistenz

Um sicherzustellen das die Datenkonsistenz nicht beeinträchtigt wird sollten folgende Konsistenzregeln beachtet werden:

Aktive CPU (Datensender):

Der Sendebereich sollte von dem OB aus beschrieben werden, in dem der entsprechende SFC aufgerufen wird. Sollte dies nicht möglich sein, so sollte der Sendebereich erst dann beschrieben werden, wenn der erste Aufruf des zugehörigen SFC abgeschlossen ist.

- Aktive CPU (Datensender):
 - Es dürfen höchstens so viele Daten in den Sendebereich geschrieben werden, wie die Blockgröße der passiven CPU (Datenempfänger) angibt.
- Passive CPU (Datenempfänger): Die zu empfangenden Daten sollten unter Interrupt-Sperre aus dem Empfangsbereich ausgelesen werden.

Betriebszustandsübergang nach STOP

Wenn die CPU in den Betriebszustand STOP übergeht, wird die vom SFC 68 aufgebaute Verbindung abgebaut und die Daten können nicht mehr gesendet werden. Wenn die Sendedaten zum Zeitpunkt des Betriebszustandsübergangs nach STOP bereits in den internen Puffer kopiert waren, wird der Pufferinhalt verworfen.

Betriebszustandsübergang des Partners nach STOP

Da die Daten auch im Betriebszustand STOP geschrieben werden können, hat ein Übergang der CPU des Kommunikationspartners in den Betriebszustand STOP keine Auswirkung auf die Datenübertragung.

RET_VAL (Rückgabewert)

Die in der Tabelle "Spezifische Fehlerinformationen" u.a. angegebenen "echten Fehlerinformationen" können wie folgt klassifiziert werden:

Wert	Beschreibung
809xh	Fehler auf der CPU, auf der der SFC abläuft
80Axh	Permanenter Kommunikationsfehler
80Bxh	Fehler beim Kommunikationspartner
80Cxh	Temporärer Fehler

Spezifische Fehlerinformationen:

Wert	Beschreibung
0000h	Die Bearbeitung wurde fehlerfrei abgeschlossen.
7000h	Aufruf mit REQ = 0 (Aufruf ohne Bearbeitung),
	BUSY hat den Wert 0, es ist keine Datenübertragung aktiv.

System-SFCs - "System Functions" > SFC 68 - X_PUT - Daten schreiben

Wert	Beschreibung					
7001h	Erstaufruf mit <i>REQ</i> = 1: Datenübertragung angestoßen; <i>BUSY</i> hat den Wert 1.					
7002h	Zwischenaufruf (<i>REQ</i> irrelevant): Datenübertragung bereits aktiv; BUSY hat den Wert 1.					
8090h	Angegebene Zieladresse des Kommunikationspartners ist ungültig, z.B.: ■ falsche IOID ■ falsche Basisadresse vorhanden ■ falsche MPI-Adresse (> 126)					
8092h	Fehler bei <i>SD</i> oder <i>RD</i> , z.B.: ■ unzulässige Länge bei <i>SD</i> ■ <i>SD</i> = NIL ist unzulässig					
8095h	Der Baustein wird bereits in einer Prioritätsklasse mit niedrigerer Priorität bearbeitet.					
80A0h	Der in <i>SD</i> der sendenden CPU angegebene Datentyp wird vom Kommunikationspartner nicht unterstützt.					
80A1h	Kommunikationsprobleme: SFC-Aufruf nach Abbruch einer bestehenden Verbindung.					
80B0h	Objekt ist nicht erreichbar, z.B. DB nicht geladen.					
80B1h	Fehler im ANY-Pointer. Die Länge des zu übertragenden Datenbereichs ist falsch.					
80B2h	HW-Fehler: Modul nicht vorhanden					
	 Der projektierte Steckplatz ist nicht belegt. Ist-Modultyp ungleich Soll-Modultyp Dezentrale Peripherie ist nicht verfügbar. Im zugehörigen SDB ist kein Eintrag für das Modul vorhanden. 					
80B3h	Daten dürfen entweder nur gelesen oder nur geschrieben werden, z.B. schreibgeschützter DB					
80B4h	Der in VAR_ADDR angegebene Datentyp wird vom Kommunikationspartner nicht unterstützt.					
80B6h	In der empfangenen Quittung steht ein unbekannter Fehlercode.					
80B7h	Datentyp und/oder Länge der übertragenen Daten passen nicht zum Bereich in der Partner-CPU, in den geschrieben werden soll.					
80BAh	Die Antwort des Kommunikationspartners passt nicht in das Kommunikationstelegramm.					
80C0h	Die angegebene Verbindung ist durch einen anderen Auftrag bereits belegt.					
80C1h	Ressourcenengpass bei der CPU, auf der der SFC abläuft, z.B.: Die maximale Anzahl verschiedener Sendeaufträge des Moduls wird bereits bearbeitet. Die Verbindungsressource ist z.B. durch Empfang belegt.					
80C2h	 Temporärer Ressourcenmangel des Kommunikationspartners, z.B.: Der Kommunikationspartner bearbeitet momentan das Maximum an Aufträgen. Die benötigten Betriebsmittel (Speicher etc.) sind belegt. Zu wenig Arbeitsspeicher vorhanden (Stoßen Sie einen Komprimiervorgang an). 					
80C3h	 Fehler beim Verbindungsaufbau, z.B.: Die eigene Station befindet sich nicht am MPI-Subnetz. Sie haben die eigene Station am MPI-Subnetz adressiert. Der Kommunikationspartner ist nicht mehr erreichbar. Temporärer Ressourcenmangel des Kommunikationspartners. 					

System-SFCs - "System Functions" > SFC 69 - X ABORT - Verbindung abbrechen

14.1.52 SFC 69 - X_ABORT - Verbindung abbrechen

Beschreibung

Mit dem SFC 69 X_ABORT kann die Verbindung zu einem Kommunikationspartner, der außerhalb der eigenen Station liegt, abgebrochen werden, wenn die Verbindung mit einem der SFCs 65, 67 oder 68 aufgebaut wurde. Der Auftrag wird gestartet, wenn am Eingangsparameter *REQ* der Wert 1 anliegt.

Wenn der zu den SFCs 65, 67 oder 68 gehörende Auftrag bereits abgeschlossen wurde (BUSY=0), dann sind nach dem Aufruf des SFC 69 die dafür belegten Verbindungsressourcen auf beiden Seiten wieder freigegeben. Ist der zugehörige Auftrag jedoch noch nicht abgeschlossen (BUSY=1), muss nach Abschluss des Verbindungsabbruchs der zugehörige SFC 65, 67 oder 68 erneut mit REQ=0 und CONT=0 aufgerufen und BUSY=0 abgewartet werden, denn erst dann sind alle belegten Verbindungsressourcen wieder freigegeben. Der SFC 69 kann nur auf derjenigen Seite aufgerufen werden, auf der der SFC 65, 67 oder 68 abläuft.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
REQ	INPUT	BOOL	E, A, M, D, L, Konstante	Steuerparameter "request to activate", dient dazu, den Auftrag anzustoßen.
DEST_ID	INPUT	WORD	E, A, M, D, L, Konstante	Adressierungsparameter "destination ID". Er enthält die MPI-Adresse des Kommunikationspartners.
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.
BUSY	OUTPUT	BOOL	E, A, M, D, L	BUSY = 1: Der Verbindungsabbruch ist noch nicht abgeschlossen.
				BUSY = 0: Der Verbindungsabbruch ist abgeschlossen.

Betriebszustandsübergang nach STOP

Wenn die CPU in den Betriebszustand STOP übergeht, wird der vom SFC 69 angestoßene Verbindungsabbruch dennoch zu Ende bearbeitet.

Betriebszustandsübergang des Partners nach STOP

Ein Übergang der CPU des Kommunikationspartners in den Betriebszustand STOP hat keine Auswirkung auf den Verbindungsabbruch, die Verbindung wird ungeachtet des Betriebszustandsübergangs abgebrochen.

RET_VAL (Rückgabewert)

Die in der Tabelle "Spezifische Fehlerinformationen" u.a. angegebenen "echten Fehlerinformationen" können wie folgt klassifiziert werden:

Wert	Beschreibung
809xh	Fehler auf der CPU, auf der der SFC abläuft
80Axh	Permanenter Kommunikationsfehler
80Bxh	Fehler beim Kommunikationspartner
80Cxh	Temporärer Fehler

System-SFCs - "System Functions" > SFC 70 - GEO LOG - Anfangsadresse einer Baugruppe ermitteln

Spezifische Fehlerinformationen:

Wert	Beschreibung
0000h	REQ = 1, und die angegebene Verbindung ist nicht aufgebaut.
7000h	Aufruf mit REQ = 0 (Aufruf ohne Bearbeitung),
	BUSY hat den Wert 0, es ist keine Datenübertragung aktiv.
7001h	Erstaufruf mit REQ = 1: Datenübertragung angestoßen;
	BUSY hat den Wert 1.
7002h	Zwischenaufruf mit <i>REQ</i> = 1.
8090h	Angegebene Zieladresse des Kommunikationspartners ist ungültig, z.B.:
	falsche Posicedrosse verbanden
	falsche Basisadresse vorhandenfalsche MPI-Adresse (> 126)
8095h	Der Baustein wird bereits in einer Prioritätsklasse mit niedrigerer Priorität bearbeitet.
80A0h	Fehler in empfangener Quittung.
80A1h	Kommunikationsprobleme: SFC-Aufruf nach Abbruch einer bestehenden Verbindung.
80B1h	Fehler im ANY-Pointer. Die Länge des zu übertragenden Datenbereichs ist falsch.
80B4h	Datentypfehler bei ANY-Pointer, oder ARRAY des angegebenen Datentyps nicht erlaubt.
80B6h	In der empfangenen Quittung steht ein unbekannter Fehlercode.
80BAh	Die Antwort des Kommunikationspartners passt nicht in das Kommunikationstelegramm.
80C0h	Die angegebene Verbindung ist durch einen anderen Auftrag bereits belegt.
80C1h	Ressourcenengpass bei der CPU, auf der der SFC abläuft, z.B.:
	 Die maximale Anzahl verschiedener Sendeaufträge des Moduls wird bereits bearbeitet. Die Verbindungsressource ist z.B. durch Empfang belegt.
80C2h	Temporärer Ressourcenmangel des Kommunikationspartners, z.B.:
	■ Der Kommunikationspartner bearbeitet momentan das Maximum an Aufträgen.
	■ Die benötigten Betriebsmittel (Speicher etc.) sind belegt.
00001	Zu wenig Arbeitsspeicher vorhanden (Stoßen Sie einen Komprimiervorgang an).
80C3h	Fehler beim Verbindungsaufbau, z.B.:
	Die eigene Station befindet sich nicht am MPI-Subnetz.Sie haben die eigene Station am MPI-Subnetz adressiert.
	 Der Kommunikationspartner ist nicht mehr erreichbar.
	■ Temporärer Ressourcenmangel des Kommunikationspartners.

14.1.53 SFC 70 - GEO_LOG - Anfangsadresse einer Baugruppe ermitteln

Beschreibung

Vom Kanal einer Signalbaugruppe seien der zugehörige Baugruppensteckplatz der Baugruppe bekannt. Mit der SFC 70 GEO_LOG (convert geographical address to logical address) ermitteln Sie daraus die zugehörige Anfangsadresse der Baugruppe, d.h. die kleinste E- oder A-Adresse. Wenn Sie die SFC 70 auf Power-Module oder Module mit gepackten Adressen anwenden, wird die Diagnoseadresse zurückgeliefert.

System-SFCs - "System Functions" > SFC 70 - GEO_LOG - Anfangsadresse einer Baugruppe ermitteln

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
MASTER	INPUT	INT	E, A, M, D, L, Konstante	 Bereichskennung: 0, falls sich der Steckplatz im zentralen Aufbau befindet: Baugruppenträger 0 bis 3 (S7-300) bzw. 0 bis 21 (S7-400) 1 bis 32: DP-Mastersystem-ID des zugehörigen Feldgeräts, falls sich der Steckplatz in einem Feldgerät am PROFIBUS befindet 100 bis 115: PROFINET IO-System- ID des zugehörigen Feldgeräts, falls sich der Steckplatz in einem Feldgerät am PROFINET
STATION	INPUT	INT	E, A, M, D, L, Konstante	 befindet Nr. des Baugruppenträgers, falls Bereichskennung = 0 Stationsnummer des Feldgeräts, falls Bereichskennung > 0
SLOT	INPUT	INT	E, A, M, D, L, Konstante	Steckplatz-Nr.
SUBSLOT	INPUT	INT	E, A, M, D, L Konstante	Submodulsteckplatz (falls kein Submodul gesteckt werden kann, ist hier 0 anzugeben)
RET_VAL	OUTPUT	INT	E, A, M, D, L	Fehlerinformation
LADDR	OUTPUT	WORD	E, A, M, D, L	Anfangsadresse der Baugruppe Bit 15 von <i>LADDR</i> gibt an, ob eine Ein- (Bit 15 = 0) oder eine Ausgangsad- resse (Bit 15 = 1) vorliegt.

RET_VAL (Rückgabewert)

Wert	Beschreibung			
0000h	Der Auftrag wurde fehlerfrei durchgeführt.			
8094h	Es wurde kein Subnetz mit der angegebenen SUBNETID konfiguriert.			
8095h	Unzulässiger Wert beim Parameter STATION			
8096h	Unzulässiger Wert beim Parameter SLOT			
8097h	Unzulässiger Wert beim Parameter SUBSLOT			
8099h	Der Steckplatz ist nicht projektiert.			
809Ah	Die Submoduladresse für den ausgewählten Steckplatz ist nicht projektiert.			
8xyyh	Allgemeine Fehlerinformation			
	→ "Allgemeine und spezifische Fehlercodes RET_VAL"Seite 65			

System-SFCs - "System Functions" > SFC 71 - LOG GEO - zu logischer Adresse gehörenden Slot ermitteln

14.1.54 SFC 71 - LOG_GEO - zu logischer Adresse gehörenden Slot ermitteln

Beschreibung

Mit der SFC 71 LOG_GEO (convert logical address to geographical address) ermitteln Sie den zu einer logischen Adresse gehörenden Modulsteckplatz sowie den Offset im Nutzdatenadressraum des Moduls.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
LADDR	INPUT	WORD	E, A, M, D, L, Konstante	Irgendeine logische Adresse des Moduls In Bit15 geben Sie an, ob es sich um eine Ein- (Bit 15 = 0) oder eine Ausgangsadresse (Bit 15 = 1) handelt.
RET_VAL	OUTPUT	INT	E, A, M, D, L,	Fehlerinformation
AREA	OUTPUT	INT	E, A, M, D, L,	Bereichskennung: Sie gibt an, wie die restlichen Ausgangsparameter zu interpretieren sind.
MASTER	OUTPUT	INT	E, A, M, D, L	Bereichskennung:
			Konstante	 0, falls sich der Steckplatz im zentralen Aufbau befindet: Modulträger 0 bis 3 (S7-300) bzw. 0 bis 21 (S7-400) 1 bis 32: DP-Mastersystem-ID des zugehörigen Feldgeräts, falls sich der Steckplatz in einem Feldgerät am PROFIBUS befindet 100 bis 115: PROFINET IO-System- ID des zugehörigen Feldgeräts, falls sich der Steckplatz in einem Feldgerät am PROFINET befindet
STATION	OUTPUT	INT	E, A, M, D, L	 Nr. des Modulträgers, falls Bereichskennung = 0 Stationsnummer des Feldgeräts, falls Bereichskennung > 0
SLOT	OUTPUT	INT	E, A, M, D, L	Steckplatz-Nr.
SUBSLOT	OUTPUT	INT	E, A, M, D, L	Submodulnummer
OFFSET	OUTPUT	INT	E, A, M, D, L	Offset im Nutzdatenadressraum des zugehörigen Moduls

System-SFCs - "System Functions" > SFC 71 - LOG_GEO - zu logischer Adresse gehörenden Slot ermitteln

Ausgangsparameter AREA

Wert von AREA	System	Bedeutung von RACK, SLOT und SUBADDR
0	S7-400	 MASTER: 0 STATION: Modulträger-Nr. SLOT: Steckplatz-Nr. SUBSLOT: 0 OFFSET: Differenz zwischen logischer Adresse und logischer Basisadresse
1	S7-300	 MASTER: 0 STATION: Modulträger-Nr. SLOT: Steckplatz-Nr. SUBSLOT: 0 OFFSET: Differenz zwischen logischer Adresse und logischer Basisadresse
2	PROFIBUS DP	 MASTER: DP-Mastersystem-ID STATION: Stationsnummer SLOT: Steckplatz-Nr. in der Station SUBSLOT: 0 OFFSET: Offset im Nutzdatenadressraum der zugehörigen Baugruppe
	PROFINET IO	 MASTER: PROFINET IO-System-ID STATION: Stationsnummer SLOT: Steckplatz-Nr. in der Station SUBSLOT: Submodulnummer OFFSET: Offset im Nutzdatenadressraum der zugehörigen Baugruppe
3	S5-P-Bereich	 MASTER: 0 STATION: Modulträger-Nr. SLOT: Steckplatz-Nr. in der Adaptionskapsel SUBSLOT: 0 OFFSET: Adresse im S5-x-Bereich
4	S5-Q-Bereich	 MASTER: 0 STATION: Modulträger-Nr. SLOT: Steckplatz-Nr. der Adaptionskapsel SUBSLOT: 0 OFFSET: Adresse im S5-x-Bereich
5	S5-IM3-Bereich	 MASTER: 0 STATION: Modulträger-Nr. SLOT: Steckplatz-Nr. der Adaptionskapsel OFFSET: Adresse im S5-x-Bereich
6	S5-IM4-Bereich	 MASTER: 0 STATION: Modulträger-Nr. SLOT: Steckplatz-Nr. der Adaptionskapsel SUBSLOT: 0 OFFSET: Adresse im S5-x-Bereich

System-SFCs - "System Functions" > SFC 81 - UBLKMOV - Variable ununterbrechbar kopieren

RET_VAL (Rückgabewert)

Wert	Beschreibung
0000h	Der Auftrag wurde fehlerfrei durchgeführt.
8090h	Angegebene logische Adresse ungültig
8xyyh	Allgemeine Fehlerinformation
	→ "Allgemeine und spezifische Fehlercodes RET_VAL"Seite 65

14.1.55 SFC 81 - UBLKMOV - Variable ununterbrechbar kopieren

Beschreibung

Mit dem SFC 81 UBLKMOV (uninterruptable move) kopieren Sie den Inhalt eines Speicherbereiches (= Quellbereich) konsistent in einen anderen Speicherbereich (=Zielbereich). Der Kopiervorgang kann nicht durch andere Tätigkeiten des Betriebssystems unterbrochen werden.

Mit dem SFC 81 UBLKMOV können Sie alle Speicherbereiche kopieren außer:

- folgende Bausteine: FB, SFB, FC, SFC, OB, SDB
- Zähler
- Zeiten
- Speicherbereiche des Peripheriebereiches
- nicht ablaufrelevante Datenbausteine.

Die maximale Datenmenge, die Sie kopieren können, beträgt 512Byte.

Unterbrechbarkeit

Der Kopiervorgang ist nicht unterbrechbar. Sie müssen daher beachten, dass sich die Alarmreaktionszeit Ihrer CPU bei Einsatz des SFC 81 erhöhen kann.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
SRCBLK	INPUT	ANY	E, A, M, D, L	Angabe des Speicherbereiches, der kopiert werden soll (Quellfeld). Arrays vom Datentyp STRING sind nicht erlaubt.
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.
DSTBLK	OUTPUT	ANY	E, A, M, D, L	Angabe des Speicherbereiches, in den kopiert werden soll (Zielfeld). Arrays vom Datentyp STRING sind nicht erlaubt.

ĭ

Quell- und Zielbereich dürfen sich nicht überlappen.

Ist der angegebene Zielbereich größer als der Quellbereich, dann werden auch nur so viele Daten in den Zielbereich kopiert, wie im Quellbereich stehen.

Ist der angegebenen Zielbereich kleiner als der Quellbereich, dann werden auch nur so viele Daten kopiert, wie der Zielbereich aufnehmen kann.

Ist der ANY-Pointer (Quelle oder Ziel) vom Typ BOOL, so muss die angegebene Länge durch 8 teilbar sein, da sonst der SFC nicht ausgeführt wird.

Ist der ANY-Pointer vom Typ STRING, so muss die angegebene Länge 1 sein.

System-SFCs - "System Functions" > SFC 101 - RTM - Hantierung Betriebsstundenzähler

RET_VAL (Rückgabewert)

Wert	Beschreibung
0000h	kein Fehler
8091h	Der Quellbereich liegt in einem nicht ablaufrelevanten Datenbaustein.

14.1.56 SFC 101 - RTM - Hantierung Betriebsstundenzähler

Beschreibung

Mit der SFC 101 RTM (run-time meter) können Sie einen 32-Bit-Betriebsstundenzähler Ihrer CPU setzen, starten, stoppen und auslesen. Falls Sie alle 32-Bit-Betriebsstundenzähler Ihrer CPU auslesen möchten, verwenden Sie die SFC 51 RDSYSST mit SZL_ID=W#16#0132 und INDEX=W#16#000B (für die Betriebsstundenzähler 0 bis 7) bzw. INDEX=W#16#000C (für die Betriebsstundenzähler 8 bis 15).

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
NR	INPUT BYTE E, A, M, D, L, Konstante	BYTE		Nummer des Betriebsstundenzählers
		Die Nummerierung beginnt mit 0. Die Anzahl der Betriebsstundenzähler Ihrer CPU entnehmen Sie den Technischen Daten.		
MODE	INPUT	BYTE	E, A, M, D, L,	Auftragskennung:
			Konstante	 0: auslesen (Status wird dann in CQ, aktueller Wert wird in CV eingetragen). Läuft der Betriebsstundenzähler länger als (2 hoch 31) - 1 Stunden, dann bleibt er beim letzten darstellbaren Wert stehen und liefert die Fehlermeldung "Überlauf".
				■ 1: starten (mit dem letzten Zählerstand)
				■ 2: stoppen
				4: setzen (auf den in PV angegebenen Wert)
				5: setzen (auf den in PV angegebenen Wert) und starten
				■ 6: setzen (auf den in <i>PV</i> angegebenen Wert) und stoppen
PV	INPUT	DINT	E, A, M, D, L, Konstante	Neuer Wert für den Betriebsstundenzähler
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.
CQ	OUTPUT	BOOL	E, A, M, D, L	Status des Betriebsstundenzählers (1: läuft)
CV	OUTPUT	DINT	E, A, M, D, L	Aktueller Wert des Betriebsstundenzählers

Kompatibilität zu Programmen, für CPU mit 16-Bit-Betriebsstundenzählern Sie können die 32-Bit-Betriebsstundenzähler auch mit den SFCs 2 SET_RTM, SFC 3 CTRL_RTM und SFC 4 READ_RTM verwenden. In diesem Fall verhalten sich die 32-Bit-Betriebsstundenzähler jedoch wie 16-Bit-Betriebsstundenzähler (Wertebereich 0 bis 32767 Stunden). Im Teillistenauszug mit der SZL-ID W#16#0132 und dem Index W#16#0008 werden Ihnen die 32-Bit- Betriebsstundenzähler 0 bis 7 als 16-Bit-Betriebsstundenzähler angezeigt. Damit können Sie Programme, die für eine CPU mit 16-Bit-Betriebsstundenzählern entwickelt wurden, und die den Teillistenauszug mit der SZL-ID W#16#0132 und dem Index W#16#0008 benutzen, weiterhin einsetzen.

System-SFCs - "System Functions" > SFC 102 - RD DPARA - Vordefinierte Parameter lesen

RET_VAL (Rückgabewert)

Fehlercode	Erläuterung			
0000h	Es ist kein Fehler aufgetreten.			
8080h	Falsche Nummer des Betriebsstundenzählers			
8081h	Ein negativer Wert wurde dem Parameter PV übergeben.			
8082h	Überlauf des Betriebsstundenzählers			
8091h	Der Eingangsparameter MODE enthält einen unzulässigen Wert.			
8xyyh	Allgemeine Fehlerinformation			
	→ "Allgemeine und spezifische Fehlercodes RET_VAL"Seite 65			

14.1.57 SFC 102 - RD_DPARA - Vordefinierte Parameter lesen

Beschreibung

Mit der SFC 102 RD_DPARA lesen Sie den Datensatz mit der Nummer *RECNUM* einer ausgewählten Baugruppe aus den projektierten Systemdaten. Der gelesene Datensatz wird in den durch den Parameter *RECORD* aufgespannten Zielbereich eingetragen.

Arbeitsweise

Der SFC 102 RD_DPARA ist ein asynchron arbeitender SFC, d. h. die Bearbeitung erstreckt sich über mehrere SFC-Aufrufe. Sie starten den Auftrag, indem Sie die SFC 102 mit *REQ* = 1 aufrufen.

Über die Ausgangsparameter *RET_VAL* und *BUSY* wird der Zustand des Auftrags angezeigt. Siehe auch Bedeutung von *REQ*, *RET_VAL* und *BUSY* bei asynchron arbeitenden SFCs.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
REQ	INPUT	BOOL	E, A, M, D, L	REQ = 1: Anforderung zum Lesen
LADDR	INPUT	WORD	E, A, M, D, L,	Adresse der Baugruppe.
			Konstante	Bei einer Ausgabeadresse muss das höchstwertige Bit gesetzt sein.
RECNUM	INPUT	BYTE	E, A, M, D, L,	Datensatznummer
			Konstante	(zulässige Werte: 0 240)
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode.
				Falls bei der Übertragung kein Fehler auftrat, sind die folgenden Fälle zu unterscheiden:
				RET_VAL enthält die Länge des tatsächlich gelesenen Datensatzes in Bytes, falls der Ziel- bereich größer ist als der gelesene Datensatz.
				RET_VAL enthält 0, falls die Länge des gele- senen Datensatzes gleich der Länge des Ziel- bereichs ist.
BUSY	OUTPUT	BOOL	E, A, M, D, L	BUSY = 1: Der Auftrag ist noch nicht beendet.

System-SFCs - "System Functions" > SFC 105 - READ SI - Auslesen dyn. Systemressourcen

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
RECORD	RECORD OUTPUT ANY E, A, M, E	E, A, M, D, L	Zielbereich für den gelesenen Datensatz. Es ist nur der Datentyp BYTE zulässig. Hinweis: Beachten Sie, dass der Parameter <i>RECORD</i> bei CPUs immer die vollständige Angabe der DB-Parameter erfordert	
				(Bsp.: P#DB13.DBX0.0 Byte 100).
				Das Weglassen einer expliziten DB-Nr. ist für CPUs unzulässig und führt zu einer Fehlermeldung im Anwenderprogramm.

Fehlerinformationen

⇒ "SFC 57 - PARM_MOD - Modul parametrieren"...Seite 797

14.1.58 SFC 105 - READ SI - Auslesen dyn. Systemressourcen

Übersicht

Bei der Meldungserzeugung mit der SFC 107 ALARM_DQ und SFC108 ALARM_D belegt das Betriebssystem temporär Speicherplatz im Systemspeicher.

Wenn Sie z.B. einen in der CPU vorhandenen FB mit SFC 107- oder SFC 108-Aufrufen löschen, kann es vorkommen, dass die zugehörigen Systemressourcen dauerhaft belegt bleiben. Wenn Sie den FB mit SFC 107- oder SFC 108-Aufrufen erneut laden, kann es vorkommen, dass die SFCs 107 und 108 nicht mehr ordnungsgemäß bearbeitet werden.

Beschreibung

Mit der SFC 105 READ_SI können Sie momentan verwendete Systemressourcen auslesen, die bei der Meldungserzeugung mit der SFC 107 und SFC 108 belegt wurden. Dies geschieht über die dort verwendeten Werte von *EV_ID* und *CMP_ID*. Diese werden der SFC 105 READ_SI im Parameter *SI_ID* übergeben.

Die SFC 105 READ_SI hat 4 mögliche Betriebsarten, die in der folgenden Tabelle erläutert werden. Die gewünschte Betriebsart stellen Sie über den Parameter *MODE* ein.

MODE	Welche der von SFC 107/SFC 108 belegten Systemressourcen werden ausgelesen?
1	Alle (Aufruf der SFC 105 erfolgt mit SI_ID: =0)
2	Diejenige Systemressource, die beim SFC 107-/SFC 108-Aufruf mit <i>EV_ID</i> : = ev_id belegt wurde
	(Aufruf der SFC 105 erfolgt mit SI_ID: = ev_id)
3	Alle Systemressourcen, die beim SFC 107-/SFC 108-Aufruf mit <i>CMP_ID</i> : = cmp_id belegt wurden
	(Aufruf der SFC 105 erfolgt mit SI_ID: = cmp_id)
0	Weitere Systemressourcen, die beim vorherigen Aufruf mit <i>MODE</i> =1 oder <i>MODE</i> =3 nicht ausgelesen werden konnten, weil Sie das Zielfeld <i>SYS_INST</i> zu klein gewählt hatten.

Arbeitsweise

Wenn Sie beim Aufruf der SFC 105 mit *MODE* =1 oder *MODE* =3 den Zielbereich SYS_INST ausreichend groß gewählt haben, enthält er nach dem Aufruf den Inhalt aller über den Parameter MODE ausgewählten Systemressourcen, die aktuell belegt sind.

Falls aktuell sehr viele Systemressourcen belegt sind, ist die SFC-Laufzeit entsprechend hoch. Bei hoher Auslastung Ihrer CPU kann dann die projektierte maximale Zyklusüberwachungszeit überschritten werden.

System-SFCs - "System Functions" > SFC 105 - READ SI - Auslesen dyn. Systemressourcen

Dieses Laufzeitproblem können Sie wie folgt umgehen: Sie wählen den Zielbereich SYS_INST relativ klein. Falls die SFC nicht alle auszulesenden Systemressourcen in SYS_INST eintragen kann, wird Ihnen dies über RET_VAL = 0001h mitgeteilt. Dann rufen Sie die SFC 105 mit MODE =0 und gleicher SI_ID wie beim vorherigen Aufruf so lange auf, bis RET_VAL den Wert 0000h annimmt.

Da das Betriebssystem keine Koordinierung der zu einem Leseauftrag gehörenden SFC 105-Aufrufe vornimmt, sollten Sie alle SFC 105-Aufrufe in ein und derselben Prioritätsklasse durchführen.

Zielbereich SYS_INST

Der Zielbereich für die gelesenen belegten Systemressourcen muss in einem DB liegen. Sinnvollerweise definieren Sie den Zielbereich als Feld von Strukturen, wobei eine Struktur wie folgt aufgebaut ist:

Strukturelement	Datentyp	Beschreibung
SFC_NO	WORD	Nr. der SFC, die die Systemressource belegt hat
LEN	BYTE	Länge der Struktur in Bytes, inkl. SFC_NO und LEN: 0Ch
SIG_STAT	BOOL	Signalzustand
ACK_STAT	BOOL	Quittierungszustand des kommenden Ereignisses (steigende Flanke)
EV_ID	DWORD	Meldungsnummer
CMP_ID	DWORD	Kennung zur Identifikation des Teilsystems

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
MODE	INPUT	INT	E, A, M, D, L,	Auftragskennung
			Konstante	Zulässige Werte:
				■ 1: Alle Systemressourcen lesen
				2: Diejenige Systemressource lesen, die beim SFC 107-/SFC 108-Aufruf mit EV_ID = ev_id belegt wurde
				 3: Diejenigen Systemressourcen lesen, die beim SFC 107-/SFC 108-Aufruf mit CMP_ID = cmp_id belegt wurden
				■ 0: Folgeaufruf
SI_ID	INPUT	DWORD	E, A, M, D, L, Konstante	Kennung für die auszulesende(n) Systemressource(n)
				Zulässige Werte:
				■ 0, falls <i>MODE</i> = 1
				Meldungsnummer ev_id, falls MODE = 2
				Kennung cmp_id zur Identifikation des Teilsystems, falls MODE = 3
RET_VAL	OUTPUT	INT	E, A, M, D, L	Rückgabewert
				(Fehlerinformation bzw.Auftragszustand)

System-SFCs - "System Functions" > SFC 106 - DEL SI - Freigeben dyn. belegter Systemressourcen

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
N_SI	OUTPUT	INT	E, A, M, D, L	Anzahl der in SYS_INT ausgegebenen System-ressourcen
SYS_INST	OUTPUT	ANY	D	Zielbereich für die gelesenen Systemressourcen

RET_VAL (Rückgabewert)

Fehlercode	Erläuterung
0000h	Es ist kein Fehler aufgetreten.
0001h	Es konnten nicht alle Systemressourcen gelesen werden, da Sie den Zielbereich SYS_INST zu kurz gewählt haben.
8081h	(nur bei MODE =2 oder 3)
	Sie haben SI_ID den Wert 0 zugewiesen.
8082h	(nur bei MODE =1)
	Sie haben SI_ID einen von 0 verschiedenen Wert zugewiesen.
8083h	(nur bei MODE =0)
	Sie haben <i>SI_ID</i> einen anderen Wert zugewiesen als beim vorangegangenen SFC-Aufruf mit <i>MODE</i> =1 oder 3.
8084h	Sie haben MODE einen unzulässigen Wert zugewiesen.
8085h	Die SFC 105 wird bereits in einem anderen OB bearbeitet.
8086h	Der Zielbereich SYS_INST ist zu klein für eine Systemressource.
8087h oder 8092h	Der Zielbereich SYS_INST liegt nicht in einem DB oder Fehler im ANY-Pointer.
8xyyh	Allgemeine Fehlerinformation
	→ "Allgemeine und spezifische Fehlercodes RET_VAL"Seite 65

14.1.59 SFC 106 - DEL_SI - Freigeben dyn. belegter Systemressourcen

Übersicht

Bei der Meldungserzeugung mit der SFC 107 ALARM_DQ und SFC108 ALARM_D belegt das Betriebssystem temporär Speicherplatz im Systemspeicher.

Wenn Sie z.B. einen in der CPU vorhandenen FB mit SFC 107- oder SFC 108-Aufrufen löschen, kann es vorkommen, dass die zugehörigen Systemressourcen dauerhaft belegt bleiben. Wenn Sie den FB mit SFC 107- oder SFC 108-Aufrufen erneut laden, kann es vorkommen, dass die SFCs 107 und 108 nicht mehr ordnungsgemäß bearbeitet werden.

Beschreibung

Mit der SFC 106 DEL_SI können Sie momentan verwendete Systemressourcen löschen.

Die SFC 106 DEL_SI hat 3 mögliche Betriebsarten, die in der folgenden Tabelle erläutert werden. Die gewünschte Betriebsart stellen Sie über den Parameter *MODE* ein.

MODE	Welche der von SFC 107/SFC 108 belegten Systemressourcen werden gelöscht?
1	Alle (Aufruf der SFC 106 erfolgt mit SI_ID: = 0)
2	Diejenige Systemressource, die beim SFC 107-/SFC 108-Aufruf mit <i>EV_ID</i> : = ev_id belegt wurde
	(Aufruf der SFC 106 erfolgt mit SI_ID: = ev_id)

System-SFCs - "System Functions" > SFC 106 - DEL_SI - Freigeben dyn. belegter Systemressourcen

MODE	Welche der von SFC 107/SFC 108 belegten Systemressourcen werden gelöscht?
3	Alle Systemressourcen, die beim SFC 107-/SFC 108-Aufruf mit <i>CMP_ID</i> : = cmp_id belegt wurden
	(Aufruf der SFC 106 erfolgt mit SI_ID: = cmp_id)

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
MODE	INPUT	INT	E, A, M, D, L, Konstante	 Auftragskennung Zulässige Werte: ■ 1: Alle Systemressourcen löschen ■ 2: Diejenige Systemressource löschen, die beim SFC 107-/SFC 108-Aufruf mit EV_ID = ev_id belegt wurde ■ 3: Diejenigen Systemressourcen löschen, die beim SFC 107-/SFC 108-Aufruf mit CMP_ID = cmp_id belegt wurden.
SI_ID	INPUT	DWORD	E, A, M, D, L, Konstante	 Kennung für die zu löschende(n) System ressource(n) Zulässige Werte: □ 0, falls MODE = 1 ■ Meldungsnummer ev_id, falls MODE = 2 ■ Kennung cmp_id zur Identifikation desTeilsystems, falls MODE = 3
RET_VAL	OUTPUT	INT	E, A, M, D, L	Fehlerinformation

RET_VAL (Rückgabewert)

= , ,	·
Fehlercode	Erläuterung
0000h	Es ist kein Fehler aufgetreten.
8081h	(nur bei MODE = 2 oder 3)
	Sie haben SI_ID den Wert 0 zugewiesen.
8082h	(nur bei MODE = 1)
	Sie haben SI_ID einen von 0 verschiedenen Wert zugewiesen.
8084h	Sie haben MODE einen unzulässigen Wert zugewiesen.
8085h	Die SFC 106 wird momentan bereits bearbeitet.
8086h	Es konnten nicht alle ausgewählten Systemressourcen gelöscht werden, da mindestens eine zum Aufrufzeitpunkt der SFC 106 in Bearbeitung war.
8xyyh	Allgemeine Fehlerinformation
	→ "Allgemeine und spezifische Fehlercodes RET_VAL"Seite 65

System-SFCs - "System Functions" > SFC 107 - ALARM DQ und SFC 108 - ALARM D

14.1.60 SFC 107 - ALARM DQ und SFC 108 - ALARM D

Beschreibung

Die SFCs 107 ALARM_DQ (Erzeugung quittierbarer bausteinbezogener Meldungen) und SFC 108 ALARM_D (Erzeugung stets quittierbarer bausteinbezogener Meldungen) generieren bei jedem Aufruf eine Meldung, an die Sie einen Begleitwert anhängen können. Darin stimmen Sie mit den SFCs 17 ALARM_SQ und 18 ALARM_S überein.

Bei der Meldungserzeugung mit den SFCs 107 ALARM_DQ und 108 ALARM_D belegt das Betriebssystem für die Dauer eines Signalzyklus eine Systemressource.

Der Signalzyklus dauert bei der SFC 108 ALARM_D vom SFC-Aufruf mit *SIG* = 1 bis zum erneuten Aufruf mit *SIG* = 0. Bei der SFC 107 ALARM_DQ kommt zu dieser Zeitspanne ggf. noch die Zeit bis zur Quittierung des kommenden Signals durch eines der angemeldeten Anzeigegeräte hinzu.

Falls innerhalb des Signalzyklus ein Überladen oder Löschen des meldungserzeugenden Bausteins erfolgt, bleibt die zugehörige Systemressource bis zum nächsten Neustart belegt.

Die zusätzliche Funktionalität der SFCs 107 ALARM_DQ und 108 ALARM_D gegenüber den SFCs 17 und 18 besteht nun darin, dass Sie diese belegten Systemressourcen verwalten können.

- Mit Hilfe der SFC 105 READ_SI k\u00f6nnen Sie Informationen \u00fcber belegte Systemressourcen auslesen.
- Mit der SFC 106 DEL_SI können Sie belegte Systemressourcen wieder freigeben. Dies ist insbesondere bei dauerhaft belegten Systemressourcen von Bedeutung. Eine aktuell belegte Systemressource bleibt z.B. dann bis zum nächsten Neustart belegt, wenn Sie bei einer Programmänderung einen FB-Aufruf löschen und dieser FB SFC107- oder SFC108-Aufrufe enthält. Wenn Sie bei einer Programmänderung einen FB mit SFC 107- oder SFC 108-Aufrufen erneut laden, kann es vorkommen, dass die SFCs 107 und 108 keine Meldungen mehr erzeugen.

Beschreibung Parameter

Die SFCs 107 und 108 haben einen Parameter mehr als die SFCs 17 und 18, nämlich den Eingang *CMP_ID*. Mit ihm ordnen Sie die durch die SFCs 107 und 108 erzeugten Meldungen logischen Bereichen zu, z.B. Teilanlagen. Falls Sie die SFC 107/SFC 108 in einem FB aufrufen, bietet es sich an, *CMP_ID* mit der Nummer des zugehörigen Instanz-DB zu belegen.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
SIG	INPUT	BOOL	E, A, M, D, L	Das meldungsauslösende Signal
ID	INPUT	WORD	E, A, M, D, L, Konstante	Datenkanal für Meldungen: EEEEh
EV_ID	INPUT	DWORD	E, A, M, D, L,	Meldungsnummer
	Konstant	Konstante	(nicht erlaubt: 0)	
CMP_ID	INPUT	DWORD	E, A, M, D, L, Konstante	Component identifier (nicht erlaubt: 0)
				Kennung zur Identifikation des Teilsystems, dem die zugehörige Meldung zugeordnet ist.
				Empfohlene Werte:
				■ Low-Word: 1 65535
				■ High-Word: 0
				Wenn Sie sich an diese Empfehlung halten, treten keine Konflikte auf.

System-SFBs - "System Function Blocks" > SFB 0 - CTU - Vorwärtszählen

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
SD	INPUT	ANY	E, A, M, D, T, Z	Begleitwert
				Maximale Länge: 12 Byte
				Zulässig sind nur die Datentypen: BOOL (nicht erlaubt: Bitfeld), BYTE, CHAR, WORD, INT,DWORD, DINT, REAL, DATE, TOD, TIME,S5TIME, DATE_AND_TIME
RET_VAL	OUTPUT	INT	E, A, M, D, L	Fehlerinformation

RET_VAL (Rückgabewert)

Fehlercode	Erläuterung
0000h	Es ist kein Fehler aufgetreten.
0001h	 Der Begleitwert ist länger als die maximal zulässige Länge, oder Der Zugriff auf den Anwenderspeicher ist nicht möglich (z.B. Zugriff auf gelöschten DB). Die Meldung wird gesendet. Der Begleitwert zeigt auf einen Wert im Lokaldatenbereich. Die Meldung wird gesendet. (nur S7-400)
0002h	Warnung: Der letzte freie Meldequittierspeicher wurde belegt. (nur S7-400)
8081h	Die angegebene EV_ID liegt außerhalb des zulässigen Bereichs.
8082h	Meldungsverlust, da Ihre CPU keine Ressourcen für die Erzeugung bausteinbezogener Meldungen durch SFCs mehr frei hat.
8083h	Meldungsverlust, da derselbe Signalwechsel bereits vorliegt, aber noch nicht gesendet werden konnte (Signaloverflow).
8084h	Beim aktuellen und beim vorangegangenen SFC 107-/SFC-108-Aufruf hat das meldungsauslösende Signal SIG denselben Wert.
8085h	Für die angegebene EV_ID liegt keine Anmeldung vor.
8086h	Ein SFC-Aufruf für die angegebene <i>EV_ID</i> ist bereits in einer Prioritätsklasse niedrigerer Priorität in Bearbeitung.
8087h	Beim ersten Aufruf der SFC 107/SFC 108 hatte das meldungsauslösende Signal den Wert 0.
8088h	Die angegebene <i>EV_ID</i> wird bereits von einer anderen Systemressource (zu SFC 17, 18, 107, 108) belegt.
8089h	Sie haben CMP_ID den Wert 0 zugewiesen.
808Ah	CMP_ID passt nicht zu EV_ID
8xyyh	Allgemeine Fehlerinformation
	→ "Allgemeine und spezifische Fehlercodes RET_VAL"Seite 65

14.2 System-SFBs - "System Function Blocks"

14.2.1 SFB 0 - CTU - Vorwärtszählen

Beschreibung

Mit dem SFB 0 CTU können Sie vorwärts zählen. Hierbei haben Sie folgendes Verhalten:

- Wechselt der Signalzustand am Vorwärtszählereingang CU von "0" auf "1" (positive Flanke), wird der aktuelle Zählerstand um 1 erhöht und am Ausgang CV angezeigt.
- Beim ersten Mal Aufrufen und bei R="0" entspricht der Z\u00e4hlwert dem Vorbesetzwert am Eingang PV.

System-SFBs - "System Function Blocks" > SFB 1 - CTD - Rückwärtszählen

- Erreicht der Zählwert die obere Grenze 32767, wird er nicht mehr erhöht und jede weitere steigende Flanke am Eingang CU bleibt ohne Wirkung.
- Der Zähler wird auf Null zurückgesetzt bzw. gehalten, solange R Signalzustand "1" führt.
- Der Ausgang Q führt Signalzustand "1", wenn CV ≥ PV ist.
- Falls die Instanzen des SFB 0 nach Neustart initialisiert werden sollen, müssen Sie im OB 100 die zu initialisierenden Instanzen mit R = 1 aufrufen.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
CU	INPUT	BOOL	E, A, M, D, L,	Zähleingang
			Konstante	
R	INPUT	BOOL	E, A, M, D, L,	Rücksetzeingang. R dominiert gegen-
			Konstante	über CU.
PV	INPUT	INT	E, A, M, D, L,	Vorbesetzwert
			Konstante	
Q	OUTPUT	BOOL	E, A, M, D, L	Status des Zählers
CV	OUTPUT	INT	E, A, M, D, L	aktueller Zählwert

CU Zähleingang:

Mit einer steigenden Flanke (gegenüber dem letzten SFB-Aufruf) am Zähleingang CU

wird der Zählwert um 1 erhöht.

R Rücksetzeingang:

Signal "1" am Eingang R bewirkt das Rücksetzen des Zählers auf den Wert 0, unab-

hängig davon welcher Wert an CU anliegt.

PV Vorbesetzwert (Vergleichswert):

Ist der aktuelle Zählerstand größer oder gleich diesem Vorbesetzwert wird der Ausgang Q

gesetzt.

Q Status des Zählers:

Q ist "1" wenn CV ≥ PV (aktueller Zählwert ≥ Vorbesetzwert)

Q ist sonst "0"

CV aktueller Zählerwert

■ Mögliche Zählerwerte: 0 ... 32 767

14.2.2 SFB 1 - CTD - Rückwärtszählen

Beschreibung Mit dem SFB 1 können Sie rückwärts zählen. Hierbei haben Sie folgendes Verhalten:

System-SFBs - "System Function Blocks" > SFB 1 - CTD - Rückwärtszählen

- Wechselt der Signalzustand am Rückwärtszählereingang CD von "0" auf "1" (positive Flanke), wird der aktuelle Zählerstand um 1 erniedrigt und am Ausgang CV angezeigt.
- Beim ersten Mal Aufrufen und bei *LOAD* = "0" entspricht der Zählwert dem Vorbesetzwert am Eingang *PV*.
- Erreicht der Z\u00e4hlwert die untere Grenze -32768, wird er nicht mehr erniedrigt und jede weitere steigende Flanke am Eingang CU bleibt ohne Wirkung.
- Der Zähler wird auf den Vorbesetzwert PV gesetzt bzw. gehalten, solange LOAD Signalzustand "1" führt.
- Der Ausgang Q führt Signalzustand "1", wenn CV ≤ 0 ist.
- Falls die Instanzen des SFB 1 nach Neustart initialisiert werden sollen, müssen Sie im OB 100 die zu initialisierenden Instanzen mit LOAD = 1 und PV = Anfangswert aufrufen.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
CD	INPUT	BOOL	E, A, M, D, L, Konstante	Zähleingang
LOAD	INPUT	BOOL	E, A, M, D, L, Konstante	Ladeeingang <i>LOAD</i> dominiert gegenüber <i>CD</i>
PV	INPUT	INT	E, A, M, D, L, Konstante	Vorbesetzwert
Q	OUTPUT	BOOL	E, A, M, D, L	Status des Zählers
CV	OUTPUT	INT	E, A, M, D, L	aktueller Zählwert

CD Zähleingang:

Mit einer steigenden Flanke (gegenüber dem letzten SFB-Aufruf) am Zähleingang *CD* wird der Zählwert um 1 erniedrigt.

LOAD Ladeeingang:

Signal "1" am Eingang *LOAD* bewirkt, dass der Zähler auf den Vorbesetzwert PV voreingestellt wird, unabhängig davon welcher Wert an *CD* anliegt.

PV Vorbesetzwert:

Der Zähler wird auf PV voreingestellt, wenn am Eingang LOAD Signal "1" ansteht.

Q Status des Zählers:

Q ist "1" wenn CV ≤ 0

Q ist sonst "0"

CV aktueller Zählerwert:

■ Mögliche Zählerwerte: -32 768 ... 32 767

System-SFBs - "System Function Blocks" > SFB 2 - CTUD - Vorwärts-/Rückwärtszählen

14.2.3 SFB 2 - CTUD - Vorwärts-/Rückwärtszählen

Beschreibung

Mit dem SFB 2 können Sie vorwärts und rückwärts zählen. Hierbei haben Sie folgendes Verhalten:

- Wechselt der Signalzustand am Vorwärtszählereingang CU von "0" auf "1" (positive Flanke), wird der aktuelle Zählerstand um 1 erhöht und am Ausgang CV angezeigt.
- Wechselt der Signalzustand am Rückwärtszählereingang CD von "0" auf "1" (positive Flanke), wird der aktuelle Zählerstand um 1 erniedrigt und am Ausgang CV angezeigt.
- Zeigen beide Z\u00e4hleing\u00e4nge eine positive Flanke, \u00e4ndert sich der aktuelle Z\u00e4hlwert nicht.
- Erreicht der Zählwert die obere Grenze 32767, wird er nicht mehr erhöht und jede weitere steigende Flanke am Eingang *CU* bleibt ohne Wirkung.
- Erreicht der Zählwert die untere Grenze -32768, wird er nicht mehr erniedrigt und jede weitere steigende Flanke am Eingang CU bleibt ohne Wirkung.
- Der Zähler wird auf den Vorbesetzwert PV gesetzt bzw. gehalten, solange LOAD Signalzustand "1" führt.
- Der Zähler wird auf Null zurückgesetzt bzw. gehalten, solange R Signalzustand "1" führt. Solange der Eingang R Signalzustand "1" führt, bleiben positive Signalflanken und den Zählereingängen und Signalzustand "1" am Eingang LOAD ohne Wirkung.
- Der Ausgang QU führt Signalzustand "1", wenn CV ≥ PV ist.
- Der Ausgang QD führt Signalzustand "1", wenn CV ≤ 0 ist.
- Falls die Instanzen des SFB 2 nach Neustart initialisiert werden sollen, müssen Sie im OB 100 die zu initialisierenden Instanzen aufrufen:
 - bei Verwendung als Vorwärtszähler mit R = "1"
 - bei Verwendung als Rückwärtszähler mit R = "0", LOAD = "1" und PV = Anfangswert aufrufen.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
CU	INPUT	BOOL	E, A, M, D, L,	Vorwärtszähleingang
			Konstante	
CD	INPUT	BOOL	E, A, M, D, L,	Rückwärtszähleingang
			Konstante	
R	INPUT	BOOL	E, A, M, D, L,	Rücksetzeingang, R dominiert
			Konstante	gegenüber <i>LOAD</i>
LOAD	INPUT	BOOL	E, A, M, D, L,	Ladeeingang, LOAD dominiert
			Konstante	gegenüber ČU und CD
PV	INPUT	INT	E, A, M, D, L,	Vorbesetzwert
			Konstante	
QU	OUTPUT	BOOL	E, A, M, D, L	Status des Vorwärtszählers
QD	OUTPUT	BOOL	E, A, M, D, L	Status des Rückwärtszählers
CV	OUTPUT	INT	E, A, M, D, L	aktueller Zählwert

CU Vorwärts Zähleingang:

Mit einer steigenden Flanke (gegenüber dem letzten SFB-Aufruf) am Zähleingang *CU* wird der Zählwert um 1 erhöht.

System-SFBs - "System Function Blocks" > SFB 3 - TP - Impuls erzeugen

CD Rückwärts Zähleingang:

Mit einer steigenden Flanke (gegenüber dem letzten SFB-Aufruf) am Zähleingang CD

wird der Zählwert um 1 erniedrigt.

R Rücksetzeingang:

Signal "1" am Eingang R bewirkt das Rücksetzen des Zählers auf den Wert 0, unab-

hängig davon welcher Wert an CU, CD oder LOAD anliegt.

LOAD Ladeeingang:

Signal "1" am Eingang LOAD bewirkt, dass der Zähler auf den Vorbesetzwert PV vorein-

gestellt wird, unabhängig davon welche Werte an CU und CD anliegen.

PV Vorbesetzwert:

Der Zähler wird auf PV voreingestellt, wenn am Eingang LOAD Signal "1" ansteht.

QU Status des Vorwärtszählers:

■ QU ist "1" wenn CV ≥ PV (aktueller Zählwert ≥ Vorbesetzwert)

QU ist sonst "0"

QD Status des Rückwärtszählers:

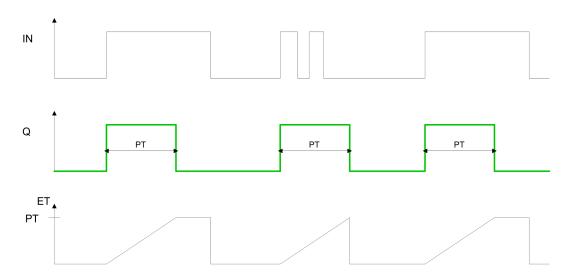
QD ist "1" wenn 0 ≥ CV (aktueller Zählwert kleiner/gleich 0)

QD ist sonst "0"

CV aktueller Zählerwert

■ Mögliche Zählerwerte: -32 768 ... 32 767

14.2.4 SFB 3 - TP - Impuls erzeugen


Beschreibung

Der SFB 3 erzeugt einen Impuls mit der Länge PT. Hierbei haben Sie folgendes Verhalten:

- Die Zeit läuft nur in den Betriebszuständen ANLAUF und RUN.
- Eine steigende Flanke am Eingang IN bewirkt den Start des Impulses.
- Der Ausgang Q bleibt für die Zeitdauer PT gesetzt unabhängig vom Eingangssignal.
- Der Ausgang ET liefert die Zeit w\u00e4hrend der der Ausgang Q bereits gesetzt ist. Er kann maximal den Wert des Eingangs PT annehmen. Er wird zur\u00fcckgesetzt, wenn der Eingang IN nach "0" wechselt, jedoch fr\u00fchestens nach Ablauf der Zeit PT.
- Falls die Instanzen des SFB 3 nach Neustart initialisiert werden sollen, müssen Sie im OB 100 die zu initialisierenden Instanzen mit *PT* = 0ms aufrufen.

System-SFBs - "System Function Blocks" > SFB 4 - TON - Einschaltverzögerung

Zeitdiagramm

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
IN	INPUT	BOOL	E, A, M, D, L, Konstante	Starteingang
PT	INPUT	TIME	E, A, M, D, L, Konstante	Zeitdauer des Impulses
Q	OUTPUT	BOOL	E, A, M, D, L	Status der Zeit
ET	OUTPUT	TIME	E, A, M, D, L	abgelaufene Zeit

IN Starteingang:

Eine steigende Flanke am Eingang IN bewirkt den Start des Impulses.

PT Zeitdauer:

Die Zeitdauer muss positiv sein. Der Wertebereich ist durch den Datentyp TIME festge-

legt.

Q Ausgang Q:

Der Ausgang Q bleibt für die Zeitdauer von PT gesetzt, unabhängig vom weiteren Verlauf

des Eingangssignals.

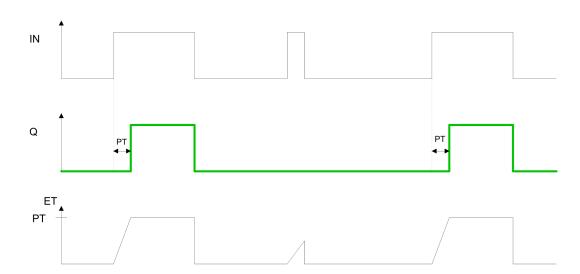
ET abgelaufene Zeit:

Der Ausgang ET liefert die Zeit während der Ausgang Q bereits gesetzt ist.

Er kann maximal den Wert des Eingangs PT annehmen. Er wird zurückgesetzt, wenn der

Eingang IN nach 0 wechselt, jedoch frühestens nach Ablauf der Zeit PT.

14.2.5 SFB 4 - TON - Einschaltverzögerung


Beschreibung Der SFB 4 verzögert eine steigende Flanke um die Zeit *PT*. Hierbei haben Sie folgendes

Verhalten:

System-SFBs - "System Function Blocks" > SFB 4 - TON - Einschaltverzögerung

- Die Zeit läuft nur in den Betriebszuständen ANLAUF und RUN.
- Eine steigende Flanke am Eingang *IN* hat nach Ablauf der Zeitdauer *PT* eine steigende Flanke am Ausgang Q zur Folge. Q bleibt so lange gesetzt, bis der Eingang *IN* nach "0" wechselt. Falls der Eingang *IN* nach "0" wechselt, bevor die Zeit *PT* abgelaufen ist, bleibt der Ausgang Q auf "0".
- Der Ausgang ET liefert die Zeit, die seit der letzten steigenden Flanke am Eingang IN vergangen ist, jedoch höchstens bis zum Wert des Eingangs PT. ET wird zurückgesetzt, wenn der Eingang IN nach "0" wechselt.
- Falls Instanzen dieses SFB nach Neustart initialisiert sein sollen, müssen Sie im OB 100 die zu initialisierenden Instanzen mit *PT* = 0 ms aufrufen.

Zeitdiagramm

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
IN	INPUT	BOOL	E, A, M, D, L, Konstante	Starteingang
PT	INPUT	TIME	E, A, M, D, L, Konstante	Zeitdauer
Q	OUTPUT	BOOL	E, A, M, D, L	Status der Zeit
ET	OUTPUT	TIME	E, A, M, D, L	abgelaufene Zeit

IN Starteingang:

Eine steigende Flanke am Eingang *IN* hat nach Ablauf der Zeitdauer *PT* eine steigende Flanke am Ausgang Q zur Folge.

PT Zeitdauer:

Zeitdauer, um die die steigende Flanke am Eingang *IN* verzögert wird. *PT* muss positiv sein. Der Wertebereich ist durch den Datentyp TIME festgelegt.

Q Ausgang Q:

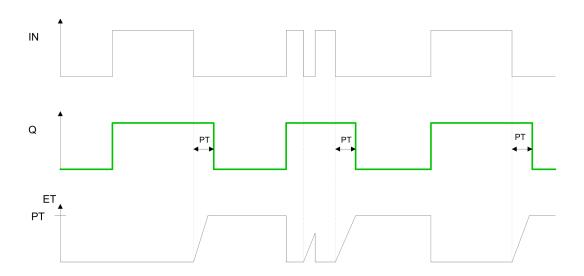
Eine steigende Flanke am Eingang *IN* hat nach Ablauf der Zeitdauer *PT* eine steigende Flanke am Ausgang Q zur Folge. Falls der Eingang *IN* nach "0" wechselt bevor die Zeit *PT* abgelaufen ist, bleibt der Ausgang Q auf "0".

System-SFBs - "System Function Blocks" > SFB 5 - TOF - Ausschaltverzögerung

ET

abgelaufene Zeit:

Der Ausgang *ET* liefert die Zeit, die seit der letzten steigenden Flanke am Eingang *IN* vergangen ist, jedoch höchstens bis zum Wert des Eingangs *PT. ET* wird zurückgesetzt, wenn der Eingang *IN* nach "0" wechselt.


14.2.6 SFB 5 - TOF - Ausschaltverzögerung

Beschreibung

Der SFB 5 verzögert eine fallende Flanke um die Zeit *PT*. Hierbei haben Sie folgendes Verhalten:

- Die Zeit läuft nur in den Betriebszuständen ANLAUF und RUN.
- Eine steigende Flanke am Eingang IN bewirkt eine steigende Flanke am Ausgang Q. Eine fallende Flanke am Eingang IN hat nach Ablauf der Zeitdauer PT eine fallende Flanke am Ausgang Q zur Folge. Falls der Eingang IN wieder nach "1" wechselt, bevor die Zeit PT abgelaufen ist, bleibt der Ausgang Q auf "1".
- Der Ausgang ET liefert die Zeit, die seit der letzten fallenden Flanke am Eingang IN vergangen ist, jedoch höchstens bis zum Wert des Eingangs PT. ET wird zurückgesetzt, wenn der Eingang IN nach "1" wechselt.
- Falls die Instanzen des SFB 5 nach Neustart initialisiert werden sollen, müssen Sie im OB 100 die zu initialisierenden Instanzen mit *PT* = 0ms aufrufen.

Zeitdiagramm

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
IN	INPUT	BOOL	E, A, M, D, L, Konstante	Starteingang
PT	INPUT	TIME	E, A, M, D, L, Konstante	Zeitdauer
Q	OUTPUT	BOOL	E, A, M, D, L	Status der Zeit
ET	OUTPUT	TIME	E, A, M, D, L	abgelaufene Zeit

IN

Starteingang:

Eine steigende Flanke am Eingang *IN* bewirkt eine steigende Flanke am Ausgang *Q* Eine fallende Flanke am Eingang *IN* hat nach Ablauf der Zeitdauer *PT* eine fallende Flanke am Ausgang *Q* zur Folge. Falls der Eingang *IN* wieder nach "1" wechselt, bevor die Zeit *PT* abgelaufen ist, bleibt der Ausgang *Q* auf "1".

System-SFBs - "System Function Blocks" > FB/SFB 12 - BSEND - Blockorientiertes Senden

PT Zeitdauer:

Zeitdauer, um die die fallende Flanke am Eingang *IN* verzögert wird. *PT* muss positiv sein. Der Wertebereich ist durch den Datentyp TIME festgelegt.

Q Ausgang Q:

Eine steigende Flanke am Eingang *IN* bewirkt eine steigende Flanke am Ausgang *Q*. Eine fallende Flanke am Eingang *IN* hat nach Ablauf der Zeitdauer *PT* eine fallende Flanke am Ausgang *Q* zur Folge. Falls der Eingang *IN* wieder nach "1" wechselt, bevor die Zeit *PT* abgelaufen ist, bleibt der Ausgang *Q* auf "1".

ET abgelaufene Zeit:

Der Ausgang *ET* liefert die Zeit, die seit der letzten fallenden Flanke am Eingang *IN* vergangen ist, jedoch höchstens bis zum Wert des Eingangs *PT*. *ET* wird zurückgesetzt, wenn der Eingang *IN* nach "1" wechselt.

14.2.7 FB/SFB 12 - BSEND - Blockorientiertes Senden

Beschreibung

Mit dem FB/SFB 12 BSEND können Daten an einen remoten Partner- FB/SFB vom Typ BRCV (FB/SFB 13) gesendet werden. Der zu sendende Datenbereich wird segmentiert. Jedes Segment wird einzeln an den Partner gesendet. Das letzte Segment wird vom Partner bereits bei seiner Ankunft quittiert, unabhängig vom zugehörigen Aufruf des FB/SFB BRCV. Aufgrund der Segmentierung können Sie mit einem Sendeauftrag bis zu 65534Byte große Daten übertragen.

 $\stackrel{\circ}{\mathbb{I}}$

Bitte beachten Sie, dass dieser Baustein intern den FC bzw. SFC 202 AG_BSEND aufruft. Dieser darf nicht überschrieben werden! Der direkte Aufruf eines internen Bausteins führt zu Fehler im entsprechenden Instanz-DB!

Je nach Kommunikationsfunktion haben Sie folgendes Verhalten:

- Siemens S7-300-Kommunikation (FB 12)
 - Der Sendevorgang erfolgt nach einer positiven Flanke an REQ. Mit jeder positiven Flanke an REQ werden die Parameter R_ID, ID, SD_1 und LEN übernommen. Nach Abschluss eines Auftrags können Sie den Parametern R_ID, ID, SD_1 und LEN neue Werte zuweisen. Zur Übertragung von segmentierten Daten ist der Baustein zyklisch im Anwenderprogramm aufzurufen. Die Anfangsadresse und die maximale Länge der zu sendenden Daten werden durch SD_1 vorgegeben. Die Länge des Datenblocks legen Sie auftragsbezogen durch LEN fest.
- Siemens S7-400-Kommunikation (SFB 12)
 - Die Aktivierung des Sendevorgangs erfolgt nach Aufruf des Bausteins und positiver Flanke an REQ. Das Senden der Daten aus dem Anwenderspeicher erfolgt asynchron zur Bearbeitung des Anwenderprogramms. Die Anfangsadresse der zu sendenden Daten wird durch SD_1 vorgegeben. Die Länge der Sendedaten legen Sie auftragsbezogen durch LEN fest. LEN ersetzt damit den Längenanteil von SD_1.

Funktion

- Bei einer positiven Flanke am Steuereingang R wird ein laufender Sendevorgang abgebrochen.
- Der erfolgreiche Abschluss des Sendevorgangs wird am Zustandsparameter DONE mit 1 angezeigt.

System-SFBs - "System Function Blocks" > FB/SFB 12 - BSEND - Blockorientiertes Senden

- Nach Abschluss eines Sendevorganges, kann erst wieder ein neuer Sendeauftrag bearbeitet werden, wenn die Zustandsparameter DONE oder ERROR den Wert 1 angenommen haben.
- Aufgrund der asynchronen Datenübertragung kann ein erneutes Senden von Daten erst gestartet werden, wenn die vorhergehenden Daten durch Aufruf des Partner-FB/SFB abgeholt wurden. Bis die Daten abgeholt werden, wird beim Aufruf des FB/SFB BSEND der Statuswert 7 ausgegeben.

Der Parameter R_ID muss bei den zusammengehörenden FB/SFBs identisch sein.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
REQ	INPUT	BOOL	E, A, M, D, L	Steuerparameter request, aktiviert den Datenaustausch bei steigender Flanke
				(gegenüber letztem FB/SFB-Aufruf)
R	INPUT	BOOL	E, A, M, D, L, Konstante	Steuerparameter reset: Abbruch des aktuellen Auftrags
ID	INPUT	WORD	E, A, M, D, Konstante	Referenz auf die Verbindung. <i>ID</i> muss in der Form W#16#xxxx angegeben werden.
R_ID	INPUT	DWORD	E, A, M, D, L, Konstante	Adressierungsparameter <i>R_ID</i> . Er muss in der Form DW#16#wxyzWXYZ angegeben werden.
DONE	OUTPUT	BOOL	E, A, M, D, L	Zustandsparameter DONE:
				 0: Auftrag wurde noch nicht gestartet oder wird noch ausgeführt.
				1: Auftrag wurde fehlerfrei ausgeführt.
ERROR	OUTPUT	BOOL	E, A, M, D, L	Zustandsparameter <i>ERROR</i> :
				■ <i>ERROR</i> = 0 + <i>STATUS</i> = 0000h
				 Weder Warnung noch Fehler. ERROR = 0 + STATUS ungleich 0000h
				 Exrox = 0 + 37A703 difficient 6000ff Es liegt eine Warnung vor. STATUS liefert detaillierte Auskunft.
				■ <i>ERROR</i> = 1
				 Es liegt ein Fehler vor.
STATUS	OUTPUT	WORD	E, A, M, D, L	Zustandsparameter <i>STATUS</i> , liefert detaillierte Auskunft über die Art des Fehlers.
SD_1	IN_OUT	ANY	E, A, M, D, T, Z	Zeiger auf Sendebereich. Die Längenangabe wird nur beim ersten Bausteinaufruf nach dem Start ausgewertet. Sie gibt die maximale Länge des Sendebereichs vor. Zulässig sind nur die Datentypen: BOOL (nicht erlaubt: Bitfeld), BYTE, CHAR, WORD, INT, DWORD, DINT, REAL, DATE, TOD, TIME, S5TIME, DATE_AND_TIME, COUNTER, TIMER.
LEN	IN_OUT	WORD	E, A, M, D, L	Länge des zu sendenden Datenblocks in Byte.

System-SFBs - "System Function Blocks" > FB/SFB 13 - BRCV - Blockorientiertes Empfangen

Fehlerinformationen

ERROR	STATUS (dezimal)	Bedeutung
0	11	Warnung: Neuer Auftrag ist unwirksam, da vorangegangener Auftrag noch nicht abgeschlossen ist.
0	25	Die Kommunikation wurde angestoßen. Der Auftrag ist in Bearbeitung.
1	1	Kommunikationsprobleme, z.B.:
		Verbindungsbeschreibung nicht geladen (lokal oder remote)Verbindung unterbrochen (z.B. Kabel, CPU ausgeschaltet, CP in STOP)
1	2	Negative Quittung vom Partner-FB/SFB. Die Funktion ist nicht ausführbar.
1	3	<i>R_ID</i> ist auf der durch <i>ID</i> vorgegebenen Kommunikationsverbindung nicht bekannt, oder der Empfangsbaustein wurde noch nie aufgerufen.
1	4	Fehler im Sendebereichszeiger <i>SD_1</i> bezüglich der Datenlänge oder des Datentyps, oder am Parameter <i>LEN</i> wurde der Wert 0 übergeben oder Fehler im Empfangsbereichszeiger <i>RD_1</i> des zugehörigen FB/SFB 13 BRCV
1	5	Resetanforderung wurde ausgeführt.
1	6	Partner-FB/SFB befindet sich im Zustand DISABLED (EN_R hat den Wert 0).
1	7	Partner-FB/SFB befindet sich in falschem Zustand.
		(Der Empfangsbaustein wurde nach der letzten Datenübertragung nicht mehr aufgerufen).
1	8	Zugriff auf remotes Objekt im Anwenderspeicher wurde abgelehnt.
1	10	Zugriff auf lokalen Anwenderspeicher nicht möglich (z.B. Zugriff auf gelöschten DB).
1	12	Beim Aufruf des FB/SFB wurde
		 ein Instanz-DB, der nicht zum FB/SFB 12 gehört, angegeben kein Instanz-DB, sondern ein Global-DB angegeben kein Instanz-DB gefunden (Laden eines neuen Instanz-DB vom PG)
1	18	R_ID existiert bereits in der Verbindung ID.
1	20	Zu wenig Arbeitsspeicher vorhanden.

Datenkonsistenz

Um sicherzustellen das die Datenkonsistenz nicht beeinträchtigt wird, darf der aktuell benutzte Teil des Sendebereichs *SD_1* erst dann wieder beschrieben werden, wenn der aktuelle Sendevorgang abgeschlossen ist. Dazu muss der Parameter *DONE* ausgewertet werden.

14.2.8 FB/SFB 13 - BRCV - Blockorientiertes Empfangen

Beschreibung

Mit dem FB/SFB 13 BRCV können Daten von einem remoten Partner- FB/SFB vom Typ BSEND (FB/SFB 12) empfangen werden, wobei darauf zu achten ist, dass der Parameter R_ID bei beiden FB/SFBs identisch ist. Nach jedem empfangenen Datensegment wird eine Quittung an den Partner-FB/SFB geschickt, und der Parameter LEN aktualisiert.

Bitte beachten Sie, dass dieser Baustein intern den FC bzw. SFC 203 AG_BRCV aufruft. Dieser darf nicht überschrieben werden! Der direkte Aufruf eines internen Bausteins führt zu Fehler im entsprechenden Instanz-DB!

System-SFBs - "System Function Blocks" > FB/SFB 13 - BRCV - Blockorientiertes Empfangen

Je nach Kommunikationsfunktion haben Sie folgendes Verhalten:

- Siemens S7-300-Kommunikation (FB 13)
 - Mit jeder positiven Flanke an EN_R werden die Parameter R_ID, ID und RD_1 übernommen. Nach Abschluss eines Auftrags können Sie den Parametern R_ID, ID und RD_1 neue Werte zuweisen. Zur Übertragung von segmentierten Daten muss der Baustein zyklisch im Anwenderprogramm aufgerufen werden.
- Siemens S7-400-Kommunikation (SFB 13)
 - Der Empfang der Daten aus dem Anwenderspeicher erfolgt asynchron zur Bearbeitung des Anwenderprogramms.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
EN_R	INPUT	BOOL	E, A, M, D, L, Konstante	Steuerparameter enabled to receive, signalisiert Empfangsbereitschaft
ID	INPUT	WORD	E, A, M, D, Konstante	Referenz auf die Verbindung. <i>ID</i> muss in der Form W#16#xxxx angegeben werden.
R_ID	INPUT	DWORD	E, A, M, D, L, Konstante	Adressierungsparameter <i>R_ID</i> . Er muss in der Form DW#16#wxyzWXYZ angegeben werden.
NDR	OUTPUT	BOOL	E, A, M, D, L	Zustandsparameter <i>NDR</i> : neue Daten übernommen.
ERROR	OUTPUT	BOOL	E, A, M, D, L	 Zustandsparameter ERROR: ■ ERROR = 0 + STATUS = 0000h Weder Warnung noch Fehler. ■ ERROR = 0 + STATUS ungleich 0000h Es liegt eine Warnung vor. STATUS liefert detaillierte Auskunft. ■ ERROR = 1 Es liegt ein Fehler vor.
STATUS	OUTPUT	WORD	E, A, M, D, L	Zustandsparameter <i>STATUS</i> , liefert detaillierte Auskunft über die Art des Fehlers.
RD_1	IN_OUT	ANY	E, A, M, D, T, Z	Zeiger auf Empfangsbereich. Die Längenangabe gibt die maximale Länge des zu empfangenden Blocks vor. Zulässig sind nur die Datentypen: BOOL (nicht erlaubt: Bitfeld), BYTE, CHAR, WORD, INT, DWORD, DINT, REAL, DATE, TOD, TIME, S5TIME, DATE_AND_TIME, COUNTER, TIMER.
LEN	IN_OUT	WORD	E, A, M, D, L	Länge der bisher empfangenen Daten in Byte.

Funktion

- Der FB/SFB 13 ist empfangsbereit, wenn am Steuereingang *EN_R* der Wert 1 anliegt. Durch den Parameter *RD_1* wird die Anfangsadresse des Empfangsbereichs angegeben. Der Partner-FB/SFB erhält nach jedem empfangenen Datensegment eine Quittung und der Parameter *LEN* des FB/SFB 13 wird aktualisiert. Wenn der Baustein während des asynchronen Empfangs aufgerufen wird, erfolgt die Ausgabe einer Warnung im Zustandsparameter *STATUS*.
- Wenn dieser Aufruf mit dem Wert 0 am Steuereingang EN_R erfolgt, wird der Empfangsvorgang abgebrochen, und der FB/SFB in seinen Grundzustand zurückversetzt. Wird der fehlerfreie Empfang sämtlicher Datensegmente erfolgreich abgeschlossen, hat der Parameter NDR den Wert 1. Die empfangenen Daten bleiben solange unverändert, bis der FB/SFB 13 erneut mit dem Parameter EN R = 1 aufgerufen wird.

System-SFBs - "System Function Blocks" > FB/SFB 13 - BRCV - Blockorientiertes Empfangen

Fehlerinformationen

ERROR	STATUS (dezimal)	Bedeutung	
0	11	Warnung: Neuer Auftrag ist unwirksam, da vorangegangener Auftrag noch nicht abgeschlossen ist.	
0	17	Warnung: Baustein empfängt asynchron Daten.	
0	25	Die Kommunikation wurde angestoßen. Der Auftrag ist in Bearbeitung.	
1	1	Kommunikationsprobleme, z.B.	
		 Verbindungsbeschreibung nicht geladen (lokal oder remote) Verbindung unterbrochen (z.B. Kabel, CPU ausgeschaltet, CP in STOP) 	
1	2	Funktion nicht ausführbar.	
1	4	Fehler im Empfangsbereichszeiger <i>RD_1</i> bezüglich der Datenlänge oder des Datentyps (gesendeter Datenblock is länger als der Empfangsbereich).	
1	5	Resetanforderung eingetroffen, unvollständige Übertragung.	
1	8	Zugriff auf remotes Objekt im Anwenderspeicher wurde abgelehnt.	
1	10	Zugriff auf lokalen Anwenderspeicher nicht möglich (z.B. Zugriff auf gelöschten DB).	
1	12	Beim Aufruf des FB/SFB wurde	
		 ein Instanz-DB, der nicht zum FB/SFB 13 gehört, angegeben kein Instanz-DB, sondern ein Global-DB angegeben kein Instanz-DB gefunden (Laden eines neuen Instanz-DB vom PG) 	
1	18	R_ID existiert bereits in der Verbindung ID.	
1	20	Zu wenig Arbeitsspeicher vorhanden.	

Datenkonsistenz

Die Daten werden konsistent empfangen, wenn Sie folgendes beachten:

- Nach Abschluss des Kopiervorganges (der Parameter *NDR* hat den Wert 1), muss der FB/SFB 13 erneut mit dem Wert 0 am Parameter *EN_R* aufgerufen werden, um zu gewährleisten, dass der Empfangsbereich nicht bereits wieder überschrieben wird, bevor er ausgewertet wurde.
- Der zuletzt benutzte Empfangsbereich RD_1 muss vollständig ausgewertet werden, bevor der Baustein wieder empfangsbereit gemacht werden kann (Aufruf mit dem Wert 1 am Parameter EN_R).

Datenempfang Siemens S7-400

- Falls die Empfänger-CPU mit einem empfangsbereiten BRCV-Baustein (d.h. ein Aufruf mit *EN_R* =1 ist bereits erfolgt) in STOP geht, bevor der zugehörige Sendebaustein das erste Datensegment eines Auftrags abgeschickt hat, geschieht folgendes:
- Die Daten des ersten Auftrags nach Übergang der Empfänger-CPU in STOP werden vollständig in den Empfangsbereich eingetragen,
- Der Partner-SFB BSEND erhält darüber eine positive Quittung.
- Weitere BSEND-Aufträge können von der Empfänger-CPU im STOP-Zustand nicht mehr angenommen werden.

System-SFBs - "System Function Blocks" > FB/SFB 14 - GET - Remote CPU lesen

- Solange sie sich im STOP-Zustand befindet, haben NDR und LEN den Wert 0.
- Damit Ihnen die Information über die empfangenen Daten nicht verloren geht, müssen Sie bei der Empfänger-CPU einen Wiederanlauf durchführen und die SFB 13 BRCV mit EN_R = 1 aufrufen.

14.2.9 FB/SFB 14 - GET - Remote CPU lesen

Beschreibung

Mit dem FB/SFB 14 GET können Daten aus einer remoten CPU ausgelesen werden, wobei sich die CPU im Betriebszustand RUN oder STOP befinden kann.

Bitte beachten Sie, dass dieser Baustein intern den FC bzw. SFC 200 AG_GET aufruft. Dieser darf nicht überschrieben werden! Der direkte Aufruf eines internen Bausteins führt zu Fehler im entsprechenden Instanz-DB!

Je nach Kommunikationsfunktion haben Sie folgendes Verhalten:

- Siemens S7-300-Kommunikation (FB 14)
 - Der Lesevorgang erfolgt nach einer positiven Flanke an REQ. Mit jeder positiven Flanke an REQ werden die Parameter ID, ADDR_1 und RD_1 übernommen. Nach Abschluss eines Auftrags können Sie den Parametern ID, ADDR_1 und RD_1 neue Werte zuweisen.
- Siemens S7-400-Kommunikation (SFB 14)
 - Bei einer positiven Flanke an REQ wird der SFB gestartet. Dabei werden die relevanten Zeiger auf die auszulesenden Bereiche (ADDR_i) an die Partner-CPU gesendet.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
REQ	INPUT	BOOL	E, A, M, D, L	Steuerparameter request, aktiviert den Datenaustausch bei steigender Flanke (gegenüber letztem FB/SFB-Aufruf)
ID	INPUT	WORD	E, A, M, D, Konstante	Referenz auf die Verbindung. <i>ID</i> muss in der Form W#16#xxxx angegeben werden.
NDR	OUTPUT	BOOL	E, A, M, D, L	Zustandsparameter <i>NDR</i> : Daten aus Partner-CPU übernommen.
ERROR	OUTPUT	BOOL	E, A, M, D, L	 Zustandsparameter ERROR: ERROR = 0 + STATUS = 0000h Weder Warnung noch Fehler. ERROR = 0 + STATUS ungleich 0000h Es liegt eine Warnung vor. STATUS liefert detaillierte Auskunft. ERROR = 1 Es liegt ein Fehler vor.
STATUS	OUTPUT	WORD	E, A, M, D, L	Zustandsparameter <i>STATUS</i> , liefert detaillierte Auskunft über die Art des Fehlers.
ADDR_1	IN_OUT	ANY	z.B. E, A, M, D	Zeiger auf diejenigen Bereiche in der Partner- CPU, die gelesen werden sollen
ADDR_2	IN_OUT	ANY	z.B. E, A, M, D	Zeiger auf diejenigen Bereiche in der Partner- CPU, die gelesen werden sollen

System-SFBs - "System Function Blocks" > FB/SFB 14 - GET - Remote CPU lesen

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
ADDR_3	IN_OUT	ANY	z.B. E, A, M, D	Zeiger auf diejenigen Bereiche in der Partner- CPU, die gelesen werden sollen
ADDR_4	IN_OUT	ANY	z.B. E, A, M, D	Zeiger auf diejenigen Bereiche in der Partner- CPU, die gelesen werden sollen
RD_i,1≤ i ≤4	IN_OUT	ANY	E, A, M, D, T, Z	Zeiger auf diejenigen Bereiche in der eigenen CPU, in der die gelesenen Daten abgelegt werden. Zulässig sind nur die Datentypen: BOOL (nicht erlaubt: Bitfeld), BYTE, CHAR, WORD, INT, DWORD, DINT, REAL, DATE, TOD, TIME, S5TIME, DATE_AND_TIME, COUNTER, TIMER.

Funktion

- Die Remote-CPU sendet die Dateninhalte zurück und die Antwort wird daraufhin auf Zugriffsprobleme beim Lesen der Daten ausgewertet, des weiteren wird eine Datentypprüfung vorgenommen.
- Bei einer fehlerfreien Datenübertragung werden die empfangenen Daten beim nächsten Aufruf des FB/SFB 14 in die projektierten Empfangsbereiche (*RD_i*) kopiert und der Parameter *NDR* erhält den Wert 1.
- Ein erneuter Lesevorgang kann erst dann wieder aktiviert werden, wenn der letzte Lesevorgang abgeschlossen wurde. Sie müssen darauf achten, dass die über die Parameter *ADDR_i* und *RD_i* definierten Bereiche in der Anzahl, in der Länge und im Datentyp zueinander passen.

Fehlerinformationen

ERROR	STATUS (dezimal)	Bedeutung		
0	11	Warnung: Neuer Auftrag ist unwirksam, da voran-gegangener Auftrag noch nicht abgeschlossen ist.		
0	25	Die Kommunikation wurde angestoßen. Der Auftrag ist in Bearbeitung.		
1	1	 Kommunikationsprobleme, z.B. Verbindungsbeschreibung nicht geladen (lokal oder remote) Verbindung unterbrochen (z.B.: Kabel, CPU ausgeschaltet, CP in STOP) 		
1	2	Negative Quittung vom Partnergerät. Die Funktion ist nicht ausführbar.		
1	4	Fehler in den Empfangsbereichszeigern <i>RD_i</i> bezüglich de Datenlänge oder des Datentyps.		
1	8	Zugriffsfehler bei der Partner-CPU		
1	10	Zugriff auf lokalen Anwenderspeicher nicht möglich (z.B. Zugriff auf gelöschten DB).		
1	12	 Beim Aufruf des FB/SFB wurde ein Instanz-DB, der nicht zum FB/SFB 14 gehört, angegeben kein Instanz-DB, sondern ein Global-DB angegeben kein Instanz-DB gefunden (Laden eines neuen Instanz-DB vom PG) 		

System-SFBs - "System Function Blocks" > FB/SFB 15 - PUT - Remote CPU schreiben

ERROR	STATUS (dezimal)	Bedeutung	
1	20	Zu wenig Arbeitsspeicher vorhanden.	

Datenkonsistenz

Die Daten werden konsistent empfangen, wenn Sie den aktuell verwendeten des Empfangsbereichs *RD_i* vollständig auswerten, bevor Sie einen erneuten Auftrag aktivieren.

14.2.10 FB/SFB 15 - PUT - Remote CPU schreiben

Beschreibung

Mit dem FB/SFB 15 PUT können Daten in eine remote CPU geschrieben werden, wobei sich die CPU im Betriebszustand RUN oder STOP befinden kann.

Bitte beachten Sie, dass dieser Baustein intern den FC bzw. SFC 201 AG_PUT aufruft. Dieser darf nicht überschrieben werden! Der direkte Aufruf eines internen Bausteins führt zu Fehler im entsprechenden Instanz-DB!

Je nach Kommunikationsfunktion haben Sie folgendes Verhalten:

- Siemens S7-300-Kommunikation (FB 15)
 - Der Sendevorgang erfolgt nach einer positiven Flanke an REQ. Mit jeder positiven Flanke an REQ werden die Parameter ID, ADDR_1 und SD_1 übernommen. Nach Abschluss eines Auftrags können Sie den Parametern ID, ADDR_1 und SD_1 neue Werte zuweisen.
- Siemens S7-400-Kommunikation (SFB 15)
 - Bei einer positiven Flanke an REQ wird der SFB gestartet. Dabei werden die Zeiger auf die zu schreibenden Bereiche (ADDR_i) und die Daten (SD_i) an die Partner-CPU gesendet.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
REQ	INPUT	BOOL	E, A, M, D, L	Steuerparameter request, aktiviert den Datenaustausch bei steigender Flanke
				(gegenüber letztem FB/SFB-Aufruf)
ID	INPUT	WORD	E, A, M, D, Kon- stante	Referenz auf die Verbindung. <i>ID</i> muss in der Form W#16#xxxx angegeben werden.
DONE	OUTPUT	BOOL	E, A, M, D, L	Zustandsparameter DONE: Funktion ausgeführt.
ERROR	OUTPUT	BOOL	E, A, M, D, L	 Zustandsparameter ERROR: ERROR = 0 + STATUS = 0000h Weder Warnung noch Fehler. ERROR = 0 + STATUS ungleich 0000h Es liegt eine Warnung vor. STATUS liefert detaillierte Auskunft. ERROR = 1 Es liegt ein Fehler vor.
STATUS	OUTPUT	WORD	E, A, M, D, L	Zustandsparameter STATUS, liefert detaillierte Auskunft über die Art des Fehlers.
ADDR_1	IN_OUT	ANY	z.B. E, A, M, D	Zeiger auf diejenigen Bereiche in der Partner-CPU, in die geschrieben werden soll

System-SFBs - "System Function Blocks" > FB/SFB 15 - PUT - Remote CPU schreiben

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
ADDR_2	IN_OUT	ANY	z.B. E, A, M, D	Zeiger auf diejenigen Bereiche in der Partner-CPU, in die geschrieben werden soll
ADDR_3	IN_OUT	ANY	z.B. E, A, M, D	Zeiger auf diejenigen Bereiche in der Partner-CPU, in die geschrieben werden soll
ADDR_4	IN_OUT	ANY	z.B. E, A, M, D	Zeiger auf diejenigen Bereiche in der Partner-CPU, in die geschrieben werden soll
SD_i,1≤i ≤4	IN_OUT	ANY	E, A, M, D, T, Z	Zeiger auf diejenigen Bereiche in der eigenen CPU, die die zu versendenden Daten enthalten. Zulässig sind nur die Datentypen BOOL (nicht erlaubt: Bitfeld), BYTE, CHAR, WORD, INT, DWORD, DINT, REAL, DATE, TOD, TIME, S5TIME, DATE_AND_TIME, COUNTER, TIMER.

Funktion

- Die Partner-CPU legt die gesendeten Daten unter den mitgeführten Adressen ab und sendet eine Ausführungsquittung zurück.
- Diese Ausführungsquittung wird ausgewertet und bei einer fehlerfreien Datenübertragung erhält der Parameter DONE beim nächsten Aufruf des FB/SFB 15 den Wert 1.
- Ein erneuter Schreibvorgang kann erst dann wieder aktiviert werden, wenn der letzte Schreibvorgang abgeschlossen wurde. Die über die Parameter ADDR_i und SD_i, 1 ≤ i ≤ 4, definierten Bereiche müssen in Anzahl, Länge und im Datentyp übereinstimmen.

Fehlerinformationen

ERROR	STATUS (dezimal)	Bedeutung	
0	11	Warnung: Neuer Auftrag ist unwirksam, da vorangegangener Auftrag noch nicht abgeschlossen ist.	
0	25	Die Kommunikation wurde angestoßen. Der Auftrag ist in Bearbeitung.	
1	1	 Kommunikationsprobleme, z.B. Verbindungsbeschreibung nicht geladen (lokal oder remote) Verbindung unterbrochen (z.B.: Kabel, CPU ausgeschaltet, CP in STOP) 	
1	2	Negative Quittung vom Partnergerät. Die Funktion ist nicht ausführbar.	
1	4	Fehler in den Sendebereichszeigern <i>SD_i</i> bezüglich der Datenlänge oder des Datentyps.	
1	8	Zugriffsfehler bei der Partner-CPU	
1	10	Zugriff auf lokalen Anwenderspeicher nicht möglich (z.B. Zugriff auf gelöschten DB).	
1	12	Beim Aufruf des FB/SFB wurde	
		ein Instanz-DB, der nicht zum FB/SFB 15 gehört, angegeben.	
		kein Instanz-DB, sondern ein Global-DB angegeben.	
		kein Instanz-DB gefunden (laden eines neuen Instanz-DB vom PG).	
1	20	Zu wenig Arbeitsspeicher vorhanden.	

System-SFBs - "System Function Blocks" > SFB 31 - NOTIFY 8P - Meldung ohne Quittierungsanzeige (8x)

Datenkonsistenz

■ Siemens S7-300-Kommunikation

- Um Datenkonsistenz zu gewährleisten, dürfen Sie den Sendebereich SD_1 erst dann wieder beschreiben, wenn der aktuelle Sendevorgang abgeschlossen ist. Dies ist der Fall, wenn der Zustandsparameter DONE den Wert "1" annimmt.
- Siemens S7-400-Kommunikation
 - Mit dem Aktivieren eines Sendevorgangs (steigende Flanke an REQ) sind die zu sendenden Daten der Sendebereiche SD_i aus dem Anwenderprogramm kopiert. Sie können diese Bereiche nach dem Bausteinaufruf neu beschreiben, ohne die aktuellen Sendedaten zu verfälschen.

14.2.11 SFB 31 - NOTIFY 8P - Meldung ohne Quittierungsanzeige (8x)

Beschreibung

Erzeugung bausteinbezogener Meldungen ohne Quittierungsanzeige für 8 Signale.

- Der SFB 31 NOTIFY 8P ist die Erweiterung des SFB 36 NOTIFY auf 8 Signale.
- Eine Meldung wird erzeugt, wenn bei mindestens einem Signal ein Signalwechsel erkannt wurde. Beim Erstaufruf des SFB 31 wird stets eine Meldung erzeugt. Für alle 8 Signale gibt es eine gemeinsame Meldungsnummer, die am Anzeigegerät in 8 Teilmeldungen aufgesplittet wird.
- Pro Instanz des SFB 31 NOTIFY_8P steht ein Meldespeicher mit 2 Speicherplätzen zur Verfügung.
- Trotz Meldeverlust werden dem Anzeigegerät die letzten beiden Signalwechsel jedes Signals übergeben.

Bevor Sie den SFB 31 NOTIFY_8P in einem Automatisierungssystem aufrufen, müssen Sie sicherstellen, dass alle angeschlossenen Anzeigegeräte diesen Baustein kennen. Nähere Informationen hierzu finden Sie im Handbuch zu Ihren eingesetzten Komponenten.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
SIG_i	INPUT	BOOL	E, A, M, D, L	i-tes zu überwachendes Signal
ID	INPUT	WORD	Konstante	Datenkanal für Meldungen:
			(E, A, M, D, L)	EEEEh: ID wird nur beim Erstaufruf ausgewertet.
EV_ID	INPUT	DWORD	Konstante	Meldungsnummer
			(E, A, M, D, L)	(nicht erlaubt: 0)
SEVERITY	INPUT	WORD	Konstante	Gewicht des Ereignisses
			(E, A, M, D, L)	
DONE	OUTPUT	BOOL	E, A, M, D, L	Zustandsparameter DONE:
				Meldungsgenerierung abgeschlossen.
ERROR	OUTPUT	BOOL	E, A, M, D, L	Zustandsparameter ERROR
STATUS	OUTPUT	WORD	E, A, M, D, L	Zustandsparameter STATUS:
				Anzeige einer Fehlerinformation
SD_i	IN_OUT	ANY	E, A, M, D, T, Z	i-ter Begleitwert

System-SFBs - "System Function Blocks" > SFB 31 - NOTIFY 8P - Meldung ohne Quittierungsanzeige (8x)

SIG i i-tes zu überwachendes Signal. Es gilt 1 ≤ i ≤ 8.

ID Datenkanal für Meldungen: EEEEh. *ID* wird nur beim Erstaufruf ausgewertet.

EV_ID EV_ID wird nur beim Erstaufruf ausgewertet. Danach gilt bei jedem Aufruf des SFB

mit dem zugehörigen Instanz-DB die beim Erstaufruf verwendete Meldungsnummer. Die Meldungsnummer wird automatisch von ihrem Siemens STEP®7 Programmier-Tool vergeben. Dadurch ist die Konsistenz der Meldungsnummern gewährleistet. Die Meldungs-

nummer muss innerhalb Ihres Anwenderprogramms eindeutig sein.

SEVERITY Gewicht des Ereignisses. Hierbei bedeutet der Wert 0 höchstes Gewicht. Dieser Para-

meter ist für die Bearbeitung der Meldung nicht relevant. Mögliche Werte: 0 ... 127

(Defaultwert: 64)

DONE Zustandsparameter *DONE*, Meldungsgenerierung abgeschlossen.

SD_i i-ter Begleitwert. Es gilt 1 ≤ i ≤ maxAnzahl. Die maximale Anzahl an Begleitwerten finden Sie in den technischen Daten Ihrer CPU. Zulässig sind nur die Datentypen BOOL (nicht erlaubt: Bitfeld), BYTE, CHAR, WORD, INT, DWORD, DINT, REAL, DATE, TOD, TIME,

S5TIME, DATE_AND _TIME.

Wenn der ANY-Pointer auf einen DB zugreift, ist der DB immer zu spezifizieren.

(z.B.: P# DB10.DBX5.0 Byte 10).

Fehlerinformation ERROR / STATUS

ERROR = TRUE bedeutet, dass bei der Bearbeitung ein Fehler aufgetreten ist. Details hierzu finden Sie im Parameter *STATUS*. Die folgende Tabelle enthält alle spezifischen Fehlerinformationen für den SFB 31, die über die Parameter *ERROR* und *STATUS* ausgegeben werden können.

ERROR	STATUS (dezimal)	Beschreibung			
0	11	Meldungsverlust: Der vorangegangene Signalwechsel bzw. die vorangegangene Meldung konnte nicht gesendet werden und wird durch die aktuelle Meldung ersetzt.			
0	22	 Fehler im Zeiger auf die Begleitwerte SD_i: bezüglich der Datenlänge oder des Datentyps Begleitwerte im Anwenderspeicher nicht erreichbar, z.B. wegen gelöschtem DB oder Bereichslängenfehler. Die aktivierte Meldung wird ohne oder ggf. mit der gerade noch möglichen Anzahl von Begleitwerten gesendet. Der von Ihnen gewählte Aktualparameter von SEVERITY liegt oberhalb des zulässigen Bereichs. Die aktivierte Meldung wird mit SEVERITY = 127 gesendet. 			
0	25	Die Kommunikation wurde angestoßen. Die Meldung ist in Bearbeitung.			
1	1	Kommunikationsprobleme: Verbindungsabbruch oder keine Anmeldung vorhanden			
1	4	Beim Erstaufruf liegt die angegebene <i>EV_ID</i> außerhalb des zulässigen Bereichs oder es liegt ein formaler Fehler des ANY-Pointers <i>SD_i</i> vor oder es wurde der für die CPU pro SFB 31 maximal versendbare Speicherbereich überschritten.			

ERROR	STATUS (dezimal)	Beschreibung
1	10	Zugriff auf lokalen Anwenderspeicher nicht möglich (z.B. Zugriff auf gelöschten DB).
1	12	Beim Aufruf des SFB wurde ein Instanz-DB, der nicht zum SFB 31 gehört oder kein Instanz-DB, sondern ein Global-DB angegeben.
1	18	EV_ID wurde bereits von einem der SFBs 31 oder 33 36 verwendet.
1	20	Zu wenig Arbeitsspeicher vorhanden.
1	21	Die Meldung mit der angegebenen <i>EV_ID</i> ist gesperrt.

14.2.12 SFB 32 - DRUM - Schrittschaltwerk

Beschreibung

Der SFB 32 realisiert ein Schrittschaltwerk mit maximal 16 Schritten.

- Die Nummer des ersten Schrittes geben Sie mit dem Parameter DSP und die Nummer des letzten Schrittes mit dem Parameter LST STEP vor.
- In jedem Schritt werden alle 16 Ausgangsbits *OUT0 ... OUT15* und der Ausgangsparameter *OUT_WORD* (Ausgangsbits zusammengefasst) beschrieben.
- Der SFB 32 schaltet in den nächsten Schritt, wenn am Eingang JOG gegenüber dem vorangegangenen SFB-Aufruf eine positive Flanke aufgetreten ist. Falls sich der SFB bereits im letzten Schritt befindet, werden bei positiver Flanke an JOG die Variablen Q und EOD gesetzt, DCC erhält den Wert 0, und der SFB verbleibt im letzten Schritt, bis Sie den Eingang RESET mit "1" belegen.

Zeitabhängiges Weiterschalten

- Wenn Sie ein zeitabhängiges Weiterschalten in den nächsten Schritt möchten, belegen Sie den Parameter DRUM_EN mit "1". Der Übergang in den nächsten Schritt erfolgt dann, wenn
 - das zum aktuellen Schritt zugehörige Ereignisbit EVENTi gesetzt ist und
 - die für den aktuellen Schritt vorgegebene Zeit abgelaufen ist.
- Die Zeit ergibt sich aus dem Produkt von der Zeitbasis DTBP und dem für den aktuellen Schritt gültigen Zeitfaktor (Parameter S PRESET).
- Wenn beim Aufruf des SFB am Eingang RESET "1" anliegt, geht das Schrittschaltwerk in den Schritt, dessen Nummer Sie dem Eingang DSP zugewiesen haben.
- Beim Erstaufruf des Bausteins müssen Sie den Eingang *RESET* mit "1" belegen.
- Wenn sich das Schaltwerk im letzten Schritt befindet (DSC hat den Wert LST_STEP) und die für diesen Schritt vorgegebene Bearbeitungszeit abgelaufen ist, werden die Ausgänge Q und EOD gesetzt, und der SFB verbleibt im letzten Schritt, bis Sie den Eingang RESET mit "1" belegen.
- Der SFB 32 läuft nur in den Betriebszuständen ANLAUF und RUN.
- Falls der SFB 32 nach Neustart initialisiert werden soll, müssen Sie ihn im OB 100 mit *RESET* = "1" aufrufen.

Die im aktuellen Schritt noch verbleibende Bearbeitungszeit DCC wird nur dann reduziert, wenn das zugehörige Ereignisbit EVENTi gesetzt ist.

Д

Falls Sie DRUM_EN zu "1" gewählt haben, erreichen Sie den Sonderfall:

- einer rein zeitgesteuerten Weiterschaltung der Schritte, indem Sie EVENTi = "1" wählen für DSP ≤ i ≤ LST_STEP.
- einer rein ereignisgesteuerten Weiterschaltung der Schritte über die Ereignisbits EVENTi, indem Sie Zeitbasis DTBP = "0" wählen.

Zusätzlich können Sie das Schrittschaltwerk jederzeit (auch bei DRUM EN = "1") über den Eingang JOG weiterschalten.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
RESET	INPUT	BOOL	E, A, M, D, L, Konstante	Rücksetzen
JOG	INPUT	BOOL	E, A, M, D, L, Konstante	Weiterschalten in den nächsten Schritt
DRUM_EN	INPUT	BOOL	E, A, M, D, L, Konstante	Steuerparameter
LST_STEP	INPUT	BYTE	E, A, M, D, L, Konstante	Nummer des letzten Schritts
EVENTi,1 ≤ i ≤ 16	INPUT	BOOL	E, A, M, D, L, Konstante	Ereignisbit Nr. i (gehört zum Schritt i)
$OUTj, 0 \le j \le 15$	OUTPUT	BOOL	E, A, M, D, L	Ausgangsbit Nr. j
Q	OUTPUT	BOOL	E, A, M, D, L	Zustandsparameter.
OUT_WORD	OUTPUT	WORD	E, A, M, D, L, P	Ausgangsbits
ERR_CODE	OUTPUT	WORD	E, A, M, D, L, P	Tritt während der Bearbeitung des SFB ein Fehler auf, enthält <i>ERR_CODE</i> die Fehlerinformation.
JOG_HIS	VAR	BOOL	E, A, M, D, L, Konstante	Nicht anwenderrelevant
EOD	VAR	BOOL	E, A, M, D, L, Konstante	Identisch zum Ausgangsparameter Q
DSP	VAR	BYTE	E, A, M, D, L, P, Konstante	Nummer des ersten Schritts
DSC	VAR	BYTE	E, A,M, D, L, P, Konstante	Nummer des aktuellen Schritts
DCC	VAR	DWORD	E, A, M, D, L, P, Konstante	noch verbleibende Bearbeitungszeit in ms
DTBP	VAR	WORD	E, A, M, D, L, P, Konstante	Zeitbasis in ms

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
PREV_TIME	VAR	DWORD	E, A, M, D, L,	Nicht anwenderrelevant
			Konstante	
S_PRESET	VAR	ARRAY of	E, A, M, D, L,	Zeitfaktoren für jeden Schritt.
		WORD	Konstante	
OUT_VAL	VAR	ARRAY of	E, A, M, D, L,	in jedem Schritt auszugeb-
		BOOL	Konstante	enden Werte
S_MASK	VAR	ARRAY of BOOL	E, A, M, D, L,	Maskenbits für jeden Schritt
			Konstante	

RESET Rücksetzen:

Der Pegel 1 bewirkt das Rücksetzen des Schrittschaltwerks.

Beim Erstaufruf des Bausteins ist RESET mit "1" zu belegen.

JOG Eine steigende Flanke (gegenüber dem letzten SFB-Aufruf) bewirkt das Weiterschalten

in den nächsten Schritt, falls sich das Schaltwerk noch nicht im letzten Schritt befindet. Die Weiterschaltung erfolgt unabhängig davon, welchen Wert Sie *DRUM_EN* zugewiesen

haben.

DRUM_EN Steuerparameter, der festlegt, ob ein zeitabhängiges Weiterschalten in den nächsten

Schritt möglich sein soll

("1": zeitabhängiges Weiterschalten möglich).

LST_STEP Nummer des letzten Schrittes:

■ mögliche Werte 1 ... 16

EVENTi, 1≤i≤16 Ereignisbit Nr. i (gehört zum Schritt i)

OUTj, 0≤j≤15 Ausgangsbit NR. j (identisch mit dem Bit Nr. j von OUT_WORD)

Q Zustandsparameter, der angibt, ob die von Ihnen vorgegebene Bearbeitungszeit des

letzten Schritts abgelaufen ist.

OUT_WORD Ausgangsbits zusammengefasst in einer Variablen.

ERR_CODE Tritt während der Bearbeitung des SFB ein Fehler auf, enthält ERR_CODE die Fehlerin-

formation. → "Fehlerinformation"...Seite 850

JOG_HIS Nicht anwenderrelevant: Eingangsparameter JOG des vorhergehenden SFB-Aufruf.

EOD Identisch zum Ausgangsparameter Q.

DSP Nummer des ersten Schrittes:

mögliche Werte 1 ... 16

DSC Nummer des aktuellen Schrittes

DCC Die im aktuellen Schritt noch verbleibende Bearbeitungszeit in ms (nur relevant, falls

DRUM_EN ="1" und das zugehörige Ereignisbit = "1").

DTBP Die für alle Schritte gültige Zeitbasis in ms.

PREV_TIME Nicht anwenderrelevant: Systemzeit des vorhergehenden SFB-Aufrufs.

S_PRESET Eindimensionales Feld mit den Zeitfaktoren für alle Schritte.

Sinnvolle Wahl der Indizes: [1 ... 16].
 In diesem Fall enthält S PRESET[x] den Zeitfaktor des Schrittes x.

OUT_VALZweidimensionales Feld mit den in jedem Schritt auszugebenden Werten, falls Sie diese nicht über *S_MASK* ausgeblendet haben.

Sinnvolle Wahl der Indizes: [1 ... 16, 0 ... 15].
In diesem Fall enthält S_MASK [x, y] das Maskenbit für den y-ten auszugebenden Wert im Schritt x.

S MASK Zweidimensionales Feld mit den Maskenbits für jeden Schritt.

- Sinnvolle Wahl der Indizes: [1 ... 16, 0 ... 15].
 In diesem Fall enthält S_MASK [x, y] das Maskenbit für den y-ten auszugebenden Wert im Schritt x.
- Bedeutung der Maskenbits:
 - 0: der entsprechende Wert des vorangegangenen Schrittes wird dem zugehörigen Ausgangsbit zugewiesen
 - 1: der entsprechende Wert aus OUT_VAL wird dem zugehörigen Ausgangsbit zugewiesen.

Fehlerinformation

ERR_CODE

Im Fehlerfall verbleibt der SFB 32 im aktuellen Zustand und folgender Fehlercode wird ausgegeben:

ERR_CODE	Beschreibung
0000h	kein Fehler
8081h	unzulässiger Wert für LST_STEP
8082h	unzulässiger Wert für DSC
8083h	unzulässiger Wert für DSP
8084h	Das Produkt <i>DCC</i> = <i>DTBP</i> x <i>S_PRESET</i> [DSC] überschreitet den Wert 2 ³¹⁻¹ (ca. 24,86 Tage)

System-SFBs - "System Function Blocks" > SFB 33 - ALARM - Meldungen mit Quittierungsanzeige

14.2.13 SFB 33 - ALARM - Meldungen mit Quittierungsanzeige

Beschreibung

Erzeugung bausteinbezogener Meldungen mit Quittierungsanzeige:

- Der SFB 33 ALARM überwacht ein Signal:
 - Quittierungsgetriggertes Melden ausgeschaltet (Standardbetrieb): Der Baustein generiert sowohl bei steigender Flanke (kommendes Ereignis) als auch bei fallender Flanke (gehendes Ereignis) eine Meldung, an die Sie Begleitwerte anhängen können.
 - Quittierungsgetriggertes Melden eingeschaltet: Der Baustein erzeugt nach generierter Kommend-Meldung für das Signal so lange keine weiteren Meldungen, bis Sie diese Kommend-Meldung an einem Anzeigegerät quittiert haben.
- Beim Erstaufruf wird eine Meldung mit dem aktuellen Signalzustand gesendet. Die Meldung wird an alle dafür angemeldeten Teilnehmer gesendet.
- Nach dem Eintreffen Ihrer Quittierung von einem angemeldeten Anzeigegerät wird die Quittierinformation an alle dafür angemeldeten Teilnehmer weitergeleitet.
- Pro Instanz des SFB 33 ALARM steht ein Meldespeicher mit 2 Speicherplätzen zur Verfügung.
- Der SFB 33 ALARM entspricht der Norm IEC 1131-5.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
EN_R	INPUT	BOOL	E, A, M, D, L, Konstante	Steuerparameter
SIG	INPUT	BOOL	E, A, M, D, L	Das zu überwachende Signal
ID	INPUT	WORD	Konstante	Datenkanal für Meldungen: EEEEh
			(E, A, M, D, L)	ID wird nur beim Erstaufruf ausgewertet.
EV_ID	INPUT	DWORD	Konstante	Meldungsnummer (nicht erlaubt: 0)
			(E, A, M, D, L)	
SEVERITY	INPUT	WORD	Konstante	Gewicht des Ereignisses
			(E, A, M, D, L)	
DONE	OUTPUT	BOOL	E, A, M, D, L	Zustandsparameter DONE:
				Meldungsgenerierung abgeschlossen.
ERROR	OUTPUT	BOOL	E, A, M, D, L	Zustandsparameter ERROR
STATUS	OUTPUT	WORD	E, A, M, D, L	Zustandsparameter STATUS:
				Anzeige einer Fehlerinformation
ACK_DN	OUTPUT	BOOL	E, A, M, D, L	Gegangenes Ereignis quittiert.
ACK_UP	OUTPUT	BOOL	E, A, M, D, L	Gekommenes Ereignis quittiert.
SD_i	IN_OUT	ANY	E, A, M, D, T, Z	i-ter Begleitwert

EN_R

Steuerparameter (enabled to receive), der bewirkt, dass die Ausgänge ACK_UP und ACK_DN beim Bausteinaufruf aktualisiert werden ($EN_R = 1$) bzw. nicht aktualisiert werden ($EN_R = 0$). Bei $EN_R = 0$ bleiben die Ausgangsparameter ACK_UP und ACK_DN unverändert.

SIG

Das zu überwachende Signal.

System-SFBs - "System Function Blocks" > SFB 33 - ALARM - Meldungen mit Quittierungsanzeige

ID Datenkanal für Meldungen: EEEEh. *ID* wird nur beim Erstaufruf ausgewertet.

EV_ID EV_ID wird nur beim Erstaufruf ausgewertet. Danach gilt bei jedem Aufruf des SFB

mit dem zugehörigen Instanz-DB die beim Erstaufruf verwendete Meldungsnummer. Die Meldungsnummer wird automatisch von ihrem Siemens STEP®7 Programmier-Tool vergeben. Dadurch ist die Konsistenz der Meldungsnummern gewährleistet. Die Meldungs-

nummer muss innerhalb Ihres Anwenderprogramms eindeutig sein.

SEVERITY Gewicht des Ereignisses. Hierbei bedeutet der Wert 0 höchstes Gewicht. Dieser Para-

meter ist für die Bearbeitung der Meldung nicht relevant. Mögliche Werte: 0 ... 127

(Defaultwert: 64)

DONE Zustandsparameter *DONE*, Meldungsgenerierung abgeschlossen.

ACK_DN Gegangenes Ereignis wurde auf einem Anzeigegerät quittiert. Initialisierungszustand: 1.

Der Ausgang ACK_DN wird rückgesetzt, wenn eine fallende Flanke vorliegt. Er wird

gesetzt, wenn Ihre Quittierung des gegangenen Ereignisses von einem angemeldeten

Anzeigegerät eingetroffen ist.

ACK_UP Gekommenes Ereignis wurde auf einem Anzeigegerät quittiert. Initialisierungszustand: 1

Der Ausgang ACK_UP wird rückgesetzt, wenn eine steigende Flanke vorliegt. Er wird gesetzt, wenn Ihre Quittierung des gekommenen Ereignisses von einem angemeldeten

Anzeigegerät eingetroffen ist.

SD_i i-ter Begleitwert. Es gilt 1 ≤ i ≤ maxAnzahl. Die maximale Anzahl an Begleitwerten finden Sie in den technischen Daten Ihrer CPU. Zulässig sind nur die Datentypen BOOL (nicht erlaubt: Bitfeld), BYTE, CHAR, WORD, INT, DWORD, DINT, REAL, DATE, TOD, TIME,

S5TIME, DATE_AND _TIME.

Wenn der ANY-Pointer auf einen DB zugreift, ist der DB immer zu spezifizieren (z.B.: P# DB10.DBX5.0 Byte 10).

Fehlerinformation ERROR / STATUS

ERROR = TRUE bedeutet, dass bei der Bearbeitung ein Fehler aufgetreten ist. Details hierzu finden Sie im Parameter *STATUS*. Die folgende Tabelle enthält alle spezifischen Fehlerinformationen für den SFB 33, die über die Parameter *ERROR* und *STATUS* ausgegeben werden können.

ERROR	STATUS (dezimal)	Beschreibung
0	11	Meldungsverlust: Der vorangegangene Signalwechsel bzw. die vorangegangene Meldung konnte nicht gesendet werden und wird durch die aktuelle Meldung ersetzt.
0	22	 Fehler im Zeiger auf die Begleitwerte SD_i: bezüglich der Datenlänge oder des Datentyps Begleitwerte im Anwenderspeicher nicht erreichbar, z.B. wegen gelöschtem DB oder Bereichslängenfehler. Die aktivierte Meldung wird ohne oder ggf. mit der gerade noch möglichen Anzahl von Begleitwerten gesendet. Der von Ihnen gewählte Aktualparameter von SEVERITY liegt oberhalb des zulässigen Bereichs. Die aktivierte Meldung wird mit SEVERITY = 127 gesendet.

System-SFBs - "System Function Blocks" > SFB 34 - ALARM_8 - Meldungen ohne Begleitwerte (8x)

ERROR	STATUS (dezimal)	Beschreibung
0	25	Die Kommunikation wurde angestoßen. Die Meldung ist in Bearbeitung.
1	1	Kommunikationsprobleme: Verbindungsabbruch oder keine Anmeldung vorhanden. Bei aktiviertem quittierungsgetriggerten Melden: temporäre Anzeige, falls keine Anzeigegeräte das quittierungsgetriggerte Melden beherrschen.
1	4	Beim Erstaufruf liegt die angegebene <i>EV_ID</i> außerhalb des zulässigen Bereichs oder liegt ein formaler Fehler des ANY-Pointers <i>SD_i</i> vor oder wurde der für die CPU pro SFB 31 maximal versendbare Speicherbereich überschritten.
1	10	Zugriff auf lokalen Anwenderspeicher nicht möglich (z. B. Zugriff auf gelöschten DB).
1	12	Beim Aufruf des SFB wurde ein Instanz-DB, der nicht zum SFB 31 gehört, angegeben oder kein Instanz-DB, sondern ein Global-DB angegeben.
1	18	EV_ID wurde bereits von einem der SFBs 31 oder 33 36 verwendet.
1	20	Zu wenig Arbeitsspeicher vorhanden.
1	21	Die Meldung mit der angegebenen EV_ID ist gesperrt.

Nach dem ersten Bausteinaufruf haben die Ausgänge ACK_UP und ACK_DN den Wert 1 und der Vergangenheitswert des Eingangs SIG wird zu 0 angenommen.

14.2.14 SFB 34 - ALARM_8 - Meldungen ohne Begleitwerte (8x)

Beschreibung

Erzeugung bausteinbezogener Meldungen ohne Begleitwerte für 8 Signale.

- Der SFB 34 ALARM_8 ist identisch zum SFB 35 ALARM_8P.
- Es werden nur keine Begleitwerte übertragen.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
EN_R	INPUT	BOOL	E, A, M, D, L, Konstante	Steuerparameter
SIG_i	INPUT	BOOL	E, A, M, D, L	i-tes zu überwachendes Signal
ID	INPUT	WORD	Konstante	Datenkanal für Meldungen: EEEEh
			(E, A, M, D, L)	<i>ID</i> wird nur beim Erstaufruf ausgewertet.
EV_ID	INPUT	DWORD	Konstante	Meldungsnummer (nicht erlaubt: 0)
			(E, A, M, D, L)	
SEVERITY	INPUT	WORD	Konstante	Gewicht des Ereignisses
			(E, A, M, D, L)	
DONE	OUTPUT	BOOL	E, A, M, D, L	Zustandsparameter <i>DONE</i> : Meldungsgenerierung abgeschlossen.
ERROR	OUTPUT	BOOL	E, A, M, D, L	Zustandsparameter ERROR
STATUS	OUTPUT	WORD	E, A, M, D, L	Zustandsparameter <i>STATUS</i> : Anzeige einer Fehlerinformation

System-SFBs - "System Function Blocks" > SFB 34 - ALARM 8 - Meldungen ohne Begleitwerte (8x)

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
ACK_STATE	OUTPUT	WORD	E, A, M, D, L	Bitfeld Quittierzustand aller 8 Meldungen

EN_R Steuerparameter (enabled to receive), der bewirkt, dass der Ausgang *ACK_STATE* beim

Bausteinaufruf aktualisiert wird ($EN_R = 1$) bzw. nicht aktualisiert wird ($EN_R = 0$).

SIG_i i-tes zu überwachendes Signal. Es gilt $1 \le i \le 8$.

ID Datenkanal für Meldungen: EEEEh. *ID* wird nur beim Erstaufruf ausgewertet.

EV_ID Wird nur beim Erstaufruf ausgewertet. Danach gilt bei jedem Aufruf des SFB

mit dem zugehörigen Instanz-DB die beim Erstaufruf verwendete Meldungsnummer. Die Meldungsnummer wird automatisch von ihrem Siemens STEP®7 Programmier-Tool vergeben. Dadurch ist die Konsistenz der Meldungsnummern gewährleistet. Die Meldungs-

nummer muss innerhalb Ihres Anwenderprogramms eindeutig sein.

SEVERITY Gewicht des Ereignisses. Hierbei bedeutet der Wert 0 höchstes Gewicht. Dieser Para-

meter ist für die Bearbeitung der Meldung nicht relevant. Mögliche Werte: 0 ... 127

(Defaultwert: 64)

DONE Zustandsparameter *DONE*: Meldungsgenerierung abgeschlossen.

ACK_STATE Bitfeld mit dem aktuellen Quittierzustand aller 8 Meldungen

■ Bit 7 ... 0: kommendes Ereignis von SIG 1 ... SIG 8

■ Bit 15 ... 8: gegangene Ereignis von SIG_1 ... SIG_8

(1: Ereignis quittiert, 0: Ereignis nicht quittiert):

Initialisierungszustand: FFFFh, d.h. alle kommenden und gehenden Ereignisse sind quit-

tiert.

Fehlerinformation ERROR / STATUS

ERROR = TRUE bedeutet, dass bei der Bearbeitung ein Fehler aufgetreten ist. Details hierzu finden Sie im Parameter STATUS. Die folgende Tabelle enthält alle spezifischen Fehlerinformationen für den SFB 34, die über die Parameter ERROR und STATUS ausgegeben werden können.

ERROR	STATUS (dezimal)	Beschreibung
0	11	Meldungsverlust: Der vorangegangene Signalwechsel bzw. die vorangegangene Meldung konnte nicht gesendet werden und wird durch die aktuelle Meldung ersetzt.
0	22	Der von Ihnen gewählte Aktualparameter von <i>SEVERITY</i> liegt oberhalb des zulässigen Bereichs. Die aktivierte Meldung wird mit <i>SEVERITY</i> = 127 gesendet.
0	25	Die Kommunikation wurde angestoßen. Die Meldung ist in Bearbeitung.
1	1	Kommunikationsprobleme: Verbindungsabbruch oder keine Anmeldung vorhanden Bei aktiviertem quittierungsgetriggerten Melden: temporäre Anzeige, falls keine Anzeigegeräte das quittierungsgetriggerte Melden beherrschen.
1	4	Beim Erstaufruf liegt die angegebene EV_ID außerhalb des zulässigen Bereichs.

System-SFBs - "System Function Blocks" > SFB 35 - ALARM_8P - Meldungen mit Begleitwerten (8x)

ERROR	STATUS (dezimal)	Beschreibung
1	10	Zugriff auf lokalen Anwenderspeicher nicht möglich (z.B. Zugriff auf gelöschten DB).
1	12	Beim Aufruf des SFB wurde ein Instanz-DB, der nicht zum SFB 34 gehört, angegeben oder kein Instanz-DB, sondern ein Global-DB angegeben.
1	18	EV_ID wurde bereits von einem der SFBs 31 oder 33 36 verwendet.
1	20	Zu wenig Arbeitsspeicher vorhanden.
1	21	Die Meldung mit der angegebenen EV_ID ist gesperrt.

 \int_{1}^{∞}

Nach dem ersten Bausteinaufruf sind alle Bits des Ausgangs ACK_STATE gesetzt, und die Vergangenheitswerte der Eingänge SIG_i, 1≤ i ≤ 8, werden zu 0 angenommen.

14.2.15 SFB 35 - ALARM 8P - Meldungen mit Begleitwerten (8x)

Beschreibung

Erzeugung bausteinbezogener Meldungen mit Begleitwerten für 8 Signale.

- Der SFB 35 ALARM 8P ist die Erweiterung des SFB 33 ALARM auf 8 Signale.
- Falls Sie das Verfahren des Quittierungsgetriggerten Meldens nicht aktiviert haben, wird stets eine Meldung generiert, wenn bei mindestens einem Signal ein Signalwechsel erkannt wurde. (Ausnahme: Beim Erstaufruf wird stets eine Meldung gesendet.) Für alle 8 Signale gibt es eine gemeinsame Meldungsnummer, die am Anzeigegerät in 8 Teilmeldungen aufgesplittet wird. Sie können jede Teilmeldung einzeln quittieren oder auch mehrere Teilmeldungen auf einmal.
- Über den Ausgangsparameter ACK_STATE können Sie den Quittierungszustand der einzelnen Meldungen in Ihrem Programm weiterverarbeiten. Falls Sie eine Meldung eines ALARM_8P-Bausteins sperren oder freigeben, so betrifft das immer den gesamten ALARM_8PBaustein. Das Sperren und Freigeben einzelner Signale ist nicht möglich.
- Pro Instanz des SFB 35 ALARM_8P steht ein Meldespeicher mit 2 Speicherplätzen zur Verfügung.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
EN_R	INPUT	BOOL	E, A, M, D, L, Konstante	Steuerparameter
SIG_i,	INPUT	BOOL	E, A, M, D, L	i-tes zu überwachendes Signal
ID	INPUT	WORD	Konstante	Datenkanal für Meldungen: EEEEh
			(E, A, M, D, L)	ID wird nur beim Erstaufruf ausgewertet.
EV_ID	INPUT	DWORD	Konstante	Meldungsnummer (nicht erlaubt: 0)
			(E, A, M, D, L)	
SEVERITY	INPUT	WORD	Konstante	Gewicht des Ereignisses
			(E, A, M, D, L)	
DONE	OUTPUT	BOOL	E, A, M, D, L	Zustandsparameter <i>DONE</i> : Meldungs-generierung abgeschlossen.

System-SFBs - "System Function Blocks" > SFB 35 - ALARM_8P - Meldungen mit Begleitwerten (8x)

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
ERROR	OUTPUT	BOOL	E, A, M, D, L	Zustandsparameter ERROR
STATUS	OUTPUT	WORD	E, A, M, D, L	Zustandsparameter <i>STATUS</i> : Anzeige einer Fehlerinformation
ACK_STATE	OUTPUT	WORD	E, A, M, D, L	Bitfeld Quittierzustand aller 8 Meldungen
SD_j	IN_OUT	ANY	E, A, M, D, T, Z	j-ter Begleitwert

EN_R Steuerparameter (enabled to receive), der bewirkt, dass der Ausgang *ACK_STATE* beim

Bausteinaufruf aktualisiert wird ($EN_R = 1$) bzw. nicht aktualisiert wird ($EN_R = 0$).

SIG i i-tes zu überwachendes Signal. Es gilt $1 \le i \le 8$.

ID Datenkanal für Meldungen: EEEEh. ID wird nur beim Erstaufruf ausgewertet.

EV_ID EV_ID wird nur beim Erstaufruf ausgewertet. Danach gilt bei jedem Aufruf des SFB

mit dem zugehörigen Instanz-DB die beim Erstaufruf verwendete Meldungsnummer. Die Meldungsnummer wird automatisch von ihrem Siemens STEP®7 Programmier-Tool vergeben. Dadurch ist die Konsistenz der Meldungsnummern gewährleistet. Die Meldungs-

nummer muss innerhalb Ihres Anwenderprogramms eindeutig sein.

SEVERITY Gewicht des Ereignisses. Hierbei bedeutet der Wert 0 höchstes Gewicht. Dieser Para-

meter ist für die Bearbeitung der Meldung nicht relevant. Mögliche Werte: 0 ... 127

(Defaultwert: 64)

DONE Zustandsparameter *DONE*, Meldungsgenerierung abgeschlossen.

ACK_STATE Bitfeld mit dem aktuellen Quittierzustand aller 8 Meldungen.

Bit 7 ... 0: kommendes Ereignis von SIG_1 ... SIG_8

■ Bit 15 ... 8: gegangene Ereignis von SIG_1 ... SIG_8

(1: Ereignis quittiert, 0: Ereignis nicht quittiert):

Initialisierungszustand: FFFFh, d.h. alle kommenden und gehenden Ereignisse sind quit-

tiert.

i-ter Begleitwert. Es gilt 1 ≤ i ≤ maxAnzahl. Die maximale Anzahl an Begleitwerten finden Sie in den technischen Daten Ihrer CPU. Zulässig sind nur die Datentypen BOOL (nicht erlaubt: Bitfeld), BYTE, CHAR, WORD, INT, DWORD, DINT, REAL, DATE, TOD, TIME,

S5TIME, DATE_AND _TIME.

Wenn der ANY-Pointer auf einen DB zugreift, ist der DB immer zu spezifizieren (z.B.: P# DB10.DBX5.0 Byte 10).

SD_i

System-SFBs - "System Function Blocks" > SFB 36 - NOTIFY - Meldungen ohne Quittierungsanzeige

Fehlerinformation ERROR / STATUS

ERROR = TRUE bedeutet, dass bei der Bearbeitung ein Fehler aufgetreten ist. Details hierzu finden Sie im Parameter *STATUS*. Die folgende Tabelle enthält alle spezifischen Fehlerinformationen für den SFB 35, die über die Parameter *ERROR* und *STATUS* ausgegeben werden können.

ERROR	<i>STATUS</i> (dezimal)	Beschreibung
0	11	Meldungsverlust: Der vorangegangene Signalwechsel bzw. die vorangegangene Meldung konnte nicht gesendet werden und wird durch die aktuelle Meldung ersetzt.
0	22	 Fehler im Zeiger auf die Begleitwerte SD_i: bezüglich der Datenlänge oder des Datentyps Begleitwerte im Anwenderspeicher nicht erreichbar, z. B. wegen gelöschtem DB oder Bereichslängenfehler. Die aktivierte Meldung wird ohne Begleitwerte gesendet. Der von Ihnen gewählte Aktualparameter von SEVERITY liegt oberhalb des zulässigen Bereichs. Die aktivierte Meldung wird mit SEVERITY = 127 gesendet.
0	25	Die Kommunikation wurde angestoßen. Die Meldung ist in Bearbeitung.
1	1	Kommunikationsprobleme: Verbindungsabbruch oder keine Anmeldung vorhanden. Bei aktiviertem quittierungsgetriggerten Melden: temporäre Anzeige, falls keine Anzeigegeräte das quittierungsgetriggerte Melden beherrschen.
1	4	Beim Erstaufruf liegt die angegebene <i>EV_ID</i> außerhalb des zulässigen Bereichs oder es liegt ein formaler Fehler des ANY-Pointers SD_i vor oder es wurde der für die CPU pro SFB 35 maximal versendbare Speicherbereich überschritten
1	10	Zugriff auf lokalen Anwenderspeicher nicht möglich (z.B. Zugriff auf gelöschten DB)
1	12	Beim Aufruf des SFB wurde ein Instanz-DB, der nicht zum SFB 34 gehört, angegeben oder kein Instanz-DB, sondern ein Global-DB angegeben.
1	18	EV_ID wurde bereits von einem der SFBs 31 oder 33 36 verwendet.
1	20	Zu wenig Arbeitsspeicher vorhanden.
1	21	Die Meldung mit der angegebenen EV_ID ist gesperrt.

Nach dem ersten Bausteinaufruf sind alle Bits des Ausgangs ACK_STATE gesetzt, und die Vergangenheitswerte der Eingänge SIG_i, 1≤ i ≤ 8, werden zu 0 angenommen.

14.2.16 SFB 36 - NOTIFY - Meldungen ohne Quittierungsanzeige

Beschreibung

Erzeugung bausteinbezogener Meldungen ohne Quittierungsanzeige

- Der SFB 36 NOTIFY überwacht ein Signal. Er generiert sowohl bei steigender Flanke (kommendes Ereignis) als auch bei fallender Flanke (gehendes Ereignis) eine Meldung, an die Sie Begleitwerte anhängen können.
- Beim Erstaufruf wird eine Meldung mit dem aktuellen Signalzustand gesendet. Die Meldung wird an alle dafür angemeldeten Teilnehmer gesendet.
- Die Begleitwerte werden zum Zeitpunkt der Flankenauswertung erfasst und der Meldung zugeordnet.

System-SFBs - "System Function Blocks" > SFB 36 - NOTIFY - Meldungen ohne Quittierungsanzeige

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
SIG	INPUT	BOOL	E, A, M, D, L.	Das zu überwachende Signal.
ID	INPUT	WORD	Konstante	Datenkanal für Meldungen: EEEEh
			(E, A, M, D, L)	<i>ID</i> wird nur beim Erstaufruf ausgewertet.
EV_ID	INPUT	DWORD	Konstante	Meldungsnummer (nicht erlaubt: 0)
			(E, A, M, D, L)	
SEVERITY	INPUT	WORD	Konstante	Gewicht des Ereignisses
			(E, A, M, D, L)	
DONE	OUTPUT	BOOL	E, A, M, D, L	Zustandsparameter DONE:
				Meldungsgenerierung abgeschlossen.
ERROR	OUTPUT	BOOL	E, A, M, D, L	Zustandsparameter ERROR
STATUS	OUTPUT	WORD	E, A, M, D, L	Zustandsparameter STATUS:
				Anzeige einer Fehlerinformation
SD_i,	IN_OUT	ANY	E, A, M, D, T, Z	i-ter Begleitwert

SIG Das zu überwachende Signal.

ID Datenkanal für Meldungen: EEEEh. *ID* wird nur beim Erstaufruf ausgewertet.

EV_ID Wird nur beim Erstaufruf ausgewertet. Danach gilt bei jedem Aufruf des SFB mit dem zugehörigen Instanz-DB die beim Erstaufruf verwendete Meldungsnummer. Die Meldungsnummer wird automatisch von ihrem Siemens STEP®7 Programmier-Tool vergeben. Dadurch ist die Konsistenz der Meldungsnummern gewährleistet. Die Meldungs-

nummer muss innerhalb Ihres Anwenderprogramms eindeutig sein.

SEVERITY Gewicht des Ereignisses. Hierbei bedeutet der Wert 0 höchstes Gewicht. Dieser Para-

meter ist für die Bearbeitung der Meldung nicht relevant. Mögliche Werte: 0 ... 127

(Defaultwert: 64)

DONE Zustandsparameter *DONE*: Meldungsgenerierung abgeschlossen.

SD_i i-ter Begleitwert. Es gilt 1 ≤ i ≤ maxAnzahl. Die maximale Anzahl an Begleitwerten finden Sie in den technischen Daten Ihrer CPU. Zulässig sind nur die Datentypen BOOL (nicht erlaubt: Bitfeld), BYTE, CHAR, WORD, INT, DWORD, DINT, REAL, DATE, TOD, TIME,

S5TIME, DATE_AND _TIME.

Wenn der ANY-Pointer auf einen DB zugreift, ist der DB immer zu spezifizieren (z.B.: P# DB10.DBX5.0 Byte 10).

Fehlerinformation ERROR / STATUS

Die folgende Tabelle enthält alle spezifischen Fehlerinformationen für den SFB 36, die über die Parameter *ERROR* und *STATUS* ausgegeben werden können.

ERROR	STATUS (dezimal)	Beschreibung		
0	11	Meldungsverlust: Der vorangegangene Signalwechsel bzw. die vorangegangene Meldung konnte nicht gesendet werden und wird durch die aktuelle Meldung ersetzt.		
0	22	 Fehler im Zeiger auf die Begleitwerte SD_i: bezüglich der Datenlänge oder des Datentyps Begleitwerte im Anwenderspeicher nicht erreichbar, z.B. wegen gelöschtem DB oder Bereichslängenfehler. Die aktivierte Meldung wird ohne oder ggf. mit der gerade noch möglichen Anzahl von Begleitwerten gesendet. Der von Ihnen gewählte Aktualparameter von SEVERITY liegt oberhalb des zulässigen Bereichs. Die aktivierte Meldung wird mit SEVERITY = 127 gesendet. 		
0	25	Die Kommunikation wurde angestoßen. Die Meldung ist in Bearbeitung.		
1	1	Kommunikationsprobleme: Verbindungsabbruch oder keine Anmeldung vorhanden		
1	4	Beim Erstaufruf liegt die angegebene <i>EV_ID</i> außerhalb des zulässigen Bereichs oder es liegt ein formaler Fehler des ANY-Pointers <i>SD_i</i> vor oder es wurde der für die CPU pro SFB 36 maximal versendbare Speicherbereich überschritten.		
1	10	Zugriff auf lokalen Anwenderspeicher nicht möglich (z.B. Zugriff auf gelöschten DB).		
1	12	Beim Aufruf des SFB wurde: ein Instanz-DB, der nicht zum SFB 36 gehört oder kein Instanz-DB, sondern ein Global-DB angegeben.		
1	18	EV_ID wurde bereits von einem der SFBs 31 oder 33 36 verwendet.		
1	20	Zu wenig Arbeitsspeicher vorhanden.		
1	21	Die Meldung mit der angegebenen EV_ID ist gesperrt.		

14.2.17 SFB 47 - COUNT - Zähler steuern

Beschreibung

Bei dem SFB 47 handelt es sich um einen speziell für Kompakt-CPUs entwickelten Baustein, der zur Ansteuerung der Zähler dient. Der SFB ist immer zyklisch mit zugehörigem Instanz-DB aufzurufen. Hier liegen die Parameter für den SFB ab. Mit dem SFB COUNT (SFB 47) stehen Ihnen folgende Funktionalitäten zur Verfügung:

- Zähler Starten/Stoppen mit dem Softwaretor SW_GATE
- Freigabe/Steuern des digitalen Ausgang
- Auslesen von Statusbits
- Auslesen von Zähler- und Latchwert
- Aufträge zum Lesen und Schreiben der internen Zählregister

Name	Datentyp	Adresse (Instanz-DB)	Defaultwert	Kommentar
LADDR	WORD	0.0	300h	Dieser Parameter wird nicht ausgewertet. Es wird immer die interne Ein-/ Ausgabe-Peripherie angesprochen.
CHANNEL	INT	2.0	0	Kanalnummer
SW_GATE	BOOL	4.0	FALSE	Softwaretor freigegeben
CTRL_DO	BOOL	4.1	FALSE	Ausgang DO freigegeben False: Standard Digitaler Ausgang
SET_DO	BOOL	4.2	FALSE	Parameter wird nicht ausgewertet
JOB_REQ	BOOL	4.3	FALSE	Auftragsanstoß (Flanke 0-1)
JOB_ID	WORD	6.0	0	Auftragsnummer
JOB_VAL	DINT	8.0	0	Wert für schreibende Aufträge
STS_GATE	BOOL	12.0	FALSE	Status internes Tor
STS_STRT	BOOL	12.1	FALSE	Status Hardwaretor
STS_LTCH	BOOL	12.2	FALSE	Status Latch-Eingang
STS_DO	BOOL	12.3	FALSE	Status Ausgang
STS_C_DN	BOOL	12.4	FALSE	Status Richtung rückwärts.
				Es wird immer die letzte Zählrichtung angezeigt. Nach dem ersten Aufruf des SFB hat STS_C_DN den Wert FALSE.
STS_C_UP	BOOL	12.5	FALSE	Status Richtung vorwärts.
				Es wird immer die letzte Zählrichtung angezeigt. Nach dem ersten Aufruf des SFB hat <i>STS_C_UP</i> den Wert TRUE.
COUNTVAL	DINT	14.0	0	Aktueller Zählwert
LATCHVAL	DINT	18.0	0	Aktueller Latchwert
JOB_DONE	BOOL	22.0	TRUE	Neuer Auftrag kann gestartet werden
JOB_ERR	BOOL	22.1	FALSE	Auftrag fehlerhaft
JOB_STAT	WORD	24.0	0	Auftragsfehler-Nummer

Lokaldaten nur im Instanz-DB

Name	Datentyp	Adresse (Instanz-DB)	Defaultwert	Kommentar	
RES00	BOOL	26.0	FALSE	reserviert	
RES01	BOOL	26.1	FALSE	reserviert	
RES02	BOOL	26.2	FALSE	reserviert	
STS_CMP	BOOL	26.3	FALSE	Status Vergleicher ¹	
				Das Statusbit STS_CMP zeigt an, dass die Vergleichsbedingung des Komparators erfüllt ist oder erfüllt war. Mit STS_CMP wird auch angezeigt, dass der Ausgang gesetzt war (STS_DO = TRUE).	
RES04	BOOL	26.4	FALSE	reserviert	
STS_OFLW	BOOL	26.5	FALSE	Status Überlauf ¹	
STS_UFLW	BOOL	26.6	FALSE	Status Unterlauf ¹	
STS_ZP	BOOL	26.7	FALSE	Status Nulldurchgang ¹	
				Wird nur gesetzt beim Zählen ohne Hauptzählrichtung. Zeigt Nulldurchgang an. Wird auch gesetzt, wenn der Zähler auf 0 gesetzt wird oder der Zähler ab <i>Ladewert</i> = 0 zählt.	
JOB_OVAL	DINT	28.0		Ausgabewert für Leseaufträge	
RES10	BOOL	32.0	FALSE	reserviert	
RES11	BOOL	32.1	FALSE	reserviert	
RES_STS	BOOL	32.2	FALSE	Status-Bits rücksetzen:	
				Setzt die Status-Bits: STS_CMP, STS_OFLW, STS_ZP zurück. Zum Zurücksetzen der Statusbits werden zwei Aufrufe des SFB benötigt.	
1) wird mit RES_STS zurückgesetzt					

Pro Kanal dürfen Sie den SFB immer nur mit dem gleichen Instanz-DB aufrufen, da hier die für den internen Ablauf erforderlichen Daten abgelegt werden. Ein schreibender Zugriff auf Ausgänge des Instanz-DB ist nicht zulässig.

Zähler Auftragsschnittstelle

Zum Beschreiben bzw. Auslesen der Zählregister steht ihnen mit dem SFB 47 eine Auftragsschnittstelle zur Verfügung. Damit ein neuer Auftrag ausgeführt werden kann, muss immer der letzte Auftrag mit *JOB_DONE* = TRUE abgeschlossen sein.

Vorgehensweise

Der Einsatz der Auftragsschnittstelle erfolgt nach folgendem Ablauf:

1. Versorgen Sie folgende Eingangsparameter:

Name	Datentyp	Adresse (DB)	Default	Kommentar	
JOB_REQ	BOOL	4.3	FALSE	Auftragsanstoß (Flanke 0-1)¹	
JOB_ID	WORD	6.0	0	Auftragsnummer:	
				00h Auftrag ohne Funktion	
				01h Zählwert schreiben	
				02h <i>Ladewert</i> schreiben	
				04h Vergleichswert schreiben	
				08h <i>Hysterese</i> schreiben	
				10h Impulsdauer schreiben	
				20h Endwert schreiben	
				82h <i>Ladewert</i> lesen	
				84h Vergleichswert lesen	
				88h <i>Hysterese</i> lesen	
				90h Impulsdauer lesen	
				A0h Endwert lesen	
JOB_VAL	DINT	8.0	0	Wert für schreibende Aufträge	
1) Zustand bleibt auch nach einem CPU STOP-RUN-Übergang gesetzt.					

2. Rufen Sie den SFB auf. Der Auftrag wird sofort bearbeitet. JOB_DONE geht für den Durchlauf des SFB auf FALSE. Im Fehlerfall wird JOB_ERR = TRUE gesetzt und die Fehlerursache in JOB_STAT zurückgeliefert:

Name	Datentyp	Adresse (DB)	Default	Kommentar
JOB_DONE	BOOL	22.0	TRUE	Neuer Auftrag kann gestartet werden
JOB_ERR	BOOL	22.1	FALSE	Auftrag fehlerhaft
JOB_STAT	WORD	24.0	0000h	Auftragsfehler-Nummer
				0000h kein Fehler
				0121h Vergleichswert zu klein
				0122h Vergleichswert zu groß
				0131h <i>Hysterese</i> zu klein
				0132h <i>Hysterese</i> zu groß
				0141h Impulsdauer zu klein
				0142h Impulsdauer zu groß
				0151h Ladewert zu klein
				0152h <i>Ladewert</i> zu groß
				0161h Zählerstand zu klein
				0162h Zählerstand zu groß
				01FFh Auftrags-Nr. ungültig

^{3. ▶} Mit JOB_DONE = TRUE kann ein neuer Auftrag gestartet werden.

Bei Leseaufträgen finden Sie den zu lesenden Wert im Parameter JOB_OVAL im Instanz-DB auf Adresse 28.

Zulässiger Wertebereich für JOB_VAL

Endlos Zählen:

Auftrag	Gültiger Wertebereich
Zähler direkt schreiben	-2147483647 (-2 ³¹ +1) +2147483646 (2 ³¹ -2)
Ladewert schreiben	-2147483647 (-2 ³¹ +1) +2147483646 (2 ³¹ -2)
Vergleichswert schreiben	-2147483648 (-2 ³¹) +2147483647 (2 ³¹ -1)
Hysterese schreiben	0 255
Impulsdauer schreiben ¹	0 510ms

Einmalig/Periodisch Zählen, keine Hauptzählrichtung:

Auftrag	Gültiger Wertebereich
Zähler direkt schreiben	-2147483647 (-2 ³¹ +1) +2147483646 (2 ³¹ -2)
Ladewert schreiben	-2147483647 (-2 ³¹ +1) +2147483646 (2 ³¹ -2)
Vergleichswert schreiben	-2147483648 (-2 ³¹) +2147483647 (2 ³¹ -1)
Hysterese schreiben	0 255
Impulsdauer schreiben ¹	0 510ms

Einmalig/Periodisch Zählen, Hauptzählrichtung vorwärts:

Auftrag	Gültiger Wertebereich
Endwert	2 +2147483646 (2 ³¹ -1)
Zähler direkt schreiben	-2147483648 (-2 ³¹) Endwert -2
Ladewert schreiben	-2147483648 (-2 ³¹) Endwert -2
Vergleichswert schreiben	-2147483648 (-2 ³¹) Endwert -1
Hysterese schreiben	0 255
Impulsdauer schreiben ¹	0 510ms

Einmalig/Periodisch Zählen, Hauptzählrichtung rückwärts:

•	•			
Auftrag	Gültiger Wertebereich			
Zähler direkt schreiben	2 +2147483647 (2 ³¹ -1)			
Ladewert schreiben	2 +2147483647 (2 ³¹ -1)			
Vergleichswert schreiben	1 +2147483647 (2 ³¹ -1)			
Hysterese schreiben	0 255			
Impulsdauer schreiben ¹	0 510ms			
1) Es sind nur gerade Werte erlaubt. Ungerade Werte werden automatisch abgerundet.				

Latch-Funktion

Sobald während eines Zählvorgangs am "Latch"-Eingang eines Zählers eine Flanke 0-1 auftritt, wird der aktuelle Zählerwert im entsprechenden Latch-Register gespeichert.

Mit dem Parameter *LATCHVAL* des SFB 47 haben Sie Zugriff auf den Latch-Wert.

Nach einem STOP-RUN-Übergang der CPU bleibt ein zuvor in *LATCHVAL* geladener Wert erhalten.

System-SFBs - "System Function Blocks" > SFB 48 - FREQUENC - Frequenzmessung steuern

14.2.18 SFB 48 - FREQUENC - Frequenzmessung steuern

Beschreibung

Bei dem SFB 48 handelt es sich um einen speziell für Kompakt-CPUs entwickelten Baustein, welcher der Frequenzmessung dient.

- Zur Steuerung des Frequenzmessers ist der SFB FREQUENC zyklisch (z.B. OB 1) zu verwenden.
- Der SFB ist mit zugehörigem Instanz-DB aufzurufen. Hier liegen die Parameter für den SFB ab.
- Unter anderem bietet der SFB 48 eine Auftragsschnittstelle. Hiermit haben Sie lesenden und schreibenden Zugriff auf die Register des Frequenzmessers.
- Damit ein neuer Auftrag ausgeführt werden kann, muss immer der letzte Auftrag mit JOB_DONE = TRUE abgeschlossen sein.
- Pro Kanal dürfen Sie den SFB immer nur mit dem gleichen Instanz-DB aufrufen, da hier die für den internen Ablauf erforderlichen Daten abgelegt werden. Ein schreibender Zugriff auf Ausgänge des Instanz-DB ist nicht zulässig.
- Mit dem SFB FREQUENC (SFB 48) stehen Ihnen folgende Funktionalitäten zur Verfügung:
 - Frequenzmesser Starten/Stoppen mit dem Softwaretor SW_GATE
 - Auslesen von Statusbits
 - Auslesen der berechneten Frequenz
 - Aufträge zum Lesen und Schreiben der internen Register des Frequenzmessers.

Parameter

Name	Deklaration	Datentyp	Adresse	Default Wert	Kommentar
			(InstDB)	vvert	
LADDR	INPUT	WORD	0.0	300h	Dieser Parameter wird nicht aus- gewertet. Es wird immer die interne Ein-/ Ausgabe-Peripherie angesprochen.
CHANNEL	INPUT	INT	2.0	0	Kanalnummer
SW_GATE	INPUT	BOOL	4.0	FALSE	Softwaretor freigegeben
JOB_REQ	INPUT	BOOL	4.3	FALSE	Auftragsanstoß (Flanke 0-1)
JOB_ID	INPUT	WORD	6.0	0	Auftragsnummer
JOB_VAL	INPUT	DINT	8.0	0	Wert für schreibende Aufträge
STS_GATE	OUTPUT	BOOL	12.0	FALSE	Status internes Tor
MEAS_VAL	OUTPUT	DINT	14.0	0	Berechnete Frequenz
JOB_DONE	OUTPUT	BOOL	22.0	TRUE	Neuer Auftrag kann gestartet werden.
JOB_ERR	OUTPUT	BOOL	22.1	FALSE	Auftrag fehlerhaft
JOB_STAT	OUTPUT	WORD	24.0	0	Auftragsfehler-Nummer

Lokaldaten nur im Instanz-DB

Name	Datentyp	Adresse (Instanz-DB)	Default	Kommentar
JOB_OVAL	DINT	28.0	-	Ausgabewert für Leseaufträge

System-SFBs - "System Function Blocks" > SFB 48 - FREQUENC - Frequenzmessung steuern

Pro Kanal dürfen Sie den SFB immer nur mit dem gleichen Instanz-DB aufrufen, da hier die für den internen Ablauf erforderlichen Daten abgelegt werden. Ein schreibender Zugriff auf Ausgänge des Instanz-DB ist nicht zulässig.

Frequenzmesser Auftragsschnittstelle

Zum Beschreiben bzw. Auslesen der Register des Frequenzmessers steht ihnen mit dem SFB 48 eine Auftragsschnittstelle zur Verfügung.

Damit ein neuer Auftrag ausgeführt werden kann, muss immer der letzte Auftrag mit JOB_DONE = TRUE abgeschlossen sein.

Vorgehensweise

Der Einsatz der Auftragsschnittstelle erfolgt nach folgendem Ablauf:

Versorgen Sie folgende Eingangsparameter:

Name	Datentyp	Adresse (DB)	Default	Kommentar
JOB_REQ	BOOL	4.3	FALSE	Auftragsanstoß (Flanke 0-1)
JOB_ID	WORD	6.0	0	Auftragsnummer: 00h Auftrag ohne Funktion 04h Integrationszeit schreiben 84h Integrationszeit lesen
JOB_VAL	DINT	8.0	0	Wert für schreibende Aufträge. Zulässiger Wertebereich für Integrationszeit: 10 10000ms

Rufen Sie den SFB auf. Der Auftrag wird sofort bearbeitet. *JOB_DONE* geht für den Durchlauf des SFB auf FALSE. Im Fehlerfall wird *JOB_ERR* = TRUE gesetzt und die Fehlerursache in *JOB_STAT* zurückgeliefert.

Name	Datentyp	Adresse (DB)	Default	Kommentar
JOB_DONE	BOOL	22.0	TRUE	Neuer Auftrag kann gestartet werden
JOB_ERR	BOOL	22.1	FALSE	Auftrag fehlerhaft
JOB_STAT	WORD	24.0	0000h	Auftragsfehler-Nummer
				0000h kein Fehler
				0221h Integrationszeit zu klein
				0222h Integrationszeit zu groß
				02FFh Auftrags-Nr. ungültig
				8001h Parametrierfehler
				8009h Kanal-Nr. ungültig

^{1.} Mit JOB_DONE = TRUE kann ein neuer Auftrag gestartet werden.

^{2.} Bei Leseaufträgen finden Sie den zu lesenden Wert im Parameter *JOB_OVAL* im Instanz-DB auf Adresse 28.

Kanal-Nr. ungültig

(8009h und Parametrierfehler 8001h)

Haben Sie mit CHANNEL eine Kanal-Nr. größer 3 übergeben, bekommen Sie die Rückmeldung Kanal-Nr. (8009h) ungültig. Sofern Sie mit CHANNEL eine Kanal-Nr. übergeben haben, die größer ist als die maximal verfügbare Kanalanzahl der CPU, bekommen Sie einen Parametrierfehler (8001h).

Frequenzmesser steuern

Gesteuert wird der Frequenzmesser über das interne Tor (I-Tor). Das I-Tor ist identisch mit dem Software-Tor (SW-Tor).

SW-Tor:

öffnen (aktivieren): Im Anwenderprogramm durch Setzen von *SW_GATE* des SFB 48 schließen (deaktivieren): Im Anwenderprogramm durch Rücksetzen von *SW_GATE* des SFB 48

14.2.19 SFB 49 - PULSE - Pulsweitenmodulation

Beschreibung

Bei dem SFB 49 handelt es sich um einen speziell für Kompakt-CPUs entwickelten Baustein, der zur *PWM*-Ausgabe und *Pulse Train* Ausgabe dient. Mit dem SFB PULSE (SFB 49) stehen Ihnen folgende Funktionalitäten zur Verfügung:

- PWM (Pulsweitenmodulation)
 - Starten/Stoppen mit dem Softwaretor SW_EN
 - Freigabe/Steuern des PWM-Ausgangs
 - Auslesen von Status-Bits
 - Aufträge zum Lesen und Schreiben der internen PWM-Register
- Konfigurierbare Pulse Train Ausgabe mit maximal 2 Fahraufträgen
 - Starten/Stoppen mit dem Softwaretor SW EN
 - Freigabe/Steuern des Pulse-Train-Ausgangs
 - Auslesen von Status-Bits
 - Aufträge zum Lesen und Schreiben der internen Pulse-Train-Register
- Konfigurierbare Zeitbasis (1µs ... 1ms)

Beim Einsatz des Bausteins ist folgendes zu beachten:

- Der SFB ist mit zugehörigem Instanz-DB zyklisch z.B. im OB 1 aufzurufen.
- Über die Auftragsschnittstelle des SFB 49 haben Sie lesenden und schreibenden Zugriff auf die entsprechenden Register.
- Pro Kanal dürfen Sie den SFB immer nur mit dem gleichen Instanz-DB aufrufen. Ein schreibender Zugriff auf Ausgänge des Instanz-DB ist nicht zulässig.
- Damit ein neuer Auftrag ausgeführt werden kann, muss immer der letzte Auftrag mit JOB DONE = TRUE abgeschlossen sein.
- Die Umschaltung zwischen den Modi erfolgt durch die Vorgabe der Pulsanzahl (JOB_ID = 08h/09h). Sobald Sie eine Pulsanzahl > 0 angeben, erfolgt eine Umschaltung in die Pulse Train Betriebsart, ansonsten ist PWM aktiv.

Bitte beachten Sie, dass manche Funktionalitäten dieses Bausteins nicht in allen CPUs verfügbar sind. Bei Aufruf einer Funktionalität, welche nicht unterstützt wird, erhalten Sie die Fehlermeldung 04FFh "Auftrags-Nr. ungültig" als Rückgabewert zurück. Näheres zu den unterstützten Funktionalitäten finden Sie auch in den "Leistungsmerkmalen" Ihrer CPU.

Parameter

Parameter	Deklaration	Datentyp	Adresse (InstDB)	Default Wert	Kommentar
LADDR	INPUT	WORD	0.0	300h	Dieser Parameter wird nicht ausgewertet. Es wird immer die interne Ein-/Ausgabe-Peripherie angesprochen.
CHANNEL	INPUT	INT	2.0	0	Kanalnummer
SW_EN	INPUT	BOOL	4.0	FALSE	Softwaretor freigegeben
MAN_DO	INPUT	BOOL	4.1	FALSE	Dieser Parameter wird nicht ausgewertet.
SET_DO	INPUT	BOOL	4.2	FALSE	Dieser Parameter wird nicht ausgewertet.
OUTP_VAL	INPUT	INT	6.0	0	Ausgabewert → "OUTP_VAL"Seite 867
JOB_REQ	INPUT	BOOL	8.0	FALSE	Auftragsanstoß (Flanke 0-1)
JOB_ID	INPUT	WORD	10.0	0	Auftragsnummer → "JOB_ID"Seite 868
JOB_VAL	INPUT	DINT	12.0	0	Wert für schreibende Aufträge
STS_EN	OUTPUT	BOOL	16.0	FALSE	Status internes Tor
STS_STRT	OUTPUT	BOOL	16.1	FALSE	Dieser Parameter ist reserviert.
STS_DO	OUTPUT	BOOL	16.2	FALSE	Dieser Parameter ist reserviert.
JOB_DONE	OUTPUT	BOOL	16.3	TRUE	Zustandsparameter
					 0: Auftrag wurde noch nicht gestartet oder wird noch ausge- führt.
					 1: Auftrag wurde ausgeführt. Ein neuer Auftrag kann gestartet werden.
JOB_ERR	OUTPUT	BOOL	16.4	FALSE	Zustandsparameter
					■ 0: kein Fehler
					■ 1: Fehler (siehe <i>JOB_STAT</i>)
JOB_STAT	OUTPUT	WORD	18.0	0	→ "Rückgabewert JOB_STAT"Seite 873

OUTP_VAL

Über die Hardwarekonfiguration können Sie für PWM und Pulse Train das "Ausgabeformat" einstellen. Je nach Ausgabeformat ergeben sich folgende Wertebereiche für den Ausgabewert:

Ausgabe in ‰

- Wertebereich: 0 ... 1000

Impulsdauer = (OUTP_VAL / 1000) x Periodendauer

Ausgabeformat: S7 Analogwert

- Impulsdauer = (OUTP_VAL / 27648) x Periodendauer

- Wertebereich: 0 ... 27648

JOB_ID

Auftragsnummer

- 00h: Auftrag ohne Funktion
- 01h: Periodendauer schreiben für PWM und 1. Pulse Train Auftrag Wertebereich in Abhängigkeit von der Zeitbasis:
 - 1ms: 1 ... 87
 - 0,1ms: 1 ... 870
 - 10µs: 2 ... 8700
 - 1µs: 20 ... 65535
- 02h: Einschaltverzögerung schreiben

Wertebereich in Abhängigkeit von der Zeitbasis:

- 1ms: 0 ... 65535
- 0,1ms: 0 ... 65535
- 10µs: 0 ... 65535
- 1µs: 0 ... 65535
- 04h: Mindestimpulsdauer schreiben

Wertebereich in Abhängigkeit von der Zeitbasis:

- 1ms: 0 ... Periodendauer/2
- 0,1ms: 0 ... Periodendauer/2
- 10µs: 0 ... Periodendauer/2
- 1µs: 5 ... Periodendauer/2
- 08h: Anzahl der Pulse schreiben für den 1. Pulse Train Auftrag Wertebereich:
 - 0 ... 8.388.607
- 09h: Anzahl der Pulse schreiben für den 2. Pulse Train Auftrag Wertebereich:
 - 0 ... 8.388.607
- OAh: Periodendauer schreiben für 2. Pulse Train Auftrag
- 0Bh: Zeitbasis schreiben
 - 00h: 0,1ms
 - 01h: 1ms
 - 02h: 1µs
 - 03h: 10µs
- OCh: 2. Pulse Train Auftrag an den 1. Pulse Train Auftrag anhängen
 - Bei Einsatz dieser Auftragsnummer ist zusätzlich über OUTP_VAL das Tastverhältnis für den 2. Pulse Train Auftrag anzugeben.
- 81h: Periodendauer von PWM und 1. Pulse Train Auftrag lesen
- 82h: Einschaltverzögerung lesen
- 84h: Mindestimpulsdauer lesen
- 88h: Anzahl der Impulse von 1. Pulse Train Auftrag lesen
- 89h: Anzahl der Impulse von 2. Pulse Train Auftrag lesen
- 8Ah: *Periodendauer* von 2. Pulse Train Auftrag lesen
- 8Bh: Zeitbasis lesen
 - 00h: 0.1ms
 - 01h: 1ms
 - 02h: 1µs
 - 03h: 10µs

JOB_VAL

Wert für schreibende Aufträge, dessen Wertebereich vom jeweiligen Auftrag abhängt: -2147483648 (-2³¹) ... +2147483647 (2³¹-1)

Lokaldaten nur im Instanz-DB

Name	Datentyp	Adresse (Instanz-DB)	Default	Kommentar
JOB_OVAL	DINT	20.0	-	Ausgabewert für Leseaufträge

 \int_{1}^{∞}

Pro Kanal dürfen Sie den SFB immer nur mit dem gleichen Instanz-DB aufrufen, da hier die für den internen Ablauf erforderlichen Daten abgelegt werden. Ein schreibender Zugriff auf Ausgänge des Instanz-DB ist nicht zulässig.

Auftragsschnittstelle

- Zum Beschreiben bzw. Auslesen der Register steht ihnen mit dem SFB 49 eine Auftragsschnittstelle zur Verfügung.
- Damit ein neuer Auftrag ausgeführt werden kann, muss immer der letzte Auftrag mit JOB_DONE = TRUE abgeschlossen sein.
- Mit einer Flanke 0-1 an JOB_REQ können Sie jederzeit einen Auftrag übergeben, unabhängig vom Zustand von SW_EN und STS_EN.
- Anderungen der Periodendauer und der Mindestimpulsdauer werden sofort wirksam.
- Änderungen der *Einschaltverzögerung* werden mit der nächsten Flanke 0-1 von *SW EN* wirksam.
- Eine laufende PWM-Ausgabe wird durch Einstellen von Pulse Train spezifischen Werten wie Pulsanzahl und Periodendauer für den 2. Pulse Train Auftrag nicht beeinflusst.

Ausgabe steuern

PWM-Ausgabe steuern

Der Einsatz der Auftragsschnittstelle erfolgt nach folgendem Ablauf:

- 1. Rufen Sie den SFB 49 auf:
 - SW EN = FALSE
 - JOB_VAL = Geben Sie hier einen Wert für die Periodendauer an
 - JOB_ID = 01h: Periodendauer schreiben für PWM-Ausgabe.
 - JOB_REQ = TRUE (Flanke 0-1)
 - Aus JOB_VAL wird die Periodendauer für die PWM-Ausgabe übermittelt.
 - JOB_DONE geht für den Durchlauf des SFB auf FALSE.
 - Im Fehlerfall wird JOB_ERR = TRUE gesetzt und die Fehlerursache in JOB_STAT zurückgeliefert.

- 3. Rufen Sie den SFB 49 auf:
 - SW EN = FALSE
 - JOB_VAL = Geben Sie hier einen Wert für die Einschaltverzögerung an
 - JOB ID = 02h: Einschaltverzögerung schreiben für PWM-Ausgabe.
 - JOB REQ = TRUE (Flanke 0-1)
 - Aus JOB_VAL wird die Einschaltverzögerung für die PWM-Ausgabe übermittelt.
 - JOB_DONE geht für den Durchlauf des SFB auf FALSE.
 - Im Fehlerfall wird JOB_ERR = TRUE gesetzt und die Fehlerursache in JOB_STAT zurückgeliefert.
- **4.** Zum Zurücksetzen von *JOB_REQ* rufen Sie den SFB 49 mit den gleichen Parametern und *JOB_REQ* = FALSE erneut auf.
- 5. Rufen Sie den SFB 49 auf:
 - SW EN = FALSE
 - JOB_VAL = Geben Sie hier einen Wert für die Mindestimpulsdauer an
 - JOB_ID = 04h: Mindestimpulsdauer schreiben für PWM-Ausgabe.
 - JOB_REQ = TRUE (Flanke 0-1)
 - Aus JOB_VAL wird die Mindestimpulsdauer für die PWM-Ausgabe übermittelt.
 - JOB_DONE geht für den Durchlauf des SFB auf FALSE.
 - Im Fehlerfall wird JOB_ERR = TRUE gesetzt und die Fehlerursache in JOB_STAT zurückgeliefert.
- **6.** Zum Zurücksetzen von *JOB_REQ* rufen Sie den SFB 49 mit den gleichen Parametern und *JOB_REQ* = FALSE erneut auf.
- 7. Rufen Sie den SFB 49 auf:
 - SW_EN = TRUE (Flanke 0-1)
 - JOB REQ = TRUE (Flanke 0-1)
 - OUTP_VAL: Geben Sie hier das Tastverhältnis vor.
 - Die PWM-Ausgabe wird gestartet.
 - STS_EN geht auf TRUE und bleibt in diesem Zustand, bis SFB 49 mit SW_EN = FALSE aufgerufen wird.
 - Im Fehlerfall wird JOB_ERR = TRUE gesetzt und die Fehlerursache in JOB_STAT zurückgeliefert.
- 8. Rufen Sie zyklisch den SFB 49 auf:
 - SW EN = TRUE
 - Über STS_EN erhalten Sie den aktuellen Status der PWM-Ausgabe. Mit OUTP VAL können Sie jederzeit das Tastverhältnis ändern.
- 9. Sobald *JOB_DONE* TRUE zurück liefert, können Sie durch Wiederholen der Schritte 1 bis 5 die PWM-Parameter ändern.

Werden Werte während der PWM-Ausgabe geändert, so werden die neuen Werte erst mit dem Anfang einer neuen Periode ausgegeben. Eine gestartete Periode wird immer zu Ende geführt!

- **10.** Durch Rücksetzen von *SW_EN* (*SW_EN* = FALSE) wird die Ausgabe sofort gestoppt.
- 11. Bei Leseaufträgen finden Sie den zu lesenden Wert im Parameter *JOB_OVAL* im Instanz-DB auf Adresse 20.

Pulse Train Ausgabe steuern

Der Einsatz der Auftragsschnittstelle erfolgt nach folgendem Ablauf:

- 1. Rufen Sie den SFB 49 auf:
 - SW EN = FALSE
 - JOB VAL = Geben Sie hier einen Wert für die Anzahl der Pulse an.
 - JOB_ID = 08h: Anzahl der Pulse schreiben für den 1. Pulse Train Auftrag.
 - JOB REQ = TRUE (Flanke 0-1)
 - Aus JOB_VAL wird die Anzahl der Pulse für den 1. Pulse Train Auftrag übermittelt.
 - JOB_DONE geht für den Durchlauf des SFB auf FALSE.
 - Im Fehlerfall wird JOB_ERR = TRUE gesetzt und die Fehlerursache in JOB_STAT zurückgeliefert.
- Zum Zurücksetzen von JOB_REQ rufen Sie den SFB 49 mit den gleichen Parametern und JOB_REQ = FALSE erneut auf.
- 3. Rufen Sie den SFB 49 auf:
 - SW EN = FALSE
 - JOB_VAL = Geben Sie hier einen Wert für die Periodendauer an.
 - JOB ID = 01h: Periodendauer schreiben für den 1. Pulse Train Auftrag.
 - JOB REQ = TRUE (Flanke 0-1)
 - Aus JOB_VAL wird die Periodendauer für den 1. Pulse Train Auftrag übermittelt
 - JOB_DONE geht für den Durchlauf des SFB auf FALSE.
 - Im Fehlerfall wird JOB_ERR = TRUE gesetzt und die Fehlerursache in JOB_STAT zurückgeliefert.
- **4.** Zum Zurücksetzen von *JOB_REQ* rufen Sie den SFB 49 mit den gleichen Parametern und *JOB_REQ* = FALSE erneut auf.
- 5. Optional für den 2. Pulse Train Auftrag: Rufen Sie den SFB 49 auf:
 - SW EN = FALSE
 - JOB VAL = Geben Sie hier einen Wert für die Anzahl der Pulse an.
 - JOB_ID = 09h: Anzahl der Pulse schreiben für den 2. Pulse Train Auftrag.
 - JOB_REQ = TRUE (Flanke 0-1)
 - ▶ Die Anzahl der Pulse wird für den 2. Pulse Train Auftrag übermittelt.
 - JOB_DONE geht für den Durchlauf des SFB auf FALSE.
 - Im Fehlerfall wird JOB_ERR = TRUE gesetzt und die Fehlerursache in JOB_STAT zurückgeliefert.
- **6.** Zum Zurücksetzen von *JOB_REQ* rufen Sie den SFB 49 mit den gleichen Parametern und *JOB_REQ* = FALSE erneut auf.
- 7. Doptional für den 2. Puls Train Auftrag: Rufen Sie den SFB 49 auf:
 - SW EN = FALSE
 - JOB_VAL = Geben Sie hier einen Wert für die Periodendauer an.
 - JOB ID = 0Ah: Periodendauer schreiben für den 2. Pulse Train Auftrag.
 - JOB_REQ = TRUE (Flanke 0-1)
 - Aus JOB_VAL wird die Periodendauer für den 2. Pulse Train Auftrag übermittelt.
 - JOB_DONE geht für den Durchlauf des SFB auf FALSE.
 - Im Fehlerfall wird JOB_ERR = TRUE gesetzt und die Fehlerursache in JOB_STAT zurückgeliefert.
- **8.** Zum Zurücksetzen von *JOB_REQ* rufen Sie den SFB 49 mit den gleichen Parametern und *JOB_REQ* = FALSE erneut auf.

- 9. Rufen Sie den SFB 49 auf:
 - SW EN = TRUE (Flanke 0-1)
 - JOB_REQ = TRUE (Flanke 0-1)
 - OUTP_VAL: Geben Sie hier das Tastverhältnis vor wie z.B. 50%.
 - Der 1. Puls Train Auftrag wird gestartet und danach falls vorhanden der 2. Puls Train Auftrag.
 - Über STS_EN erhalten Sie den aktuellen Status der Pulse Train Ausgabe. Solange die geforderte Anzahl an Pulsen ausgegeben wird, liefert STS_EN TRUE zurück. STS_EN liefert FALSE zurück, wenn entweder die angeforderte Anzahl an Pulsen ausgegeben wurde oder die Ausgabe mit SW_EN = FALSE frühzeitig beendet wurde.
 - Im Fehlerfall wird JOB_ERR = TRUE gesetzt und die Fehlerursache in JOB_STAT zurückgeliefert.
- **10.** Zum Zurücksetzen von *JOB_REQ* rufen Sie den SFB 49 mit den gleichen Parametern und *JOB_REQ* = FALSE erneut auf.
- 11. Rufen Sie zyklisch den SFB 49 auf:
 - SW_EN = TRUE
 - Über STS_EN erhalten Sie den aktuellen Status der Pulse Train Ausgabe.
- 12. Sobald *JOB_DONE* TRUE zurück liefert, können Sie durch Wiederholen der Schritte 1 bis 6 weitere Puls Train Aufträge ausgeben.
- 13. Durch Rücksetzen von SW_EN (SW_EN = FALSE) wird die Ausgabe sofort gestoppt.
- <u>14.</u> Bei Leseaufträgen finden Sie den zu lesenden Wert im Parameter *JOB_OVAL* im Instanz-DB auf Adresse 20.

Solange nur ein Puls Train Auftrag definiert ist, und dieser aktuell abgearbeitet wird, haben Sie die Möglichkeit einen 2. Puls Train Auftrag an den 1. Puls Train Auftrag anzuhängen.

- 1. Rufen Sie den SFB 49 auf:
 - SW EN = TRUE (Flanke 0-1)
 - JOB VAL = Geben Sie hier einen Wert für die Anzahl der Pulse an.
 - JOB_ID = 09h: Anzahl der Pulse schreiben für den 2. Pulse Train Auftrag.
 - JOB REQ = TRUE (Flanke 0-1)
 - Aus JOB_VAL wird die Anzahl der Pulse für den 2. Pulse Train Auftrag übermittelt.
 - JOB_DONE geht für den Durchlauf des SFB auf FALSE.
 - Im Fehlerfall wird JOB_ERR = TRUE gesetzt und die Fehlerursache in JOB_STAT zurückgeliefert.
- 2. Zum Zurücksetzen von JOB_REQ rufen Sie den SFB 49 mit den gleichen Parametern und JOB_REQ = FALSE erneut auf.
- 3. ▶ Rufen Sie den SFB 49 auf:
 - SW EN = TRUE
 - JOB_VAL = Geben Sie hier einen Wert für die Periodendauer an.
 - JOB ID = 0Ah: Periodendauer schreiben für den 2. Pulse Train Auftrag.
 - JOB_REQ = TRUE (Flanke 0-1)
 - Aus JOB_VAL wird die Periodendauer für den 2. Pulse Train Auftrag übermittelt.
 - JOB_DONE geht für den Durchlauf des SFB auf FALSE.
 - Im Fehlerfall wird JOB_ERR = TRUE gesetzt und die Fehlerursache in JOB_STAT zurückgeliefert.

Laufenden Pulse Train Aufrag erweitern

- **4.** Zum Zurücksetzen von *JOB_REQ* rufen Sie den SFB 49 mit den gleichen Parametern und *JOB_REQ* = FALSE erneut auf.
- 5. Rufen Sie den SFB 49 auf:
 - SW_EN = TRUE (Flanke 0-1)
 - JOB_ID = 0Ch: 2. Pulse Train Auftrag an den 1. Pulse Train Auftrag anhängen
 - JOB_REQ = TRUE (Flanke 0-1)
 - OUTP_VAL: Geben Sie hier das Tastverhältnis vor wie z.B. 50%.
 - Solange der 1. Puls Train Auftrag noch läuft, wird der 2. Puls Train Auftrag angehängt. Ansonsten erhalten Sie die Fehlermeldung 0461h als Rückgabewert.
 - Über STS_EN erhalten Sie den aktuellen Status der Pulse Train Ausgabe. Solange die geforderte Anzahl an Pulsen ausgegeben wird, liefert STS_EN TRUE zurück. STS_EN liefert FALSE zurück, wenn entweder die angeforderte Anzahl an Pulsen ausgegeben wurde oder die Ausgabe mit SW_EN = FALSE frühzeitig beendet wurde.
 - Im Fehlerfall wird JOB_ERR = TRUE gesetzt und die Fehlerursache in JOB_STAT zurückgeliefert.

Bitte beachten Sie, dass maximal 2 Pulse Train Aufträge direkt hintereinander ausgeführt werden können!

Rückgabewert JOB STAT

Über den Rückgabewert JOB STAT erhalten Sie detaillierte Informationen im Fehlerfall.

Wert	Beschreibung
0000h	kein Fehler
0411h	Periodendauer zu klein
0412h	Periodendauer zu groß
0421h	Einschaltverzögerung zu klein
0422h	Einschaltverzögerung zu groß
0431h	Mindestimpulsdauer zu klein
0432h	Mindestimpulsdauer zu groß
0441h	Anzahl der Pulse zu niedrig
0442h	Anzahl der Pulse zu hoch
0451h	Unzulässige Zeitbasis
0461h	Pulse Train Auftrag konnte nicht angehängt werden
04FFh	Auftrags-Nr. ungültig
	Diese Fehlermeldung erhalten Sie, wenn beispielsweise die entsprechende Funktionalität von Ihrer CPU nicht unterstützt wird.
8001h	Parametrierfehler
	Haben Sie mit <i>CHANNEL</i> eine Kanal-Nr. übergeben, die größer ist als die maximal verfügbare Kanalanzahl der CPU, bekommen Sie einen Parametrierfehler (8001h).

System-SFBs - "System Function Blocks" > SFB 52 - RDREC - Datensatz lesen

Wert	Beschreibung
8009h	Kanal-Nr. ungültig
	Haben Sie mit <i>CHANNEL</i> eine Kanal-Nr. größer 3 übergeben, bekommen Sie die Rückmeldung Kanal-Nr. ungültig (8009h).

14.2.20 SFB 52 - RDREC - Datensatz lesen

Die Schnittstelle des SFB 52 ist identisch mit der des in der Norm "PRO-FIBUS Guideline PROFIBUS Communication and Proxy Function Blocks according to IEC 61131-3" definierten FB RDREC.

Beschreibung

Mit dem SFB 52 RDREC (read record) lesen Sie den Datensatz mit der Nummer *INDEX* von dem mittels ID adressierten Modul. Mit *MLEN* geben Sie vor, wie viele Bytes Sie maximal lesen möchten. Den Zielbereich *RECORD* sollten Sie daher mindestens *MLEN* Bytes lang wählen. Den Wert TRUE des Ausgangsparameters *VALID* zeigt an, dass der Datensatz erfolgreich in den Zielbereich RECORD übertragen wurde. In diesem Fall erhält der Ausgangsparameter LEN die Länge der gelesenen Daten in Bytes. Falls bei der Datensatzübertragung ein Fehler auftrat, wird dies über den Ausgangsparameter *ERROR* angezeigt. Der Ausgangsparameter *STATUS* enthält in diesem Fall die Fehlerinformation. Systembedingt ist dieser Baustein nicht unterbrechbar!

Funktion

Der SFB 52 RDREC ist ein asynchron arbeitender SFB, d.h. die Bearbeitung erstreckt sich über mehrere SFB-Aufrufe. Sie starten die Datensatzübertragung, indem Sie den SFB 52 mit *REQ* = 1 aufrufen. Über die Ausgangsparameter *BUSY* und die Bytes 2 und 3 des Ausgangsparameters *STATUS* wird der Zustand des Auftrages angezeigt. Dabei entsprechen die Bytes 2 und 3 von *STATUS* dem Ausgangsparameter *RET_VAL* der asynchron arbeitenden SFCs (siehe auch Bedeutung von *REQ*, *RET_VAL* und *BUSY* bei asynchron arbeitenden SFCs). Die Datensatzübertragung ist abgeschlossen, wenn der Ausgangsparameter *BUSY* den Wert FALSE angenommen hat.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
REQ	INPUT	BOOL	E, A, M, D, L, Konstante	REQ = 1: Datensatzübertragung durchführen
ID	INPUT	DWORD	E, A, M, D, L, Kon- stante	Logische Adresse des Moduls
			Starito	Bei einem Ausgabemodul muss Bit 15 gesetzt werden
				(z.B. für Adresse 5: <i>ID</i> : = 8005h).
				Bei einem Mischmodul ist die kleinere der beiden Adressen anzugeben.
INDEX	INPUT	INT	E, A, M, D, L, Konstante	Datensatznummer
MLEN	INPUT	INT	E, A, M, D, L, Konstante	Maximale Länge der zu lesenden Datensatzinformation in Bytes
VALID	OUTPUT	BOOL	E, A, M, D, L	Neuer Datensatz wurde empfangen und ist gültig

System-SFBs - "System Function Blocks" > SFB 53 - WRREC - Datensatz schreiben

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
BUSY	OUTPUT	BOOL	E, A, M, D, L	BUSY = 1: Der Lesevorgang ist noch nicht beendet.
ERROR	OUTPUT	BOOL	E, A, M, D, L	ERROR = 1: Beim Lesevorgang trat ein Fehler auf.
STATUS	OUTPUT	DWORD	E, A, M, D, L	Aufrufkennung (Bytes 2 und 3) bzw. Fehlercode
LEN	OUTPUT	INT	E, A, M, D, L	Länge der gelesenen Datensatzinformation
RECORD	IN_OUT	ANY	E, A, M, D, L	Zielbereich für den gelesenen Datensatz.

Fehlerinformationen

⇒ "SFB 54 - RALRM - Alarm von einer Peripheriebaugruppe empfangen"...Seite 876

14.2.21 SFB 53 - WRREC - Datensatz schreiben

Die Schnittstelle des SFB 53 ist identisch mit der des in der Norm "PRO-FIBUS Guideline PROFIBUS Communication and Proxy Function Blocks according to IEC 61131-3" definierten FB WRREC.

Beschreibung

Mit dem SFB 53 WRREC (write record) übertragen Sie den Datensatz *RECORD* zu dem mittels ID adressierten Modul. Mit *LEN* geben Sie die Länge des zu übertragenden Datensatzes in Bytes vor. Den Wert TRUE des Ausgangsparameters *DONE* zeigt an, dass der Datensatz erfolgreich zum DP-Slave übertragen wurde. Falls bei der Datensatz-übertragung ein Fehler auftrat, wird dies über den Ausgangsparameter *ERROR* angezeigt. Der Ausgangsparameter *STATUS* enthält in diesem Fall die Fehlerinformation. Systembedingt ist dieser Baustein nicht unterbrechbar!

Funktion

Der SFB 53 WRREC ist ein asynchron arbeitender SFB, d.h. die Bearbeitung erstreckt sich über mehrere SFB-Aufrufe. Sie starten die Datensatzübertragung, indem Sie den SFB 53 mit REQ = 1 aufrufen. Über die Ausgangsparameter BUSY und die Bytes 2 und 3 des Ausgangsparameters STATUS wird der Zustand des Auftrages angezeigt. Dabei entsprechen die Bytes 2 und 3 von STATUS dem Ausgangsparameter RET_VAL der asynchron arbeitenden SFCs (siehe auch Bedeutung von REQ, RET_VAL und BUSY bei asynchron arbeitenden SFCs). Beachten Sie, dass Sie dem Aktualparameter von RECORD bei allen zu ein und demselben Auftrag gehörenden Aufrufen des SFB 53 denselben Wert zuweisen. Dasselbe gilt für die Aktualparameter von LEN. Die Datensatz-übertragung ist abgeschlossen, wenn der Ausgangsparameter BUSY den Wert FALSE angenommen hat.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
REQ	INPUT	BOOL	E, A, M, D, L, Kon- stante	REQ = 1: Datensatzübertragung durchführen

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
ID	INPUT	DWORD	E, A, M, D, L, Kon-	Logische Adresse des Moduls.
			stante	Bei einem Ausgabemodul muss Bit 15 gesetzt werden
				(z.B. für Adresse 5: <i>ID</i> : = 8005h).
				Bei einem Mischmodul ist die kleinere der beiden Adressen anzugeben.
INDEX	INPUT	INT	E, A, M, D, L, Konstante	Datensatznummer
LEN	INPUT	INT	E, A, M, D, L, Konstante	Maximale Länge des zu übertragenden Datensatzes in Bytes
DONE	OUTPUT	BOOL	E, A, M, D, L	Datensatz wurde übertragen
BUSY	OUTPUT	BOOL	E, A, M, D, L	BUSY = 1: Der Schreibvorgang ist noch nicht beendet.
ERROR	OUTPUT	BOOL	E, A, M, D, L	ERROR = 1: Beim Schreibvorgang trat ein Fehler auf.
STATUS	OUTPUT	DWORD	E, A, M, D, L	Aufrufkennung (Bytes 2 und 3) bzw. Fehlercode
RECORD	IN_OUT	ANY	E, A, M, D, L	Datensatz

Fehlerinformationen

⇒ "SFB 54 - RALRM - Alarm von einer Peripheriebaugruppe empfangen"...Seite 876

14.2.22 SFB 54 - RALRM - Alarm von einer Peripheriebaugruppe empfangen

14.2.22.1 Parameter

Die Schnittstelle des SFB 54 ist identisch mit der des in der Norm "PRO-FIBUS Guideline PROFIBUS Communication and Proxy Function Blocks according to IEC 61131-3" definierten FB RALRM.

Beschreibung

Der SFB 54 RALRM empfängt einen Alarm samt der zugehörigen Information von einem Peripheriemodul bzw. einer Komponente des entsprechenden Bus-Slave und stellt diese Information an seinen Ausgangsparametern zur Verfügung. Die Information in den Ausgangsparametern enthält sowohl die Startinformation des aufgerufenen OB als auch Informationen aus der Alarmquelle. Rufen Sie den SFB 54 nur innerhalb des Alarm-OBs auf, den das Betriebssystem der CPU aufgrund des zu untersuchenden Alarms aus der Peripherie gestartet hat.

Wenn Sie den SFB 54 RALRM in einem OB aufrufen, dessen Startereignis kein Alarm aus der Peripherie ist, stellt Ihnen der SFB an seinen Ausgängen entsprechend weniger Informationen zur Verfügung.

Achten Sie darauf, dass Sie beim Aufruf des SFB 54 in verschiedenen OBs unterschiedliche Instanz-DBs verwenden. Falls Sie die aus einem SBF 54 Aufruf resultierenden Daten außerhalb des zugehörigen Alarm-OBs auswerten, sollten Sie pro OB-Startereignis einen eigenen Instanz-DB benutzen.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
MODE	INPUT	INT	E, A, M, D, L, Konstante	Betriebsart
F_ID	INPUT	DWORD	E, A, M, D, L, Konstante	Logische Anfangsadresse der Komponente (Modul), von der Alarme empfangen werden sollen
MLEN	INPUT	INT	E, A, M, D, L, Konstante	Maximale Länge der zu empfangenen Alarminformation in Bytes
NEW	OUTPUT	BOOL	E, A, M, D, L	TRUE: Ein neuer Alarm wurde empfangen
				FALSE: Kein neuer Alarm wurde empfangen
STATUS	OUTPUT	DWORD	E, A, M, D, L	C000000h: Kein Fehler
				C080C300h: Betriebsmittel sind momentan belegt
				C0809000h: Ungültige logische Anfangsadresse
				Nur für PROFINET-IO:
				C080A000h: Lesefehler
				C080B700h: Invalider Bereich
ID	OUTPUT	DWORD	E, A, M, D, L	Logische Anfangsadresse der Komponente (Modul), von der ein Alarm empfangen wurde
				Bit 15 enthält die E/A-Kennung:
				0: bei einer Eingangsadresse
				1: bei einer Ausgangsadresse
LEN	OUTPUT	INT	E, A, M, D, L	Länge der empfangenen Alarminformation
TINFO	IN_OUT	ANY	E, A, M, D, L	(Task Information)
				Zielbereich für OB-Startinformation und Verwaltungsinformation
AINFO	IN_OUT	ANY	E, A, M, D, L	(Alarm Information)
				Zielbereich für Kopfinformation und Alarmzusatzinformation. Für <i>AINFO</i> sollten Sie eine Länge von mindestens <i>MLEN</i> Bytes vorsehen.

MODE

Den SFB 54 können Sie in drei verschiedenen Betriebsarten (MODE) aufrufen:

- 0: zeigt die alarmauslösende Komponente im Ausgangsparameter ID an und beschreibt den Ausgangsparameter NEW mit TRUE.
- 1: beschreibt sämtliche Ausgangsparameter unabhängig von der alarmauslösenden Komponente.
- 2: prüft, ob die im Eingangsparameter F_ID angegebene Komponente den Alarm ausgelöst hat.
 - falls nein, erhält NEW den Wert FALSE
 - falls ja, erhält NEW den Wert TRUE, und alle anderen Ausgangsparameter werden beschrieben.

Falls Sie den Zielbereich TINFO bzw. AINFO zu kurz wählen, kann der SFC 54 nicht die gesamte Information eintragen.

TINFO

TINFO PROFIBUS: Datenstruktur des Zielbereichs (Task-Information)						
Byte	Datentyp	Beschreibung				
0 19		Startinformation des OB, in dem der SFC 54 aktuell aufgerufen wurde:				
		Byte 0 11: s	strukturiert wie	der Parameter TOF	SI der SFC 6 I	RD_SINFO
		Byte 12 19:	Datum und Uh	rzeit, zu denen der	OB angeforder	t wurde
20 27		Verwaltungsin	formation:			
20	Byte	zentral: 0 dezentral: DP	-Mastersystem	-ID (mögliche Werte	e: 1 255)	
21	Byte	zentral: Baugi	ruppenträgernu	mmer (mögliche W	erte: 0 31)	
		dezentral: Nu	mmer der DP-S	tation (mögliche W	erte: 0 127)	
22	Byte	zentral: 0				
		dezentral:	Bit 3 0	Slavetyp	0000:	DP
					0001:	DPS7
					0010:	DPS7 V1
					0011:	DP-V1
					ab 0100:	reserviert
			Bit 7 4	Profiltyp	0000:	DP
					ab 0001:	reserviert
23	Byte	zentral: 0				
		dezentral:	Bit 3 0	Alarminfotyp	0000:	Transparent (Alarm kommt von einem projektierten dezentralen Modul)
					0001:	Stellvertreter (Alarm eines nicht-DP-V1 Slaves oder eines nicht projektierten Steckplatzes)
					0010:	Erzeugter Alarm
						(in der CPU)
					ab 0011:	reserviert
			Bit 7 4	Strukturversion	0000:	Initial
					ab 0001:	reserviert
24	Byte	zentral: 0				
		dezentral: Fla	gs der DP-Mas	ter-Anschaltung		
		Bit 0 = 0:		Alarm von einer in	itegrierten DP-A	nschaltung

TINFO PROFIBUS: Datenstruktur des Zielbereichs (Task-Information)				
Byte	Datentyp	Beschreibung		
		Bit 0 = 1:	Alarm von einer externen DP-Anschaltung	
		Bit 7 1:	reserviert	
25	Byte	zentral: 0		
		dezentral: Flags der DP-Slave-Anschaltung		
		Bit 0:	EXT_DIAG_Bit aus dem Diagnosetelegramm bzw. 0, falls dieses Bit beim Alarm nicht vorliegt	
		Bit 7 1:	reserviert	
26, 27	WORD	zentral: 0		
		dezentral: PROFIBUS Identn	ummer	

TINFO PROFINET-IO: Datenstruktur des Zielbereichs (Task-Information)			
Byte	Bezeichner	Datentyp	Beschreibung
0 19	OB Startinfo	BYTE	Startinformation des OB, in dem der SFB 54 aktuell aufgerufen wurde.
20 21	Addressinfo	WORD	Bit 0 10: Stationsnummer (0-2047)
			Bit 11 14: die letzten beiden Stellen der PROFINET-IO-System-ID (0-15), um die vollständige PROFINET-IO-System-ID zu erhalten, müssen Sie 100 (dezimal) dazu addieren.
			Bit 15: 1
22	Slavetyp	BYTE	Bit 0 3: 1000: Festwert für PROFINET-IO
			Bit 4 7: reserviert
23	Alarminfo	BYTE	Bit 0 3: 0000: Transparent, Alarm kommt von einer projektierten dezentralen Baugruppe
			Bit 4 7: reserviert
24	PROFINET-IO- Controller- Anschaltung	ВҮТЕ	Flags der PROFINET-IO-Controller-Anschaltung
			Bit 0:
			0: Alarm von einer integrierten Anschaltung
			1: Alarm von einer externen Anschaltung
			Bit 1 7: reserviert
25	Flags der PROFINET-IO- Controller-	BYTE	Bit 0: AR Diagnosisstate bzw. 0, falls keine Information beim Alarm vorliegt.
	Anschaltung		Bit 0: 1: IO-Device gestört
			Bit 1 7: reserviert
26 27	PROFINET-IO- Device Ident- nummer	WORD	Eindeutige Identifikation des PROFINET-IO-Devices
28 29		WORD	Herstellerkennung
30 31	ID	WORD	Identnummer der Instanz

TINFO EtherCAT: Datenstruktur des Zielbereichs (Task-Information)			
Byte	Bezeichner	Datentyp	Beschreibung
0 19	OB Startinfo	BYTE	Startinformation des OB, in dem der SFB 54 aktuell aufgerufen wurde.
20 21	Addressinfo	WORD	Bit 0 10: Master/Slave
			Bit 11 14: System-ID des EtherCAT Netzwerks - 100
			Bit 15: 1: Kennbit für EtherCAT (PROFINET "look and feel")
22	Slavetyp	BYTE	Bit 0 3: 1000: 0b1111 EtherCAT1
			Bit 4 7: reserviert
23	Alarminfo	BYTE	Bit 0 3: 0000: Transparent, Alarm kommt von einer projektierten dezentralen Baugruppe
			Bit 4 7: reserviert
24	EC Flags I	BYTE	Flags der EtherCAT IO-Controller-Anschaltung
			Bit 0: 0: Alarm von einer integrierten Anschaltung
			1: Alarm von einer externen Anschaltung
			Bit 1 7: reserviert
25 31			reserviert
1) Ab 0b1001 PROFINET-IO			

AINFO

AINFO PROFIBUS: Datenstruktur des Zielbereiches (Alarm-Information)						
Byte	Datentyp	Beschreibung				
0 3		Kopfinformation				
0	Byte	Länge der empfangenen Alarminformation in Bytes				
		zentral: 4 224				
		dezentral: 4 63				
1	Byte	zentral: reserviert				
		dezentral:	Kennung für den Alarmtyp			
			1:	Diagnosealarm		
			2:	Prozessalarm		
			3:	Ziehen-Alarm		
			4:	Stecken-Alarm		
			5:	Status-Alarm		
			6:	Update-Alarm		
			31:	Ausfall eines Erweiterungsgeräts, eines DP-Mastersystems oder einer DP-Station		
			32 126	herstellerspezifischer Alarm		
2	Byte	Steckplatznummer der alarmauslösenden Komponente				
3	Byte	zentral: reserviert				

AINFO PROFIBUS: Datenstruktur des Zielbereiches (Alarm-Information)				
Byte	Datentyp	Beschreibung		
		dezentral:	Specifier	
			Bit 1, 0:	
			00	keine weitere Information
			01	kommendes Ereignis, Steckplatz gestört
			10	gehendes Ereignis, Steckplatz nicht mehr gestört
			11	gehendes Ereignis, Steckplatz weiterhin gestört
			Bit 2:	Add_Ack
			Bit 7 3	Sequenznummer
4 223		Alarmzusatzinformation: Mo	odulspezifische Daten zum jeweiligen Alarm:	
		zentral:	ARRAY[0] ARRAY[220]	
		dezentral:	ARRAY[0] ARRAY[5	9]

AINFO PROFINET-IO: Datenstruktur des Zielbereiches (Alarm-Information)

Byte **Bezeichner** Datentyp **Beschreibung** 0 ... 1 WORD Bit 0 ... 7: Bausteintyp Bausteintyp Bit 8 ... 15: reserviert 2 ... 3 Bausteinlänge **WORD** Länge der empfangenen Alarminformation in Bytes MIN: 0 MAX: 1536 (1,5kByte) 4 ... 5 Version Bits 0 ... 7: low byte WORD Bits 8 ... 15: high byte 6 ... 7 WORD Alarmtyp Kennung für den Alarmtyp: 1: Diagnosealarm (kommend) 2: Prozessalarm 3: Ziehen-Alarm 4: Stecken-Alarm 5: Status-Alarm 6: Update-Alarm 7: Redundanz-Alarm 8: Vom Supervisor gesteuert (Controlled_by_Supervisor) 9: Vom Supervisor freigegeben (Released_by_Supervisor) 10: Nicht die projektierte Baugruppe gesteckt 11: Wiederkehr des Submoduls

12: Diagnosealarm (gehend)

13: Querverkehr-Verbindungsmeldung14: Nachbarschaftsänderungsmeldung

AINFO PROF	AINFO PROFINET-IO: Datenstruktur des Zielbereiches (Alarm-Information)			
Byte	Bezeichner	Datentyp	Beschreibung	
			15: Taktsynchronisationsmeldung (busseitig)	
			16: Taktsynchronisationsmeldung (geräteseitig)	
			17: Netzwerkkomponentenmeldung	
			18: Uhrzeitsynchronisationsmeldung (busseitig)	
			19 29: reserviert	
			30: Hochladenzubringen-Alarm	
			31: reserviert	
			32 127: Herstellerspezifischer Alarm	
			128 65535: Reserviert außer die folgenden produktspezifischen Alarmtypen:	
			38CAh: Wiederkehr des Controllers	
			48CAh: Konfiguration des Controllers akzeptiert	
			39CAh: Ausfall des Controllers	
			49CAh: Ausfall des Controllers wegen Watchdog	
			38CBh: Wiederkehr des Geräts	
			38CCh: Störung am Wiederkehr des Geräts	
			38CDh: Ein anderes Gerät wird erkannt während Wiederkehr des Geräts	
			38CEh: Parameterfehler während Wiederkehr des Geräts	
			39CBh: Ausfall des Geräts	
8 11	API	DWORD	API (Application Process Identifier)	
12 13	Steckplatz-	WORD	Steckplatznummer der Alarm auslösenden Komponente	
	nummer		(Wertebereich 0 65535)	
14 15	Submodulsteck- platznummer	WORD	Submodul-Steckplatznummer der Alarm auslösenden Komponente (Wertebereich 0 65535)	
16 19	Modul-Identifika- tion	DWORD	Eindeutige Information der Alarmquelle: Modul-ID	
20 23	Submodul-Identi- fikation	DWORD	Eindeutige Information der Alarmquelle: Submodul-ID	
20 23	and the second s	DWORD	Eindeutige Information der Alarmquelle: Submodul-ID	

AINFO PROF	AINFO PROFINET-IO: Datenstruktur des Zielbereiches (Alarm-Information)			
Byte	Bezeichner	Datentyp	Beschreibung	
24 25	Alarm Specifier	WORD	Bit 0 10: Sequenznummer	
			(Wertebereich 0 bis 2047)	
			Bit 11: Kanaldiagnose	
			0: keine Kanaldiagnose vorhanden	
			1: Kanaldiagnose vorhanden	
			Bit 12: Status der herstellerspezifischen Diagnose	
			0: keine herstellerspezifische Statusinformation vorhanden	
			1: Herstellerspezifische Statusinformation vorhanden	
			Bit 13: Status der Diagnose beim Submodul:	
			0: keine Statusinformation vorhanden, alle Fehler wurden beseitigt	
			1: mindestens eine Kanaldiagnose und/oder Statusinformation vorhanden	
			Bit 14: reserviert	
			Bit 15: Application Relationship Diagnosis State	
			0: keine der innerhalb dieser AR projektierten Baugruppen meldet eine Diagnose	
			1: mindestens eine innerhalb dieser AR projektierten Baugruppen meldet eine Diagnose	
26 1535	Alarmzusatz-	WORD	Hinweis:	
	information		Die Alarmzusatzinformation kann auch entfallen.	

AINFO Ether	AINFO EtherCAT: Datenstruktur des Zielbereiches (Alarm-Information)				
Byte	Bezeichner	Datentyp	Beschreibung		
0, 1	Länge	WORD	Länge der empfangenen Alarminformation in Bytes: MIN: 0 MAX: 1535 (1,5kByte)		
2, 3	AlarmType	WORD	Kennung für den Alarmtyp: 0001h: DIAGNOSE_ALARM_KOMMEND 0002h: PROZESS_ALARM 000Ch: DIAGNOSE_ALARM_GEHEND 0020h: MANUFACTOR_SPECIFIC_ALARM_MIN // product specific: 39CAh: CONTROLLER_AUSFALL 49CAh: CONTROLLER_AUSFALL_WATCHDOG // EtherCAT specific: 8001h: BUS_STATE_CHANGED 8002h: SLAVE_STATE_CHANGED 8003h: TOPOLOGY_OK 8004h: TOPOLOGY_MISMATCH		
4, 5	RackSlot	WORD	Steckplatznummer des EtherCAT-Masters		
6, 7	Master/Slave ID	WORD	EtherCAT Master-/Slave Adresse		
8, 9	AlarmSpecifier	WORD	Wert ist abhängig von AlarmType: AlarmType: Wert BUS_STATE_CHANGED: neuer Busstatus ¹ DIAGNOSE_ALARM_GEHEND: reserved DIANGOSE_ALARM_KOMMEND: reserved PROZESS_ALARM: reserved MANUFACTOR_SPECIFIC_ALARM_MIN: reserved SLAVE_STATE_CHANGED: neuer Busstatus CONTROLLER_AUSFALL: reserved CONTROLLER_AUSFALL_WATCHDOG: reserved TOPOLOGY_OK: reserved		

AINFO EtherCAT: Datenstruktur des Zielbereiches (Alarm-Information)					
Byte	Bezeichner	Datentyp	Beschreibung		
10 n	Data	BYTE	Inhalt ist abhängig vom AlarmType:		
			AlarmType: Inhalt		
			BUS_STATE_CHANGED: Datenstruktur ²		
			DIAGNOSE_ALARM_GEHEND: CoE-Emergency ³		
			DIAGNOSE_ALARM_KOMMEND: CoE-Emergency		
			PROZESS_ALARM: CoE-Emergency		
			MANUFACTOR_SPECIFIC_ALARM_MIN: CoE-Emergency		
			SLAVE_STATE_CHANGED: AL Status Code ⁴		
			CONTROLLER_AUSFALL: Ausfall-Code 5		
			CONTROLLER_AUSFALL_WATCHDOG: reserved		
			TOPOLOGY_OK: reserved		
			TOPOLOGY_MISMATCH: reserved		
1) EtherCAT-States	885				
2) Datenstruktur BUS	2) Datenstruktur BUS_STATE_CHANGED = 886				
3) CoE-Emergency 3886					
4) AL Status Code _ 886					
5) Ausfall-Code = 885					

14.2.22.2 EtherCAT-States

Die Buszustände bei EtherCAT sind wie folgt codiert

Name	Code	Beschreibung
Undefined/Unknown	0x00	Diesen Status hat ein Slave, bevor er seine Initialisierungsroutinen durchführen konnte. Für den EtherCAT-Master besitzt ein Slave ebenfalls den Zustand Undefined, wenn ein Slave-Ausfall vorliegt (Kabel ziehen).
Init	0x01	Es findet keine direkte Kommunikation zwischen Master und Slaves statt. Der Master initialisiert in diesem Zustand die Konfigurations-Register des ESC. Es findet kein Prozessdaten-Austausch oder Mailbox-Kommunikation statt.
PreOp	0x02	In diesem Zustand ist Mailbox-Kommunikation möglich, es findet jedoch kein Prozessdaten-Austausch statt.
BootStrap	0x03	Spezieller Zustand des EtherCAT-Slaves in dem nur Mailbox-Kommunikation stattfindet. Um ein Firmware-Update des Slave durchzuführen, muss der Slave in diesen Zustand versetzt werden.
SafeOp	0x04	Im Zustand SafeOp ist Mailbox-Kommunikation möglich und es können Prozesseingangsdaten ausgetauscht werden. Es findet jedoch kein Austausch von Prozessausgangsdaten statt.
Ор	80x0	In diesem Zustand können Mailbox-Daten und Prozessdaten ausgetauscht werden.

14.2.22.3 Ursache für Controller-Ausfall

Bei einem Controller-Ausfall gibt der Alarm-Specifier Auskunft über die Ursache des Ausfalls

Name	Code	Beschreibung
REASON_UNKNOWN	0	Ursache unbekannt
ALARM_OVERFLOW	1	Alarm-Überlast
MESSAGE_QUEUE_OVERFLOW	2	Überlast an EtherCAT-Events
CYCLIC_FRAMES_NOT_IN_BUSCYCLE	3	EtherCAT-Empfangs-Telegramm wurde nicht innerhalb der Buszykluszeit empfangen
APPL_BUSCYCLE_ERROR	4	Buszyklus-Zeit konnte nicht eingehalten werden (z.B. aufgrund hoher Systemlast)

14.2.22.4 CoE-Emergency

Eine CoE-Emergency ist eine besondere Form der Mailbox-Kommunikation bei welcher der EtherCAT-Slave dem EtherCAT-Master signalisieren kann, dass ein Fehler aufgetreten ist. Sie hat folgenden Aufbau:

Name	Datentyp	Beschreibung
Error Code	WORD	Error Code
Error Register	BYTE	EtherCAT-State als der Fehler des Slaves aufgetreten ist
Data	BYTE[5]	Manufacturer Specific Error Field (MEF), enthält weitere Diagnosedaten

14.2.22.5 AL Status Code

AL ist die Abkürzung für Application Layer. Der AL Status Code ist ein Error Code aus der Slave Applikation.

14.2.22.6 Datenstruktur BUS_STATE_CHANGED

Header	
NrOfSlavesTotal	Anzahl aller Slaves, die nicht im Master-State sind.
NrOfSlavesUndefined	Anzahl der Slaves im Undefined-Zustand.
NrOfSlavesInit	Anzahl der Slaves im <i>Init-</i> Zustand.
NrOfSlavesPreop	Anzahl der Slaves im PreOp-Zustand.
NrOfSlavesBoostrap	Anzahl der Slaves im Bootstrap-Zustand.
NrOfSlavesSafeop	Anzahl der Slaves im SafeOp-Zustand.
NrOfSlavesOp	Anzahl der Slaves im <i>Op-</i> Zustand.
DeviceId	
DeviceId[0]	EtherCAT-Adresse des Slave, wie in der Projektierung vergeben.
DeviceId[NrOfSlaves- Total-1]	EtherCAT-Adresse des Slave, wie in der Projektierung vergeben.

TINFO und AINFO

Abhängig von dem jeweiligen OB, in dem der SFB 54 aufgerufen wird, werden die Zielbereiche TINFO und AINFO nur teilweise beschrieben. Welche Information jeweils eingetragen wird, entnehmen Sie der folgenden Tabelle.

Zielbereich	Zielbereich				
Alarmtyp	ОВ	TINFO OB-Status- Information	TINFO Verwal- tungs-Infor- mation	AINFO Kopf-Informa- tion	AINFO Alarmzusatz-Information
Prozessalarm	4x	ja	ja	ja	zentral: nein dezentral: wie vom DP-Slave geliefert
Statusalarm	55	ja	ja	ja	ja
Update-Alarm	56	ja	ja	ja	ja
Hersteller-spezi- fischer Alarm	57	ja	ja	ja	ja
Peripherie- Redundanz- fehler	70	ja	ja	nein	nein
Diagnosealarm	82	ja	ja	ja	zentral: Datensatz 1
					dezentral: wie vom DP-Slave geliefert
Ziehen-Stecken-	83	ja	ja	ja	zentral: nein
Alarm					dezentral: wie vom DP-Slave geliefert
Baugruppen-trä- gerausfall/Stati- onsausfall	86	ja	ja	nein	nein
	alle anderen OBs	ja	nein	nein	nein

Fehlerinformationen

Der Ausgangsparameter *STATUS* enthält Fehlerinformationen. Wird er als ARRAY[1...4] OF BYTE interpretiert, hat die Fehlerinformation folgende Struktur:

Feldelement	Name	Beschreibung		
STATUS[1]	Function_Num	um 00h: falls kein Fehler		
		Funktionskennung aus DP-V1-CPU:		
		im Fehlerfall ist 80h aufgeodert.		
		Falls kein DP-V1-Protokollelement benutzt wird: C0h		
STATUS[2]	Error_Decode	Ort der Fehlerkennung		
STATUS[3]	Error_1	Fehlerkennung		
STATUS[4]	Error_2	herstellerspezifische Erweiterung der Fehlerkennung		
		STATUS[4] wird bei DP-V1-Fehlern vom DP-Master an die CPU und den SFB durchgereicht. Ohne DP-V1-Fehler wird der Wert auf "0" gesetzt mit folgenden Ausnahmen beim SFB 52:		
		 STATUS[4] enthält die Länge des Zielbereichs aus RECORD, falls MLEN > Länge des Zielbereichs aus RECORD 		
		 STATUS[4]=MLEN, falls die tatsächliche Datensatzlänge< MLEN < Länge des Zielbereichs aus RECORD 		

STATUS[2] (Ort der Fehlerkennung) kann folgende Werte annehmen:

Error_Decode	Quelle	Beschreibung
00 7Fh	CPU	kein Fehler oder keine Warnung
80h	DP-V1	Fehler nach IEC 61158-6
81h 8Fh	CPU	8xh zeigt einen Fehler im x-ten Aufrufparameter des SFB an
FEh, FFh	DP Profile	profilspezifischer Fehler

STATUS[3] (Fehlerkennung) kann folgende Werte annehmen:						
Error_Decode	Error_Code_1	Erläuterung laut DP-V1	Beschreibung			
00h	00h		kein Fehler, keine Warnung			
70h	00h	reserved, reject	Erstaufruf;			
			keine Datensatzübertragung aktiv			
	01h	reserved, reject	Erstaufruf;			
			Datensatzübertragung angestoßen			
	02h	reserved, reject	Zwischenaufruf;			
			Datensatzübertragung ist bereits aktiv			
80h	90h	reserved, pass	logische Anfangsadresse ungültig			
	92h	reserved, pass	unzulässiger Typ bei ANY-Pointer			
	93h	reserved, pass	Die mittels <i>ID</i> bzw. <i>F_ID</i> adressierte DP-Komponente ist nicht konfiguriert.			
	A0h	read error	negative Quittung beim Lesen vom Modul			
	A1h	write error	negative Quittung beim Schreiben zum Modul			
	A2h	module failure	DP-Protokollfehler bei Layer 2			
	A3h	reserved, pass	DP-Protokollfehler bei Direct-Data-Link- Mapper oder User-Interface/User			
	A4h	reserved, pass	Kommunikation am Bus gestört			
	A5h	reserved, pass	-			
	A7h	reserved, pass	DP-Slave oder Modul ist beschäftigt (temporärer Fehler)			
	A8h	version conflict	DP-Slave oder Modul meldet nicht passende Versionen			
	A9h	feature not supported	Funktion wird vom DP-Slave oder Modul nicht unterstützt			
	AA AFh	user specific	DP-Slave oder Modul meldet einen herstellerspezifischen Fehler seiner Anwendung. Bitte sehen Sie in der Dokumentation des Herstellers des DP-Slaves bzw. des Moduls nach.			
	B0h	invalid index	Modul kennt den Datensatz nicht			
			Datensatznummer ≥256 ist unzulässig			
	B1h	write length error	Die Längenangabe im Parameter <i>RECORD</i> ist falsch;			
			bei SFB 54: Längenfehler in AINFO			
	B2h	invalid slot	Der projektierte Steckplatz ist nicht belegt.			
	B3h	type conflict	Ist-Modultyp ungleich Soll-Modultyp			
	B4h	invalid area	DP-Slave oder Modul meldet einen Zugriff auf einen unzulässigen Bereich			
	B5h	state conflict	DP-Slave oder Modul ist nicht bereit			

S <i>TATUS</i> [3] (Fehlerkennung) kann folgende Werte annehmen:					
Error_Decode	Error_Code_1	Erläuterung laut DP-V1	Beschreibung		
	B6h	access denied	DP-Slave oder Modul verweigert den Zugriff		
	B7h	invalid range	DP-Slave oder Modul meldet einen unzu- lässigen Bereich eines Parameters oder eines Werts		
	B8h	invalid parameter	DP-Slave oder Modul meldet einen unzulässigen Parameter		
	B9h	invalid type	DP-Slave oder Modul meldet einen unzulässigen Typ		
	BAh BFh	user specific	DP-Slave oder Modul meldet einen herstellerspezifischen Fehler beim Zugriff. Bitte sehen Sie in der Dokumentation des Herstellers des DP-Slaves oder Moduls nach.		
	C0h	read constrain conflict	Das Modul führt den Datensatz, aber es sind noch keine Lesedaten da.		
	C1h	write constrain conflict	Die Daten des auf dem Modul vorange- gangenen Schreibauftrags für denselben Datensatz sind von dem Modul noch nicht verarbeitet.		
	C2h	resource busy	Das Modul bearbeitet momentan das mögliche Maximum an Aufträgen für eine CPU.		
	C3h	resource unavailable	Die benötigten Betriebsmittel sind momentan belegt.		
	C4h		Interner temporärer Fehler.		
			Auftrag konnte nicht ausgeführt werden. Wiederholen Sie den Auftrag. Bei häufigem Auftreten dieses Fehlers überprüfen Sie bitte Ihren Aufbau auf elektrische Störquellen.		
	C5h		DP-Slave oder Modul nicht verfügbar		
	C6h		Datensatzübertragung wurde abgebrochen wegen Prioritätsklassenabbruchs.		
	C7h		Auftragsabbruch wegen Neustart des DP- Masters		
	C8h CFh		DP-Slave oder Modul meldet einen her- stellerspezifischen Fehler zu seinen Res- sourcen. Bitte sehen Sie in der Dokumen- tation des Herstellers des DP-Slaves oder Moduls nach.		
	Dxh	user specific	DP-Slave spezifisch		
81h	00h FFh		Fehler im 1. Aufrufparameter		
			(bei SFB 54: MODE)		
	00h		Unzulässige Betriebsart		
82h	00h FFh		Fehler im 2. Aufrufparameter.		

STATUS[3] (Fehlerkennung) kann folgende Werte annehmen:						
Error_Decode	Error_Code_1	Erläuterung laut DP-V1	Beschreibung			
•••						
88h	00h FFh		Fehler im 8. Aufrufparameter			
			(bei SFB 54: TINFO)			
	01h		Syntaxkennung falsch			
	23h		Überschreitung des Mengengerüsts oder Zielbereich zu klein			
	24h		Bereichskennung falsch			
	32h		DB/DI-Nr. außerhalb des Anwenderbereichs			
	3Ah		DB/DI-Nr. ist NULL bei Bereichskennung DB/DI oder angegebener DB/DI nicht vorhanden.			
89h	00h FFh		Fehler im 9. Aufrufparameter			
			(bei SFB 54: AINFO)			
	01h		Syntaxkennung falsch			
	23h		Überschreitung des Mengengerüsts oder Zielbereich zu klein			
	24h		Bereichskennung falsch			
	32h		DB/DI-Nr. außerhalb des Anwenderbereichs			
	3Ah		DB/DI-Nr. ist Null bei Bereichskennung DB/DI oder angegebener DB/DI nicht vor- handen			
8Ah	00h FFh		Fehler im 10. Aufrufparameter			
8Fh	00h FFh		Fehler im 15. Aufrufparameter			
FEh, FFh			Profilspezifischer Fehler			

Konvertierung - "Converting" > FB 80 - LEAD LAG - Lead/Lag Algorithmus

15 Standard-Bausteine - "Standard"

Baustein-Bibliothek "Standard"

Die Baustein-Bibliothek finden Sie im "Download Center" auf www.yaskawa.eu.com unter "Controls Library" als "Baustein-Bibliothek Standard - SW90JS0MA" zum Download. Die Bibliothek liegt als gepackte zip-Dateien vor. Sobald Sie die Bausteine verwenden möchten, müssen Sie diese in Ihr Projekt importieren. → "Controls Library einbinden"...Seite 68

15.1 Konvertierung - "Converting"

15.1.1 FB 80 - LEAD LAG - Lead/Lag Algorithmus

Beschreibung

Mit dem Funktionsbaustein Lead/Lag Algorithmus LEAD_LAG können mit einer analogen Variable Signale bearbeitet werden. Ein Ausgang *OUT* wird aufgrund eines Eingangs *IN* und der angegebenen Werte für Verstärken *GAIN*, Voreilen *LD_TIME* und Nacheilen *LG_TIME* berechnet. Der Wert für die Verstärkung muss größer sein als Null. Der LEAD_LAG Algorithmus arbeitet mit der folgenden Gleichung:

$$und \ OUT = \left[\frac{LG_TIME}{LG_TIME + SAMPLE_T} \right] \ PREV_OUT + GAIN \left[\frac{LD_TIME + SAMPLE_T}{LG_TIME + SAMPLE_T} \right] \ IN - GAIN \left[\frac{LD_TIME}{LG_TIME + SAMPLE_T} \right] \ PREV_IN - GAIN \left[\frac{LD_TIME}{LG_TIME + SAMPLE_T} \right] \ PREV_IN - GAIN \left[\frac{LD_TIME}{LG_TIME + SAMPLE_T} \right] \ PREV_IN - GAIN \left[\frac{LD_TIME}{LG_TIME + SAMPLE_T} \right] \ PREV_IN - GAIN \left[\frac{LD_TIME}{LG_TIME + SAMPLE_T} \right] \ PREV_IN - GAIN \left[\frac{LD_TIME}{LG_TIME + SAMPLE_T} \right] \ PREV_IN - GAIN \left[\frac{LD_TIME}{LG_TIME + SAMPLE_T} \right] \ PREV_IN - GAIN \left[\frac{LD_TIME}{LG_TIME + SAMPLE_T} \right] \ PREV_IN - GAIN \left[\frac{LD_TIME}{LG_TIME + SAMPLE_T} \right] \ PREV_IN - GAIN \left[\frac{LD_TIME}{LG_TIME + SAMPLE_T} \right] \ PREV_IN - GAIN \left[\frac{LD_TIME}{LG_TIME + SAMPLE_T} \right] \ PREV_IN - GAIN \left[\frac{LD_TIME}{LG_TIME + SAMPLE_T} \right] \ PREV_IN - GAIN \left[\frac{LD_TIME}{LG_TIME + SAMPLE_T} \right] \ PREV_IN - GAIN \left[\frac{LD_TIME}{LG_TIME + SAMPLE_T} \right] \ PREV_IN - GAIN \left[\frac{LD_TIME}{LG_TIME + SAMPLE_T} \right] \ PREV_IN - GAIN \left[\frac{LD_TIME}{LG_TIME + SAMPLE_T} \right] \ PREV_IN - GAIN \left[\frac{LD_TIME}{LG_TIME + SAMPLE_T} \right] \ PREV_IN - GAIN \left[\frac{LD_TIME}{LG_TIME + SAMPLE_T} \right] \ PREV_IN - GAIN \left[\frac{LD_TIME}{LG_TIME + SAMPLE_T} \right] \ PREV_IN - GAIN \left[\frac{LD_TIME}{LG_TIME + SAMPLE_T} \right] \ PREV_IN - GAIN \left[\frac{LD_TIME}{LG_TIME + SAMPLE_T} \right] \ PREV_IN - GAIN \left[\frac{LD_TIME}{LG_TIME + SAMPLE_T} \right] \ PREV_IN - GAIN \left[\frac{LD_TIME}{LG_TIME + SAMPLE_T} \right] \ PREV_IN - GAIN \left[\frac{LD_TIME}{LG_TIME + SAMPLE_T} \right] \ PREV_IN - GAIN \left[\frac{LD_TIME}{LG_TIME + SAMPLE_T} \right] \ PREV_IN - GAIN \left[\frac{LD_TIME}{LG_TIME + SAMPLE_T} \right] \ PREV_IN - GAIN \left[\frac{LD_TIME}{LG_TIME + SAMPLE_T} \right] \ PREV_IN - GAIN \left[\frac{LD_TIME}{LG_TIME + SAMPLE_T} \right] \ PREV_TIME + GAIN - GA$$

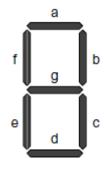
Typischerweise wird der FB LEAD_LAG zusammen mit Schleifen zur Kompensation bei der dynamischen Vorwärtsregelung eingesetzt. LEAD_LAG besteht aus zwei Teilen. Die Phase LEAD verschiebt die Phase des Ausgangs des Funktionsbausteins, so dass der Ausgang dem Eingang vor eilt. Die Phase LAG hingegen verschiebt den Ausgang, so dass der Ausgang dem Eingang nacheilt. Da die Operation LAG mit einer Integration gleichzusetzen ist, kann sie als Entstörelement oder als Tiefpassfilter eingesetzt werden. Die Operation LEAD entspricht einer Differentiation und entspricht deshalb einem Hochpassfilter. Beide Operationen zusammen (LEAD_LAG) führen dazu, dass die Ausgangsphase dem Eingang bei niederen Frequenzen nacheilt und ihm bei hohen Frequenzen vor eilt. Deshalb kann LEAD_LAG als Bandpassfilter eingesetzt werden.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
EN	Eingang	BOOL	E, A, M, D, L	Ein Signalzustand von 1 am Freigabeeingang aktiviert die Box.
ENO	Ausgang	BOOL	E, A, M, D, L	Der Freigabeausgang hat den Signalzustand 1, wenn der Funktionsbaustein fehlerfrei ausgeführt wird.
IN	Eingang	REAL	E, A, M, D, L, P, Konstante	Eingabewert des aktuellen Beispielzeit- raums, der bearbeitet werden soll
SAMPLE_T	Eingang	INT	E, A, M, D, L, P, Konstante	Beispielzeit
OUT	Ausgang	REAL	E, A, M, D, L, P, Konstante	Ergebnis der Operation LEAD_LAG
ERR_CODE	Ausgang	WORD	E, A, M, D, L, P	Gibt den Wert W#16#0000 aus, wenn die Operation fehlerfrei ausgeführt wird. Wird ein anderer Wert ausgegeben, entnehmen Sie der Fehlerinformation nähere Angaben hierzu.
LD_TIME	Statisch	REAL	E, A, M, D, L, P, Konstante	Voreilzeit in Minuten
LG_TIME	Statisch	REAL	E, A, M, D, L, P, Konstante	Nacheilzeit in Minuten

Konvertierung - "Converting" > FC 93 - SEG - Bitmuster für 7-Segment-Anzeige erzeugen

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
GAIN	Statisch	REAL	E, A, M, D, L, P, Konstante	Verstärkung in % / % (Verhältnis von Ausgabeveränderung zu Eingabeveränderung als stetiger Zustand)
PREV_IN	Statisch	REAL	E, A, M, D, L, P, Konstante	Vorheriger Eingang
PREV_OUT	Statisch	REAL	E, A, M, D, L, P, Konstante	Vorheriger Ausgang


Fehlerinformation

Ist *GAIN* kleiner als oder gleich 0, dann wird der Funktionsbaustein nicht ausgeführt. Der Signalzustand von *ENO* wird auf 0 und *ERR_CODE* wird auf W#16#0009 gesetzt.

15.1.2 FC 93 - SEG - Bitmuster für 7-Segment-Anzeige erzeugen

Beschreibung

Die Funktion Bitmuster für 7-Segment-Anzeige erzeugen SEG wandelt jede der vier Hexadezimalziffern des angegebenen Quellworts *IN* in vier equivalente Codes für eine 7-Segment-Anzeige um und schreibt diese in das Doppelwort des Ausgangs *OUT*. Das Bild unten zeigt die Beziehung zwischen den Hexadezimalziffern des Eingangs und den Bitmustern des Ausgangs.

Parameter

Ziffer	-gfedcba	Anzeige
0000	00111111	0
0 0 0 1	00000110	1
0 0 1 0	01011011	2
0 0 1 1	01001111	3
0 1 0 0	01100110	4
0101	01101101	5
0 1 1 0	01111101	6
0111	00000111	7
1000	01111111	8
1001	01100111	9
1010	01110111	Α
1011	01111100	b
1100	00111001	С
1101	01011110	d
1110	01111001	E
1111	01110001	F

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
EN	Eingang	BOOL	E, A, M, D, L	Ein Signalzustand von 1 am Freigabeeingang aktiviert die Box.

Konvertierung - "Converting" > FC 94 - ATH - ASCII-Zeichenkette in Hexadezimalzahl wandeln

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
ENO	Ausgang	BOOL	E, A, M, D, L	Der Freigabeausgang hat den Signalzustand 1, wenn die Funktion fehlerfrei ausgeführt wird.
IN	Eingang	WORD	E, M, D, P, oder Konstante	Quellwort mit vier Hexadezimalziffern.
OUT	Ausgang	DWORD	A, M, D, L, P	Bitmuster des Ziels mit vier Bytes.

Fehlerinformation

Diese Funktion erkennt keine Fehlerbedingungen.

15.1.3 FC 94 - ATH - ASCII-Zeichenkette in Hexadezimalzahl wandeln

Beschreibung

Die Funktion ASCII-Zeichenkette in Hexadezimalzahl wandeln ATH wandelt die ASCII-Zeichenkette, auf die der Parameter *IN* zeigt, in Hexadezimalziffern um und speichert diese in der Zieltabelle, auf die der Parameter *OUT* zeigt. Da ein ASCII-Zeichen 8 Bits benötigt und eine Hexadezimalziffer nur 4 Bits, ist das Ausgabewort nur halb so lang wie das Eingabewort. Die ASCII-Zeichen werden nach dem Umwandeln in dem Ausgang in der gleichen Reihenfolge angeordnet, in der sie eingelesen wurden. Handelt es sich um eine ungerade Anzahl an ASCII-Zeichen, wird die Hexadezimalziffer in dem Halbbyte ganz rechts der zuletzt umgewandelten Hexadezimalziffer mit Nullen aufgefüllt.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung	
EN	Eingang	BOOL	E, A, M, D, L	Ein Signalzustand von 1 am Freigabeeingang aktiviert die Box.	
ENO	Ausgang	BOOL	E, A, M, D, L	Der Freigabeausgang hat den Signalzustand 1, wenn die Funktion fehlerfrei ausgeführt wird.	
IN	Eingang	Pointer ¹	E, A, M, D, L	Zeigt auf die Anfangsadresse einer ASCII- Zeichenkette.	
N	Eingang	INT	E, A, M, L, P	Anzahl der ASCII-Zeichen, die umgewandelt werden sollen.	
RET_VAL	Ausgang	WORD	E, A, M, D, L, P	Gibt den Wert W#16#0000 aus, wenn die Operation fehlerfrei ausgeführt wird. Wird ein anderer Wert ausgegeben, entnehmen Sie der Fehlerinformation nähere Angaben hierzu.	
OUT	Ausgang	Pointer ¹	A, M, D, L	Zeigt auf die Anfangsadresse der Tabelle.	
1) Pointer im Doppelwortformat bei der bereichsübergreifenden, registerindirekten Adressierung					

Fehlerinformation

Wird ein ungültiges ASCII-Zeichen erkannt, dann wird es als "0" umgewandelt. Der Signalzustand von *ENO* wird auf 0 gesetzt und *RET_VAL* ist gleich W#16#0007.

Konvertierung - "Converting" > FC 96 - ENCO - Bitnummer des niederwertigsten gesetzten Bits lesen

15.1.4 FC 95 - HTA - Hexadezimalzahl in ASCII-Zeichenkette wandeln

Beschreibung

Die Funktion Hexadezimalzahl in ASCII-Zeichenkette wandeln HTA wandelt Hexadezimalziffern, auf die der Parameter *IN* zeigt, um und speichert sie in der Zeichenkette, auf die der Parameter *OUT* zeigt. Da ein ASCIIZeichen 8 Bits benötigt und eine Hexadezimalziffer nur 4 Bits, ist das Ausgabewort doppelt so lang wie das Eingabewort. Jedes Halbbyte der Hexadezimalziffer wird in ein Zeichen umgewandelt, und zwar in der gleichen Reihenfolge, in der sie eingelesen werden (das Halbbyte ganz links der Hexadezimalziffer wird zuerst umgewandelt, danach das Halbbyte ganz rechts der gleichen Ziffer).

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung	
EN	Eingang	BOOL	E, A, M, D, L	Ein Signalzustand von 1 am Freigabeeingang aktiviert die Box.	
ENO	Ausgang	BOOL	E, A, M, D, L	Der Freigabeausgang hat den Signalzustand 1, wenn die Funktion fehlerfrei ausgeführt wird.	
IN	Eingang	Pointer ¹	E, A, M, D	Zeigt auf die Anfangsadresse der Hexadezimalziffern.	
N	Eingang	WORD	E, A, M, L, P	Anzahl der Hexadezimalbytes, die umgewandelt werden sollen.	
OUT	Ausgang	Pointer ¹	A, M, D, L	Zeigt auf die Anfangsadresse der Zieltabelle.	
1) Pointer im Doppelwortformat bei der bereichsübergreifenden, registerindirekten Adressierung					

Fehlerinformation

Diese Funktion erkennt keine Fehlerbedingungen.

15.1.5 FC 96 - ENCO - Bitnummer des niederwertigsten gesetzten Bits lesen

Beschreibung

Die Funktion Bitnummer des niederwertigsten gesetzten Bits lesen ENCO wandelt den Inhalt des Parameters *IN* in eine Binärziffer mit 5 Bits um, die der Bitposition des Bits ganz rechts in dem Parameter *IN* entspricht, und gibt das Ergebnis als Funktionswert aus. Hat der Parameter *IN* den Wert 0000 0001 oder 0000 0000, dann wird der Wert 0 ausgegeben.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
EN	Eingang	BOOL	E, A, M, D, L	Ein Signalzustand von 1 am Freigabeeingang aktiviert die Box.
ENO	Ausgang	BOOL	E, A, M, D, L	Der Freigabeausgang hat den Signalzustand 1, wenn die Funktion fehlerfrei ausgeführt wird.
IN	Eingang	DWORD	E, M, D, L, P, Konstante	Wert, der codiert werden soll.
RET_VAL	Ausgang	INT	A, M, D, L, P	Wert, der ausgegeben wird (enthält eine Binärziffer mit 5 Bits).

Fehlerinformation

Diese Funktion erkennt keine Fehlerbedingungen.

Konvertierung - "Converting" > FC 98 - BCDCPL - Zehnerkomplement erzeugen

15.1.6 FC 97 - DECO - Vorgegebenes Bit im Wort setzen

Beschreibung

Die Funktion Vorgegebenes Bit im Wort setzen DECO wandelt eine Binärziffer mit 5 Bits (0 bis 31), die von Eingang *IN* angegeben wird, um, indem sie die entsprechende Bitposition in dem Rückgabewert der Funktion setzt. Ist der Parameter *IN* größer als 31, wird eine Modulo-32-Operation ausgeführt, damit eine Binärziffer mit 5 Bits ausgegeben werden kann.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
EN	Eingang	BOOL	E, A, M, D, L	Ein Signalzustand von 1 am Freigabeeingang aktiviert die Box.
ENO	Ausgang	BOOL	E, A, M, D, L	Der Freigabeausgang hat den Signalzustand 1, wenn die Funktion fehlerfrei ausgeführt wird.
IN	Eingang	DWORD	E, M, D, L, P, Konstante	Variable, die decodiert werden soll.
RET_VAL	Ausgang	INT	A, M, D, L, P	Ausgegebener Wert

Fehlerinformation

Diese Funktion erkennt keine Fehlerbedingungen.

15.1.7 FC 98 - BCDCPL - Zehnerkomplement erzeugen

Beschreibung

Die Funktion Zehnerkomplement erzeugen BCDCPL gibt das Zehnerkomplement einer siebenstelligen BCD-Zahl aus, die von dem Parameter *IN* angegeben wird. Diese Operation rechnet mit folgender mathematischer Formel:

10000000 (als BCD) - 7stelliger BCD-Wert = Zehnerkomplement (als BCD)

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
EN	Eingang	BOOL	E, A, M, D, L	Ein Signalzustand von 1 am Freigabeeingang aktiviert die Box.
ENO	Ausgang	BOOL	E, A, M, D, L	Der Freigabeausgang hat den Signalzustand 1, wenn die Funktion fehlerfrei ausgeführt wird.
IN	Eingang	DWORD	E, M, D, L, P, Konstante	7stellige BCD-Zahl
RET_VAL	Ausgang	DWORD	A, M, D, L, P	Ausgegebener Wert

Fehlerinformation

Die Funktion erkennt keine Fehlerbedingungen.

Konvertierung - "Converting" > FC 105 - SCALE - Werte skalieren

15.1.8 FC 99 - BITSUM - Anzahl der gesetzten Bits zählen

Beschreibung

Die Funktion Anzahl der gesetzten Bits zählen BITSUM zählt die Anzahl der Bits, die am Eingang *IN* auf 1 gesetzt werden, und gibt diesen Wert als Funktionswert aus.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
EN	Eingang	BOOL	E, A, M, D, L	Ein Signalzustand von 1 am Freigabeeingang aktiviert die Box.
ENO	Ausgang	BOOL	E, A, M, D, L	Der Freigabeausgang hat den Signalzustand 1, wenn die Funktion fehlerfrei ausgeführt wird.
IN	Eingang	DWORD	E, M, D, L, P, Konstante	Variable, in der die Bits gezählt werden sollen.
RET_VAL	Ausgang	INT	A, M, D, L, P	Ausgegebener Wert

Fehlerinformation

Diese Funktion erkennt keine Fehlerbedingungen.

15.1.9 FC 105 - SCALE - Werte skalieren

Beschreibung

Die Funktion Werte skalieren SCALE wandelt einen ganzzahligen Wert *IN* in einen Realzahlenwert um, der in physikalischen Einheiten zwischen einem unteren und einem oberen Grenzwert *LO_LIM* und *HI_LIM* skaliert wird. Das Ergebnis wird in den Parameter *OUT* geschrieben. Die Funktion SCALE arbeitet mit der folgenden Gleichung:

$$OUT = [((FLOAT (IN) - KI) / (K2 - KI)) \cdot (HI_LIM - LO_LIM)] + LO_LIM$$

Die Konstanten K1 und K2 werden unterschiedlich gesetzt, je nachdem, ob der Eingabewert *BIPOLAR* oder *UNIPOLAR* ist.

■ BIPOLAR:

 Es wird angenommen, dass der ganzzahlige Eingabewert zwischen -27648 und 27648 liegt, deshalb sind

$$K1 = -27648,0$$
 und $K2 = +27648,0$.

■ UNIPOLAR:

 Es wird angenommen, dass der ganzzahlige Eingabewert zwischen 0 und 27648 liegt, deshalb sind

$$K1 = 0.0$$
 und $K2 = +27648.0$.

Ist der ganzzahlige Eingabewert größer als K2, dann wird der Ausgang *OUT* an *HI_LIM* gebunden und ein Fehler ausgegeben. Ist der ganzzahlige Eingabewert kleiner als K1, dann wird der Ausgang an *LO_LIM* gebunden und ein Fehler ausgegeben. Zum umgekehrten Skalieren wird *LO_LIM* > *HI_LIM* programmiert. Beim umgekehrten Skalieren verringert sich der Ausgabewert, während der Eingabewert zunimmt.

Konvertierung - "Converting" > FC 105 - SCALE - Werte skalieren

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
EN	INPUT	BOOL	E, A, M, D, L	FreigabeeingangTRUE: aktiviert die FunktionFALSE: deaktiviert die Funktion
ENO	OUTPUT	BOOL	E, A, M, D, L	StatusTRUE: Funktion fehlerfrei ausgeführt
IN	INPUT	INT	E, M, D, L, P, Konstante	Eingabewert, der in einen Wert vom Datentyp REAL in physikalischen Einheiten skaliert werden soll.
HI_LIM	INPUT	REAL	E, M, D, L, P, Konstante	Oberer Grenzwert in physikalischen Einheiten
LO_LIM	INPUT	REAL	E, M, D, L, P, Konstante	Unterer Grenzwert in physikalischen Einheiten
BIPOLAR	INPUT	BOOL	E, A, M, D, L	Bei dem Signalzustand 1 handelt es sich um einen bipolaren Eingabewert. Bei dem Signalzustand 0 handelt es sich um einen unipolaren Eingabewert.
OUT	OUTPUT	REAL	E, A, M, D, L, P,	Ergebnis der Skalierung
RET_VAL	INPUT	WORD	E, A, M, D, L, P	Gibt den Wert W#16#0000 aus, wenn die Operation fehlerfrei ausgeführt wird. Wird ein anderer Wert ausgegeben, entnehmen Sie der Fehlerinformation nähere Angaben hierzu.

Fehlerinformation

- Ist der ganzzahlige Eingabewert größer als K2, dann wird der Ausgang *OUT* an *HI_LIM* gebunden und ein Fehler ausgegeben.
- Ist der ganzzahlige Eingabewert kleiner als K1, dann wird der Ausgang an LO_LIM gebunden und ein Fehler ausgegeben.
- Der Signalzustand von ENO wird auf FALSE und RET_VAL wird auf W#16#0008 gesetzt.

Konvertierung - "Converting" > FC 106 - UNSCALE - Werte deskalieren

15.1.10 FC 106 - UNSCALE - Werte deskalieren

Die Funktion Werte deskalieren UNSCALE wandelt einen Realzahlenwert *IN*, der in physikalischen Einheiten zwischen einem unteren und einem oberen Grenzwert *LO_LIM* und *HI_LIM* skaliert ist, in einen ganzzahligen Wert um. Das Ergebnis wird in den Parameter *OUT* geschrieben. Die Funktion UNSCALE arbeitet mit der folgenden Gleichung:

$$OUT = [((IN - LO_LIM) / (HI_LIM - LO_LIM)) \cdot (K2 - K1)] + K1$$

Die Konstanten K1 und K2 werden unterschiedlich gesetzt, je nachdem, ob der Eingabewert *BIPOLAR* oder *UNIPOLAR* ist.

■ BIPOLAR:

 Es wird angenommen, dass der ganzzahlige Eingabewert zwischen -27648 und 27648 liegt, deshalb sind

$$K1 = -27648,0$$
 und $K2 = +27648,0$.

UNIPOLAR:

 Es wird angenommen, dass der ganzzahlige Eingabewert zwischen 0 und 27648 liegt, deshalb sind

$$K1 = 0.0$$
 und $K2 = +27648.0$.

Liegt der Eingabewert nicht in dem Bereich zwischen *LO_LIM* und *HI_LIM*, dann wird der Ausgang *OUT* an den nächsten Grenzwert (den oberen oder den unteren) für den angegebenen Bereich des jeweiligen Typs (*BIPOLAR* oder *UNIPOLAR*) gebunden und ein Fehler ausgegeben.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
EN	Eingang	BOOL	E, A, M, D, L	FreigabeeingangTRUE: aktiviert die FunktionFALSE: deaktiviert die Funktion
ENO	Ausgang	BOOL	E, A, M, D, L	StatusTRUE: Funktion fehlerfrei ausgeführt
IN	Eingang	REAL	E, M, D, L, P, Konstante	Eingabewert, der in einen ganzzahligen Wert deskaliert werden soll.
HI_LIM	Eingang	REAL	E, M, D, L, P, Konstante	Oberer Grenzwert in physikalischen Einheiten
LO_LIM	Eingang	REAL	E, M, D, L, P, Konstante	Unterer Grenzwert in physikalischen Einheiten
BIPOLAR	Eingang	BOOL	E, A, M, D, L	Bei dem Signalzustand 1 handelt es sich um einen bipolaren Eingabewert, bei dem Signalzustand "0" handelt es sich um einen unipolaren Eingabewert.
OUT	Ausgang	INT	E, A, M, D, L, P,	Ergebnis der Skalierung
RET_VAL	Ausgang	WORD	E, A, M, D, L, P	Gibt den Wert W#16#0000 aus, wenn die Operation fehlerfrei ausgeführt wird. Wird ein anderer Wert ausgegeben, entnehmen Sie der Fehlerinformation nähere Angaben hierzu.

Konvertierung - "Converting" > FC 108 - RLG AA1 - Analogwert ausgeben

Fehlerinformation

Liegt der Eingabewert nicht in dem Bereich zwischen *LO_LIM* und *HI_LIM*, dann wird der Ausgang *OUT* an den nächsten Grenzwert (den oberen oder den unteren) für den angegebenen Bereich des jeweiligen Typs (*BIPOLAR* oder *UNIPOLAR*) gebunden und ein Fehler ausgegeben. Der Signalzustand von *ENO* wird auf "0" und *RET_VAL* wird auf W#16#0008 gesetzt.

15.1.11 FC 108 - RLG_AA1 - Analogwert ausgeben

Beschreibung

Die Funktion RLG_AA1 (Analogwert ausgeben) formt einen Eingangswert XE (Festpunktzahl) in einen Ausgabewert für eine Analogausgabebaugruppe entsprechend dem Nennbereich zwischen OGR und UGR um. Bei Überschreiten des Nennbereichs wird eine Fehlermeldung ausgegeben.

Parameter

Parameter	Datentyp	Speicherbereich	Beschreibung
XE	INT	E, A, M, L, D, Konstante	Eingangswert XE als Festpunktzahl
BG	INT	E, A, M, L, D, Konstante	Angabe der Baugruppenadresse
KNKT	WORD	E, A, M, L, D, Konstante	Kanalnummer KN
			Kanaltyp KT
OGR	INT	E, A, M, L, D, Konstante	Obergrenze des Eingangswerts XE
UGR	INT	E, A, M, L, D, Konstante	Untergrenze des Eingangswerts XE
FEH	BOOL	E, A, M, L, D	Fehlerbit
BU	BOOL	E, A, M, L, D	Bereichsüberschreitung

Abweichungen von S5

- Parameter BG:
 - Eine Adressprüfung findet nicht statt. Der Wertebereich ist der gesamte P-Bereich.

Diese FC wird nur dazu verwendet, den FB 251 eines bestehenden S5-Programms einer S5-CPU 941 bis 944 in eine FC eines S7-Programms für das Automatisierungssystem S7-400 umzuwandeln. Konvertierung - "Converting" > FC 110 - PER ET1 - Read/Write Ext. Per. 1

15.1.12 FC 109 - RLG_AA2 - Write Analog Value 2

Beschreibung

Die Funktion RLG_AA2 (Analogwert ausgeben) formt einen Eingangswert XE (Gleitpunktzahl) in einen Ausgabewert für eine Analogausgabebaugruppe entsprechend dem Nennbereich zwischen OGR und UGR um. Bei Überschreiten des Nennbereichs wird eine Fehlermeldung ausgegeben.

Parameter

Parameter	Datentyp	Speicherbereich	Beschreibung
XE	REAL	E, A, M, L, D, Konstante	Eingangswert XE als Gleitpunktzahl
BG	INT	E, A, M, L, D, Konstante	Angabe der Baugruppenadresse
P_Q	WORD	E, A, M, L, D, Konstante	Peripheriebereich normal/erweitert
KNKT	WORD	E, A, M, L, D, Konstante	Kanalnummer KN
			Kanaltyp KT
OGR	REAL	E, A, M, L, D, Konstante	Obergrenze des Eingangswerts XE
UGR	REAL	E, A, M, L, D, Konstante	Untergrenze des Eingangswerts XE
FEH	BOOL	E, A, M, L, D	Fehlerbit
BU	BOOL	E, A, M, L, D	Bereichsüberschreitung

Abweichungen von S5

- Parameter BG:
 - Eine Adressprüfung findet nicht statt. Der Wertebereich ist der gesamte P-Bereich.
- In S7 wird der Parameter P_Q nicht ausgewertet.
- Die S5 Peripheriebereiche P/Q/IM3/IM4 werden auf den S7-Peripheriebereich abgebildet. Die Zuordnung des Peripheriebereichs müssen Sie in der Konfigurationstabelle durchführen.

Diese FC wird nur dazu verwendet, den FB 41 eines bestehenden S5-Programms einer S5-CPU 928B, 945 oder 948 in eine FC eines S7-Programms für das Automatisierungssystem S7-400 umzuwandeln.

15.1.13 FC 110 - PER ET1 - Read/Write Ext. Per. 1

Beschreibung

Die Funktion PER_ET1 (Lesen und Schreiben für Erweiterte Peripherie) überträgt wahlweise (je nach Parametrierung) einen Peripheriebereich in einen CPU-internen Bereich oder umgekehrt. Dadurch können Eingangsbytes von der erweiterten Peripherie gelesen und Ausgangsbytes zur erweiterten Peripherie geschrieben werden. Falls als interner Bereich ein Datenbaustein gewählt wird, so muss der Baustein vom Anwender vor dem Aufruf der Funktion mit der erforderlichen Länge angelegt worden sein.

Parameter	Datentyp	Speicherbereich	Beschreibung
PBIB	WORD	E, A, M, L, D, Konstante	Angabe der zu bearbeitenden Bereiche
ANF	INT	E, A, M, L, D, Konstante	Anfang des internen Bereichs
ANEN	WORD	E, A, M, L, D, Konstante	Anfang und Ende des Blocks auf der Anschaltung
E_A	BOOL	E, A, M, L, D, Konstante	Transferrichtung
PAFE	BOOL	E, A, M, L, D	Parametrierfehler

Konvertierung - "Converting" > FC 111 - PER ET2 - Read/Write Ext. Per. 2

Abweichungen von S5

■ Parameter *PBIB*:

In S7 wird der Peripheriebereich wie folgt ausgewertet:

	S5		S7
P-Bereich	0 bis 255	P-Bereich	0 bis 255
Q-Bereich	0 bis 255	P-Bereich	256 bis 511
IM3-Bereich	0 bis 255	P-Bereich	512 bis 767
IM4-Bereich	0 bis 255	P-Bereich	768 bis 1023
DB	0 bis 255	DB	0 bis 255
DX	0 bis 255	DB	256 bis 511
M	0 bis 199	M	0 bis 199
S		Fehlermeldung: "Ungültiger Wertebereich"	

 Die S5-Peripheriebereiche P/Q/IM3/IM4 werden auf den S7-Peripheriebereich abgebildet. Die Zuordnung des Peripheriebereichs müssen Sie in der Konfigurationstabelle durchführen.

Diese FC wird nur dazu verwendet, den FB 196 eines bestehenden S5-Programms einer S5-CPU 95U, 103, 941 bis 944, 945, 928B, 948 in eine FC eines S7-Programms für das Automatisierungssystem S7-300/400 umzuwandeln.

15.1.14 FC 111 - PER ET2 - Read/Write Ext. Per. 2

Beschreibung

Die Funktion PER_ET2 (Lesen und Schreiben für Erweiterte Peripherie) überträgt wahlweise (je nach Parametrierung) einen Peripheriebereich in einen CPU-internen Bereich oder umgekehrt. Dadurch können Eingangsbytes von der erweiterten Peripherie gelesen und Ausgangsbytes zur erweiterten Peripherie geschrieben werden. Falls als interner Bereich ein Datenbaustein gewählt wird, so muss der Baustein vom Anwender vor dem Aufruf der Funktion mit der erforderlichen Länge angelegt worden sein.

IEC-Funktionen - "IEC" > Datum und Uhrzeit als zusammengesetzte Datentypen

Abweichungen von S5

- Parameter PBIB (in DB definiert):
 - In S7 wird der Peripheriebereich wie folgt ausgewertet:

	S5		S7
P-Bereich	0 bis 255	P-Bereich	0 bis 255
Q-Bereich	0 bis 255	P-Bereich	256 bis 511
IM3-Bereich	0 bis 255	P-Bereich	512 bis 767
IM4-Bereich	0 bis 255	P-Bereich	768 bis 1023
DB	0 bis 255	DB	0 bis 255
DX	0 bis 255	DB	256 bis 511
M	0 bis 199	M	0 bis 199
S		Fehlermeldung:	
		"Ungültiger Wertebereich"	

 Die S5-Peripheriebereiche P/Q/IM3/IM4 werden auf den S7-Peripheriebereich abgebildet. Die Zuordnung des Peripheriebereichs müssen Sie in der Konfigurationstabelle durchführen.

Diese FC wird nur dazu verwendet, den FB 197 eines bestehenden S5-Programms einer S5-CPU 95U, 103, 941 bis 944, 945, 928B, 948 in eine FC eines S7-Programms für das Automatisierungssystem S7-300/400 umzuwandeln.

15.2 IEC-Funktionen - "IEC"

15.2.1 Datum und Uhrzeit als zusammengesetzte Datentypen

Aktualparameter für DATE_AND_TIME

Der Datentyp DATE_AND_TIME ist ein zusammengesetzter Datentyp wie auch ARRAY, STRING und STRUCT. Die zulässigen Speicherbereiche für zusammengesetzte Datentypen sind der Datenbaustein (DB) und der Speicherbereich für Lokaldaten (L-Stack). Wenn Sie den Datentyp DATE_AND_TIME als Formalparameter in einer Anweisung verwenden, können Sie aufgrund des zusammengesetzten Datentyps die Aktualparameter nur in einem der folgenden Formate angeben:

- Als bausteinlokales Symbol aus der Variablendeklarationstabelle für einen bestimmten Baustein
- Als symbolischen Namen für einen Datenbaustein, z.B. "DB_sys_info.Zeit", der aus den beiden folgenden Teilen besteht:
 - Ein Name, der in der Symboltabelle für die Nummer des Datenbausteins definiert ist (z.B. "DB sys info" für DB 5)
 - Ein Name, der in dem Datenbaustein für das Element DATE_AND_TIME definiert ist (z.B. "Zeit" für eine Variable vom Datentyp DATE_AND_TIME, die in DB 5 enthalten ist)

ĭ

Sie können keine Konstanten als Aktualparameter für Formalparameter von zusammengesetzten Datentypen, einschließlich DATE_AND_TIME, verwenden. Auch können Sie keine absoluten Adressen als Aktualparameter an DATE_AND_TIME übergeben.

IEC-Funktionen - "IEC" > FC 3 - D TOD DT - Zusammenfassen DATE und TIME OF DAY

15.2.2 FC 1 - AD DT TM - Zeitdauer auf einen Zeitpunkt addieren

Beschreibung

Die Funktion FC 1 addiert eine Zeitdauer *D* (Uhrzeit) einen Zeitpunkt *T* (Datum und Uhrzeit) und liefert als Ergebnis einen neuen Zeitpunkt (Datum und Uhrzeit). Der Zeitpunkt *T* muss im Bereich DT#1990-01-01-00:00:00.000 ... DT#2089-12-31-23:59:59:999 liegen. Die Funktion führt keine Eingangsprüfung durch. Liegt das Ergebnis der Addition nicht im oben angegebenen Bereich, wird das Ergebnis auf den entsprechenden Wert begrenzt und das Binärergebnis BIE auf "0" gesetzt.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
T ¹	INPUT	DATE_AND_TIME	D, L	Zeitpunkt im Format DT
D	INPUT	TIME	E, A, M, D, L, Konstante	Zeitdauer im Format TIME
RET_VAL ¹	OUTPUT	DATE_AND_TIME	D, L	Summe im Format DT
1) Parameter kann nur mit einer symbolisch definierten Variablen belegt werden.				

15.2.3 FC 2 - CONCAT - Zusammenfassen zweier STRING-Variablen

Beschreibung

Die Funktion FC 2 fasst zwei STRING-Variablen zu einer Zeichenkette zusammen. Ist die Ergebniszeichenkette länger als die am Ausgangsparameter angelegte Variable, wird die Ergebniszeichenkette auf die maximal eingerichtete Länge begrenzt und das BIE-Bit auf "0" gesetzt.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung	
IN1 ¹	INPUT	STRING	D, L	Eingangsvariable im Format STRING	
IN2 ¹	INPUT	STRING	D, L	Eingangsvariable im Format STRING	
RET_VAL ¹	OUTPUT	STRING	D, L	Zusammengefasste Zeichenkette	
1) Parameter kann nur mit einer symbolisch definierten Variablen belegt werden.					

15.2.4 FC 3 - D_TOD_DT - Zusammenfassen DATE und TIME_OF_DAY

Beschreibung

Die Funktion FC 3 fasst die Datenformate DATE und TIME_OF_DAY (TOD) zusammen und wandelt diese Formate in das Datenformat DATE_AND_TIME (DT) um. Der Eingangswert *IN1* muss im Bereich DATE#1990-01-01 ... DATE#2089-12-31 liegen. Die Funktion führt keine Eingangsprüfung durch und meldet keine Fehler.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung	
IN1	INPUT	DATE	E, A, M, D, L, Konstante	Eingangsvariable im Format DATE	
IN2	INPUT	TIME_OF_DAY	E, A, M, D, L, Konstante	Eingangsvariable im Format TOD	
RET_VAL ¹	OUTPUT	DATE_AND_TIME	D, L	Rückgabewert im Format DT	
1) Parameter kann nur mit einer symbolisch definierten Variablen belegt werden.					

IEC-Funktionen - "IEC" > FC 6 - DT DATE - Extrahieren DATE aus DT

15.2.5 FC 4 - DELETE - Löschen in einer STRING-Variable

Beschreibung

Die Funktion FC 4 löscht in einer Zeichenkette *L* Zeichen ab dem *P*. Zeichen (einschließlich). Die Funktion meldet keine Fehler.

- Ist L und/oder P gleich Null oder ist P größer als die aktuelle Länge der Eingangszeichenkette, wird die Eingangszeichenkette zurückgeliefert.
- Ist die Summe aus *L* und *P* größer als die Eingangszeichenkette, wird bis zum Ende der Zeichenkette gelöscht.
- Ist L und/oder P negativ wird ein Leerstring ausgegeben und das BIE-Bit auf "0" gesetzt.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung	
IN ¹	INPUT	STRING	D, L	STRING-Variable, in der gelöscht wird	
L	INPUT	INT	E, A, M, D, L,	Anzahl der zu löschenden Zei-	
			Konstante	chen	
Р	INPUT	INT	E, A, M, D, L,	Position des 1. zu löschenden	
			Konstante	Zeichens	
RET_VAL ¹	OUTPUT	STRING	D, L	Ergebniszeichenkette	
1) Parameter kann nur mit einer symbolisch definierten Variablen belegt werden.					

15.2.6 FC 5 - DI_STRNG - Formatwandlung DINT nach STRING

Beschreibung

Die Funktion FC 5 wandelt eine Variable im DINT-Format in eine Zeichenkette um. Die Zeichenkette wird mit einem führenden Vorzeichen dargestellt. Ist die am Rückgabeparameter angegebene Variable zu kurz, findet keine Wandlung statt und das BIE-Bit wird auf "0" gesetzt.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung	
I	INPUT	DINT	E, A, M, D, L, Konstante	Eingangswert	
RET_VAL ¹	OUTPUT	STRING	D, L	Ergebniszeichenkette	
1) Parameter kann nur mit einer symbolisch definierten Variablen belegt werden.					

15.2.7 FC 6 - DT DATE - Extrahieren DATE aus DT

Beschreibung

Die Funktion FC 6 extrahiert das Datenformat DATE aus dem Format DATE_AND_TIME. DATE liegt zwischen den Grenzen DATE#1990-1-1 ... DATE#2089-12-31. Die Funktion meldet keine Fehler.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung	
IN ¹	INPUT	DATE_AND_TIME	D, L	Eingangsvariable im DT-Format	
RET_VAL	OUTPUT	DATE	E, A, M, D, L	Rückgabewert im Format DATE	
1) Parameter kann nur mit einer symbolisch definierten Variablen belegt werden.					

IEC-Funktionen - "IEC" > FC 9 - EQ DT - Vergleich DT auf gleich

15.2.8 FC 7 - DT DAY - Extrahieren des Wochentags aus DT

Beschreibung

Die Funktion FC 7 extrahiert den Wochentag aus dem Format DATE_AND_TIME. Die Funktion meldet keine Fehler. Der Wochentag wird als INTEGER-Wert zurückgeliefert:

- 1: Sonntag
- 2: Montag
- 3: Dienstag
- 4: Mittwoch
- 5: Donnerstag
- 6: Freitag
- 7: Samstag

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
IN ¹	INPUT	DATE_AND_TIME	D, L	Eingangsvariable im Format DT
RET_VAL	OUTPUT	INT	E, A, M, D, L	Rückgabewert im Format INT
1) Parameter kann nur mit einer symbolisch definierten Variablen belegt werden.				

15.2.9 FC 8 - DT_TOD - Extrahieren TIME_OF_DAY aus DT

Beschreibung

Die Funktion FC 8 extrahiert das Datenformat TIME_OF_DAY aus dem Format DATE_AND_TIME. Die Funktion meldet keine Fehler.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung	
IN¹	INPUT	DATE_AND_TIME	D, L	Eingangsvariable im Format DT	
RET_VAL	OUTPUT	TIME_OF_DAY	E, A, M, D, L	Rückgabewert im Format TOD	
1) Parameter kann nur mit einer symbolisch definierten Variablen belegt werden.					

15.2.10 FC 9 - EQ_DT - Vergleich DT auf gleich

Beschreibung

Die Funktion FC 9 vergleicht die Inhalte zweier Variablen im Format DATE_AND_TIME auf gleich und gibt das Vergleichsergebnis als Rückgabewert aus. Der Rückgabewert führt Signalzustand "1", wenn der Zeitpunkt am Parameter *DT1* gleich dem Zeitpunkt am Parameter *DT2* ist. Die Funktion meldet keine Fehler.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
DT1 ¹	INPUT	DATE_AND_TIME	D, L	Eingangsvariable im Format DT
DT2 ¹	INPUT	DATE_AND_TIME	D, L	Eingangsvariable im Format DT
RET_VAL	OUTPUT	BOOL	E, A, M, D, L	Vergleichsergebnis
1) Parameter kann nur mit einer symbolisch definierten Variablen belegt werden.				

IEC-Funktionen - "IEC" > FC 12 - GE DT - Vergleich DT auf größer oder gleich

15.2.11 FC 10 - EQ STRNG - Vergleich STRING auf gleich

Beschreibung

Die Funktion FC 10 vergleicht die Inhalte zweier Variablen im Format STRING auf gleich und gibt das Vergleichsergebnis als Rückgabewert aus. Der Rückgabewert führt Signalzustand "1", wenn die Zeichenkette am Parameter *S1* gleich der Zeichenkette am Parameter *S2* ist. Die Funktion meldet keine Fehler.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung	
S1 ¹	INPUT	STRING	D, L	Eingangsvariable im Format STRING	
S2 ¹	INPUT	STRING	D, L	Eingangsvariable im Format STRING	
RET_VAL	OUTPUT	BOOL	E, A, M, D, L	Vergleichsergebnis	
1) Parameter kann nur mit einer symbolisch definierten Variablen belegt werden.					

15.2.12 FC 11 - FIND - Suchen in einer STRING-Variable

Beschreibung

Die Funktion FC 11 liefert die Position der zweiten Zeichenkette *IN2* innerhalb der ersten Zeichenkette *IN1*. Die Suche beginnt links; es wird das erste Auftreten der Zeichenkette gemeldet. Ist die zweite Zeichenkette in der ersten nicht vorhanden, wird Null zurückgemeldet. Die Funktion meldet keine Fehler.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
IN1 ¹	INPUT	STRING	D, L	STRING-Variable, in der gesucht wird
IN2 ¹	INPUT	STRING	D, L	zu suchende STRING-Variable
RET_VAL	OUTPUT	INT	E, A, M, D, L	Position der gefundenen Zeichenkette
1) Parameter kann nur mit einer symbolisch definierten Variablen belegt werden.				

15.2.13 FC 12 - GE DT - Vergleich DT auf größer oder gleich

Beschreibung

Die Funktion FC 12 vergleicht die Inhalte zweier Variablen im Format DATE_AND_TIME auf größer oder gleich und gibt das Vergleichsergebnis als Rückgabewert aus. Der Rückgabewert führt Signalzustand "1", wenn der Zeitpunkt am Parameter *DT1* größer (jünger) ist als der Zeitpunkt am Parameter *DT2*, oder wenn beide Zeitpunkte gleich sind. Die Funktion meldet keine Fehler.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
DT1 ¹	INPUT	DATE_AND_TIME	D, L	Eingangsvariable im Format DT
DT2 ¹	INPUT	DATE_AND_TIME	D, L	Eingangsvariable im Format DT
RET_VAL	OUTPUT	BOOL	E, A, M, D, L	Vergleichsergebnis
1) Parameter kann nur mit einer symbolisch definierten Variablen belegt werden.				

IEC-Funktionen - "IEC" > FC 14 - GT DT - Vergleich DT auf größer

15.2.14 FC 13 - GE STRNG - Vergleich STRING auf größer oder gleich

Beschreibung

Die Funktion FC 13 vergleicht die Inhalte zweier Variablen im Format STRING auf größer oder gleich und gibt das Vergleichsergebnis als Rückgabewert aus. Der Rückgabewert führt Signalzustand "1", wenn die Zeichenkette am Parameter S1 größer oder gleich der Zeichenkette am Parameter S2 ist. Die Zeichen werden beginnend von links über ihre ASCII-Codierung verglichen (z.B. ist 'a' größer als 'A'). Das erste unterschiedliche Zeichen entscheidet über das Vergleichsergebnis. Ist der linke Teil der längeren Zeichenkette identisch mit der kürzeren Zeichenkette, gilt die längere Zeichenkette als größer. Die Funktion meldet keine Fehler.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung	
S1 ¹	INPUT	STRING	D, L	Eingangsvariable im Format STRING	
S2 ¹	INPUT	STRING	D, L	Eingangsvariable im Format STRING	
RET_VAL	OUTPUT	BOOL	E, A, M, D, L	Vergleichsergebnis	
1) Parameter kann nur mit einer symbolisch definierten Variablen belegt werden.					

15.2.15 FC 14 - GT DT - Vergleich DT auf größer

Beschreibung

Die Funktion FC 14 vergleicht die Inhalte zweier Variablen im Format DATE_AND_TIME auf größer und gibt das Vergleichsergebnis als Rückgabewert aus. Der Rückgabewert führt Signalzustand "1", wenn der Zeitpunkt am Parameter *DT1* größer (jünger) ist als der Zeitpunkt am Parameter *DT2*. Die Funktion meldet keine Fehler.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
DT1 ¹	INPUT	DATE_AND_TIME	D, L	Eingangsvariable im Format DT
DT2 ¹	INPUT	DATE_AND_TIME	D, L	Eingangsvariable im Format DT
RET_VAL	OUTPUT	BOOL	E, A, M, D, L	Vergleichsergebnis
1) Parameter kann nur mit einer symbolisch definierten Variablen belegt werden.				

IEC-Funktionen - "IEC" > FC 16 - I STRNG - Formatwandlung INT nach STRING

15.2.16 FC 15 - GT STRNG - Vergleich STRING auf größer

Beschreibung

Die Funktion FC 15 vergleicht die Inhalte zweier Variablen im STRING-Format auf größer und gibt das Vergleichsergebnis als Rückgabewert aus. Der Rückgabewert führt Signalzustand "1", wenn die Zeichenkette am Parameter *S1* größer als die Zeichenkette am Parameter *S2* ist. Die Zeichen werden beginnend von links über ihre ASCII-Codierung verglichen (z.B. ist 'a' größer als 'A'). Das erste unterschiedliche Zeichen entscheidet über das Vergleichsergebnis. Ist der linke Teil der längeren Zeichenkette identisch mit der kürzeren Zeichenkette, gilt die längere Zeichenkette als größer. Die Funktion meldet keine Fehler.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung	
S1 ¹	INPUT	STRING	D, L	Eingangsvariable im Format STRING	
S2 ¹	INPUT	STRING	D, L	Eingangsvariable im Format STRING	
RET_VAL	OUTPUT	BOOL	E, A, M, D, L	Vergleichsergebnis	
1) Parameter kann nur mit einer symbolisch definierten Variablen belegt werden.					

15.2.17 FC 16 - I STRNG - Formatwandlung INT nach STRING

Beschreibung

Die Funktion FC 16 wandelt eine Variable im INT-Format in eine Zeichenkette um. Die Zeichenkette wird mit einem führenden Vorzeichen dargestellt. Ist die am Rückgabeparameter angegebene Variable zu kurz, findet keine Wandlung statt und das BIE-Bit wird auf "0" gesetzt.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
Γ	INPUT	INT	E, A, M, D, L, Konstante	Eingangswert
RET_VAL ¹	OUTPUT	STRING	D, L	Ergebniszeichenkette
1) Parameter kann nur mit einer symbolisch definierten Variablen belegt werden.				

IEC-Funktionen - "IEC" > FC 18 - LE DT - Vergleich DT auf kleiner oder gleich

15.2.18 FC 17 - INSERT - Einfügen in eine STRING-Variable

Beschreibung

Die Funktion FC 17 fügt die Zeichenkette am Parameter *IN2* in die Zeichenkette am Parameter *IN1* nach dem *P*. Zeichen ein.

- Ist P gleich Null, wird die zweite Zeichenkette vor der ersten Zeichenkette eingefügt.
- Ist P größer als die aktuelle Länge der ersten Zeichenkette, wird die zweite Zeichenkette an die erste angehängt.
- Ist *P* negativ, wird ein Leerstring ausgegeben und das BIE-Bit auf "0" gesetzt. Das BIE-Bit wird auch auf "0" gesetzt, wenn die Ergebniszeichenkette länger ist als die am Ausgangsparameter angegebene Variable; in diesem Fall wird die Ergebniszeichenkette auf die maximal eingerichtete Länge begrenzt.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung		
IN1 ¹	INPUT	STRING	D, L	STRING-Variable, in die eingefügt wird		
IN2 ¹	INPUT	STRING	D, L	einzufügende STRING-Variable		
Р	INPUT	INT	E, A, M, D, L,	Einfügeposition		
			Konstante			
RET_VAL ¹	OUTPUT	STRING	D, L	Ergebniszeichenkette		
1) Parameter kann nur m	1) Parameter kann nur mit einer symholisch definierten Variablen belegt werden					

¹⁾ Parameter kann nur mit einer symbolisch definierten Variablen belegt werden.

15.2.19 FC 18 - LE DT - Vergleich DT auf kleiner oder gleich

Beschreibung

Die Funktion FC 18 vergleicht die Inhalte zweier Variablen im Format DATE_AND_TIME auf kleiner oder gleich und gibt das Vergleichsergebnis als Rückgabewert aus. Der Rückgabewert führt Signalzustand "1", wenn der Zeitpunkt am Parameter *DT1* kleiner (älter) ist als der Zeitpunkt am Parameter *DT2*, oder wenn beide Zeitpunkte gleich sind. Die Funktion meldet keine Fehler.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
DT1 ¹	INPUT	DATE_AND_TIME	D, L	Eingangsvariable im Format DT
DT2 ¹	INPUT	DATE_AND_TIME	D, L	Eingangsvariable im Format DT
RET_VAL ¹	OUTPUT	BOOL	E, A, M, D, L	Vergleichsergebnis
1) Parameter kann nur mit einer symbolisch definierten Variablen belegt werden.				

IEC-Funktionen - "IEC" > FC 20 - LEFT - Linker Teil einer STRING-Variable

15.2.20 FC 19 - LE STRNG - Vergleich STRING auf kleiner oder gleich

Beschreibung

Die Funktion FC 19 vergleicht die Inhalte zweier Variablen im STRING-Format auf kleiner oder gleich und gibt das Vergleichsergebnis als Rückgabewert aus. Der Rückgabewert führt Signalzustand "1", wenn die Zeichenkette am Parameter S1 kleiner oder gleich der Zeichenkette am Parameter S2 ist. Die Zeichen werden beginnend von links über ihre ASCII-Codierung verglichen (z.B. ist 'A' kleiner als 'a'). Das erste unterschiedliche Zeichen entscheidet über das Vergleichsergebnis. Ist der linke Teil der längeren Zeichenkette identisch mit der kürzeren Zeichenkette, gilt die kürzere Zeichenkette als kleiner. Die Funktion meldet keine Fehler.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
S1 ¹	INPUT	STRING	D, L	Eingangsvariable im Format STRING
S2 ¹	INPUT	STRING	D, L	Eingangsvariable im Format STRING
RET_VAL	OUTPUT	BOOL	E, A, M, D, L	Vergleichsergebnis
_	it ainan armahaliash dafinian	ten Variablen belegt werden	, , , , –	3 3 2

Parameter kann nur mit einer symbolisch definierten Variablen belegt werden.

15,2.21 FC 20 - LEFT - Linker Teil einer STRING-Variable

Beschreibung

Die Funktion FC 20 liefert die ersten L Zeichen einer Zeichenkette.

- Ist L größer als die aktuelle Länge der STRING-Variable, wird der Eingangswert zurückgeliefert.
- Bei L = 0 und bei einem Leerstring als Eingangswert wird ein Leerstring zurückgelie-
- Ist L negativ wird ein Leerstring ausgegeben und das BIE-Bit auf "0" gesetzt.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung	
IN ¹	INPUT	STRING	D, L	Eingangsvariable im Format STRING	
L	INPUT	INT	E, A, M, D, L, Konstante	Länge der linken Zeichenkette	
RET_VAL ¹	OUTPUT	STRING	D, L	Ausgangsvariable im Format STRING	
1) Parameter kann nur mit einer symbolisch definierten Variablen belegt werden.					

IEC-Funktionen - "IEC" > FC 22 - LIMIT - Begrenzer

15.2.22 FC 21 - LEN - Länge einer STRING-Variablen

Beschreibung

Eine STRING-Variable enthält zwei Längen:

- Maximale Länge
 - Sie wird bei der Definition der Variablen in eckigen Klammern vorgegeben.
- Aktuelle Länge
 - Das ist die Anzahl der momentan gültigen Zeichen.

Die aktuelle Länge ist kleiner oder gleich der maximalen Länge. Die Anzahl der durch eine Zeichenkette belegten Bytes ist um 2 größer als die maximale Länge. Die Funktion FC 21 gibt die aktuelle Länge einer Zeichenkette (Anzahl der gültigen Zeichen) als Rückgabewert aus. Ein Leerstring ('') hat die Länge Null. Die maximale Länge beträgt 254. Die Funktion meldet keine Fehler.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
S ¹	INPUT	STRING	D, L	Eingangsvariable im Format STRING
RET_VAL	OUTPUT	INT	E, A, M, D, L	Anzahl der aktuellen Zeichen
1) Parameter kann nur mit einer symbolisch definierten Variablen belegt werden.				

15.2.23 FC 22 - LIMIT - Begrenzer

Beschreibung

Die Funktion FC 22 begrenzt den Zahlenwert einer Variablen auf parametrierbare Grenzwerte.

- Als Eingangswerte sind Variablen vom Datentyp INT, DINT und REAL zugelassen.
- Alle parametrierten Variablen müssen vom gleichen Datentyp sein.
- Die Art der Variable wird über den ANY-Pointer erkannt.
- MN darf nicht größer sein als MX.
- Der Ausgangswert bleibt unverändert, und das BIE-Bit wird auf "0" gesetzt, wenn:
 - eine parametrierte Variable einen unzulässigen Datentyp hat.
 - alle parametrierten Variablen untereinander nicht den gleichen Datentyp haben.
 - der untere Grenzwert größer ist als der obere Grenzwert.
 - eine REAL-Variable keine gültige Gleitpunktzahl darstellt.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
MN	INPUT	ANY	E, A, M, D, L	Untergrenze
IN	INPUT	ANY	E, A, M, D, L	Eingangsvariable
MX	INPUT	ANY	E, A, M, D, L	Obergrenze
RET_VAL	OUTPUT	ANY	E, A, M, D, L	Begrenzte Ausgangsvariable

IEC-Funktionen - "IEC" > FC 24 - LT STRNG - Vergleich STRING auf kleiner

15.2.24 FC 23 - LT DT - Vergleich DT auf kleiner

Beschreibung

Die Funktion FC 23 vergleicht die Inhalte zweier Variablen im Format DATE_AND_TIME auf kleiner und gibt das Vergleichsergebnis als Rückgabewert aus. Der Rückgabewert führt Signalzustand "1", wenn der Zeitpunkt am Parameter *DT1* kleiner (älter) ist als der Zeitpunkt am Parameter *DT2*. Die Funktion meldet keine Fehler.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
DT1 ¹	INPUT	DATE_AND_TIME	D, L	Eingangsvariable im Format DT
DT2 ¹	INPUT	DATE_AND_TIME	D, L	Eingangsvariable im Format DT
RET_VAL	OUTPUT	BOOL	E, A, M, D, L	Vergleichsergebnis
1) Parameter kann nur mit einer symbolisch definierten Variablen belegt werden.				

15.2.25 FC 24 - LT STRNG - Vergleich STRING auf kleiner

Beschreibung

Die Funktion FC 24 vergleicht die Inhalte zweier Variablen im STRING-Format auf kleiner und gibt das Vergleichsergebnis als Rückgabewert aus. Der Rückgabewert führt Signalzustand "1", wenn die Zeichenkette am Parameter *S1* kleiner als die Zeichenkette am Parameter *S2* ist. Die Zeichen werden beginnend von links über ihre ASCII-Codierung verglichen (z.B. ist 'A' kleiner als 'a'). Das erste unterschiedliche Zeichen entscheidet über das Vergleichsergebnis. Ist der linke Teil der längeren Zeichenkette identisch mit der kürzeren Zeichenkette, gilt die kürzere Zeichenkette als kleiner. Die Funktion meldet keine Fehler.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
S1 ¹	INPUT	STRING	D, L	Eingangsvariable im Format STRING
S2 ¹	INPUT	STRING	D, L	Eingangsvariable im Format STRING
RET_VAL	OUTPUT	BOOL	E, A, M, D, L	Vergleichsergebnis
1) Parameter kann nur mit einer symbolisch definierten Variablen belegt werden.				

IEC-Funktionen - "IEC" > FC 25 - MAX - Maximumauswahl

15.2.26 FC 25 - MAX - Maximumauswahl

Beschreibung

Die Funktion FC 25 wählt aus drei numerischen Variablenwerten den größten aus.

- Als Eingangswerte sind Variablen vom Datentyp INT, DINT und REAL zugelassen.
- Alle parametrierten Variablen müssen vom gleichen Datentyp sein.
- Die Art der Variable wird über den ANY-Pointer erkannt.
- Der Ausgangswert bleibt unverändert, und das BIE-Bit wird auf "0" gesetzt, wenn:
 - eine parametrierte Variable einen unzulässigen Datentyp hat.
 - alle parametrierten Variablen untereinander nicht den gleichen Datentyp haben.
 - eine REAL-Variable keine gültige Gleitpunktzahl darstellt.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
IN1	INPUT	ANY	E, A, M, D, L	1. Eingangswert
IN2	INPUT	ANY	E, A, M, D, L	2. Eingangswert
IN3	INPUT	ANY	E, A, M, D, L	3. Eingangswert
RET_VAL	OUTPUT	ANY	E, A, M, D, L	Größter der Eingangswerte

Die zugelassenen Datentypen INT, DINT und REAL müssen im ANY-Pointer angegeben werden. Parameter wie "MD20" sind ebenfalls zulässig; dazu muss "MD20" aber in "Symbol" mit dem entsprechenden Datentyp definiert werden.

Beispiel in AWL:

CALL FC 25

IN1 := P#M 10.0 DINT 1

IN2 := MD20

IN3 := P#DB1.DBX 0.0 DINT 1

RET_VAL := P#M 40.0 DINT 1

= M 0.0

IEC-Funktionen - "IEC" > FC 27 - MIN - Minimumauswahl

15.2.27 FC 26 - MID - Mittlerer Teil einer STRING-Variablen

Beschreibung

Die Funktion FC 26 liefert den mittleren Teil einer Zeichenkette (*L* Zeichen ab dem *P*. Zeichen einschließlich).

- Geht die Summe aus L und (P-1) über die aktuelle Länge der STRING-Variable hinaus, wird eine Zeichenkette ab dem P. Zeichen bis zum Ende des Eingangswerts geliefert.
- In allen anderen Fällen (*P* liegt außerhalb der aktuellen Länge, *P* und/oder *L* gleich Null oder negativ) wird ein Leerstring ausgegeben und das BIE-Bit auf "0" gesetzt.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
IN ¹	INPUT	STRING	D, L	Eingangsvariable im Format STRING
L	INPUT	INT	E, A, M, D, L, Konstante	Länge der mittleren Zeichenkette
Р	INPUT	INT	E, A, M, D, L, Konstante	Position des ersten Zeichens
RET_VAL ¹	OUTPUT	STRING	D, L	Ausgangsvariable im Format STRING
1) Parameter kann nur m	nit einer symbolisch definie	rten Variablen belegt werden.		

15.2.28 FC 27 - MIN - Minimumauswahl

Beschreibung

Die Funktion FC 27 wählt aus drei numerischen Variablenwerten den kleinsten aus.

- Als Eingangswerte sind Variablen vom Datentyp INT, DINT und REAL zugelassen.
- Alle parametrierten Variablen müssen vom gleichen Datentyp sein.
- Die Art der Variable wird über den ANY-Pointer erkannt.
- Der Ausgangswert bleibt unverändert, und das BIE-Bit wird auf "0" gesetzt, wenn:
 - eine parametrierte Variable einen unzulässigen Datentyp hat.
 - alle parametrierten Variablen untereinander nicht den gleichen Datentyp haben.
 - eine REAL-Variable keine gültige Gleitpunktzahl darstellt.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
IN1	INPUT	ANY	E, A, M, D, L	1. Eingangswert
IN2	INPUT	ANY	E, A, M, D, L	2. Eingangswert
IN3	INPUT	ANY	E, A, M, D, L	3. Eingangswert
RET_VAL	OUTPUT	ANY	E, A, M, D, L	Kleinster der Eingangswerte

Die zugelassenen Datentypen INT, DINT und REAL müssen im ANY-Pointer angegeben werden. Parameter wie "MD20" sind ebenfalls zulässig; dazu muss "MD20" aber in "Symbol" mit dem entsprechenden Datentyp definiert werden. IEC-Funktionen - "IEC" > FC 29 - NE STRNG - Vergleich STRING auf ungleich

Beispiel in AWL: CALL FC 27

IN1 := P#M 10.0 DINT 1

IN2 := MD20

IN3 := P#DB1.DBX 0.0 DINT 1
RET VAL := P#M 40.0 DINT 1

= M 0.0

15.2.29 FC 28 - NE_DT - Vergleich DT auf ungleich

Beschreibung

Die Funktion FC 28 vergleicht die Inhalte zweier Variablen im Format DATE_AND_TIME auf ungleich und gibt das Vergleichsergebnis als Rückgabewert aus. Der Rückgabewert führt Signalzustand "1", wenn der Zeitpunkt am Parameter *DT1* ungleich dem Zeitpunkt am Parameter *DT2* ist. Die Funktion meldet keine Fehler.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
DT1 ¹	INPUT	DATE_AND_TIME	D, L	Eingangsvariable im Format DT
DT2 ¹	INPUT	DATE_AND_TIME	D, L	Eingangsvariable im Format DT
RET_VAL	OUTPUT	BOOL	E, A, M, D, L	Vergleichsergebnis
1) Parameter kann nur mit einer symbolisch definierten Variablen belegt werden.				

15.2.30 FC 29 - NE STRNG - Vergleich STRING auf ungleich

Beschreibung

Die Funktion FC 29 vergleicht die Inhalte zweier Variablen im STRING-Format auf ungleich und gibt das Vergleichsergebnis als Rückgabewert aus. Der Rückgabewert führt Signalzustand "1", wenn die Zeichenkette am Parameter *S1* ungleich der Zeichenkette am Parameter *S2* ist. Die Funktion meldet keine Fehler.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
S1 ¹	INPUT	STRING	D, L	Eingangsvariable im Format STRING
S2 ¹	INPUT	STRING	D, L	Eingangsvariable im Format STRING
RET_VAL	OUTPUT	BOOL	E, A, M, D, L	Vergleichsergebnis
1) Parameter kann nur mit einer symbolisch definierten Variablen belegt werden.				

IEC-Funktionen - "IEC" > FC 31 - REPLACE - Ersetzen in einer STRING-Variable

15.2.31 FC 30 - R STRNG - Formatwandlung REAL nach STRING

Beschreibung

Die Funktion FC 30 wandelt eine Variable im REAL-Format in eine Zeichenkette um.

- Die Zeichenkette wird mit 14 Stellen dargestellt:
 - ±v.nnnnnnnE±xx
 - ±: Vorzeichen
 - v: 1 Vorkommastelle
 - n: 7 Nachkommastellen
 - x: 2 Exponentenstellen
- Ist die am Rückgabeparameter angegebene Variable zu kurz oder liegt am Parameter IN keine gültige Gleitpunktzahl an, findet keine Wandlung statt und das BIE-Bit wird auf "0" gesetzt.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
IN	INPUT	REAL	E, A, M, D, L, Konstante	Eingangswert
RET_VAL ¹	OUTPUT	STRING	D, L	Ergebniszeichenkette
1) Parameter kann nur mit einer symbolisch definierten Variablen belegt werden.				

15.2.32 FC 31 - REPLACE - Ersetzen in einer STRING-Variable

Beschreibung

Die Funktion FC 31 ersetzt die Anzahl von L Zeichen der ersten Zeichenkette IN1 ab dem P. Zeichen (einschließlich) durch die vollständige zweite Zeichenkette IN2.

- Ist L gleich Null und P ungleich Null, wird die erste Zeichenkette zurückgeliefert.
- Ist *L* gleich Null und *P* gleich Null, wird die zweite Zeichenkette der ersten Zeichenkette vorangestellt.
- Ist L ungleich Null und P gleich Null oder Eins, wird ab dem 1. Zeichen (einschließlich) ersetzt.
- Liegt P außerhalb der ersten Zeichenkette, wird die zweite Zeichenkette an die erste Zeichenkette angehängt.
- Ist L und/oder P negativ wird ein Leerstring ausgegeben und das BIE-Bit auf "0" gesetzt. Das BIE-Bit wird auch auf "0" gesetzt, wenn die Ergebniszeichenkette länger ist als die am Ausgangsparameter angegebene Variable ist; in diesem Fall wird die Ergebniszeichenkette auf die maximal eingerichtete Länge begrenzt.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung	
IN1 ¹	INPUT	STRING	D, L	STRING-Variable, in die eingesetzt wird	
IN2 ¹	INPUT	STRING	D, L	einzusetzende STRING-Variable	
L	INPUT	INT	E, A, M, D, L, Konstante	Anzahl der zu ersetzenden Zeichen	
Р	INPUT	INT	E, A, M, D, L, Konstante	Position des 1. ersetzten Zeichens	
RET_VAL ¹	OUTPUT	STRING	D, L	Ergebniszeichenkette	
1) Parameter kann nur mit einer symbolisch definierten Variablen belegt werden.					

IEC-Funktionen - "IEC" > FC 34 - SB_DT_DT - Zwei Zeitpunkte subtrahieren

15.2.33 FC 32 - RIGHT - Rechter Teil einer STRING-Variable

Beschreibung

Die Funktion FC 32 liefert die letzten L Zeichen einer Zeichenkette.

- Ist L größer als die aktuelle Länge der STRING-Variable, wird der Eingangswert zurückgeliefert.
- Bei L = 0 und bei einem Leerstring als Eingangswert wird ein Leerstring zurückgeliefert
- Ist *L* negativ, wird ein Leerstring ausgegeben und das Binärergebnis BIE auf "0" gesetzt.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung		
IN ¹	INPUT	STRING	D, L	Eingangsvariable im Format STRING		
L	INPUT	INT	E, A, M, D, L, Konstante	Länge der rechten Zeichenkette		
RET_VAL ¹	OUTPUT	STRING	D, L	Ausgangsvariable im Format STRING		
1) Parameter kann nur m	1) Parameter kann nur mit einer symbolisch definierten Variablen belegt werden.					

15.2.34 FC 33 - S5TI TIM - Formatwandlung S5TIME nach TIME

Beschreibung

Die Funktion FC 33 wandelt das Datenformat S5TIME in das Datenformat TIME um. Liegt das Ergebnis der Wandlung außerhalb des TIME-Zahlenbereichs, wird das Ergebnis auf den entsprechenden Wert begrenzt und das Binärergebnis BIE auf "0" gesetzt.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
IN	INPUT	S5TIME	E, A, M, D, L, Konstante	Eingangsvariable im Format S5TIME
RET_VAL	OUTPUT	TIME	E, A, M, D, L	Rückgabewert im Format TIME

15.2.35 FC 34 - SB_DT_DT - Zwei Zeitpunkte subtrahieren

Beschreibung

Die Funktion FC 34 subtrahiert zwei Zeitpunkte *DTx* (Datum und Uhrzeit) und liefert als Ergebnis eine Zeitdauer (Uhrzeit). Die Zeitpunkte *DTx* müssen in Bereich DT#1990-01-01-00:00:00:00 ... DT#2089-12-31-23:59:59.999 liegen. Die Funktion führt keine Eingangsprüfung durch. Es gilt:

- Ist DT1 > DT2, so ist das Ergebnis positiv.
- Ist DT1 < DT2, so ist das Ergebnis negativ.</p>
- Liegt das Ergebnis der Subtraktion außerhalb des TIME-Zahlenbereichs, wird das Ergebnis auf den entsprechenden Wert begrenzt und das Binärergebnis BIE auf "0" gesetzt.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung	
DT1 ¹	INPUT	DATE_AND_TIME	D, L	1. Zeitpunkt im Format DT	
DT2 ¹	INPUT	DATE_AND_TIME	D, L	2. Zeitpunkt im Format DT	
RET_VAL OUTPUT TIME E, A, M, D, L Differenz im Format TIME					
1) Parameter kann nur mit einer symbolisch definierten Variablen belegt werden.					

IEC-Funktionen - "IEC" > FC 36 - SEL - Binärauswahl

15.2.36 FC 35 - SB DT TM - Zeitdauer von einem Zeitpunkt subtrahieren

Beschreibung

Die Funktion FC 35 subtrahiert eine Zeitdauer *D* (Uhrzeit) von einem Zeitpunkt (Datum und Uhrzeit) und liefert als Ergebnis einen neuen Zeitpunkt (Datum und Uhrzeit). Der Zeitpunkt *T* muss im Bereich DT#1990-01-01-00:00:00:00:00 ... DT#2089-12-31-23:59:59:999 liegen. Die Funktion führt keine Eingangsprüfung durch. Liegt das Ergebnis der Subtraktion nicht im oben angegebenen Bereich, wird das Ergebnis auf den entsprechenden Wert begrenzt und das Binärergebnis BIE auf "0" gesetzt.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung	
T ¹	INPUT	DATE_AND_TIME	D, L	Zeitpunkt im Format DT	
D	INPUT	TIME	E, A, M, D, L, Konstante	Zeitdauer im Format TIME	
RET_VAL ¹	OUTPUT	DATE_AND_TIME	D, L	Differenz im Format DT	
1) Parameter kann nur mit einer symbolisch definierten Variablen belegt werden.					

15.2.37 FC 36 - SEL - Binärauswahl

Beschreibung

Die Funktion FC 36 wählt abhängig von einem Schalter *G* einen aus zwei Variablenwerten aus.

- Als Eingangswerte an den Parametern INO und IN1 sind Variablen mit allen Datentypen zugelassen, die der Datenbreite Bit, Byte, Wort und Doppelwort entsprechen (nicht Datentyp DT und STRING).
- *INO*, *IN1* und *RET_VAL* müssen vom gleichen Datentyp sein.
- Der Ausgangswert bleibt unverändert, und das BIE-Bit wird auf "0" gesetzt, wenn:
 - eine parametrierte Variable einen unzulässigen Datentyp hat.
 - alle parametrierten Variablen untereinander nicht den gleichen Datentyp haben.
 - eine REAL-Variable keine gültige Gleitpunktzahl darstellt.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
G	INPUT	BOOL	E, A, M, D, L,	Auswahlschalter
			Konstante	
IN0	INPUT	ANY	E, A, M, D, L	1. Eingangswert
IN1	INPUT	ANY	E, A, M, D, L	2. Eingangswert
RET_VAL	OUTPUT	ANY	E, A, M, D, L	Ausgewählter Eingangswert

IEC-Funktionen - "IEC" > FC 38 - STRNG I - Formatwandlung STRING nach INT

15.2.38 FC 37 - STRNG DI - Formatwandlung STRING nach DINT

Beschreibung

Die Funktion FC 37 wandelt eine Zeichenkette in eine Variable im Format DINT um

- Das erste Zeichen in der Zeichenkette darf ein Vorzeichen oder eine Ziffer sein, die dann folgenden Zeichen müssen aus Ziffern bestehen.
- Ist die L\u00e4nge der Zeichenkette Null oder gr\u00f6\u00der als 11 oder befinden sich unerlaubte Zeichen in der Zeichenkette, findet keine Wandlung statt und das BIE-Bit wird auf "0" gesetzt.
- Liegt das Ergebnis der Wandlung außerhalb des DINT-Zahlenbereichs, wird das Ergebnis auf den entsprechenden Wert begrenzt und das Binärergebnis BIE auf "0" gesetzt.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung	
S ¹	INPUT	STRING	D, L	Eingangszeichenkette	
RET_VAL	OUTPUT	DINT	E, A, M, D, L	Ergebnis	
1) Parameter kann nur mit einer symbolisch definierten Variablen belegt werden.					

15.2.39 FC 38 - STRNG_I - Formatwandlung STRING nach INT

Beschreibung

Die Funktion FC 38 wandelt eine Zeichenkette in eine Variable im Format INT um.

- Das erste Zeichen in der Zeichenkette darf ein Vorzeichen oder eine Ziffer sein, die dann folgenden Zeichen müssen aus Ziffern bestehen.
- Ist die L\u00e4nge der Zeichenkette Null oder gr\u00f6\u00der als 6 oder befinden sich unerlaubte Zeichen in der Zeichenkette, findet keine Wandlung statt und das BIE-Bit wird auf "0" gesetzt.
- Liegt das Ergebnis der Wandlung außerhalb des INT-Zahlenbereichs, wird das Ergebnis auf den entsprechenden Wert begrenzt und das Binärergebnis BIE auf "0" gesetzt.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung	
S ¹	INPUT	STRING	D, L	Eingangszeichenkette	
RET_VAL	OUTPUT	INT	E, A, M, D, L	Ergebnis	
1) Parameter kann nur mit einer symbolisch definierten Variablen belegt werden.					

IEC-Funktionen - "IEC" > FC 40 - TIM S5TI - Formatwandlung TIME nach S5TIME

15.2.40 FC 39 - STRNG R - Formatwandlung STRING nach REAL

Beschreibung

Die Funktion FC 39 wandelt eine Zeichenkette in eine Variable im Format REAL um.

■ Die Zeichenkette muss in folgendem Format vorliegen:

±v.nnnnnnnE±xx

- ±: Vorzeichen
- v: 1 Vorkommastellen
- n: 7 Nachkommastellen
- x: 2 Exponentenstellen
- Ist die L\u00e4nge der Zeichenkette kleiner als 14 oder ist sie nicht wie oben gezeigt aufgebaut, findet keine Wandlung statt und das BIE-Bit wird auf "0" gesetzt.
- Liegt das Ergebnis der Wandlung außerhalb des REAL-Zahlenbereichs, wird das Ergebnis auf den entsprechenden Wert begrenzt und das Binärergebnis BIE auf "0" gesetzt.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung	
S ¹	INPUT	STRING	D, L	Eingangszeichenkette	
RET_VAL	OUTPUT	REAL	E, A, M, D, L	Ergebnis	
1) Parameter kann nur mit einer symbolisch definierten Variablen belegt werden.					

15.2.41 FC 40 - TIM S5TI - Formatwandlung TIME nach S5TIME

Beschreibung

Die Funktion FC 40 wandelt das Datenformat TIME in das Format S5TIME um. Hierbei wird immer abgerundet. Ist der Eingangsparameter größer als das darstellbare S5TIME-Format (TIME#02:46:30.000), wird als Ergebnis S5TIME#999.3 ausgegeben und das Binärergebnis BIE auf "0" gesetzt.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
IN	INPUT	TIME	E, A, M, D, L, Konstante	Eingangsvariable im Format TIME
RET_VAL	OUTPUT	S5TIME	E, A, M, D, L	Rückgabewert im Format S5TIME

Ein-/Ausgabe - "IO" > FB 20 - GETIO - PROFIBUS/PROFINET alle Eingänge lesen

15.3 Ein-/Ausgabe - "IO"

15.3.1 FB 20 - GETIO - PROFIBUS/PROFINET alle Eingänge lesen

Beschreibung

Mit dem FB 20 GETIO lesen Sie alle Eingänge eines PROFIBUS-DP-Slave / PROFINET IO-Devices konsistent aus. Der FB 20 ruft dabei die SFC 14 DPRD_DAT auf. Falls bei der Datenübertragung kein Fehler auftrat, werden die gelesenen Daten in den durch *INPUTS* aufgespannten Zielbereich eingetragen. Der Zielbereich muss dieselbe Länge aufweisen, die Sie für die selektierte Komponente projektiert haben. Bei einem PRO-FIBUS-DP-Slave mit modularem Aufbau bzw. mit mehreren DP-Kennungen können Sie mit einem FB 20-Aufruf jeweils nur auf die Daten einer Komponente / DP-Kennung unter der projektierten Anfangsadresse zugreifen.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
ID	INPUT	DWORD	E, A, M, D, L, Konstante	 low word: logische Adresse der DP-Slave- / PROFINET-IO-Komponente (Baugruppe bzw. Modul) high word: irrelevant
STATUS	OUTPUT	DWORD	E, A, M, D, L	enthält die Fehlerinformation der SFC 14 DPRD_DAT in der Form DW#16#40xxxx00
LEN	OUTPUT	INT	E, A, M, D, L	Anzahl der gelesenen Daten in Bytes
INPUTS	IN_OUT	ANY	E, A, M, D	Zielbereich für die gelesenen Daten. Er muss genauso lang sein, wie Sie für die selektierte DP-Slave- / PROFINET-IO-Kom- ponente projektiert haben. Es ist nur der Datentyp BYTE zulässig.

Fehlerinformationen

Siehe SFC 14 - DPRD_DAT - Konsistente Nutzdaten lesen. → 762

Ein-/Ausgabe - "IO" > FB 21 - SETIO - PROFIBUS/PROFINET alle Ausgänge schreiben

15.3.2 FB 21 - SETIO - PROFIBUS/PROFINET alle Ausgänge schreiben

Beschreibung

Mit dem FB 21 SETIO übertragen Sie die Daten aus dem durch *OUTPUTS* aufgespannten Quellbereich konsistent zum adressierten PROFIBUS-DP-Slave / PROFINET IO-Device und ggf. ins Prozessabbild (nämlich dann, wenn Sie den betroffenen Adressbereich des DP-Normslaves als Konsistenzbereich in einem Prozessabbild projektiert haben). Der FB 21 ruft dabei die SFC 15 DPWR_DAT auf. Der Quellbereich muss dieselbe Länge aufweisen, die Sie für die selektierte Komponente projektiert haben. Bei einem DP-Normslave mit modularem Aufbau bzw. mit mehreren DP-Kennungen können Sie mit einem FB 20-Aufruf nur auf eine Komponente / DP-Kennung des DP-Slaves zugreifen.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
ID	INPUT	DWORD	E, A, M, D, L, Konstante	 Low word: logische Adresse der DPSlave- / PROFINET-IO-Komponente (Baugruppe bzw. Modul) High word: irrelevant
LEN	INPUT	INT	E, A, M, D, L	Irrelevant
STATUS	OUTPUT	DWORD	E, A, M, D, L	enthält die Fehlerinformation der SFC 15 DPWR_DAT in der Form DW#16#40xxxx00
OUTPUTS	IN_OUT	ANY	E, A, M, D	Quellbereich für die zu schreibenden Daten. Er muss genauso lang sein, wie Sie für die selektierte DP-Slave- / PROFINET-IO-Komponente projektiert haben. Es ist nur der Datentyp BYTE zulässig.

Fehlerinformationen

Siehe SFC 15 - DPWR_DAT - Konsistente Nutzdaten schreiben. → 763

Ein-/Ausgabe - "IO" > FB 22 - GETIO PART - PROFIBUS/PROFINET Teil-Eingänge lesen

15.3.3 FB 22 - GETIO PART - PROFIBUS/PROFINET Teil-Eingänge lesen

Beschreibung

Mit dem FB 22 GETIO_PART lesen Sie konsistent einen Teil des zu einem PROFIBUS-DP-Slave / PROFINET IO-Device gehörenden Prozessabbildbereichs. Der FB 22 ruft dabei die SFC 81 UBLKMOV auf.

ĭ

Sie müssen dem OB, in dem der FB 22 GETIO_PART aufgerufen wird, ein Teilprozessabbild der Eingänge zuordnen. Sie müssen weiterhin vor Aufruf des FB 22 den zugehörigen PROFIBUS-DP-Slave bzw. das zugehörige PROFINET IO-Device in dieses Teilprozessabbild der Eingänge aufnehmen. Falls Ihre CPU keine Teilprozessabbilder kennt oder Sie den FB 22 im OB 1 aufrufen wollen, müssen Sie vor Aufruf des FB 22 den zugehörigen PROFIBUS-DP-Slave bzw. das zugehörige PROFINET IO-Device in das Prozessabbild der Eingänge aufnehmen. Über die Parameter OFFSET und LEN legen Sie die auszulesende Teilmenge des Prozessabbildbereichs der über ID adressierten Komponente fest. Falls bei der Datenübertragung kein Fehler auftrat, erhält ERROR den Wert FALSE, und die gelesenen Daten werden in den durch INPUTS aufgespannten Zielbereich eingetragen. Falls bei der Datenübertragung ein Fehler auftrat, erhält ERROR den Wert TRUE, und STATUS erhält die Fehlerinformation der SFC 81 UBLKMOV. Falls der Zielbereich (Parameter INPUTS) kleiner ist als LEN, werden so viele Bytes übertragen, wie INPUTS aufnehmen kann. ERROR erhält den Wert FALSE. Falls der Zielbereich größer ist als LEN, werden die ersten LEN Bytes des Zielbereichs beschrieben. ERROR erhält den Wert FALSE.

ĭ

Der FB 22 GETIO_PART überprüft im Prozessabbild der Eingänge keine Grenzen zwischen Daten, die zu verschiedenen PROFIBUS-DP- bzw. PROFINET IO- Komponenten gehören. Sie müssen daher selbst darauf achten, dass der über OFFSET und LEN festgelegte Prozessabbildbereich zu einer Komponente gehört. Das Komponenten übergreifende Lesen kann für zukünftige Systeme nämlich nicht garantiert werden und gefährdet die Übertragbarkeit auf Systeme anderer Hersteller.

Ein-/Ausgabe - "IO" > FB 22 - GETIO_PART - PROFIBUS/PROFINET Teil-Eingänge lesen

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
ID	INPUT	DWORD	E, A, M, D, L, Konstante	 Low word: logische Adresse der DP-Slave- / PROFINET-IO-Komponente (Baugruppe bzw. Modul) High word: irrelevant
OFFSET	INPUT	INT	E, A, M, D, L, Konstante	Nummer des ersten zu lesenden Bytes im Prozessabbild der Komponente (kleinstmöglicher Wert: 0)
LEN	INPUT	INT	E, A, M, D, L, Konstante	Anzahl der zu lesenden Bytes
STATUS	OUTPUT	DWORD	E, A, M, D, L	enthält die Fehlerinformation der SFC 81 UBLKMOV in der Form DW#16#40xxxx00, falls <i>ERROR</i> = TRUE
ERROR	OUTPUT	BOOL	E, A, M, D, L	Fehleranzeige:
				ERROR = TRUE, falls beim Aufruf der SFC 81 UBLKMOV ein Fehler auftritt.
INPUTS	IN_OUT	ANY	E, A, M, D	Zielbereich für die gelesenen Daten:
				 Falls der Zielbereich kleiner ist als LEN, werden so viele Bytes übertragen, wie INPUTS aufnehmen kann. ERROR erhält den Wert FALSE. Falls der Zielbereich größer ist als LEN, werden die ersten LEN Bytes des Zielbereichs beschrieben. ERROR erhält den Wert FALSE.

Fehlerinformationen

Siehe SFC 81 - UBLKMOV - Variable ununterbrechbar kopieren. → 820

Ein-/Ausgabe - "IO" > FB 23 - SETIO PART - PROFIBUS/PROFINET Teil-Ausgänge schreiben

15.3.4 FB 23 - SETIO PART - PROFIBUS/PROFINET Teil-Ausgänge schreiben

Beschreibung

Mit dem FB 23 SETIO_PART übertragen Sie die Daten aus dem durch *OUTPUTS* aufgespannten Quellbereich konsistent in einen Teil des zu einem PROFIBUS-DP-Slave / PROFINET IO-Device gehörenden Prozessabbildbereichs. Der FB 23 ruft dabei die SFC 81 UBLKMOV auf.

Ĭ

Sie müssen dem OB, in dem der FB 23 SETIO_PART aufgerufen wird, ein Teilprozessabbild der Ausgänge zuordnen. Sie müssen weiterhin vor Aufruf des FB 23 den zugehörigen PROFIBUS-DP-Slave bzw. das zugehörige PROFINET IO-Device in dieses Teilprozessabbild der Ausgänge aufnehmen. Falls Ihre CPU keine Teilprozessabbilder kennt oder Sie den FB 23 im OB 1 aufrufen wollen, müssen Sie vor Aufruf des FB 23 den zugehörigen PROFIBUS-DP-Slave bzw. das zugehörige PROFINET IO-Device in das Prozessabbild der Ausgänge aufnehmen. Über die Parameter OFFSET und LEN legen Sie die zu beschreibende Teilmenge des Prozessabbildbereichs der über ID adressierten Komponente fest. Falls bei der Datenübertragung kein Fehler auftrat, erhält ERROR den Wert FALSE. Falls bei der Datenübertragung ein Fehler auftrat, erhält ERROR den Wert TRUE, und STATUS erhält die Fehlerinformation der SFC 81 UBLKMOV. Falls der Quellbereich (Parameter OUTPUTS) kleiner ist als LEN, werden so viele Bytes übertragen, wie OUTPUTS enthält. ERROR erhält den Wert FALSE. Falls der Quellbereich größer ist als LEN, werden die ersten LEN Bytes aus OUTPUTS übertragen. ERROR erhält den Wert FALSE.

ĭ

Der FB 23 SETIO_PART überprüft im Prozessabbild der Ausgänge keine Grenzen zwischen Daten, die zu verschiedenen PROFIBUS-DP- bzw. PROFINET IO- Komponenten gehören. Sie müssen daher selbst darauf achten, dass der über OFFSET und LEN festgelegte Prozessabbildbereich zu einer Komponente gehört. Das Komponenten übergreifende Schreiben kann für zukünftige Systeme nämlich nicht garantiert werden und gefährdet die Übertragbarkeit auf Systeme anderer Hersteller.

Ein-/Ausgabe - "IO" > FB 23 - SETIO_PART - PROFIBUS/PROFINET Teil-Ausgänge schreiben

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
ID	INPUT	DWORD	E, A, M, D, L, Konstante	 Low word: logische Adresse der DP-Slave- / PROFINET-IO-Komponente (Baugruppe bzw. Modul) High word: irrelevant
OFFSET	INPUT	INT	E, A, M, D, L, Konstante	Nummer des ersten zu beschreibenden Bytes im Prozessabbild der Komponente (kleinstmöglicher Wert: 0)
LEN	INPUT	INT	E, A, M, D, L, Konstante	Anzahl der zu schreibenden Bytes
STATUS	OUTPUT	DWORD	E, A, M, D	enthält die Fehlerinformation der SFC 81 UBLKMOV in der Form DW#16#40xxxx00, falls <i>ERROR</i> = TRUE
ERROR	OUTPUT	BOOL	E, A, M, D	Fehleranzeige:
				ERROR = TRUE, falls beim Aufruf der SFC 81 UBLKMOV ein Fehler auftritt.
OUTPUTS	IN_OUT	ANY	E, A, M, D, L	Quellbereich für die zu schreibenden Daten:
				 Falls der Quellbereich kleiner ist als LEN, werden so viele Bytes übertragen, wie OUTPUTS enthält. ERROR erhält den Wert FALSE. Falls der Quellbereich größer ist als LEN, werden die ersten LEN Bytes aus OUTPUTS übertragen. ERROR erhält den Wert FALSE.

Fehlerinformationen

Siehe SFC 81 - UBLKMOV - Variable ununterbrechbar kopieren. → 820

S5-Konvertierung - "S5 Converting" > FC 112 - Sine(x) - Sinus

15.4 S5-Konvertierung - "S5 Converting"

15.4.1 FC 112 - Sine(x) - Sinus

Beschreibung

Die Funktion FC 112 erwartet den Eingangswert im AKKU 1 als Gleitpunktzahl.

- 1. Der Eingangswert muss im Bereich von Null (REAL = +0.0000000e+00) ... 2 x π (REAL = +0.6283185e+01) liegen.
- 2. Das Ergebnis legt die Funktion im AKKU 1 ebenfalls als Gleitpunktzahl ab.
- 3. Der Eingangswert DWORD = DW#16#0000 0000 wird wie der Gleitpunktwert Null (REAL = +0.0000000e+00 entsprechend DWORD = DW#16#8000 0000) behandelt.
 - ⇒ Bei ordnungsgemäß ausgeführter Berechnung ist das Verknüpfungsergebnis ENO nach dem Aufruf der Funktion gleich FALSE.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
EN	INPUT	BOOL	E, A, M, D, L	FreigabeeingangTRUE: aktiviert die FunktionFALSE: deaktiviert die Funktion
ENO	OUTPUT	BOOL	E, A, M, D, L	StatusTRUE: Ein Fehler ist aufgetreten

Fehlerinformation

Im Fehlerfall, wenn der Eingangswert nicht im Bereich von 0 ... 2 x π liegt, setzt die Funktion das Verknüpfungsergebnis *ENO* auf Status gleich TRUE. Dann bleibt der Inhalt von AKKU 1 unverändert. Die Belegung der restlichen Register und die der Hilfsmerker werden nicht verändert.

Diese FC wird nur dazu verwendet, den FB 101 eines bestehenden S5-Programms in eine FC eines S7-Programms umzuwandeln.

S5-Konvertierung - "S5 Converting" > FC 113 - Cosine(x) - Cosinus

15.4.2 FC 113 - Cosine(x) - Cosinus

Beschreibung

Die Funktion FC 113 erwartet den Eingangswert im AKKU 1 als Gleitpunktzahl.

- 1. Der Eingangswert muss im Bereich von Null (REAL = +0.00000000e+00) ... 2 x π (REAL = +0.6283185e+01) liegen.
- 2. Das Ergebnis legt die Funktion im AKKU 1 ebenfalls als Gleitpunktzahl ab.
- 3. Der Eingangswert DWORD = DW#16#0000 0000 wird wie der Gleitpunktwert Null (REAL = +0.0000000e+00 entsprechend DWORD = DW#16#8000 0000) behandelt.
 - ➡ Bei ordnungsgemäß ausgeführter Berechnung ist das Verknüpfungsergebnis ENO nach dem Aufruf der Funktion gleich FALSE.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
EN	INPUT	BOOL	E, A, M, D, L	FreigabeeingangTRUE: aktiviert die FunktionFALSE: deaktiviert die Funktion
ENO	OUTPUT	BOOL	E, A, M, D, L	StatusTRUE: Ein Fehler ist aufgetreten

Fehlerinformation

Im Fehlerfall, wenn der Eingangswert nicht im Bereich von 0 ... 2 x π liegt, setzt die Funktion das Verknüpfungsergebnis *ENO* auf Status gleich TRUE. Dann bleibt der Inhalt von AKKU 1 unverändert. Die Belegung der restlichen Register und die der Hilfsmerker werden nicht verändert.

Diese FC wird nur dazu verwendet, den FB 102 eines bestehenden S5-Programms in eine FC eines S7-Programms umzuwandeln. S5-Konvertierung - "S5 Converting" > FC 114 - Tangent(x) - Tangens

15.4.3 FC 114 - Tangent(x) - Tangens

Beschreibung

Die Funktion FC 114 erwartet den Eingangswert im AKKU 1 als Gleitpunktzahl.

- 1. Der Eingangswert muss im Bereich von Null (REAL = +0.00000000e+00) ... 2 x π (REAL = +0.6283185e+01) liegen.
- 2. Das Ergebnis legt die Funktion im AKKU 1 ebenfalls als Gleitpunktzahl ab.
- 3. Der Eingangswert DWORD = DW#16#0000 0000 wird wie der Gleitpunktwert Null (REAL = +0.0000000e+00 entsprechend DWORD = DW#16#8000 0000) behandelt.
 - ⇒ Bei ordnungsgemäß ausgeführter Berechnung ist das Verknüpfungsergebnis ENO nach dem Aufruf der Funktion gleich FALSE.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
EN	INPUT	BOOL	E, A, M, D, L	FreigabeeingangTRUE: aktiviert die FunktionFALSE: deaktiviert die Funktion
ENO	OUTPUT	BOOL	E, A, M, D, L	StatusTRUE: Ein Fehler ist aufgetreten

Fehlerinformation

Im Fehlerfall setzt die Funktion das Verknüpfungsergebnis *ENO* auf Status TRUE. Dann bleibt der Inhalt von AKKU 1 unverändert. Es liegt einer der folgenden Fehler vor:

- Der Eingangswert liegt nicht im Bereich 0 ... 2 x π.
- Während der Berechnung der Funktion ist ein Zahlenbereichsüberlauf aufgetreten.
- Der Eingangswert beträgt $\pi/2$ oder 3 x $\pi/2$. Dann ist der Funktionswert unendlich.

Die Belegung der restlichen Register und die der Hilfsmerker werden nicht verändert.

Diese FC wird nur dazu verwendet, den FB 103 eines bestehenden S5-Programms in eine FC eines S7-Programms umzuwandeln. S5-Konvertierung - "S5 Converting" > FC 115 - Cotangent(x) - Cotangens

15.4.4 FC 115 - Cotangent(x) - Cotangens

Beschreibung

Die Funktion FC 115 erwartet den Eingangswert im AKKU 1 als Gleitpunktzahl.

1. Der Eingangswert muss im Bereich von

REAL = +0.2938734e-34 ...

(fast) 2 x π (REAL = +0.6283184e+01) liegen.

- 2. Das Ergebnis legt die Funktion im AKKU 1 ebenfalls als Gleitpunktzahl ab.
- 3. Der Eingangswert DWORD = DW#16#0000 0000 wird wie der Gleitpunktwert Null (REAL = +0.0000000e+00 entsprechend DWORD = DW#16#8000 0000) behandelt.
 - ▶ Bei ordnungsgemäß ausgeführter Berechnung ist das Verknüpfungsergebnis ENO nach dem Aufruf der Funktion gleich FALSE.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
EN	INPUT	BOOL	E, A, M, D, L	FreigabeeingangTRUE: aktiviert die FunktionFALSE: deaktiviert die Funktion
ENO	OUTPUT	BOOL	E, A, M, D, L	StatusTRUE: Ein Fehler ist aufgetreten

Fehlerinformation

Im Fehlerfall setzt die Funktion das Verknüpfungsergebnis *ENO* auf Status TRUE. Dann bleibt der Inhalt von AKKU 1 unverändert. Es liegt einer der folgenden Fehler vor:

- Der Eingangswert liegt nicht im Bereich von REAL = +0.2938734e-34 und REAL = +0.6283184e+01
- Während der Berechnung der Funktion ist ein Zahlenbereichsüberlauf aufgetreten.
- Der Eingangswert beträgt 0 oder π oder 2 x π . Dann ist der Funktionswert unendlich.

Die Belegung der restlichen Register und die der Hilfsmerker werden nicht verändert.

Diese FC wird nur dazu verwendet, den FB 104 eines bestehenden S5-Programms in eine FC eines S7-Programms umzuwandeln. S5-Konvertierung - "S5 Converting" > FC 116 - Arc Sine(x) - Arcussinus

15.4.5 FC 116 - Arc Sine(x) - Arcussinus

Beschreibung

Die Funktion FC 116 erwartet den Eingangswert im AKKU 1 als Gleitpunktzahl.

- 1. Der Eingangswert muss im Bereich von
 - -1 (REAL = -0.1000000e+01) ... +1 (REAL = +0.1000000e+01) liegen.
- 2. Das Ergebnis legt die Funktion im AKKU 1 ebenfalls als Gleitpunktzahl ab.
- 3. Der Eingangswert DWORD = DW#16#0000 0000 wird wie der Gleitpunktwert Null (REAL = +0.0000000e+00 entsprechend DWORD = DW#16#8000 0000) behandelt.
 - ➡ Bei ordnungsgemäß ausgeführter Berechnung ist das Verknüpfungsergebnis ENO nach dem Aufruf der Funktion gleich FALSE.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
EN	INPUT	BOOL	E, A, M, D, L	FreigabeeingangTRUE: aktiviert die FunktionFALSE: deaktiviert die Funktion
ENO	OUTPUT	BOOL	E, A, M, D, L	StatusTRUE: Ein Fehler ist aufgetreten

Fehlerinformation

Im Fehlerfall, wenn der Eingangswert nicht im Bereich von -1 ... +1 liegt, setzt die Funktion das Verknüpfungsergebnis *ENO* auf Status gleich TRUE. Dann bleibt der Inhalt von AKKU 1 unverändert. Die Belegung der restlichen Register und die der Hilfsmerker werden nicht verändert.

Diese FC wird nur dazu verwendet, den FB 105 eines bestehenden S5-Programms in eine FC eines S7-Programms umzuwandeln. S5-Konvertierung - "S5 Converting" > FC 118 - Arc Tangent(x) - Arcustangens

15.4.6 FC 117 - Arc Cosine(x) - Arcuscosinus

Beschreibung

Die Funktion FC 117 erwartet den Eingangswert im AKKU 1 als Gleitpunktzahl.

- 1. Der Eingangswert muss im Bereich von
 - -1 (REAL = -0.1000000e+01) ... +1 (REAL = +0.1000000e+01) liegen.
- 2. Das Ergebnis legt die Funktion im AKKU 1 ebenfalls als Gleitpunktzahl ab.
- 3. Der Eingangswert DWORD = DW#16#0000 0000 wird wie der Gleitpunktwert Null (REAL = +0.0000000e+00 entsprechend DWORD = DW#16#8000 0000) behandelt.
 - ➡ Bei ordnungsgemäß ausgeführter Berechnung ist das Verknüpfungsergebnis ENO nach dem Aufruf der Funktion gleich FALSE.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
EN	INPUT	BOOL	E, A, M, D, L	FreigabeeingangTRUE: aktiviert die FunktionFALSE: deaktiviert die Funktion
ENO	OUTPUT	BOOL	E, A, M, D, L	StatusTRUE: Ein Fehler ist aufgetreten

Fehlerinformation

Im Fehlerfall, wenn der Eingangswert nicht im Bereich von -1 ... +1 liegt, setzt die Funktion das Verknüpfungsergebnis *ENO* auf Status gleich TRUE. Dann bleibt der Inhalt von AKKU 1 unverändert. Die Belegung der restlichen Register und die der Hilfsmerker werden nicht verändert.

Diese FC wird nur dazu verwendet, den FB 106 eines bestehenden S5-Programms in eine FC eines S7-Programms umzuwandeln.

15.4.7 FC 118 - Arc Tangent(x) - Arcustangens

Beschreibung

Die Funktion FC 118 erwartet den Eingangswert im AKKU 1 als Gleitpunktzahl.

- 1. Der Eingangswert muss im Bereich von
 - -1 (REAL = -0.1000000e+01) ... +1 (REAL = +0.1000000e+01) liegen.
- 2. Das Ergebnis legt die Funktion im AKKU 1 ebenfalls als Gleitpunktzahl ab.
- 3. Der Eingangswert DWORD = DW#16#0000 0000 wird wie der Gleitpunktwert Null (REAL = +0.0000000e+00 entsprechend DWORD = DW#16#8000 0000) behandelt.
- <u>4.</u> Bei einem Eingangswert größer als REAL = +0.1209486e+07 wird als Ergebnis $+\pi/2$ ausgegeben.

Bei einem Eingangswert kleiner als REAL = -0.5773456e+07 wird als Ergebnis - π /2 ausgegeben.

→ Das Verknüpfungsergebnis ENO wird auf Signalzustand FALSE gesetzt.

S5-Konvertierung - "S5 Converting" > FC 119 - Arc Cotangent(x) - Arcuscotangens

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
EN	INPUT	BOOL	E, A, M, D, L	FreigabeeingangTRUE: aktiviert die FunktionFALSE: deaktiviert die Funktion
ENO	OUTPUT	BOOL	E, A, M, D, L	StatusTRUE: Ein Fehler ist aufgetreten

Fehlerinformation

Im Fehlerfall, wenn der Eingangswert nicht im Bereich von -1 ... +1 liegt, setzt die Funktion das Verknüpfungsergebnis *ENO* auf Status gleich TRUE. Dann bleibt der Inhalt von AKKU 1 unverändert. Die Belegung der restlichen Register und die der Hilfsmerker werden nicht verändert.

Diese FC wird nur dazu verwendet, den FB 107 eines bestehenden S5-Programms in eine FC eines S7-Programms umzuwandeln.

15.4.8 FC 119 - Arc Cotangent(x) - Arcuscotangens

Beschreibung

Die Funktion FC 119 erwartet den Eingangswert im AKKU 1 als Gleitpunktzahl.

- 1. Der Eingangswert muss im Bereich von
 - -1 (REAL = -0.1000000e+01) ... +1 (REAL = +0.1000000e+01) liegen.
- 2. Das Ergebnis legt die Funktion im AKKU 1 ebenfalls als Gleitpunktzahl ab.
- 3. Der Eingangswert DWORD = DW#16#0000 0000 wird wie der Gleitpunktwert Null (REAL = +0.0000000e+00 entsprechend DWORD = DW#16#8000 0000) behandelt
- **4.** Bei einem Eingangswert größer als REAL = +1.209486e+07 wird als Ergebnis $+\pi/2$ ausgegeben.

Bei einem Eingangswert kleiner als REAL = -0.5773456e+07 wird als Ergebnis - π /2 ausgegeben.

→ Das Verknüpfungsergebnis ENO wird auf Signalzustand FALSE gesetzt.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
EN	INPUT	BOOL	E, A, M, D, L	FreigabeeingangTRUE: aktiviert die FunktionFALSE: deaktiviert die Funktion
ENO	OUTPUT	BOOL	E, A, M, D, L	StatusTRUE: Ein Fehler ist aufgetreten

S5-Konvertierung - "S5 Converting" > FC 120 - Naperian Logarithm In(x) - Natürlicher Logarithmus

Fehlerinformation

Im Fehlerfall, wenn der Eingangswert nicht im Bereich von -1 ... +1 liegt, setzt die Funktion das Verknüpfungsergebnis *ENO* auf Status gleich TRUE. Dann bleibt der Inhalt von AKKU 1 unverändert. Die Belegung der restlichen Register und die der Hilfsmerker werden nicht verändert.

Diese FC wird nur dazu verwendet, den FB 108 eines bestehenden S5-Programms in eine FC eines S7-Programms umzuwandeln.

15.4.9 FC 120 - Naperian Logarithm In(x) - Natürlicher Logarithmus

Beschreibung

Die Funktion FC 120 erwartet den Eingangswert im AKKU 1 als Gleitpunktzahl.

- 1. Der Eingangswert muss im Bereich von
 - -1 (REAL = -0.1000000e+01) bis + 1 (REAL = +0.1000000e+01) liegen.
- 2. Das Ergebnis legt die Funktion im AKKU 1 ebenfalls als Gleitpunktzahl ab.
- **3.** Bei ordnungsgemäß ausgeführter Berechnung ist das Verknüpfungsergebnis nach dem Aufruf der Funktion FALSE.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
EN	INPUT	BOOL	E, A, M, D, L	FreigabeeingangTRUE: aktiviert die FunktionFALSE: deaktiviert die Funktion
ENO	OUTPUT	BOOL	E, A, M, D, L	StatusTRUE: Ein Fehler ist aufgetreten

Fehlerinformation

Im Fehlerfall, wenn der Eingangswert kleiner oder gleich Null ist, setzt die Funktion das Verknüpfungsergebnis *ENO* von Status gleich TRUE. Dann bleibt der Inhalt von AKKU 1 unverändert. Die Belegung der restlichen Register und die der Hilfsmerker wird nicht verändert.

Diese FC wird nur dazu verwendet, den FB 109 eines bestehenden S5-Programms in eine FC eines S7-Programms umzuwandeln. S5-Konvertierung - "S5 Converting" > FC 122 - Gen. Logarithm to Base b - Allgemeiner Logarithmus log (x) zur Basis b

15.4.10 FC 121 - Decimal Logarithm Ig(x) - Dezimaler Logarithmus

Beschreibung

Die Funktion FC 121 erwartet den Eingangswert im AKKU 1 als Bit-Gleitpunktzahl.

- 1. Der Eingangswert muss im Bereich von
 - -1 (REAL = -0.1000000e+01) bis + 1 (REAL = +0.1000000e+01) liegen.
- 2. Das Ergebnis legt die Funktion im AKKU 1 ebenfalls als Gleitpunktzahl ab.
- **3.** Bei ordnungsgemäß ausgeführter Berechnung ist das Verknüpfungsergebnis nach dem Aufruf der Funktion FALSE.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
EN	INPUT	BOOL	E, A, M, D, L	FreigabeeingangTRUE: aktiviert die FunktionFALSE: deaktiviert die Funktion
ENO	OUTPUT	BOOL	E, A, M, D, L	StatusTRUE: Ein Fehler ist aufgetreten

Fehlerinformation

Im Fehlerfall, wenn der Eingangswert kleiner oder gleich Null ist, setzt die Funktion das Verknüpfungsergebnis *ENO* auf Status gleich TRUE. Dann bleibt der Inhalt von AKKU 1 unverändert. Die Belegung der restlichen Register und die der Hilfsmerker wird nicht verändert.

Diese FC wird nur dazu verwendet, den FB 110 eines bestehenden S5-Programms in eine FC eines S7-Programms umzuwandeln.

15.4.11 FC 122 - Gen. Logarithm to Base b - Allgemeiner Logarithmus log (x) zur Basis b

Beschreibung

Die Funktion FC 122 erwartet den Eingangswert für die Basis (b) im AKKU 2 und den Eingangswert für den Numerus (x) im AKKU 1 als Gleitpunktzahlen.

- **1.** Beide Eingangswerte müssen größer als Null sein; zusätzlich darf die Basis nicht den Wert +1 haben.
- **2.** Bei ordnungsgemäß ausgeführter Berechnung steht im AKKU 1 das Ergebnis als Gleitpunktzahl, im AKKU 2 der vorherige Inhalt von AKKU 3 und im AKKU 3 der vorherige Inhalt des AKKU 4. Der Inhalt von AKKU 4 wird nicht verändert. Die Belegung der Schmiermerker wird nicht verändert.
- Bei einer Berechnung ohne Fehler ist das Verknüpfungsergebnis *ENO* nach dem Aufruf der Funktion FALSE.

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
EN	INPUT	BOOL	E, A, M, D, L	FreigabeeingangTRUE: aktiviert die FunktionFALSE: deaktiviert die Funktion
ENO	OUTPUT	BOOL	E, A, M, D, L	StatusTRUE: Ein Fehler ist aufgetreten

S5-Konvertierung - "S5 Converting" > FC 123 - E to Power n - E hoch n

Fehlerinformation

Im Falle eines Fehlers, wenn einer der Eingangswerte kleiner oder gleich Null ist oder wenn die Basis den Wert +1 hat, setzt die Funktion das Verknüpfungsergebnis *ENO* auf den Signalzustand TRUE. Dann bleibt der Inhalt der AKKUs unverändert.

Diese FC wird nur dazu verwendet, den FB 111 eines bestehenden S5-Programms in eine FC eines S7-Programms umzuwandeln.

15.4.12 FC 123 - E to Power n - E hoch n

Beschreibung

Die Funktion FC 123 erwartet den Eingangswert im AKKU 1 als Gleitpunktzahl.

- Der Eingangswert DWORD = DW#16#0000 0000 wird wie der Gleitpunktwert Null (REAL = +0.0000000e+00 entsprechend DWORD = DW#16#8000 0000) behandelt.
- 2. Das Ergebnis legt die Funktion im AKKU 1 ebenfalls als Gleitpunktzahl ab.
- Bei ordnungsgemäß ausgeführter Berechnung ist das Verknüpfungsergebnis *ENO* nach dem Aufruf der Funktion FALSE.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
EN	INPUT	BOOL	E, A, M, D, L	FreigabeeingangTRUE: aktiviert die FunktionFALSE: deaktiviert die Funktion
ENO	OUTPUT	BOOL	E, A, M, D, L	StatusTRUE: Ein Fehler ist aufgetreten

Fehlerinformation

Im Fehlerfall, wenn der Eingangswert nicht im Bereich von REAL = -0.8802962e+02 ... REAL = +0.8802966e+02 liegt (dann würde der Funktionswert außerhalb des Zahlenbereichs liegen), setzt die Funktion das Verknüpfungsergebnis *ENO* auf den Signalzustand TRUE. Dann bleibt der Inhalt von AKKU 1 unverändert. Die Belegung der Hilfsmerker wird nicht verändert.

Diese FC wird nur dazu verwendet, den FB 112 eines bestehenden S5-Programms in eine FC eines S7-Programms umzuwandeln. S5-Konvertierung - "S5 Converting" > FC 125 - ACCU 2 to Power ACCU 1 - AKKU 2 hoch AKKU 1

15.4.13 FC 124 - 10 to Power n - 10 hoch n

Beschreibung

Die Funktion FC 124 erwartet den Eingangswert im AKKU 1 als Gleitpunktzahl.

- 1. Der Eingangswert DWORD = DW#16#0000 0000 wird wie der Gleitpunktwert Null (REAL = +0.0000000e+00 entsprechend DWORD = DW#16#8000 0000) behandelt.
- 2. Das Ergebnis legt die Funktion im AKKU 1 ebenfalls als Gleitpunktzahl ab.
- Bei ordnungsgemäß ausgeführter Berechnung ist das Verknüpfungsergebnis ENO nach dem Aufruf der Funktion FALSE.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
EN	INPUT	BOOL	E, A, M, D, L	FreigabeeingangTRUE: aktiviert die FunktionFALSE: deaktiviert die Funktion
ENO	OUTPUT	BOOL	E, A, M, D, L	StatusTRUE: Ein Fehler ist aufgetreten

Fehlerinformation

Im Fehlerfall, wenn der Eingangswert nicht im Bereich von REAL = -0.3823079e+02 ... REAL = + 0.3823080e+02 liegt (dann würde der Funktionswert außerhalb des Zahlenbereichs liegen), setzt die Funktion das Verknüpfungsergebnis auf den Signalzustand TRUE. Dann bleibt der Inhalt von AKKU 1 unverändert. Die Belegung der Hilfsmerker wird nicht verändert.

Diese FC wird nur dazu verwendet, den FB 113 eines bestehenden S5-Programms in eine FC eines S7-Programms umzuwandeln.

15.4.14 FC 125 - ACCU 2 to Power ACCU 1 - AKKU 2 hoch AKKU 1

Beschreibung

Die Funktion FC 125 erwartet den Eingangswert für die Basis im AKKU 2 und den Eingangswert für den Exponenten im AKKU 1, beide als Gleitpunktzahlen.

1. Der Eingangswert für die Basis muss positiv sein.

Ein Eingangswert DWORD = DW#16#0000 0000 wird wie der Gleitpunktwert Null (REAL = +0.0000000e+00 entsprechend DWORD = DW#16#8000 0000) behandelt.

Für Null hoch Null wird als Ergebnis Null ausgegeben.

- 2. Das Ergebnis der Berechnung steht als Gleitpunktzahl im AKKU 1.
- 3. Bei ordnungsgemäß ausgeführter Berechnung ist das Verknüpfungsergebnis *ENO* nach dem Aufruf der Funktion FALSE.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
EN	INPUT	BOOL	E, A, M, D, L	FreigabeeingangTRUE: aktiviert die FunktionFALSE: deaktiviert die Funktion
ENO	OUTPUT	BOOL	E, A, M, D, L	StatusTRUE: Ein Fehler ist aufgetreten

Fehlerinformation

Im Fehlerfall wird ENO TRUE wenn:

- der Eingangswert für die Basis kleiner als Null ist
- während der Berechnung der Funktion ein Zahlenbereichsüberlauf aufgetreten ist Im Fehlerfall bleibt der Inhalt von AKKU 1 und 2 unverändert.

Diese FC wird nur dazu verwendet, den FB 114 eines bestehenden S5-Programms in eine FC eines S7-Programms umzuwandeln.

15.5 PID-Steuerung - "PID Control"

15.5.1 FB 41 - CONT_C - Kontinuierliches Regeln

Beschreibung

Der FB 41 CONT_C dient zum Regeln von technischen Prozessen mit kontinuierlichen Ein- und Ausgangsgrößen. Über die Parametrierung können Sie Teilfunktionen des PID Reglers zu- oder abschalten und damit diesen an die Regelstrecke anpassen.

Bitte beachten Sie, dass der Regelungsbaustein zyklisch in regelmäßigen Abständen aufzurufen ist, ansonsten kann dies zu Fehlberechnungen führen. Rufen Sie hierzu den Regelungsbaustein in einem Weckalarm-OB (OB 30 ... OB 38) auf und geben Sie am Eingang CYCLE das Zeitraster des Weckalarm-OBs an.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
COM_RST	INPUT	BOOL	COMPLETE RESTART / Neustart
			 Der Baustein hat eine Neustartroutine, die bearbeitet wird, wenn der Eingang COM_RST gesetzt ist. Default: FALSE
MAN_ON	INPUT	BOOL	MANUAL VALUE ON / Handbetrieb einschalten
			 Ist der Eingang MAN_ON gesetzt, ist der Regelkreis unterbrochen. Als Stellwert wird ein Handwert vorgegeben. Default: TRUE
PVPER_ON	INPUT	BOOL	PROCESS VARIABLE PERIPHERY ON / Istwert Peripherie einschalten
			 Soll der Istwert von der Peripherie eingelesen werden, so muss der Eingang PV_PER mit der Peripherie verschaltet werden und der Eingang PVPER_ON gesetzt werden. Default: FALSE
P_SEL	INPUT	BOOL	PROPORTIONAL ACTION ON / P-Anteil einschalten
			 Im PID-Algorithmus lassen sich die PID-Anteile einzeln zu- und abschalten. Der P-Anteil ist eingeschaltet, wenn der Eingang P_SEL gesetzt ist. Default: TRUE

Parameter	Deklaration	Datentyp	Beschreibung
I_SEL	INPUT	BOOL	INTEGRAL ACTION ON / I-Anteil einschalten
			 Im PID-Algorithmus lassen sich die PID-Anteile einzeln zu- und abschalten. Der I-Anteil ist eingeschaltet, wenn der Eingang I_SEL gesetzt ist. Default: TRUE
INT_HOLD	INPUT	BOOL	INTEGRAL ACTION HOLD / I-Anteil einfrieren
			 Der Ausgang des Integrierers kann eingefroren werden. Hierzu muss der Eingang INT_HOLD gesetzt werden. Default: FALSE
I_ITL_ON	INPUT	BOOL	INITIALIZATION OF THE INTEGRAL ACTION / I-Anteil setzen
			 Der Ausgang des Integrierers kann auf den Eingang I_ITLVAL gesetzt werden. Hierzu muss der Eingang I_ITL_ON gesetzt werden. Default: FALSE
D_SEL	INPUT	BOOL	DERIVATIVE ACTION ON / D-Anteil einschalten
			 Im PID-Algorithmus lassen sich die PID-Anteile einzeln zu- und abschalten. Der D-Anteil ist eingeschaltet, wenn der Eingang D_SEL gesetzt ist. Default: FALSE
CYCLE	INPUT	TIME	SAMPLE TIME / Abtastzeit
			 Die Zeit zwischen den Bausteinaufrufen muss konstant sein. Der Eingang CYCLE gibt die Zeit zwischen den Bausteinaufrufen an. Default: T#1s Wertebereich: ≥ 1ms
SP_INT	INPUT	REAL	INTERNAL SETPOINT / Interner Sollwert
			 Der Eingang SP_INT dient zur Vorgabe eines Sollwertes. Default: 0.0 Wertebereich: -100.0100. 0 (%) oder phys.
			Größe ¹
PV_IN	INPUT	REAL	 PROCESS VARIABLE IN / Istwert Eingang Am Eingang PV_IN kann ein Inbetriebsetzungswert parametriert oder ein externer Istwert im Gleitpunktformat verschaltet werden. Default: 0.0 Wertebereich: -100.0100. 0 (%) oder phys. Größe¹
PV_PER	INPUT	WORD	PROCESS VARIABLE PERIPHERY / Istwert Peripherie Der Istwert in Peripherieformat wird am Eingang PV_PER mit dem Regler verschaltet. Default: W#16#0000

Parameter	Deklaration	Datentyp	Beschreibung
MAN	INPUT	REAL	MANUAL VALUE / Handwert
			 Der Eingang MAN dient zur Vorgabe eines Handwertes mittels Bedien-Beobachterfunktion. Default: 0.0 Wertebereich: -100.0100. 0 (%) oder phys. Größe²
GAIN	INPUT	REAL	PROPORTIONAL GAIN / Proportionalbeiwert
			 Der Eingang GAIN gibt die Reglerverstärkung an. Default: 2.0 Wertebereich: ≥ CYCLE
TI	INPUT	TIME	RESET TIME / Integrationszeit
			 Der Eingang T/ bestimmt das Zeitverhalten des Integrierers. Default: T#20s Wertebereich: ≥ CYCLE
TD	INPUT	TIME	DERIVATIVE TIME / Differenzierzeit
			 Der Eingang <i>TD</i> bestimmt das Zeitverhalten des Differenzierers. Default: T#10s Wertebereich: ≥ CYCLE
TM_LAG	INPUT	TIME	TIME LAG OF THE DERIVATIVE ACTION / Verzögerungszeit des D-Anteils
			 Der Algorithmus des D-Anteils beinhaltet eine Verzögerung, die am Eingang TM_LAG parametriert werden kann.
			Default: T#2sWertebereich: ≥ CYCLE/2
DEADB_W	INPUT	REAL	DEAD BAND WIDTH / Totzonenbreite
_			 Die Regeldifferenz wird über eine Totzone geführt. Der Eingang DEADB_W bestimmt die Größe der Totzone. Default: 0.0 Wertebereich: ≥ 0.0 (%) oder phys. Größe¹
LMN_HLM	INPUT	REAL	MANIPULATED VALUE HIGH LIMIT / Stellwert obere Begrenzung
			 Der Stellwert wird immer auf eine obere und untere Grenze begrenzt. Der Eingang <i>LMN_HLM</i> gibt die obere Begrenzung an. Default: 100.0
			Default: 100.0Wertebereich: LMN_LLM100.0 (%) oder phys.
			Größe ²

Parameter	Deklaration	Datentyp	Beschreibung
LMN_LLM	INPUT	REAL	MANIPULATED VALUE LOW LIMIT / Stellwert untere Begrenzung ■ Der Stellwert wird immer auf eine obere und untere Grenze begrenzt. Der Eingang LMN_LLM gibt die untere Begrenzung an. ■ Default: 0.0 ■ Wertebereich: -100.0 LMN_HLM (%) oder phys. Größe²
PV_FAC	INPUT	REAL	 PROCESS VARIABLE FACTOR / Istwertfaktor Der Eingang PV_FAC wird mit dem Istwert multipliziert. Der Eingang dient zur Anpassung des Istwertbereiches. Default: 1.0
PV_OFF	INPUT	REAL	 PROCESS VARIABLE OFFSET / Istwertoffset Der Eingang PV_OFF wird mit dem Istwert addiert. Der Eingang dient zur Anpassung des Istwertbereiches. Default: 0.0
LMN_FAC	INPUT	REAL	 MANIPULATED VALUE FACTOR / Stellwertfaktor Der Eingang LMN_FAC wird mit dem Stellwert multipliziert. Der Eingang dient zur Anpassung des Stellwertbereiches. Default: 1.0
LMN_OFF	INPUT	REAL	 MANIPULATED VALUE OFFSET / Stellwertoffset Der Eingang LMN_OFF wird mit dem Stellwert addiert. Der Eingang dient zur Anpassung des Stellwertbereiches. Default: 0.0
I_ITLVAL	INPUT	REAL	INITIALIZATION VALUE OF THE INTEGRAL ACTION / Initialisierungswert für I-Anteil ■ Der Ausgang des Integrierers kann am Eingang I_ITL_ON gesetzt werden. Am Eingang I_ITLVAL steht der Initialisierungwert. ■ Default: 0.0 ■ Wertebereich: -100.0100. 0 (%) oder phys. Größe²
DISV	INPUT	REAL	 DISTURBANCE VARIABLE / Störgröße Für eine Störgrößenaufschaltung wird die Störgröße am Eingang DISV verschaltet. Default: 0.0 Wertebereich: -100.0100. 0 (%) oder phys. Größe²
LMN	OUTPUT	REAL	 MANIPULATED VALUE / Stellwert Am Ausgang LMN wird der effektiv wirkende Stellwert in Gleitpunktformat ausgegeben. Default: 0.0

Parameter	Deklaration	Datentyp	Beschreibung	
LMN_PER	OUTPUT	WORD	MANIPULATED VALUE PERIPHERY / Stellwert Peripherie Der Stellwert in Peripherieformat wird am Ausgang	
			LMN_PER mit dem Regler verschaltet. ■ Default: W#16#0000	
QLMN_HLM	OUTPUT	BOOL	HIGH LIMIT OF MANIPULATED VALUE REACHED / Obere Begrenzung des Stellwertes angesprochen	
			 Der Stellwert wird immer auf eine obere und untere Grenze begrenzt. Der Ausgang QLMN_HLM meldet die Überschreitung der oberen Begrenzung. Default: FALSE 	
QLMN_LLM	OUTPUT	BOOL	LOW LIMIT OF MANIPULATED VALUE REACHED / Untere Begrenzung des Stellwertes angesprochen	
			 Der Stellwert wird immer auf eine obere und untere Grenze begrenzt. Der Ausgang QLMN_LLM meldet die Überschreitung der unteren Begrenzung. Default: FALSE 	
LMN_P	OUTPUT	REAL	PROPORTIONALITY COMPONENT / P-Anteil	
			 Der Ausgang LMN_P beinhaltet den Proportionalanteil der Stellgröße. Default: 0.0 	
LMN_I	OUTPUT	REAL	INTEGRAL COMPONENT / I-Anteil	
			Der Ausgang <i>LMN_I</i> beinhaltet den Integralanteil der Stellgröße.Default: 0.0	
LMN_D	OUTPUT	REAL	DERIVATIVE COMPONENT / D-Anteil	
			 Der Ausgang <i>LMN_D</i> beinhaltet den Differentialanteil der Stellgröße. Default: 0.0 	
PV	OUTPUT	REAL	PROCESS VARIABLE / Istwert	
			Am Ausgang PV wird der effektiv wirkende Istwert ausgegeben.Default: 0.0	
ER	OUTPUT	REAL	ERROR SIGNAL / Regeldifferenz	
			 Am Ausgang <i>ER</i> wird die effektiv wirkende Regeldifferenz ausgegeben. Default: 0.0 	
1) Parameter im Soll-, Istwertz	weig mit gleicher Einheit			

²⁾ Parameter im Stellwertzweig mit gleicher Einheit

Anwendung

Den Regler können Sie als PID-Festwertregler einzeln oder auch in mehrschleifigen Regelungen als Kaskaden-, Mischungs- oder Verhältnisregler einsetzen. Die Arbeitsweise basiert auf dem PID-Regelalgorithmus des Abtastreglers mit analogem Ausgangssignal, gegebenenfalls um eine Impulsformerstufe zur Bildung von pulsbreitenmodulierten Ausgangssignalen für Zwei- oder Dreipunktregelungen mit proportionalen Stellgliedern ergänzt.

Neben den Funktionen im Soll- und Istwertzweig realisiert der FB einen fertigen PID-Regler mit kontinuierlichem Stellgrößen-Ausgang und Beeinflussungsmöglichkeit des Stellwertes von Hand.

Sollwertzweig

Der Sollwert wird am Eingang SP_INT im Gleitpunktformat eingegeben.

Istwertzweig

Der Istwert kann im Peripherie- und im Gleitpunktformat eingelesen werden. Die Funktion CRP_IN wandelt den Peripheriewert *PV_PER* in ein Gleitpunktformat von -100 +100 % nach folgender Vorschrift um:

Ausgang von
$$CPR_IN = PV_PER * \frac{100}{27648}$$

Die Funktion PV_NORM normiert den Ausgang von CRP_IN nach folgender Vorschrift:

PV_FAC ist mit 1 und PV_OFF ist mit 0 vorbelegt.

Regeldifferenzbildung

Die Differenz von Soll- und Istwert ergibt die Regeldifferenz. Zur Unterdrükkung einer kleinen Dauerschwingung aufgrund der Stellgrößen-Quantisierung (z.B. bei einer Puls-Breitenmodulation mit PULSEGEN) wird die Regeldifferenz über eine Totzone (DEAD-BAND) geleitet. Bei *DEADB_W* = 0 ist die Totzone ausgeschaltet.

PID-Algorithmus

Der PID-Algorithmus arbeitet im Stellungsalgorithmus. Der Proportional-, Integral (*INT*) und Differentialanteil (*DIF*) sind parallel geschaltet und einzeln zu- und abschaltbar. Damit lassen sich P-, PI-, PD- und PID-Regler parametrieren. Aber auch reine I-Regler sind möglich.

Handwertverarbeitung

Es kann zwischen Hand- und Automatikbetrieb umgeschaltet werden. Bei Handbetrieb wird die Stellgröße einem Handwert nachgeführt. Der Integrierer (*INT*) wird intern auf *LMN - LMN_P - DISV* und der Differenzierer (*DIF*) auf 0 gesetzt und intern abgeglichen. Das Umschalten in den Automatikbetrieb ist damit stoßfrei.

Stellwertverarbeitung

Der Stellwert wird mit der Funktion *LMNLIMIT* auf vorgebbare Werte begrenzt. Das Überschreiten der Grenzen durch die Eingangsgröße wird durch Meldebits angezeigt. Die Funktion *LMN_NORM* normiert den Ausgang von *LMNLIMIT* nach folgender Vorschrift:

$$LMN = (Ausgang \ von \ LMNLIMIT) * LMN_FAC + LMN_OFF$$

LMN_FAC ist mit 1 und LMN_OFF mit 0 vorbelegt.

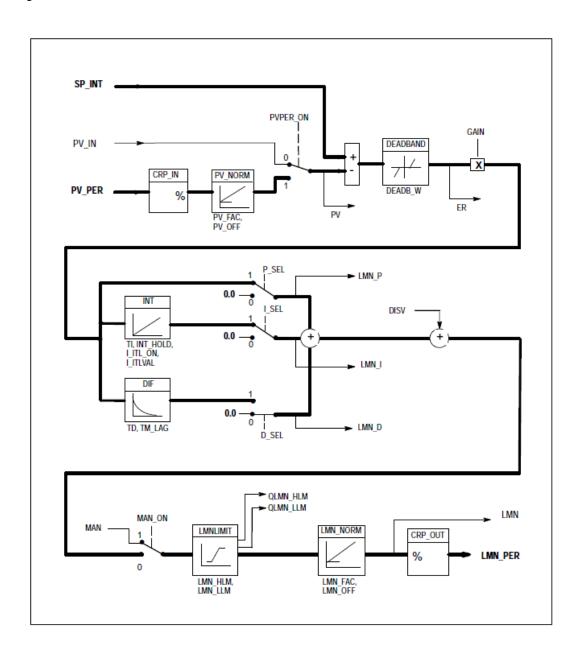
Der Stellwert steht auch im Peripherieformat zur Verfügung. Die Funktion *CRP_OUT* wandelt den Gleitpunktwert *LMN* in einen Peripheriewert nach folgender Vorschrift um:

$$LMN_PER = LMN * \frac{27648}{100}$$

Störgrößenaufschaltung

Am Eingang DISV kann eine Störgröße additiv aufgeschaltet werden.

Betriebszustände


Neustart/Wiederanlauf

- Der FB 41 CONT_C verfügt über eine Neustartroutine, die durchlaufen wird, wenn der Eingangs-Parameter COM RST = TRUE gesetzt ist.
- Der Integrierer wird beim Anlauf intern auf den Initialisierungswert I_ITVAL gesetzt.
 Beim Aufruf in einer Weckalarmebene arbeitet er von diesem Wert aus weiter.
- Alle anderen Ausgänge werden auf ihre Vorbelegungswerte gesetzt.

Fehlerinformationen

Der Baustein enthält keine Fehlerprüfung, deshalb wird keine Fehlerinformation ausgegeben.

Blockschaltbild

PID-Steuerung - "PID Control" > FB 42 - CONT S - Schrittregeln

15.5.2 FB 42 - CONT_S - Schrittregeln

Beschreibung

Der FB 42 CONT_S dient zum Regeln von technischen Prozessen mit binären Stellwertausgangssignalen für integrierende Stellglieder. Über die Parametrierung lassen sich Teilfunktionen des PI-Schrittreglers zu- oder abschalten und damit an die Regelstrecke anpassen.

Bitte beachten Sie, dass der Regelungsbaustein zyklisch in regelmäßigen Abständen aufzurufen ist, ansonsten kann dies zu Fehlberechnungen führen. Rufen Sie hierzu den Regelungsbaustein in einem Weckalarm-OB (OB 30 ... OB 38) auf und geben Sie am Eingang CYCLE das Zeitraster des Weckalarm-OBs an.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
COM_RST	INPUT	BOOL	COMPLETE RESTART / Neustart
			 Der Baustein hat eine Neustartroutine, die bearbeitet wird, wenn der Eingang COM_RST gesetzt ist. Default: FALSE
LMNR_HS	INPUT	BOOL	HIGH LIMIT SIGNAL OF REPEATED MANIPULATED VALUE / Oberes Anschlagsignal der Stellungsrückmeldung
			 Das Signal "Stellventil am oberen Anschlag" wird am Eingang LMNR_HS verschaltet. LMNR_HS = TRUE heißt: Das Stellventil befindet sich am oberen Anschlag. Default: FALSE
LMNR_LS	INPUT	BOOL	LOW LIMIT SIGNAL OF REPEATED MANIPULATED VALUE / Unteres Anschlagsignal der Stellungsrückmeldung
			 Das Signal "Stellventil am unteren Anschlag" wird am Eingang LMNR_LS verschaltet.
			 LMNR_LS = TRUE heißt: Das Stellventil befindet sich am unteren Anschlag. Default: FALSE
LMNS_ON	INPUT	BOOL	MANIPULATED SIGNALS ON / Handbetrieb der Stellwertsignale einschalten
			 Am Eingang LMNS_ON wird die Stellwertsignalver- arbeitung auf Hand geschaltet. Default: FALSE
LMNUP	INPUT	BOOL	MANIPULATED SIGNALS UP / Stellwertsignal Hoch
			 Bei Handbetrieb der Stellwertsignale wird am Eingang <i>LMNUP</i> das Ausgangssignal <i>QLMNUP</i> bedient. Default: FALSE

PID-Steuerung - "PID Control" > FB 42 - CONT_S - Schrittregeln

Parameter	Deklaration	Datentyp	Beschreibung
LMNDN	INPUT	BOOL	MANIPULATED SIGNALS DOWN / Stellwertsignal Tief
			 Bei Handbetrieb der Stellwertsignale wird am Eingang LMNDN das Ausgangssignal QLMNDN bedient. Default: FALSE
PVPER_ON	INPUT	BOOL	PROCESS VARIABLE PERIPHERY ON / Istwert Peripherie einschalten
			 Soll der Istwert von der Peripherie eingelesen werden, so muss der Eingang PV_PER mit der Peripherie verschaltet werden und der Eingang PVPER_ON gesetzt werden. Default: FALSE
CYCLE	INPUT	TIME	SAMPLE TIME / Abtastzeit
			 Die Zeit zwischen den Bausteinaufrufen muss konstant sein. Der Eingang CYCLE gibt die Zeit zwischen den Bausteinaufrufen an. Default: T#1s Wertebereich: ≥ 1ms
SP INT	INPUT	REAL	INTERNAL SETPOINT / Interner Sollwert
OI _IIVI		INE/NE	 Der Eingang SP_INT dient zur Vorgabe eines Sollwertes. Default: 0.0 Wertebereich: -100.0100. 0 (%) oder phys. Größe¹
PV_IN	INPUT	REAL	PROCESS VARIABLE IN / Istwert Eingang
_			 Am Eingang PV_IN kann ein Inbetriebsetzungswert parametriert oder ein externer Istwert im Gleitpunktformat verschaltet werden. Default: 0.0 Wertebereich: -100.0100. 0 (%) oder phys. Größe¹
PV_PER	INPUT	WORD	PROCESS VARIABLE PERIPHERY / Istwert Peripherie
			 Der Istwert in Peripherieformat wird am Eingang PV_PER mit dem Regler verschaltet. Default: W#16#0000
GAIN	INPUT	REAL	PROPORTIONAL GAIN / Proportionalbeiwert
			 Der Eingang GAIN gibt die Reglerverstärkung an. Default: 2.0 Wertebereich: ≥ CYCLE
TI	INPUT	TIME	RESET TIME / Integrationszeit
			 Der Eingang TI bestimmt das Zeitverhalten des Integrierers. Default: T#20s Wertebereich: ≥ CYCLE
			- Wollebeleidi. 2 0 / OLL

PID-Steuerung - "PID Control" > FB 42 - CONT_S - Schrittregeln

Parameter	Deklaration	Datentyp	Beschreibung
DEADB_W	INPUT	REAL	DEAD BAND WIDTH / Totzonenbreite
			 Die Regeldifferenz wird über eine Totzone geführt. Der Eingang DEADB_W bestimmt die Größe der Totzone. Default: 1.0 Wertebereich: 0.0100.0 (%) oder phys. Größe¹
PV_FAC	INPUT	REAL	PROCESS VARIABLE FACTOR / Istwertfaktor
			 Der Eingang PV_FAC wird mit dem Istwert multipliziert. Der Eingang dient zur Anpassung des Istwertbereiches. Default: 1.0
PV_OFF	INPUT	REAL	PROCESS VARIABLE OFFSET / Istwertoffset
			 Der Eingang PV_OFF wird mit dem Istwert addiert. Der Eingang dient zur Anpassung des Istwertbereiches. Default: 0.0
PULSE_TM	INPUT	TIME	MINIMUM PULSE TIME / Mindestimpulsdauer
			 Am Parameter PULSE_TM kann eine minimale Impulslänge parametriert werden. Default: 1.0 Wertebereich: ≥ CYCLE
BREAK_TM	INPUT	TIME	MINIMUM BREAK TIME / Mindestpausendauer
			 Am Parameter BREAK_TM kann eine minimale Pausenlänge parametriert werden. Default: 0.0 Wertebereich: ≥ CYCLE
MTR_TM	INPUT	TIME	MOTOR MANIPULATED VALUE / Motorstellzeit
			 Am Parameter MTR_TM wird die Laufzeit des Stellventils vom Anschlag zu Anschlag eingetragen. Default: 0.0 Wertebereich: -100.0100. 0 (%) oder phys. Größe² Wertebereich: ≥ CYCLE
DISV	INPUT	REAL	DISTURBANCE VARIABLE / Störgröße
			 Für eine Störgrößenaufschaltung wird die Störgröße am Eingang <i>DISV</i> verschaltet. Default: 0.0 Wertebereich: -100.0100. 0 (%) oder phys. Größe²
QLMNUP	OUTPUT	BOOL	MANIPULATED SIGNAL UP / Stellwertsignal Hoch
			 Ist der Ausgang <i>QLMNUP</i> gesetzt, soll das Stellventil geöffnet werden. Default: FALSE

PID-Steuerung - "PID Control" > FB 42 - CONT S - Schrittregeln

Parameter	Deklaration	Datentyp	Beschreibung
QLMNDN	OUTPUT	BOOL	MANIPULATED SIGNAL DOWN / Stellwertsignal Tief
			Ist der Ausgang <i>QLMNDN</i> gesetzt, soll das Stellventil geschlossen werden.Default: FALSE
PV	OUTPUT	REAL	PROCESS VARIABLE / Istwert
			Am Ausgang PV wird der effektiv wirkende Istwert ausgegeben.Default: 0.0
ER	OUTPUT	REAL	ERROR SIGNAL /Regeldifferenz
			 Am Ausgang <i>ER</i> wird die effektiv wirkende Regeldifferenz ausgegeben. Default: 0.0

¹⁾ Parameter im Soll-, Istwertzweig mit gleicher Einheit

Anwendung

Der Regler kann als PI-Festwertregler einzeln oder in unterlagerten Regelkreisen bei Kaskaden-, Mischungs- oder Verhältnisregelungen eingesetzt werden, jedoch nicht als Führungsregler. Die Arbeitsweise basiert auf dem PI Regelalgorithmus des Abtastreglers und wird um die Funktionsglieder zur Erzeugung des binären Ausgangssignals aus dem analogen Stellsignal ergänzt.

Neben den Funktionen im Istwertzweig realisiert der FB einen fertigen PI Regler mit binärem Stellwertausgang und Beeinflussungsmöglichkeit des Stellwertes von Hand. Der Schrittregler arbeitet ohne Stellungsrückmeldung.

Sollwertzweig

Der Sollwert wird am Eingang SP_INT im Gleitpunktformat eingegeben.

Istwertzweig

Der Istwert kann im Peripherie- und im Gleitpunktformat eingelesen werden. Die Funktion *CRP_IN* wandelt den Peripheriewert *PV_PER* in ein Gleitpunktformat von -100 +100 % nach folgender Vorschrift um:

Ausgang von
$$CPR_IN = PV_PER * \frac{100}{27648}$$

Die Funktion PV_NORM normiert den Ausgang von CRP_IN nach folgender Vorschrift:

Ausgang von PV_NORM = (Ausgang von CPR_IN) * PV_FAC + PV_OFF

PV_FAC ist mit 1 und PV_OFF ist mit 0 vorbelegt.

Regeldifferenzbildung

Die Differenz von Soll- und Istwert ergibt die Regeldifferenz. Zur Unterdrückung einer kleinen Dauerschwingung aufgrund der Stellgrößen-Quantisierung (z.B. bei einer Puls-Breitenmodulation mit PULSEGEN) wird die Regeldifferenz über eine Totzone (DEAD-BAND) geleitet. Bei *DEADB_W* = 0 ist die Totzone ausgeschaltet.

²⁾ Parameter im Stellwertzweig mit gleicher Einheit

PID-Steuerung - "PID Control" > FB 42 - CONT S - Schrittregeln

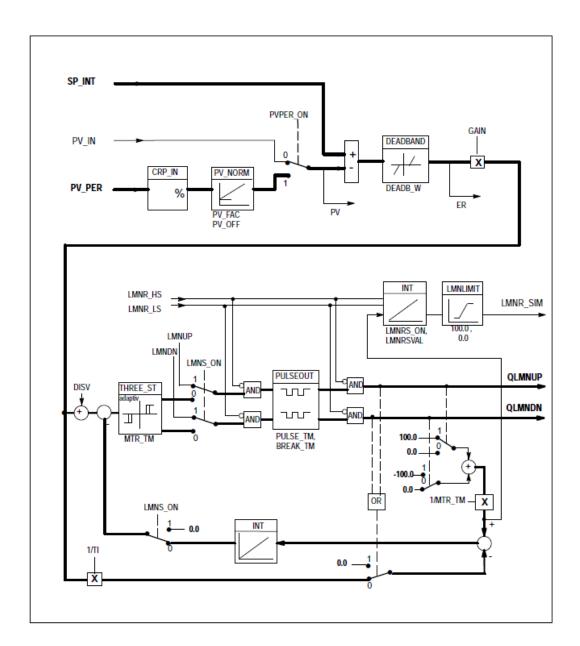
PI-Schrittalgorithmus

Der FB arbeitet ohne Stellungsrückmeldung. Der I-Anteil des PI-Algorithmus und die gedachte Stellungsrückmeldung werden in einem Integrator (INT) berechnet und als Rückführungswert mit dem verbliebenen P-Anteil verglichen. Die Differenz geht auf ein Dreipunktglied (THREE_ST) und einen Impulsformer (PULSEOUT), der die Impulse für das Stellventil bildet. Über eine Adaption der Ansprechschwelle des Dreipuntgliedes wird die Schalthäufigkeit des Reglers reduziert.

Störgrößenaufschaltung

Am Eingang DISV kann eine Störgröße additiv aufgeschaltet werden.

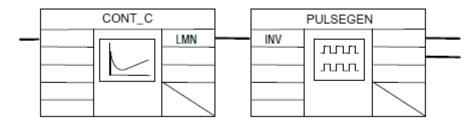
Betriebszustände


Neustart/Wiederanlauf

- Der FB 42 CONT_S verfügt über eine Neustartroutine, die durchlaufen wird, wenn der Eingangs-Parameter COM_RST = TRUE gesetzt ist.
- Alle anderen Ausgänge werden auf ihre Vorbelegungswerte gesetzt.

Fehlerinformationen

Der Baustein enthält keine Fehlerprüfung, deshalb wird keine Fehlerinformation ausgegeben.


Blockschaltbild

15.5.3 FB 43 - PULSGEN - Impulsformen

Beschreibung

Der FB 43 PULSGEN dient zum Aufbau eines PID-Reglers mit Impulsausgang für proportionale Stellglieder. Mit dem FB 43 lassen sich PID-Zwei- oder Dreipunktregler mit Pulsbreitenmodulation aufbauen. Die Funktion wird meistens in Verbindung mit dem kontinuierlichen Regler CONT_C angewendet.

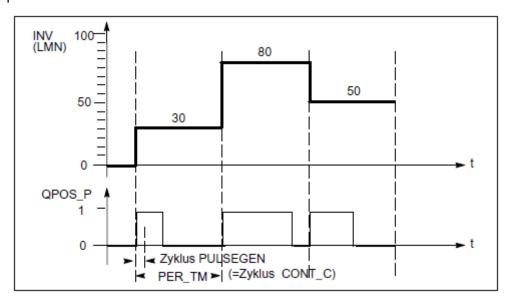
ĭ

Bitte beachten Sie, dass der Regelungsbaustein zyklisch in regelmäßigen Abständen aufzurufen ist, ansonsten kann dies zu Fehlberechnungen führen. Rufen Sie hierzu den Regelungsbaustein in einem Weckalarm-OB (OB 30 ... OB 38) auf und geben Sie am Eingang CYCLE das Zeitraster des Weckalarm-OBs an.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
INV	INPUT	REAL	INPUT VARIABLE / Eingangsvariable
			 Am Eingangsparameter <i>INV</i> wird eine analoge Stellwertgröße aufgeschaltet.
			Default: 0.0Wertebereich: -100.0100.0 (%)
DED TM	INDLIT	TIME	. ,
PER_TM	INPUT	TIME	PERIOD TIME / Periodendauer
			 Am Parameter PER_TM wird die konstante Periodendauer der Pulsbreitenmodulation eingegeben. Sie entspricht der Abtastzeit des Reglers. Das Verhältnis Abtastzeit des Impulsformers zu Abtastzeit des Reglers bestimmt die Genauigkeit der Pulsbreitenmodulation. Default: T#1s Wertebereich: ≥20*CYCLE
P_B_TM	INPUT	TIME	MINIMUM PULSE/BREAK TIME / Mindestimpuls- bzw. Mindestpausendauer
			Am Parameter P_B_TM kann eine minimale Impuls- bzw. Pausenlänge parametriert werden.
			■ Default: T#50ms
			■ Wertebereich: ≥ CYCLE

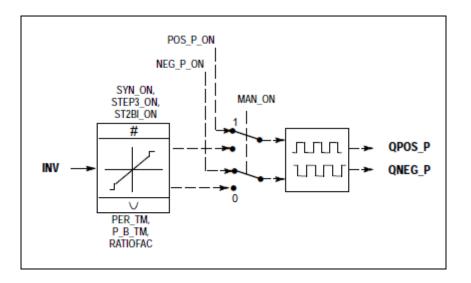
Parameter	Deklaration	Datentyp	Beschreibung
RATIOFAC	INPUT	REAL	RATIO FACTOR / Verhältnisfaktor
			 Durch den Eingangsparameter RATIOFAC kann das Verhältnis der Dauer von negativen zu positiven Impulsen verändert werden. Bei einem thermischen Prozess können damit unterschiedliche Zeitkonstanten für Heizen und Kühlen (z.B. Prozess mit elektrischer Heizung und Wasserkühlung) kompensiert werden. Default: 1.0 Wertebereich: 0.110.0
STEP3_ON	INPUT	BOOL	THREE STEP CONTROL ON / Dreipunktregelung einschalten
			 Am Eingangsparameter STEP3_ON wird die entsprechende Betriebsart aktiviert. Bei Dreipunktregelung arbeiten beide Ausgangssignale. Default: TRUE
ST2BI_ON	INPUT	BOOL	TWO STEP CONTROL FOR BIPOLAR MANIPU- LATED VALUE RANGE ON / Zweipunktregelung für bipolaren Stellwertbereich einschalten
			 Am Eingangsparameter ST2BI_ON kann zwischen den Betriebsarten "Zweipunktregelung für bipolaren Stellwertbereich" und "Zweipunktregelung für unipolaren Stellwertbereich" gewählt werden. Hierbei muss STEP3_ON = FALSE sein. Default: FALSE
MAN_ON	INPUT	BOOL	MANUAL MODE ON / Handbetrieb einschalten
			 Durch Setzen des Eingangsparameter MAN_ON können die Ausgangssignale von Hand gesetzt werden. Default: FALSE
POS_P_ON	INPUT	BOOL	POSITIVE MODE ON / positiver Impuls ein
			 Bei Handbetrieb Dreipunktregelung kann am Eingangsparameter POS_P_ON das Ausgangssignal QPOS_P bedient werden. Bei Handbetrieb Zweipunktregelung wird QNEG_P immer invertiert zu QPOS_P gesetzt. Default: FALSE
NEG_P_ON	INPUT	BOOL	NEGATIVE PULSE ON / negativer Impuls ein
			 Bei Handbetrieb Dreipunktregelung kann am Eingangsparameter NEG_P_ON das Ausgangssignal QNEG_P bedient werden. Bei Handbetrieb Zweipunkt- regelung wird QNEG_P immer invertiert zu QPOS_P gesetzt. Default: FALSE


Parameter	Deklaration	Datentyp	Beschreibung
SYN_ON	INPUT	BOOL	SYNCHRONISATION ON / Synchronisation einschalten
			 Es besteht die Möglichkeit durch Setzen des Eingangsparameters SYN_ON die Impulsausgabe mit dem Baustein, der die Eingangsgröße INV aktualisiert, automatisch zu synchronisieren. Damit ist gewährleistet, dass eine sich ändernde Eingangsgröße auch schnellstmöglich als Impuls ausgegeben wird. Default: TRUE
COM_RST	INPUT	BOOL	COMPLETE RESTART / Neustart
			Der Baustein hat eine Neustartroutine, die bear- beitet wird, wenn der Eingang COM_RST gesetzt ist.
			■ Default: FALSE
CYCLE	INPUT	TIME	SAMPLE TIME / Abtastzeit
			Die Zeit zwischen den Bausteinaufrufen muss konstant sein. Der Eingang CYCLE gibt die Zeit zwischen den Bausteinaufrufen an.
			■ Default: T#10ms
			■ Wertebereich: ≥ 1ms
QPOS_P	OUTPUT	BOOL	OUTPUT POSITIVE PULSE / Ausgangssignal positiver Impuls
			Der Ausgangsparameter QPOS_P ist gesetzt, wenn ein Impuls ausgegeben werden soll. Bei Dreipunkt- regelung ist es der positive Impuls. Bei Zwei- punktregelung wird QNEG_P immer invertiert zu QPOS_P gesetzt.
			■ Default: FALSE
QNEG_P	OUTPUT	BOOL	OUTPUT NEGATIVE PULSE / Ausgangssignal negativer Impuls
			 Der Ausgangsparameter QNEG_P ist gesetzt, wenn ein Impuls ausgegeben werden soll. Bei Dreipunktregelung ist es der negative Impuls. Bei Zweipunktregelung wird QNEG_P immer invertiert zu QPOS_P gesetzt. Default: FALSE

j

Die Werte der Eingangsparameter werden im Baustein nicht begrenzt; eine Prüfung der Parameter findet nicht statt.

Anwendung


Die Funktion PULSEGEN transformiert die Eingangsgröße *INV* (= LMN des PID-Reglers) durch Modulation der Impulsbreite in eine Impulsfolge mit konstanter Periodendauer, welche der Zykluszeit, mit der die Eingangsgröße aktualisiert wird, entspricht und in *PER_TM* parametriert werden muss. Die Dauer eines Impulses pro Periodendauer ist proportional der Eingangsgröße. Dabei ist der durch *PER_TM* parametrierte Zyklus nicht identisch mit dem Bearbeitungszyklus des FB PULSEGEN. Vielmehr setzt sich ein Zyklus *PER_TM* aus mehreren Bearbeitungszyklen des FB PULSEGEN zusammen, wobei die Anzahl der FB PULSEGEN-Aufrufe pro *PER_TM* Zyklus ein Maß für die Genauigkeit der Impulsbreite darstellt.

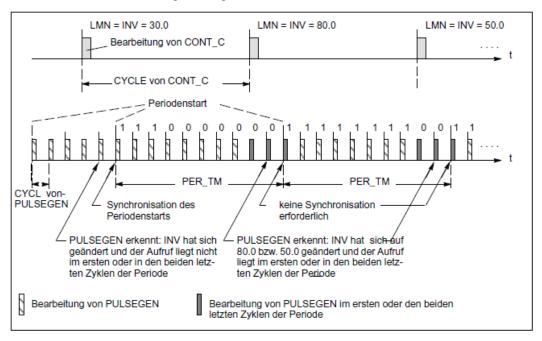
Eine Eingangsgröße 30% und 10 FB PULSEGEN-Aufrufe pro PER_TM bedeuten also:

- "1" am Ausgang QPOS für die ersten drei Aufrufe des FB PULSEGEN (30% von 10 Aufrufen)
- "0" am Ausgang QPOS f
 ür sieben weitere Aufrufe des FB PULSEGEN (70% von 10 Aufrufen)

Blockschaltbild

Stellwertgenauigkeit

Durch ein "Abtastverhältnis" von 1:10 (CONT_C-Aufrufe zu PULSEGEN-Aufrufe) ist die Stellwertgenauigkeit in diesem Beispiel auf 10% beschränkt, d.h. vorgegebene Eingangswerte *INV* können nur im Raster von 10% auf eine Impulslänge am Ausgang *QPOS* abgebildet werden. Entsprechend erhöht sich die Genauigkeit mit der Anzahl der FB PULSEGEN-Aufrufe pro CONT_C-Aufruf. Wird z.B. PULSEGEN 100 mal häufiger aufgerufen als CONT_C, so erreicht man eine Auflösung von 1% des Stellwertbereiches.


j

Die Untersetzung der Aufrufhäufigkeit müssen Sie selbst programmieren.

Automatische Synchronisation

Es besteht die Möglichkeit die Impulsausgabe mit dem Baustein, der die Eingangsgröße *INV* (z.B. CONT_C) aktualisiert, automatisch zu synchronisieren. Damit ist gewährleistet, dass eine ändernde Eingangsgröße auch schnellstmöglich als Impuls ausgegeben wird. Der Impulsformer wertet immer im Zeitabstand der Periodendauer *PER_TM* die Eingangsgröße INV aus und wandelt den Wert in ein Impulssignal der entsprechenden Länge. Da aber *INV* meistens in einer langsameren Weckalarmebene berechnet wird, sollte der Impulsformer möglichst schnell nach der Aktualisierung von *INV* mit der Umwandlung des diskreten Wertes in ein Impulssignal beginnen. Dazu kann der Baustein den Start der Periode nach folgendem Verfahren selbst synchronisieren:

Hat sich INV geändert und befindet sich der Bausteinaufruf nicht im ersten oder in den letzten zwei Aufrufzyklen einer Periode, so wird eine Synchronisation durchgeführt. Die Impulsdauer wird neu berechnet und beim nächsten Zyklus mit einer neuen Periode wird mit der Ausgabe begonnen.

Die automatische Synchronisation lässt sich am Eingang SYN_ON (= FALSE) abschalten.

Durch den Beginn der neuen Periode wird der Altwert von INV (d.h. von LMN) nach erfolgter Synchronisation mehr oder weniger ungenau auf das Impulssignal abgebildet.

Betriebsarten

Je nach Parametrierung des Impulsformers können PID-Regler mit Dreipunktverhalten oder mit bipolarem bzw. unipolarem Zweipunktausgang konfiguriert werden. Nachstehende Tabelle zeigt die Einstellung der Schalterkombinationen für die möglichen Betriebsarten.

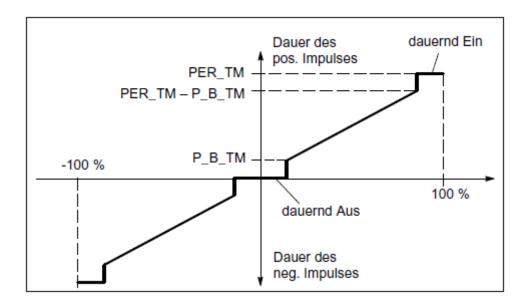
Betriebsart	Schalter			
	MAN_ON	STEP3_ON	ST2BI_ON	
Dreipunktregelung	FALSE	TRUE	beliebig	
Zweipunktregelung mit bipolarem Stellbereich (-100 % 100 %)	FALSE	FALSE	TRUE	
Zweipunktregelung mit unipolarem Stellbereich (0 $\% \dots$ 100 $\%)$	FALSE	FALSE	FALSE	
Handbetrieb	TRUE	beliebig	beliebig	

Dreipunktregelung

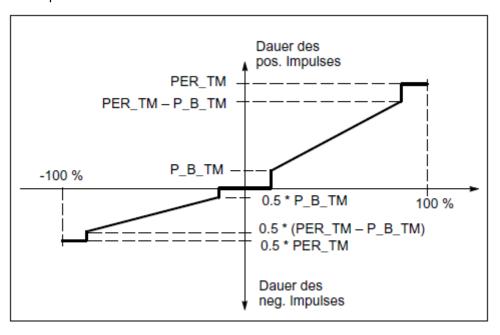
In der Betriebsart Dreipunktregelung können drei Zustände des Stellsignals erzeugt werden. Dazu werden die Zustandswerte der binären Ausgangssignale *QPOS_P* und *QNEG_P* den jeweiligen Betriebszuständen des Stellgliedes zugeordnet. Die Tabelle zeigt das Beispiel einer Temperaturregelung:

Ausgangssignale	Stellglied		
	heizen	aus	kühlen
QPOS_P	TRUE	FALSE	FALSE
QNEG_P	FALSE	FALSE	TRUE

Aus der Eingangsgröße wird über eine Kennlinie die Impulsdauer berechnet. Die Form dieser Kennlinie wird durch die Mindestimpuls- bzw. Mindestpausendauer und dem Verhältnisfaktor definiert. Der normale Wert für den Verhältnisfaktor ist 1. Die Knickpunkte an den Kennlinien werden durch die Mindestimpuls- bzw. Mindestpausendauer verursacht.


Mindestimpuls- bzw. Mindestpausendauer
Eine richtig parametrierte Mindestimpuls- bzw. Mindestpausendauer P_B_TM kann kurze Ein- oder Ausschaltzeiten, die die Lebensdauer von Schaltgliedern und Stelleinrichtungen beeinträchtigen, verhindern.

Kleine Absolutwerte der Eingangsgröße LMN, die eine Impulsdauer kleiner als P_B_TM erzeugen würden, werden unterdrückt. Große Eingangswerte, die eine Impulsdauer größer als (PER_TM - P_B_TM) erzeugen würden, werden auf 100 % bzw. -100 % gesetzt.


Die Dauer der positiven oder negativen Impulse errechnet sich aus Eingangsgröße (in %) mal Periodendauer:

$$Impulsdauer = \frac{INV}{100} * PER_TM$$

Dreipunktregelung unsymmetrisch

Über den Verhältnisfaktor *RATIOFAC* kann das Verhältnis der Dauer von positiven zu negativen Impulsen verändert werden. Bei einem thermischen Prozess lassen sich damit z.B. unterschiedliche Streckenzeitkonstanten für Heizen und Kühlen berücksichtigen. Der Verhältnisfaktor beeinflusst auch die Mindestimpuls- bzw. Mindestpausendauer. Verhältnisfaktor < 1 bedeutet, der Ansprechwert für negative Impulse wird mit dem Verhältnisfaktor multipliziert.

■ Verhältnisfaktor < 1

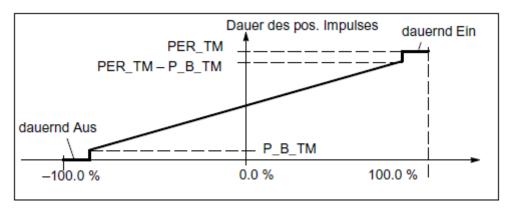
Die aus Eingangsgröße mal Periodendauer berechnete Impulsdauer am negativen Impulsausgang wird um den Verhältnisfaktor verkürzt.

positive Impulsdauer =
$$\frac{INV}{100}$$
 * PER_TM

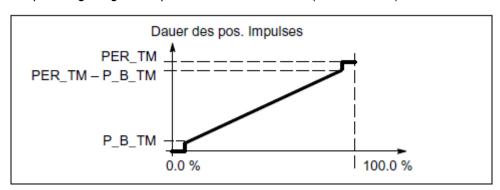
$$negative\ Impulsdauer = \frac{INV}{100} * PER_TM * RATIOFAC$$

■ Verhältnisfaktor > 1

Die aus Eingangsgröße mal Periodendauer berechnete Impulsdauer am positiven Impulsausgang wird um den Verhältnisfaktor verkürzt.


$$negative \ Impulsdauer = \frac{INV}{100} * PER_TM$$

$$positive\ Impulsdauer = \frac{INV}{100} * \frac{PER_TM}{RATIOFAC}$$


Zweipunktregelung

Bei der Zweipunktregelung wird nur der positive Impulsausgang *QPOS_P* von PUL-SEGEN mit dem betreffenden Ein/Aus-Stellglied verbunden. Je nach genutztem Stellwertbereich hat der Zweipunktregler einen bipolaren oder einen unipolaren Stellwertbereich.

■ Zweipunktregelung mit bipolarem Stellwertbereich (-100 % ... 100 %)

■ Zweipunktregelung mit unipolarem Stellwertbereich (0 % ... 100 %)

An QNEG_P steht das negierte Ausgangssignal zur Verfügung, falls die Verschaltung des Zweipunktreglers im Regelkreis ein logisch invertiertes Binärsignal für die Stellimpulse erfordert.

Impuls	Stellglied	
	ein	aus
QPOS_P	TRUE	FALSE
QNEG_P	FALSE	TRUE

Handbetrieb bei Zwei- bzw. Dreipunkt- Regelung

Im Handbetrieb (*MAN_ON* = TRUE) können die Binärausgänge des Dreipunkt- bzw. Zweipunktreglers über die Signale *POS_P_ON* und *NEG_P_ON* unabhängig von *INV* gesetzt werden.

	POS_P_ON	NEG_P_ON	QPOS_P	QNEG_P
Dreipunktrege-	FALSE	FALSE	FALSE	FALSE
lung	TRUE	FALSE	TRUE	FALSE
	FALSE	TRUE	FALSE	TRUE
	TRUE	TRUE	FALSE	FALSE
Zweipunktrege- lung	FALSE	beliebig	FALSE	TRUE
	TRUE	beliebig	TRUE	FALSE

Betriebszustände

Neustart/Wiederanlauf

Bei Neustart werden alle Signalausgänge auf Null gesetzt.

Fehlerinformationen

Der Baustein enthält keine Fehlerprüfung, deshalb wird keine Fehlerinformation ausgegeben.

15.5.4 FB 58 - TCONT CP - Kontinuierliches Temperaturregeln

Beschreibung

Der FB 58 TCONT_CP dient zum Regeln von Temperaturprozessen mit kontinuierlicher oder impulsförmiger Ansteuerung. Über die Parametrierung können Sie Teilfunktionen des PID-Reglers zu- oder abschalten und damit diesen an die Regelstrecke anpassen.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
PV_IN	INPUT	REAL	PROCESS VARIABLE IN / Istwert Eingang
			 Am Eingang PV_IN kann ein Inbetriebsetzungswert parametriert oder ein externer Istwert im Gleitpunktformat verschaltet werden. Default: 0.0 Wertebereich: Abhängig von den eingesetzten Sensoren
PV_PER	INPUT	WORD	PROCESS VARIABLE PERIPHERY / Istwert Peripherie Der Istwert in Peripherieformat wird am Eingang PV_PER mit dem Regler verschaltet. Default: 0
DISV	INPUT	REAL	 DISTURBANCE VARIABLE / Störgröße ■ Für eine Störgrößenaufschaltung wird die Störgröße am Eingang DISV verschaltet. ■ Default: 0.0

Parameter	Deklaration	Datentyp	Beschreibung
INT_HPOS	INPUT	BOOL	 INTEGRAL ACTION HOLD IN POSITIVE DIRECTION / I-Anteil blockieren in positive Richtung Der Ausgang des Integrierers kann in positive Richtung blockiert werden. Hierzu muss der Eingang INT_HPOS auf TRUE gesetzt werden. Bei einer Kaskaderegelung wird INT_HPOS des Führungsregler mit QLMN_HLM des Folgereglers verschaltet. Default: FALSE
INT_HNEG	INPUT	BOOL	 INTEGRAL ACTION HOLD IN NEGATIVE DIRECTION / I-Anteil blockieren in negative Richtung Der Ausgang des Integrierers kann in negative Richtung blockiert werden. Hierzu muss der Eingang INT_HNEG auf TRUE gesetzt werden. Bei einer Kaskaderegelung wird INT_HNEG des Führungsreglers mit QLMN_LLM des Folgereglers verschaltet. Default: FALSE
SELECT	INPUT	BOOL	 SELECTION OF CALL PID AND PULSE GENERATOR / Auswahl des Aufrufverhaltens von PID und Impulsformer ■ Ist der Impulsformer eingeschaltet, gibt es mehrere Möglichkeiten den PID-Algorithmus und Impulsformer aufzurufen: SELECT = 0: Der Regler wird in einer schnellen Weckalarmebene aufgerufen und es werden PID-Algorithmus und Impulsformer bearbeitet. SELECT = 1: Der Regler wird im OB 1 aufgerufen und es wird nur der PID-Algorithmus bearbeitet. SELECT = 2: Der Regler wird in einer schnellen Weckalarmebene aufgerufen und es wird nur der Impulsformer bearbeitet. SELECT = 3: Der Regler wird in einer langsamen Weckalarmebene aufgerufen und es wird nur der PID-Algorithmus bearbeitet. ■ Default: 0 ■ Wertebereich: 0 3
PV	OUTPUT	REAL	 PROCESS VARIABLE / Istwert Am Ausgang PV wird der effektiv wirkende Istwert ausgegeben. Default: 0.0 Wertebereich: abhängig von den eingesetzten Sensoren
LMN	OUTPUT	REAL	 MANIPULATED VALUE / Stellwert Am Ausgang LMN wird der effektiv wirkende Stellwert in Gleitpunktformat ausgegeben. Default: 0.0

Parameter	Deklaration	Datentyp	Beschreibung
LMN_PER	OUTPUT	WORD	 MANIPULATED VALUE PERIPHERY / Stellwert Peripherie Der Stellwert in Peripherieformat wird am Ausgang LMN_PER mit dem Regler verschaltet. Default: 0
QPULSE	OUTPUT	BOOL	 QUTPUT PULSE SIGNAL / Pulsausgang Der Stellwert wird pulsweitenmoduliert am Ausgang QPULSE ausgegeben. Default: FALSE
QLMN_HLM	OUTPUT	BOOL	 HIGH LIMIT OF MANIPULATED VALUE REACHED / Obere Begrenzung des Stellwertes angesprochen Der Stellwert wird immer auf eine obere und untere Grenze begrenzt. Der Ausgang QLMN_HLM meldet die Überschreitung der oberen Begrenzung. Default: FALSE
QLMN_LLM	OUTPUT	BOOL	LOW LIMIT OF MANIPULATED VALUE REACHED / Untere Begrenzung des Stellwertes angesprochen ■ Der Stellwert wird immer auf eine obere und untere Grenze begrenzt. Der Ausgang QLMN_LLM meldet die Überschreitung der unteren Begrenzung. ■ Default: FALSE
QC_ACT	OUTPUT	BOOL	 NEXT CYCLE, THE CONTINUOUS CONTROLLER IS WORKING / Kontinuierlicher Regleranteil wird beim nächsten Aufruf bearbeitet Der Parameter zeigt an, ob beim nächsten Bausteinaufruf der kontinuierliche Regleranteil bearbeitet wird (nur relevant, wenn SELECT den Wert 0 oder 1 hat). Default: TRUE
CYCLE	INPUT/ OUTPUT	REAL	SAMPLE TIME OF CONTINUOUS CONTROLLER [s] / Abtastzeit des kontinuierlichen Reglers [s] Vorgabe der Abtastzeit für den PID-Algorithmus. Der Optimierer berechnet in Phase 1 die Abtastzeit und trägt sie in CYCLE ein. Default: 0.1s Wertebereich: ≥ 1ms
CYCLE_P	INPUT/ OUTPUT	REAL	SAMPLE TIME OF PULSE GENERATOR [s] / Abtast- zeit des Impulsformers [s] ■ An diesem Eingang geben Sie die Abtastzeit für den Impulsformer-Anteil ein. Der FB 58 "TCONT_CP" berechnet in Phase 1 die Abtastzeit und trägt sie in CYCLE_P ein. ■ Default: 0.2s ■ Wertebereich: ≥ 1ms

Parameter	Deklaration	Datentyp	Beschreibung
SP_INT	INPUT/ OUTPUT	REAL	INTERNAL SETPOINT / Interner Sollwert
			Der Eingang SP_INT dient zur Vorgabe eines Sollwertes.
			■ Default: 0.0
			Wertebereich des Istwertes
MAN	INPUT/ OUTPUT	REAL	MANUAL VALUE / Handwert
			 Der Eingang MAN dient zur Vorgabe eines Handwertes. Im Automatikbetrieb wird er dem Stellwert nachgeführt. Default: 0.0
COM_RST	INPUT/ OUTPUT	REAL	COMPLETE RESTART / Neustart
			 Der Baustein hat eine Initialisierungsroutine, die bearbeitet wird, wenn der Eingang COM_RST gesetzt ist. Default: FALSE
MAN_ON	INPUT/ OUTPUT	REAL	MANUAL OPERATION ON / Handbetrieb einschalten
			 Ist der Eingang MAN_ON gesetzt, ist der Regelkreis unterbrochen. Als Stellwert wird der Handwert MAN vorgegeben. Default: TRUE

Interne Parameter

Parameter	Deklaration	Datentyp	Beschreibung
DEADB_W	INPUT	REAL	DEAD BAND WIDTH / Totzonenbreite
			Die Regeldifferenz wird über eine Totzone geführt. Der Eingang DEADB_W bestimmt die Größe der Totzone.
			■ Default: 0.0
			Wertebereich: Abhängig von den eingesetzten Sensoren
I_ITLVAL	INPUT	REAL	INITIALIZATION VALUE OF THE INTEGRAL ACTION / Initialisierungswert für I-Anteil
			 Der Ausgang des Integrierers kann am Eingang I_ITL_ON gesetzt werden. Am Eingang I_ITLVAL steht der Initialisierungswert.
			Bei Neustart COM_RST = TRUE wird der I-Anteil auf den Initialisierungswert gesetzt.
			■ Default: 0.0
			Wertebereich: 0 bis 100 %
LMN_HLM	INPUT R	REAL	MANIPULATED VARIABLE HIGH LIMIT / Stellwert obere Begrenzung
			Der Stellwert wird immer auf eine obere und untere Grenze begrenzt. Der Eingang LMN_HLM gibt die obere Begrenzung an.
			Default: 100.0
			Wertebereich: > LMN_ LLM

Parameter	Deklaration	Datentyp	Beschreibung
LMN_LLM	INPUT	REAL	MANIPULATED VARIABLE LOW LIMIT / Stellwert untere Begrenzung
			 Der Stellwert wird immer auf eine obere und untere Grenze begrenzt. Der Eingang LMN_LLM gibt die untere Begrenzung an. Default: 0.0 Wertebereich: < LMN_HLM
PV_FAC	INPUT	REAL	PROCESS VARIABLE FACTOR / Istwertfaktor
_			 Der Eingang PV_FAC wird mit dem PV_PER multipliziert. Der Eingang dient zur Anpassung des Istwertbereiches. Default: 1.0
PV_OFFS	INPUT	REAL	PROCESS VARIABLE OFFSET / Istwertoffset
			 Der Eingang PV_OFFS wird zum PV_PER addiert. Der Eingang dient zur Anpassung des Istwertbereiches. Default: 0.0
LMN_FAC	INPUT	REAL	MANIPULATED VARIABLE FACTOR / Stellwertfaktor
			 Der Eingang LMN_FAC wird mit dem Stellwert multipliziert. Der Eingang dient zur Anpassung des Stellwertbereiches. Default: 1.0
LMN OFFS	INPUT	REAL	MANIPULATED VARIABLE OFFSET / Stellwertoffset
_			 Der Eingang LMN_OFFS wird zum Stellwert addiert. Der Eingang dient zur Anpassung des Stell- wertbereiches. Default: 0.0
PER_TM	INPUT	REAL	PERIOD TIME [s] / Periodendauer [s]
			 Am Parameter PER_TM wird die Periodendauer der Pulsbreitenmodulation eingegeben. Das Verhältnis Periodendauer zu Abtastzeit des Impulsfrormers bestimmt die Genauigkeit der Pulsbreitenmodulation. Default: 1.0 s
D D T.	IN ID. IT	D= 44	■ Wertebereich: ≥ CYCLE
P_B_TM	INPUT	REAL	MINIMUM PULSE/BREAK TIME [s] / Mindestimpuls- bzw. Mindestpausendauer [s]
			 Am Parameter P_B_TM kann eine minimale Impulsbzw. Pausenlänge parametriert werden. P_B_TM wird intern auf > CYCLE_P begrenzt. Default: 0.02 s
			■ Wertebereich: ≥ 0.0

Parameter	Deklaration	Datentyp	Beschreibung
TUN_DLMN	INPUT	REAL	DELTA MANIPULATED VARIABLE FOR PROCESS EXCITATION / Delta-Stellwert für Prozessanregung
			Die Prozessanregung für die Regleroptimie- rung erfolgt durch einen Stellwertsprung von TUN_DLMN.
			Default: 20.0Wertebereich: -100.0 100.0 %
PER_MODE	INPUT	INT	PERIPHERY MODE / Peripherie Betriebsart
			 An diesem Schalter k\u00f6nnen Sie den Typ der AE-Baugruppe eingeben. Der Istwert am Eingang PV_PER wird dadurch am Ausgang PV in \u00b8C normiert. PER_MODE = 0: Standard
			PER_MODE = 1: KlimaPER_MODE = 2: Strom/Spannung
			■ Default: 0
			■ Wertebereich: 0, 1, 2
PVPER_ON	INPUT	BOOL	PROCESS VARIABLE PERIPHERY ON / Istwert Peripherie einschalten
			 Soll der Istwert von der Peripherie eingelesen werden, so muss der Eingang PV_PER mit der Peripherie verschaltet werden und der Eingang PVPER_ON gesetzt werden.
LITLON	INDLIT	POOL	■ Default: FALSE INITIALIZATION OF THE INTEGRAL ACTION ON / I-
I_ITL_ON	INPUT	BOOL	Anteil setzen
			 Der Ausgang des Integrierers kann auf den Eingang I_ITLVAL gesetzt werden. Hierzu muss der Eingang I_ITL_ON gesetzt werden. Default: FALSE
PULSE_ON	INPUT	BOOL	PULSE GENERATOR ON / Impulsformer einschalten
_			 Mit PULSE_ON = TRUE wird der Impulsformer eingeschaltet. Default: FALSE
TUN KEEP	INPUT	BOOL	KEEP TUNING ON / Optimierbetrieb halten
-			 Ein Übergang in den Automatikbetrieb erfolgt erst, wenn <i>TUN_KEEP</i> = FALSE. Default: FALSE
ER	OUTPUT	REAL	ERROR SIGNAL / Regeldifferenz
	331131		■ Am Ausgang <i>ER</i> wird die effektiv wirkende Regeldif-
			ferenz ausgegeben.
			Default: 0.0Wertebereich: Abhängig von den eingesetzten Sensoren

Parameter	Deklaration	Datentyp	Beschreibung	
LMN_P	OUTPUT	REAL	PROPORTIONALITY COMPONENT / P-Anteil	
			 Der Ausgang LMN_P beinhaltet den Proportionalan teil der Stellgröße. Default: 0.0 	
LMN_I	OUTPUT	REAL	INTEGRAL COMPONENT / I-Anteil	
			 Der Ausgang LMN_I beinhaltet den Integralanteil der Stellgröße. Default: 0.0 	
LMN_D	OUTPUT	REAL	DERIVATIVE COMPONENT / D-Anteil	
			 Der Ausgang LMN_D beinhaltet den Differentialanteil der Stellgröße. Default: 0.0 	
PHASE	OUTPUT	INT	PHASE OF SELF TUNING / Phasenanzeige der Regleroptimierung	
			 Am Ausgang PHASE wird die aktuelle Ablaufphase der Regleroptimiering angezeigt (07). Default: 0 Wertebereich: 0, 1, 2, 3, 4, 5, 7 	
STATUS_H	OUTPUT	INT	STATUS HEATING OF SELF TUNING / Status Heizen der Regleroptimierung	
			 STATUS_H zeigt einen Diagnosewert über die Suche des Wendepunktes beim Heizvorgang an. Default: 0 	
STATUS_D	OUTPUT	INT	STATUS CONTROLLER DESIGN OF SELF TUNING / Status Reglerentwurf der Regleroptimierung	
			 STATUS_D zeigt einen Diagnosewert über den Reglerentwurf beim Heizvorgang an. Default: 0 	
QTUN_RUN	OUTPUT	BOOL	TUNING IS ACTIVE (PHASE 2) / Optimierung läuft (Phase 2)	
			 Die Optimierung wurde durch Aufschalten der Optimierungsstellgröße begonnen und befindet sich noch in Phase 2 (Wendepunktsuche). Default: 0 	
PI_CON	OUTPUT	STRUCT	PI CONTROLLER PARAMETERS / PI Reglerparameter	
GAIN	OUTPUT	REAL	PI PROPORTIONAL GAIN / PI Reglerverstärkung Default: 0.0 Wertebereich: % / phys. Einheit	
ТІ	OUTPUT	REAL	PI RESET TIME [s] / PI Integrationszeit [s] ■ Default: 0.0 s ■ Wertebereich: ≥ 0.0 s	
DID CON	OUTPUT	STRUCT		
PID_CON	COIFOI	STRUCT	PID CONTROLLER PARAMETERS / PID Reglerparameter	

Parameter	Deklaration	Datentyp	Beschreibung	
GAIN	OUTPUT	REAL	PID PROPORTIONAL GAIN / PID Reglerverstärkung	
			■ Default: 0.0	
TI	OUTPUT	REAL	PID RESET TIME [s] / PID Integrationszeit [s]	
			Default: 0.0 s	
TD	OUTDUT	DEAL	■ Wertebereich: ≥ 0.0 s	
TD	OUTPUT	REAL	PID DERIVATIVE TIME [s] / PID Differenzierzeit [s]	
			Default: 0.0 sWertebereich: ≥ 0.0 s	
PAR_SAVE	OUTPUT	STRUCT	SAVED CONTROLLER PARAMETERS / Gespeicherte PID Reglerparameter	
			■ In dieser Struktur werden die PID-Parameter	
			gespeichert.	
PFAC_SP	INPUT/ OUTPUT	REAL	PROPORTIONAL FACTOR FOR SETPOINT CHANGES / Proportionalfaktor bei Sollwertänderungen	
			Default: 1.0	
			Wertebereich: 0.0 1.0	
GAIN	OUTPUT	REAL	PROPORTIONAL GAIN / Reglerverstärkung	
			Default: 0.0Wertebereich: % / phys. Einheit	
TI	INPUT/ OUTPUT	REAL	RESET TIME [s] / Integrationszeit [s]	
''	1141 017 0011 01	KLAL	Default: 40.0 s	
			■ Wertebereich: ≥ 0.0 s	
TD	INPUT/ OUTPUT	REAL	DERIVATIVE TIME [s] / Differenzierzeit [s]	
			Default: 10.0 s	
			■ Wertebereich: ≥ 0.0 s	
D_F	OUTPUT	REAL	DERIVATIVE FACTOR / Differenzierfaktor	
			Default: 5.0Wertebereich: 5.0 10.0	
CON ZONE	OUTPUT	REAL	CONTROL ZONE ON / Regelzone einschalten	
00N_20NL	0011 01	KLAL	Default: 100.0	
			■ Wertebereich: ≥ 0.0	
CONZ_ON	OUTPUT	REAL	CONTROL ZONE / Regelzonenbreite	
			■ Default: FALSE	
PFAC_SP	INPUT/ OUTPUT	REAL	PROPORTIONAL FACTOR FOR SETPOINT CHANGES / Proportionalfaktor bei Sollwertänderungen	
			 PFAC_SP gibt den wirksamen P-Anteil bei Sollwertänderung an. Er wird zwischen 0 und 1 eingestellt. 1: P-Anteil ist auch bei Sollwertänderungen voll wirksam. 0: P-Anteil ist bei Sollwertänderungen nicht wirksam. 	
			Default: 1.0Wertebereich: 0.0 1.0	

Parameter	Deklaration	Datentyp	Beschreibung
GAIN	INPUT/ OUTPUT	REAL	PROPORTIONAL GAIN / Reglerverstärkung
			 Der Eingang GAIN gibt die Reglerverstärkung an. Eine Invertierung des Regelsinns wird durch das negative Vorzeichen von GAIN erreicht. Default: 0.0 Wertebereich: % / phys. Einheit
TI	INPUT/ OUTPUT	REAL	RESET TIME [s] / Integrationszeit [s]
			 Der Eingang <i>TI</i> (Nachstellzeit) bestimmt das Zeitverhalten des Integrierers. Default: 40.0 s Wertebereich: ≥ 0.0 s
TD	INPUT/ OUTPUT	REAL	DERIVATIVE TIME [s] / Differenzierzeit [s]
			 Der Eingang <i>TD</i> (Vorhaltezeit) bestimmt das Zeitverhalten des Differenzierers. Default: 10.0 s Wertebereich: ≥ 0.0 s
D_F	INPUT/ OUTPUT	REAL	DERIVATIVE FACTOR / Differenzierfaktor
5_1	III 617 6611 61		 Der Differenzierfaktor <i>D_F</i> bestimmt die Verzögerung des D-Anteils. <i>D_F</i> = Differenzierzeit / "Verzögerung des D-Anteils" Default: 5.0 Wertebereich: 5.0 10.0
CON ZONE	INPUT/ OUTPUT	REAL	CONTROL ZONE ON / Regelzonenbreite
_			 Ist die Regeldifferenz größer als die Regelzonenbreite CON_ZONE, so wird die obere Stellwertbegrenzung als Stellwert ausgegeben. Ist die Regeldifferenz kleiner als die negative Regelzonenbreite, so wird die untere Stellwertbegrenzung als Stellwert ausgegeben. Default: 100.0 Abhängig von den eingesetzten Sensoren
CONZ_ON	INPUT/ OUTPUT	BOOL	CONTROL ZONE / Regelzone einschalten
			Mit CONZ_ON = TRUE können Sie die Regelzone einschalten.Default: FALSE
TUN_ON	INPUT/ OUTPUT	BOOL	 SELF TUNING ON / Regleroptimierung einschalten Wenn TUN_ON = TRUE wird der Stellwert gemittelt bis entweder durch einen Sollwertsprung oder durch TUN_ST = TRUE die Stellwertanregung TUN_DLMN aufgeschaltet wird. Default: FALSE
TUN_ST	INPUT/ OUTPUT	BOOL	 START SELF TUNING / Regleroptimierung starten Soll bei der Regleroptimierung am Arbeitspunkt der Sollwert konstant bleiben, wird durch TUN_ST = TRUE ein Stellwertsprung um TUN_DLMN aufgeschaltet. ■ Default: FALSE

Parameter	Deklaration	Datentyp	Beschreibung
UNDO_PAR	INPUT/ OUTPUT	BOOL	UNDO CHANGE OF CONTROLLER PARAMETERS / Rückgängigmachen der Reglerparameteränderung ■ Lädt die Reglerparameter PFAC_SP, GAIN, TI, TD, D_F, CONZ_ON und CON_ZONE aus der Datenstruktur PAR_SAVE (nur im Handbetrieb). ■ Default: FALSE
SAVE_PAR	INPUT/ OUTPUT	BOOL	SAVE CURRENT CONTROLLER PARAMETERS / Aktuelle Reglerparameter sichern ■ Sichert die Reglerparameter <i>PFAC_SP</i> , <i>GAIN</i> , <i>TI</i> , <i>TD</i> , <i>D_F</i> , <i>CONZ_ON</i> und <i>CON_ZONE</i> in die Datenstruktur <i>PAR_SAVE</i> . ■ Default: FALSE
LOAD_PID	INPUT/ OUTPUT	BOOL	LOAD OPTIMIZED PI/PID PARAMETERS / Optimierte PID-Parameter laden ■ Lädt die Reglerparameter GAIN, TI, TD in Abhängigkeit von PID_ON aus der Datenstruktur PI_CON bzw. PID_CON (nur im Handbetrieb) ■ Default: FALSE
PID_ON	INPUT/ OUTPUT	BOOL	 PID MODE ON / PID Betriebsart einschalten Am Eingang PID_ON können Sie festlegen, ob der optimierte Regler als PI- oder als PID-Regler arbeiten soll. PID-Regler: PID_ON = TRUE PI-Regler: PID_ON = FALSE Es kann jedoch sein, dass bei manchen Streckentypen trotz PID_ON = TRUE nur ein PI-Regler entworfen wird. Default: TRUE
GAIN_P	OUTPUT	REAL	PROZESS PROPORTIONAL GAIN / Prozessverstärkung ■ Identifizierte Prozessverstärkung. Beim Streckentyp I wird GAIN_P tendenziell zu klein geschätzt. ■ Default: 0.0
TU	OUTPUT	REAL	 DELAY TIME [s] / Verzugszeit [s] ■ Identifizierte Verzugszeit vom Prozess. ■ Default: 0.0 ■ Wertebereich: ≥ 3*CYCLE
TA	OUTPUT	REAL	RECOVERY TIME [s] / Ausgleichszeit [s] Identifizierte Ausgleichszeit vom Prozess. Beim Streckentyp I wird <i>TA</i> tendenziell zu klein geschätzt. Default: 0.0
KIG	OUTPUT	REAL	MAXIMAL ASCENT RATIO OF PV WITH 100 % LMN CHANGE / Maximaler Istwertanstieg bei einer Stellgrößenanregung von 0 nach 100 % [1/s] ■ GAIN_P = 0.01 * KIG * TA ■ Default: 0.0

Parameter	Deklaration	Datentyp	Beschreibung	
N_PTN	OUTPUT	REAL	PROCESS ORDER / Prozessordnung	
			 Der Parameter gibt die Ordnung der Strecke an. Auch "nicht ganzzahlige Werte" sind möglich. Default: 0.0 Wertebereich: 1.01 10.0 	
TM_LAG_P	OUTPUT	REAL	 TIME LAG OF PTN MODEL [s] / Zeitkonstante eines PTN-Modells [s] Zeitkonstante eines PTN-Modells (sinnvolle Werte nur für N_PTN ≥ 2). Default: 0.0 	
T_P_INF	OUTPUT	REAL	TIME TO POINT OF INFLECTION [s] / Zeit bis zum Wendepunkt [s] ■ Zeit von der Prozessanregung bis zum Wendepunkt. ■ Default: 0.0	
P_INF	OUTPUT	REAL	 PV AT POINT OF INFLECTION - PV0 / Istwert am Wendepunkt-PV0 Istwertänderung von der Prozessanregung bis zum Wendepunkt. Default: 0.0 Wertebereich: Wertebereich des Istwertes 	
LMN0	OUTPUT	REAL	MANIPULATED VAR. AT BEGIN OF TUNING / Stellwert zu Beginn der Optimierung Wird in Phase 1 ermittelt (Mittelwert). Default: 0.0 Wertebereich: 0 100 %	
PV0	OUTPUT	REAL	PROCESS VALUE AT BEGIN OF TUNING / Istwert zu Beginn der Optimierung Default: 0.0 Wertebereich: Wertebereich des Istwertes	
PVDT0	OUTPUT	REAL	RATE OF CHANGE OF PV AT BEGIN OF TUNING [1/s] / Istwertsteigung zu Beginn der Optimierung [1/s] Vorzeichen angepasst Default: 0.0	
PVDT	OUTPUT	REAL	CURRENT RATE OF CHANGE OF PV [1/s] / Momentane Istwertsteigung [1/s] Vorzeichen angepasst Default: 0.0	
PVDT_MAX	OUTPUT	REAL	 MAX. RATE OF CHANGE OF PV PER SECOND [1/s] / Max. Änderung des Istwertes pro Sekunde [1/s] Maximale Ableitung des Istwertes am Wendepunkt (Vorzeichen angepasst, immer > 0), wird verwendet zur Berechnung von <i>TU</i> und <i>KIG</i>. Default: 0.0 	

Parameter	Deklaration	Datentyp	Beschreibung
NOI_PVDT	OUTPUT	REAL	RATIO OF NOISE IN PVDT_MAX IN % / Rauschanteil in PVDT_MAX in %
			 Je größer der Rauschanteil, desto ungenauer (sanfter) die Reglerparameter. Default: 0.0
NOISE_PV	OUTPUT	REAL	ABSOLUTE NOISE IN PV / Absolutes Rauschen im Istwert
			Differenz zwischen maximalem und minimalem Istwert in Phase 1.Default: 0.0
FIL_CYC	OUTPUT	INT	NO OF CYCLES FOR MEAN-VALUE FILTER / Anzahl der Zyklen des Mittelwertfilters
			Der Istwert wird über FIL_CYC Zyklen gemittelt. FIL_CYC wird bei Bedarf automatisch von 1 bis max. 1024 erhöht.
			Default: 1
			■ Wertebereich: 1 1024
POI_CMAX	OUTPUT	INT	MAX NO OF CYCLES AFTER POINT OF INFLE- CTION / Maximale Anz. Zyklen nach Wendepunkt
			 Diese Zeit wird genutzt, um bei Messrauschen einen weiteren (d. h. besseren) Wendepunkt zu finden. Erst dann wird die Optimierung beendet. Default: 2
POI_CYCL	OUTPUT	INT	NUMBER OF CYCLES AFTER POINT OF INFLE- CTION / Anzahl Zyklen nach Wendepunkt
			■ Default: 0

Anwendung

- Die Arbeitsweise basiert auf dem PID-Regelalgorithmus, der mit zusätzlichen Funktionen für Temperaturprozesse ausgestattet ist. Der Regler liefert analoge Stellwerte und pulsbreitenmodulierte Stellsignale. Der Regler versorgt ein Stellglied, d. h. Sie können mit einem Regler entweder nur heizen oder nur kühlen.
- Den FB 58 TCONT_CP können Sie sowohl für reine Heizstrecken als auch für reine Kühlstrecken einsetzen. Bei Einsatz für einen Kühlprozess müssen Sie GAIN mit einem negativen Wert parametrieren. Die so parametrierte Reglerinvertierung bewirkt, dass nun z.B. bei einem Anstieg der Temperatur sich die Stellgröße LMN und damit die Kühlleistung erhöht.
- Neben den Funktionen im Soll- und Istwertzweig realisiert der FB einen fertigen PID-Temperaturregler mit kontinuierlichem und binärem Stellgrößen-Ausgang. Zur Verbesserung des Regelverhaltens bei Temperaturstrecken hat der Baustein eine Regelzone und eine Reduzierung des P-Anteils bei Sollwertsprüngen. Die PI/PID-Parameter kann der Baustein mittels Regleroptimierung selbst einstellen.

Die Werte in den Regelbausteinen werden nur dann korrekt berechnet, wenn der Baustein in regelmäßigen Abständen aufgerufen wird. Deshalb sollten die Regelbausteine in einem Weckalarm-OB (OB 30 ... 38) aufgerufen werden. Die Abtastzeit wird am Parameter CYCLE vorgegeben.

Sollwertzweig

Der Sollwert wird am Eingang *SP_INT* im Gleitpunktformat physikalisch oder in Prozent eingegeben. Sollwert und Istwert müssen an der Regeldifferenzbildung die gleiche Einheit besitzen.

Istwertauswahl (PVPER_ON)

Der Istwert kann abhängig von *PVPER_ON* im Peripherie- oder im Gleitpunktformat eingelesen werden.

PVPER_ON	Istwerteingabe
TRUE	Der Istwert wird über die Analogperipherie (PEW xxx) am Eingang <i>PV_PER</i> eingelesen.
FALSE	Der Istwert wird im Gleitpunktformat am Eingang PV_IN eingelesen.

Istwertformatumwandlung CRP_IN (PER_MODE)

Die Funktion *CRP_IN* wandelt den Peripheriewert *PV_PER* abhängig vom Schalter *PER_MODE* in ein Gleitpunktformat nach folgender Vorschrift um:

PER_MODE	Ausgang von CRP_IN	Analogeingabe-Typ	Einheit
0	PV_PER * 0.1	Thermoelemente; PT100/ NI100; Standard	°C; °F
1	PV_PER * 0.01	PT100/NI100; Klima	°C; °F
2	PV_PER * 100/27648	Spannung/Strom	%

Istwertnormierung PV_NORM (PV_FAC, PV_OFFS)

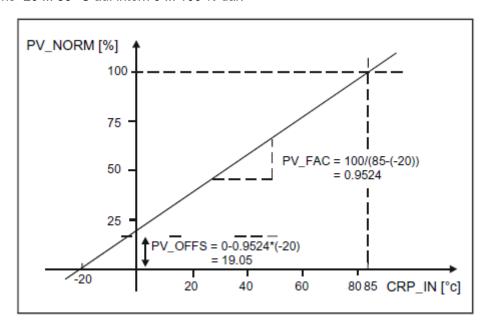
Die Funktion *PV_NORM* berechnet den Ausgang von *CRP_IN* nach folgender Vorschrift: Ausgang von *PV_NORM* = Ausgang von *CPR_IN* * *PV_FAC* + *PV_OFFS*

Sie kann für folgende Zwecke eingesetzt werden:

- Istwert-Anpassung mit PV_FAC als Istwertfaktor und PV_OFFS als Istwertoffset
- Normierung von Temperatur nach Prozent Sie wollen den Sollwert in Prozent eingeben und müssen nun den gemessenen Temperaturwert in Prozent umrechnen.
- Normierung von Prozent nach Temperatur Sie wollen den Sollwert in der physikalischen Größe Temperatur eingeben und müssen nun den gemessenen Spannungs/Strom-Wert in eine Temperatur umrechnen.

Berechnung der Parameter:

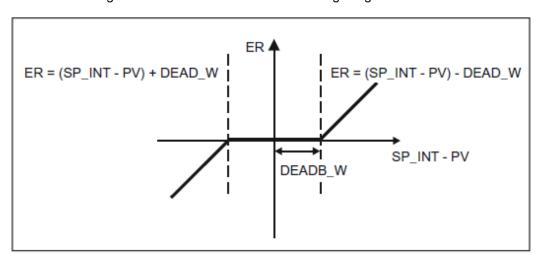
- PV_FAC = Bereich von PV_NORM/Bereich von CRP_IN
- PV_OFFS = UG(PV_NORM) PV_FAC * UG(CRP_IN); mit UG: Untergrenze


Mit den Defaultwerten ($PV_FAC = 1.0$ und $PV_OFFS = 0.0$) ist die Normierung abgeschaltet. Der effektiv wirksame Istwert wird am Ausgang PV ausgegeben.

Bei Impulsregelung muss der Istwert im schnellen Impulsaufruf dem Baustein übergeben werden (Grund: Mittelwertfilterung). Sonst kann sich die Regelqualität verschlechtern.

Beispiel zur Istwertnormierung

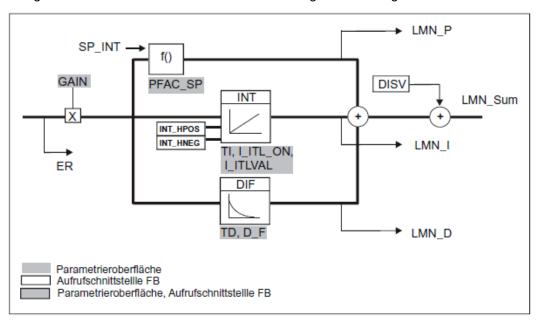
Wenn Sie den Sollwert in Prozent vorgeben wollen und Sie einen Temperaturbereich von -20 ... 85 °C an *CRP_IN* anliegen haben, müssen Sie den Temperaturbereich in Prozent umnormieren. Das folgende Bild stellt ein Beispiel für die Anpassung des Temperaturbereichs -20 ... 85 °C auf intern 0 ... 100 % dar:



Regeldifferenzbildung

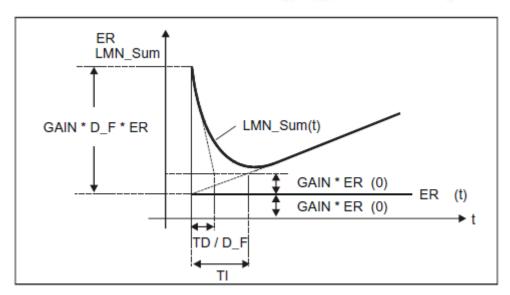
Die Differenz von Soll- und Istwert ergibt die Regeldifferenz vor der Totzone. Soll- und Istwert müssen in der gleichen Einheit vorliegen.

Totzone (DEADB_W)


Zur Unterdrückung einer kleinen Dauerschwingung aufgrund der Stellgrößen-Quantisierung (z. B. bei einer Pulsbreitenmodulation mit PULSEGEN) wird die Regeldifferenz über eine Totzone (DEADBAND) geleitet. Bei *DEADB_W* = 0.0 ist die Totzone ausgeschaltet. Die wirksame Regeldifferenz wird am Parameter *ER* angezeigt.

PID-Steuerung - "PID Control" > FB 58 - TCONT CP - Kontinuierliches Temperaturregeln

PID-Algorithmus


In folgendem Bild ist das Blockschaltbild des PID-Algorithmus dargestellt:

PID-Algorithmus (*GAIN*, *TI*, *TD*, *D_F*)

- Der PID-Algorithmus arbeitet im Stellungsalgorithmus. Der Proportional-, Integral (*INT*) und Differentialanteil (*DIF*) sind parallel geschaltet und lassen sich einzeln zuund abschalten. Damit können Sie P-, PI-, PD- und PID-Regler parametrieren.
- Die Regleroptimierung unterstützt Pl- und PID-Regler. Reglerinvertierung erfolgt über ein negatives *GAIN* (Kühlregler).
- Wenn Sie TI und TD auf 0.0 setzen erhalten Sie einen reinen P-Regler am Arbeitspunkt.

$$LMN_Sum(t) = GAIN * ER(0) \left(1 + \frac{1}{TI} * t + D_F * e^{\frac{-t}{TD/D_F}}\right)$$

LMN_Sum(t) Stellgröße bei Automatikbetrieb des Reglers ER (0) Sprunghöhe der normierten Regeldifferenz

GAIN Reglerverstärkung
TI Integrationszeit
TD Differenzierzeit
D F Differenzierfaktor

PID-Steuerung - "PID Control" > FB 58 - TCONT CP - Kontinuierliches Temperaturregeln

Integrierer (TI, I_ITL_ON, I_ITLVAL)

Bei Handbetrieb wird er wie folgt nachgeführt: LMN_I = LMN - LMN_P - DISV

Bei Begrenzung des Stellwerts wird der I-Anteil angehalten. Bei einer Regeldifferenz, die den I-Anteil in Richtung innerer Stellbereich bewegt, wird der I-Anteil wieder freigegeben.

Weitere Modifikationen des I-Anteils ergeben sich durch folgende Maßnahmen:

- Abschalten des I-Anteils des Reglers erfolgt mit TI = 0.0
- Abschwächung des P-Anteils bei Sollwertänderungen
- Regelzone
- Die Stellwertgrenzen lassen sich online ändern

Abschwächung des P-Anteils bei Sollwertänderungen (*PFAC_SP*)

Um Überschwingen zu vermeiden können Sie den P-Anteil über den Parameter "Proportionalfaktor bei Sollwertänderungen" (*PFAC_SP*) abschwächen. Über *PFAC_SP* können Sie zwischen 0.0 und 1.0 kontinuierlich wählen, wie stark der P-Anteil bei Sollwertänderungen wirken soll:

- PFAC_SP = 1.0: P-Anteil bei Sollwertänderung voll wirksam
- PFAC_SP = 0.0: P-Anteil bei Sollwertänderung nicht wirksam

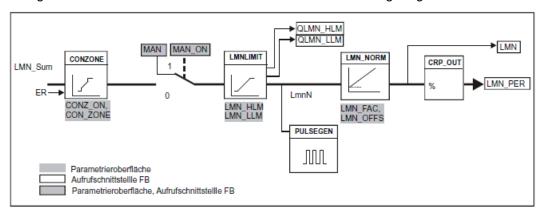
Die Abschwächung des P-Anteils wird durch eine Kompensation am I-Anteil erreicht.

Differenzierer (TD, D F)

- Abschalten des D-Anteils des Reglers erfolgt mit TD = 0.0.
- Bei zugeschaltetem D-Anteil sollte folgende Gleichung eingehalten werden: TD = 0.5 * CYCLE * D_F

Parametrierung eines Poder PD-Reglers mit Arbeitspunkt

Schalten Sie in der Parametrieroberfläche den I-Anteil (TI = 0.0) und evtl. den D-Anteil (TD = 0.0) ab. Führen Sie außerdem folgende Parametrierung durch:


- I_ITL_ON = TRUE
- / ITLVAL = Arbeitspunkt

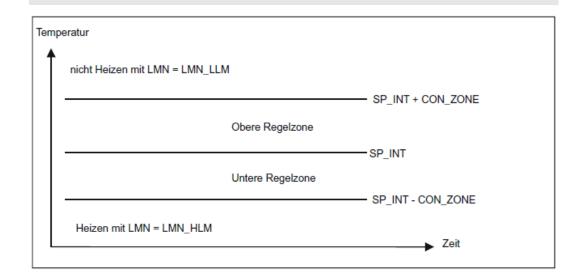
Störgrößenaufschaltung (DISV)

Am Eingang DISV können Sie eine Störgröße additiv aufschalten.

Stellwertberechnung

In folgendem Bild ist das Blockschaltbild der Stellwertberechnung dargestellt:

PID-Steuerung - "PID Control" > FB 58 - TCONT_CP - Kontinuierliches Temperaturregeln


Regelzone (CONZ_ON, CON_ZONE)

Wenn CONZ_ON = TRUE arbeitet der Regler mit einer Regelzone. Das bedeutet, dass der Regler nach folgendem Algorithmus angesteuert wird:

- Übersteigt der Istwert *PV* den Sollwert *SP_INT* um mehr als *CON_ZONE*, wird als Stellgröße der Wert *LMN_LLM* ausgegeben (gesteuerter Regelbetrieb).
- Unterschreitet der Istwert PV den Sollwert SP_INT um mehr als CON_ZONE, wird LMN_HLM ausgegeben (gesteuerter Regelbetrieb).
- Bewegt sich der Istwert PV innerhalb der Regelzone (CON_ZONE), nimmt der Stellwert den Wert vom PID-Algorithmus LMN_Sum an (automatischer Regelbetrieb).

ñ

Der Übergang vom gesteuerten Regelbetrieb zum automatischen Regelbetrieb erfolgt unter Einhaltung einer Hysterese von 20% der Regelzone.

ĭ

Bevor Sie die Regelzone von Hand einschalten müssen Sie sicherstellen, dass die Regelzonenbreite nicht zu klein eingestellt ist. Bei zu klein eingestellter Regelzonenbreite treten Schwingungen im Verlauf der Stellgröße und des Istwertverlaufs auf.

Vorteil der Regelzone

Beim Eintritt in die Regelzone führt der zugeschaltete D-Anteil zu einem sehr schnellen Reduzieren der Stellgröße. Daher ist die Regelzone nur bei eingeschaltetem D-Anteil sinnvoll. Ohne Regelzone würde im wesentlichen nur der sich reduzierende P-Anteil die Stellgröße reduzieren. Die Regelzone führt zu einem schnelleren Einschwingen ohne Über-/Unterschwingen, wenn die ausgegebene minimale oder maximale Stellgröße weit von der für den neuen Arbeitspunkt stationär notwendigen Stellgröße entfernt ist.

Handwertverarbeitung (MAN_ON, MAN)

Sie können zwischen Hand- und Automatikbetrieb umschalten. Bei Handbetrieb wird die Stellgröße einem Handwert nachgeführt. Der Integrierer (*INT*) wird intern auf *LMN* - *LMN_P - DISV* und der Differenzierer (*DIF*) auf 0 gesetzt und intern abgeglichen. Das Umschalten in den Automatikbetrieb ist damit stoßfrei.

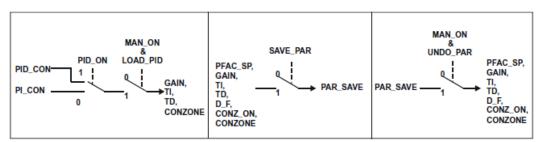
Während einer Optimierung ist der Parameter MAN_ON nicht wirksam.

PID-Steuerung - "PID Control" > FB 58 - TCONT CP - Kontinuierliches Temperaturregeln

Stellwertbegrenzung LMNLIMIT (LMN_HLM, LMN_LLM) Der Stellwert wird mit der Funktion *LMNLIMIT* auf die Stellwertgrenzen *LMN_HLM* und *LMN_LLM* begrenzt. Das Erreichen der Grenzen wird durch die Meldebits *QLMN_HLM* und *QLMN_LLM* angezeigt. Bei Begrenzung des Stellwerts wird der I-Anteil angehalten. Bei einer Regeldifferenz, die den I-Anteil in Richtung innerer Stellbereich bewegt, wird der I-Anteil wieder freigegeben.

Stellwertgrenzen online ändern

Wird der Stellwertbereich verringert und der neue unbegrenzte Stellwert liegt außerhalb der Grenzen, wird der I-Anteil und damit der Stellwert verschoben. Der Stellwert wird um die Änderung der Stellwertgrenze verringert. War der Stellwert vor der Änderung unbegrenzt, wird er genau auf die neue Grenze gesetzt (hier beschrieben für die obere Stellwertgrenze).


Stellwertnormierung
LMN_NORM (LMN_FAC,
LMN_OFFS)

- Die Funktion *LMN_NORM* normiert den Stellwert nach folgender Vorschrift: *LMN* = *LmnN* * *LMN_FAC* + *LMN_OFFS*
- Sie kann für folgende Zwecke eingesetzt werden:
 Stellwert-Anpassung mit LMN_FAC als Stellwertfaktor und LMN_OFFS als Stellwertoffset
- Der Stellwert steht auch im Peripherieformat zur Verfügung. Die Funktion CRP_OUT wandelt den Gleitpunktwert *LMN* in einen Peripheriewert nach folgender Vorschrift um: *LMN PER* = *LMN* * 27648/100

Mit den Defaultwerten ($LMN_FAC = 1.0$ und $LMN_OFFS = 0.0$) ist die Normierung abgeschaltet. Der effektiv wirksame Stellwert wird am Ausgang LMN ausgegeben.

Reglerparameter speichern und zurückladen

In folgendem Bild ist das Blockschaltbild dargestellt:

Reglerparameter speichern SAVE PAR

Wenn Sie die aktuellen Reglerparameter als brauchbar einstufen, können Sie diese vor einer manuellen Änderung in eigens dafür vorgesehenen Strukturparametern im Instanz-DB des FB 58 speichern. Bei einer Regleroptimierung werden die gespeicherten Parameter durch die vor der Optimierung gültigen Werte überschrieben. *PFAC_SP, GAIN, TI, TD, D_F, CONZ_ON* und *CON_ZONE* werden in die Struktur PAR_SAVE geschrieben.

Gespeicherte Reglerparameter zurückladen UNDO PAR Die zuletzt gespeicherten Reglerparameter können mit dieser Funktion wieder für den Regler aktiviert werden (nur im Handbetrieb).

Wechsel zwischen PI- und PID-Parametern *LOAD_PID* (*PID_ON*)

Nach einer Optimierung werden die PI- und PID-Parameter in den Strukturen *PI_CON* und *PID_CON* hinterlegt. Mit *LOAD_PID* in Abhängigkeit von *PID_ON* können Sie im Handbetrieb die PI- bzw. PID-Parameter auf die wirksamen Reglerparameter schreiben.

PID-Parameter PID_ON = TRUE		PI-Parameter PID_ON = FALSE	
GAIN	= PID_CON.GAIN	GAIN	= PI_CON.GAIN
TI	= PID_CON.TI	TI	= PI_CON.TI
TD	= PID_CON.TD		

 \int_{1}^{∞}

 Die Reglerparameter werden mit UNDO_PAR oder LOAD_PID nur dann zurückgeschrieben, wenn die Reglerverstärkung ungleich Null ist:

Bei LOAD_PID werden die Parameter nur kopiert, falls das jeweiligen GAIN <> 0 ist (entweder vom PI- oder PID-Parametersatz). Damit ist der Fall berücksichtigt, dass noch keine Optimierung durchgeführt wurde bzw. PID-Parameter fehlen. War PID_ON = TRUE und PID.GAIN = FALSE, wird PID_ON auf FALSE gesetzt und die PI-Parameter kopiert.

- D_F, PFAC_SP werden durch die Optimierung voreingestellt. Sie können anschließend vom Anwender modifiziert werden. LOAD_PID verändert diese Parameter nicht.
- Die Regelzone wird bei LOAD_PID immer neu berechnet (CON ZONE = 250/GAIN), auch wenn CONZ ON = FALSE.

15.5.5 FB 59 - TCONT S - Temperatur-Schrittregeln

Beschreibung

Der FB 59 TCONT_S dient zum Regeln von technischen Temperatur-Prozessen mit binären Stellwertausgangssignalen für integrierende Stellglieder. Über die Parametrierung lassen sich Teilfunktionen des PI-Schrittreglers zu- oder abschalten und damit an die Regelstrecke anpassen.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
CYCLE	INPUT	REAL	SAMPLE TIME OF STEP CONTROLLER [s] / Abtast-zeit des Schrittreglers [s]
			 An diesem Eingang CYCLE geben Sie die Abtastzeit für den Regler ein. Default: 0.0 Wertebereich: ≥ 0.001
SP_INT	INPUT	REAL	 INTERNAL SETPOINT / Interner Sollwert Der Eingang SP_INT dient zur Vorgabe eines Sollwertes. Default: 0.0 Wertebereich: Abhängig von den eingesetzten Sensoren

Parameter	Deklaration	Datentyp	Beschreibung
PV_IN	INPUT	REAL	PROCESS VARIABLE IN / Istwert Eingang
			 Am Eingang PV_IN kann ein Inbetriebsetzungswert parametriert oder ein externer Istwert im Gleitpunktformat verschaltet werden. Default: 0.0 Wertebereich: Abhängig von den eingesetzten Sensoren
PV_PER	INPUT	WORD	PROCESS VARIABLE PERIPHERY / Istwert Peripherie Der Istwert in Peripherieformat wird am Eingang PV_PER mit dem Regler verschaltet.
DIEV	INIDI IT	DEM	■ Default: 0
DISV	INPUT	REAL	DISTURBANCE VARIABLE / Störgröße
			 Für eine Störgrößenaufschaltung wird die Störgröße am Eingang <i>DISV</i> verschaltet. Default: 0.0
LMNR_HS	INPUT	BOOL	HIGH LIMIT SIGNAL OF REPEATED MANIPULATED VALUE / Oberes Anschlagsignal der Stellungsrückmeldung
			 Das Signal "Stellventil am oberen Anschlag" wird am Eingang LMNR_HS verschaltet. LMNR_HS = TRUE: Das Stellventil befindet sich am oberen Anschlag.
			■ Default: FALSE
LMNR_LS	INPUT	BOOL	LOW LIMIT SIGNAL OF REPEATED MANIPULATED VALUE / Unteres Anschlagsignal der Stellungsrückmeldung
			 Das Signal "Stellventil am unteren Anschlag" wird am Eingang LMNR_LS verschaltet. LMNR_LS = TRUE: Das Stellventil befindet sich am
			unteren Anschlag. Default: FALSE
LMNS_ON	INPUT	BOOL	MANIPULATED SIGNALS ON / Handbetrieb der Stellwertsignale einschalten
			 Am Eingang LMNS_ON wird die Stellwertsignalverarbeitung auf Hand geschaltet. Default: TRUE
LMNUP	INPUT	BOOL	MANIPULATED SIGNALS UP / Stellwertsignal Hoch
			 Bei Handbetrieb der Stellwertsignale wird am Eingang LMNUP das Ausgangssignal QLMNUP bedient. Default: FALSE
LMNDN	INPUT	BOOL	MANIPULATED SIGNALS DOWN / Stellwertsignal Tief
LIVIINDIN	II O I	BOOL	 Bei Handbetrieb der Stellwertsignale wird am Eingang <i>LMNDN</i> das Ausgangssignal <i>QLMNDN</i> bedient. Default: FALSE

Parameter	Deklaration	Datentyp	Beschreibung
QLMNUP	OUTPUT	BOOL	MANIPULATED SIGNAL UP / Stellwertsignal Hoch
			Ist der Ausgang <i>QLMNUP</i> gesetzt, soll das Stellventil geöffnet werden.Default: FALSE
QLMNDN	OUTPUT	BOOL	MANIPULATED SIGNAL DOWN / Stellwertsignal Tief
			 Ist der Ausgang <i>QLMNDN</i> gesetzt, soll das Stellventil geschlossen werden. Default: FALSE
PV	OUTPUT	REAL	PROCESS VARIABLE / Istwert
			 Am Ausgang PV wird der effektiv wirkende Istwert ausgegeben. Default: 0.0
PE	OUTPUT	REAL	ERROR SIGNAL / Regeldifferenz
			 Am Ausgang PE wird die effektiv wirkende Regeldifferenz ausgegeben. Default: 0.0
COM_RST	INPUT/ OUTPUT	BOOL	COMPLETE RESTART / Neustart
			 Der Baustein hat eine Initialisierungsroutine, die bearbeitet wird, wenn der Eingang COM_RST gesetzt ist. Default: FALSE

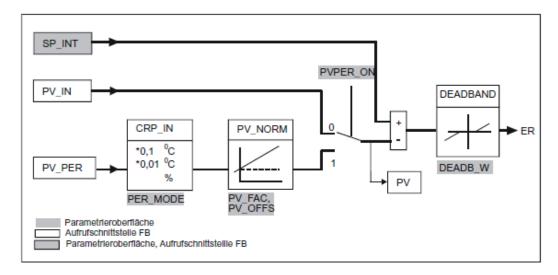
Interne Parameter

Parameter	Deklaration	Datentyp	Beschreibung
PV_FAC	INPUT	REAL	PROCESS VARIABLE FACTOR / Istwertfaktor
			 Der Eingang PV_FAC wird mit dem Istwert multipliziert. Der Eingang dient zur Anpassung des Istwertbereiches. Default: 1.0
PV_OFFS	INPUT	REAL	PROCESS VARIABLE OFFSET / Istwertoffset
			 Der Eingang PV_OFFS wird mit dem Istwert addiert. Der Eingang dient zur Anpassung des Istwertbereiches. Default: 0.0 Wertebereich: Abhängig von den eingesetzten Sensoren
DEADB_W	INPUT	REAL	DEAD BAND WIDTH / Totzonenbreite
			 Die Regeldifferenz wird über eine Totzone geführt. Der Eingang DEADB_W bestimmt die Größe der Totzone. Default: 0.0 Wertebereich: Abhängig von den eingesetzten Sensoren

Parameter	Deklaration	Datentyp	Beschreibung
PFAC_SP	INPUT	REAL	PROPORTIONAL FACTOR FOR SETPOINT CHANGES [01] / Proportionalfaktor bei Sollwertänderungen ■ PFAC_SP gibt den wirksamen P-Anteil bei Sollwertänderung an. Er wird zwischen 0 und 1 eingestellt. − 1: P-Anteil ist bei Sollwertänderungen voll wirksam − 0: P-Anteil ist bei Sollwertänderungen nicht wirksam ■ Default: 1.0 ■ Wertebereich: 0.0 1.0
GAIN	INPUT	REAL	 PROPORTIONAL GAIN / Reglerverstärkung Der Eingang GAIN gibt die Reglerverstärkung an. Eine Invertierung des Regelsinns wird durch das negative Vorzeichen von GAIN erreicht. Default: 2.0 Wertebereich: %/phys. Einheit
ΤΙ	INPUT	REAL	 RESET TIME [s] / Integrationszeit [s] Der Eingang TI (Nachstellzeit) bestimmt das Zeitverhalten des Integrierers. Default: 40.0 s Wertebereich: ≥ 0.0 s
MTR_TM	INPUT	REAL	 MOTOR ACTUATING TIME / Motorstellzeit [s] Am Parameter MTR_TM wird die Laufzeit des Stellventils vom Anschlag zu Anschlag eingetragen. Default: 30 s Wertebereich: ≥ CYCLE
PULSE_TM	INPUT	REAL	 MINIMUM PULSE TIME / Mindestimpulsdauer [s] Am Parameter PULSE_TM kann eine minimale Impulslänge parametriert werden. Default: 0.1s Wertebereich: ≥ 0.0 s
BREAK_TM	INPUT	REAL	 MINIMUM BREAK TIME / Mindestpausendauer [s] Am Parameter BREAK_TM kann eine minimale Pausenlänge parametriert werden. 0.1s Wertebereich: ≥ 0.0 s
PER_MODE	INPUT	INT	PERIPHERIE MODE / Peripherie Betriebsart ■ An diesem Schalter können Sie den Typ der AE-Baugruppe eingeben. Der Istwert am Eingang PV_PER wird dadurch am Ausgang PV in °C normiert. - PER_MODE = 0: Standard - PER_MODE = 1: Klima - PER_MODE = 2: Strom/Spannung ■ Default: 0 ■ Wertebereich: 0, 1, 2

Parameter	Deklaration	Datentyp	Beschreibung
PVPER_ON	INPUT	BOOL	PROCESS VARIABLE PERIPHERY ON / Istwert Peripherie einschalten
			 Soll der Istwert von der Peripherie eingelesen werden, so muss der Eingang PV_PER mit der Peripherie verschaltet werden und der Eingang PVPER_ON gesetzt werden. Default: FALSE

Anwendung


- Die Arbeitsweise basiert auf dem PI-Regelalgorithmus des Abtastreglers. Dieser wird um die Funktionsglieder zur Erzeugung des binären Ausgangssignals aus dem analogen Stellsignal ergänzt.
- Sie können den Regler auch in einer Reglerkaskade als unterlagerten Stellungsregler einsetzen. Über den Sollwerteingang SP_INT geben Sie die Stellgliedposition vor. In diesem Fall müssen Sie den Istwerteingang und den Parameter TI (Integrationszeit) auf Null setzen. Anwendungsfall ist z. B. eine Temperaturregelung mit Heizleistungsregelung über Puls-Pause-Ansteuerung und Kühlleistungsregelung über eine Ventilklappe. Um die Klappe ganz zu schließen, sollte die Stellgröße (ER * GAIN) negativ werden.
- Neben den Funktionen im Istwertzweig realisiert der FB 59 TCONT_S einen fertigen PI-Regler mit binärem Stellwertausgang und Beeinflussungsmöglichkeit der Stellwertsignale von Hand. Der Schrittregler arbeitet ohne Stellungsrückmeldung.

Die Werte in den Regelbausteinen werden nur dann korrekt berechnet, wenn der Baustein in regelmäßigen Abständen aufgerufen wird. Deshalb sollten die Regelbausteine in einem Weckalarm-OB (OB 30 ... 38) aufgerufen werden. Die Abtastzeit wird am Parameter CYCLE vorgegeben.

Regeldifferenzbildung

Blockschaltbild

Sollwertzweig

Der Sollwert wird am Eingang *SP_INT* im Gleitpunktformat physikalisch oder in Prozent eingegeben. Sollwert und Istwert müssen an der Regeldifferenzbildung die gleiche Einheit besitzen.

Istwertauswahl (PVPER_ON)

Der Istwert kann abhängig von *PVPER_ON* im Peripherie- oder im Gleitpunktformat eingelesen werden.

PVPER_ON	Istwerteingabe
TRUE	Der Istwert wird über die Analogperipherie (PEW xxx) am Eingang <i>PV_PER</i> eingelesen.
FALSE	Der Istwert wird im Gleitpunktformat am Eingang <i>PV_IN</i> eingelesen.

Istwertformatumwandlung CRP_IN (PER_MODE)

Die Funktion *CRP_IN* wandelt den Peripheriewert *PV_PER* abhängig vom Schalter *PER_MODE* in ein Gleitpunktformat nach folgender Vorschrift um:

PER_MODE	Ausgang von CRP_IN	Analogeingabe-Typ	Einheit
0	PV_PER * 0.1	Thermoelemente; PT100/ NI100; Standard	°C; °F
1	PV_PER * 0.01	PT100/NI100; Klima	°C; °F
2	PV_PER * 100/27648	Spannung/Strom	%

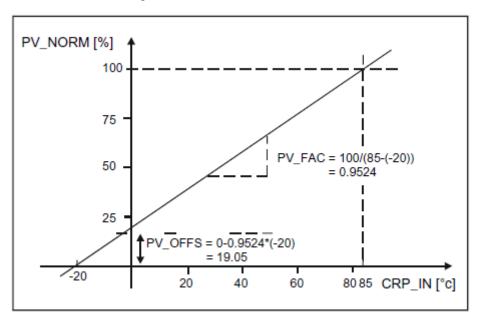
Istwertnormierung PV_NORM (PF_FAC, PV_OFFS)

Die Funktion *PV_NORM* berechnet den Ausgang von *CRP_IN* nach folgender Vorschrift:

Ausgang von *PV_NORM* = Ausgang von *CPR_IN * PV_FAC + PV_OFFS*

Sie kann für folgende Zwecke eingesetzt werden:

- Istwert-Anpassung mit PV_FAC als Istwertfaktor und PV_OFFS als Istwertoffset
- Normierung von Temperatur nach Prozent Sie wollen den Sollwert in Prozent eingeben und müssen nun den gemessenen Temperaturwert in Prozent umrechnen.
- Normierung von Prozent nach Temperatur Sie wollen den Sollwert in der physikalischen Größe Temperatur eingeben und müssen nun den gemessenen Spannungs/Strom-Wert in eine Temperatur umrechnen.

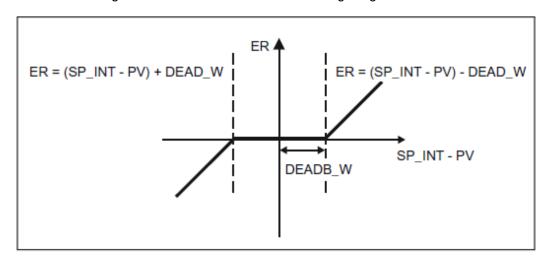

Berechnung der Parameter:

- PV_FAC = Bereich von PV_NORM / Bereich von CRP_IN
- PV_OFFS = UG(PV_NORM) PV_FAC * UG(CRP_IN); mit UG: Untergrenze

Mit den Defaultwerten (*PV_FAC* = 1.0 und *PV_OFFS* = 0.0) ist die Normierung abgeschaltet. Der effektiv wirksame Istwert wird am Ausgang PV ausgegeben.

Beispiel zur Istwertnormierung

Wenn Sie den Sollwert in Prozent vorgeben wollen und Sie einen Temperaturbereich von -20 bis 85 °C an *CRP_IN* anliegen haben, müssen Sie den Temperaturbereich in Prozent umnormieren. In folgendem Bild ist die Anpassung des Temperaturbereichs von -20 ... 85 °C auf intern 0 ... 100 % dargestellt:



Regeldifferenzbildung

Die Differenz von Soll- und Istwert ergibt die Regeldifferenz vor der Totzone. Soll- und Istwert müssen in der gleichen Einheit vorliegen.

Totzone (DEADB_W)

Zur Unterdrückung einer kleinen Dauerschwingung aufgrund der Stellgrößen-Quantisierung (z. B. bei einer Pulsbreitenmodulation mit PULSEGEN) wird die Regeldifferenz über eine Totzone (DEADBAND) geleitet. Bei *DEADB_W* = 0.0 ist die Totzone ausgeschaltet. Die wirksame Regeldifferenz wird am Parameter *ER* angezeigt.

PI-Schrittregler-Algorithmus

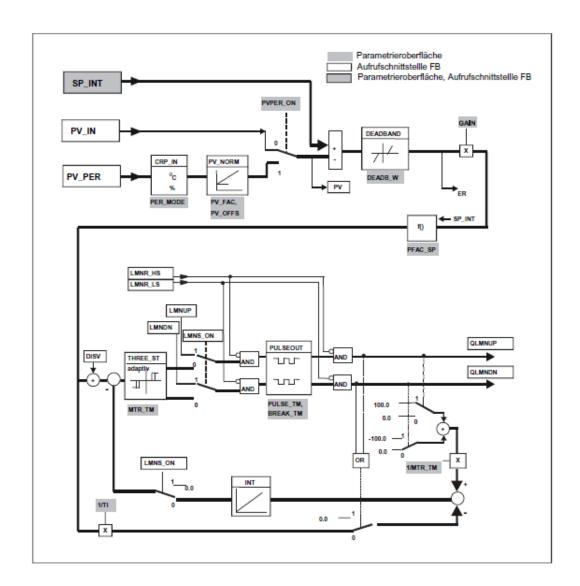
Der FB 59 TCONT_S arbeitet ohne Stellungsrückmeldung (siehe folgendes Blockschaltbild). Der I-Anteil des PI-Algorithmus und die gedachte Stellungsrückmeldung werden in einem Integrator (INT) berechnet und als Rückführungswert mit dem verbliebenen P-Anteil verglichen. Die Differenz geht auf ein Dreipunktglied (THREE_ST) und einen Impulsformer (PULSEOUT), der die Impulse für das Stellventil bildet. Über eine Adaption der Ansprechschwelle des Dreipunktgliedes wird die Schalthäufigkeit des Reglers reduziert.

Abschwächung des P-Anteils bei Sollwertänderungen

Um Überschwingen zu vermeiden können Sie den P-Anteil über den Parameter "Proportionalfaktor bei Sollwertänderungen" (*PFAC_SP*) abschwächen. Über *PFAC_SP* können Sie nun zwischen 0.0 und 1.0 kontinuierlich wählen, wie stark der P-Anteil bei Sollwertänderungen wirken soll:

- PFAC_SP = 1.0: P-Anteil bei Sollwertänderung voll wirksam
- PFAC_SP = 0.0: Kein P-Anteil bei Sollwertänderung

Ein Wert von *PFAC_SP* < 1.0 kann wie beim kontinuierlichen Regler das Überschwingen reduzieren, falls die Motorlaufzeit *MTR_TM* klein gegenüber der Ausgleichszeit TA ist und das Verhältnis *TU/TA* < 0.2 ist. Erreicht *MTR_TM* 20 % von *TA*, ist nur noch eine geringe Verbesserung zu erzielen.


Störgrößenaufschaltung

Am Eingang DISV kann eine Störgröße additiv aufgeschaltet werden.

Handwertverarbeitung (*LMNS_ON*)

Mit *LMNS_ON* kann zwischen Hand- und Automatikbetrieb umgeschaltet werden. Bei Handbetrieb wird das Stellglied angehalten und der Integrierer (INT) wird intern auf 0 gesetzt. Über *LMNUP* und *LMNDN* kann das Stellglied AUF und ZU gefahren werden. Das Umschalten in den Automatikbetrieb erfolgt stoßbehaftet. Die anstehende Regeldifferenz führt über *GAIN* zu einer sprungförmigen Änderung der internen Stellgröße. Durch das integral wirkende Stellglied wird jedoch nur eine rampenförmige Ansteuerung des Prozesses bewirkt.

Blockschaltbild

Zeitfunktionen - "Time Functions" > UDT 60 - WS RULES - Regel DB

15.6 Zeitfunktionen - "Time Functions"

15.6.1 UDT 60 - WS_RULES - Regel DB

Beschreibung

Ihr System muss in einem DB einige Informationen bereitstellen, die von verschiedenen Bausteinen ausgewertet werden. Diesen Datenbaustein erstellen Sie als DB vom Typ der UDT 60 und tragen die für Ihren Ort geltenden Werte (in Lokalzeit!) ein.

Umrechnung Basiszeit < - > Lokalzeit und "Alarm stellen nach Lokalzeit"

Name	Тур	Anfangswert	Kommentar
B2L	STRUCT		Basiszeit < - > Lokalzeit
S	INT	2	Offset Basiszeit -> Lokalzeit [30 min] im Winter zulässig: -24 +24
Т	INT	2	Differenz Winter- und Sommerzeit [30 min] zulässig: 2

Regel für: Winterzeit -> Sommerzeit; Default: letzter Sonntag im März; 2:00 Uhr

Name	Тур	Anfangswert	Kommentar
W2S	STRUCT		In WINTERZEIT angeben!
M	BYTE	B#16#3	Monat der Umstellung
W	BYTE	B#16#9	n-tes Auftreten des Wochentags
			(1 = erstes, 2 = zweites,. , 9 = letztes)
D	BYTE	B#16#1	Wochentag (Sonntag = 1)
Н	BYTE	B#16#2	Stunde

Regel für: Sommerzeit -> Winterzeit; Default: letzter Sonntag im Oktober, 3:00 Uhr

Name	Тур	Anfangswert	Kommentar
S2W	STRUCT		In SOMMERZEIT angeben!
M	BYTE	B#16#10	Monat der Umstellung
W	BYTE	B#16#9	n-tes Auftreten des Wochentags
			(1 = erstes, 2 = zweites,. , 9 = letztes)
D	BYTE	B#16#1	Wochentag (Sonntag = 1)
Н	BYTE	B#16#3	Stunde

Alle Parameter die das Format BYTE haben, werden als BCD-Werte interpretiert!

 \int_{1}^{∞}

Die Festlegung der Sommer-/Winterzeit-Umschaltpunkte durch eine Regel ist in der EU ab dem Jahr 2002 vorgeschrieben.

Zeitfunktionen - "Time Functions" > FC 62 - LT BT - Umrechnung Lokalzeit in Basiszeit

15.6.2 FC 61 - BT LT - Umrechnung Basiszeit in Lokalzeit

Beschreibung

Der FC 61 errechnet die Lokalzeit zu der am Eingang vorgegebenen Basiszeit.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
ВТ	INPUT	DATE_AND_TIME	Basiszeit
WS_DAT	INPUT	BLOCK_DB	Information zur Zeitzone sowie zur Sommer-/Winterzeit Umschaltung (Regel-DB)
RET_VAL	OUTPUT	INT	Fehlercode
LT	OUTPUT	DATE_AND_TIME	Lokalzeit

Arbeitsweise

Die am Eingang *BT* eingegebene Basiszeit wird mittels der in einem DB hinterlegten Daten in die Lokalzeit umgerechnet und am Ausgang *LT* ausgegeben. Der DB enthält die Anzahl an 30 Minuten-Einheiten, durch die sich Basis- und Lokalzeit unterscheiden sowie die Differenz zwischen Sommer- und Winterzeit, ebenfalls in Einheiten von 30 Minuten. (Regel-DB) Ergibt sich bei der Berechnung ein Datumsüberlauf wird dies durch einen speziellen Rückgabewert gekennzeichnet.

Aufrufende OBs

Der FC 61 BT LT kann in jeder Ablaufebene aufgerufen werden.

Aufrufumgebung

Der FC 61 benutzt intern folgende Funktionen. Diese Funktionen müssen Sie mit den hier angegebenen Nummern in ihr Projekt laden. FC 1 (AD_DT_TM), FC 7 (DT_DAY), FC 35 (SB_DT_TM)

Ausgabewerte / Fehler

RET_VAL	LT	Beschreibung
0	Lokalzeit	Baustein fehlerfrei gelaufen
1	Lokalzeit	kein Fehler, aber Datums- sprung
8082	DT#90-01-01-0:0:0	Ungültige Daten im Regel- Datenbaustein

15.6.3 FC 62 - LT_BT - Umrechnung Lokalzeit in Basiszeit

Beschreibung

Der FC 62 errechnet die Basiszeit zu der am Eingang vorgegebenen Lokalzeit.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
LT	INPUT	DATE_AND_TIME	Lokalzeit
WS_DAT	INPUT	BLOCK_DB	Information zur Zeitzone sowie zur Sommer-/Winterzeit Umschaltung (Regel-DB)
RET_VAL	OUTPUT	INT	Fehlercode
LT	OUTPUT	DATE_AND_TIME	Lokalzeit

Zeitfunktionen - "Time Functions" > FC 62 - LT BT - Umrechnung Lokalzeit in Basiszeit

Arbeitsweise

Die am Eingang *LT* eingegebene Lokalzeit wird mittels der in einem DB hinterlegten Daten in die Basiszeit umgerechnet und am Ausgang *BT* ausgegeben. Der DB enthält die Anzahl an 30 Minuten-Einheiten, durch die sich Basis- und Lokalzeit unterscheiden sowie die Differenz zwischen Sommer- und Winterzeit, ebenfalls in Einheiten von 30 Minuten. (Regel-DB) Ergibt sich bei der Berechnung ein Datumsüberlauf wird dies durch einen speziellen Rückgabewert gekennzeichnet.

"Verbotene Stunde"

Bei der Umschaltung von Winter- nach Sommerzeit wird die Lokalzeit um eine Stunde vorgestellt. Das bedeutet aber, dass die dazwischen liegende Stunde nicht durchlaufen wird. Für einen Zeitpunkt *LT* innerhalb dieser Stunde wird von der FC 62 LT_BT in Sommerzeit "gedacht". Dies wird mit dem Returnwert 4 bzw. 5 gemeldet.

"Doppelte Stunde"

Bei der Umschaltung von Sommer- nach Winterzeit wird die Lokalzeit um eine Stunde zurückgestellt. Das bedeutet aber, dass diese eine Stunde zweimal durchlaufen wird. (Für ME(S)Z gilt dafür die Bezeichnung 2A und 2B). Für einen Zeitpunkt LT innerhalb dieser Stunde ist also eine eindeutige Abbildung auf eine Basiszeit nicht möglich. Die FC LT_BT erhält als Eingangsparameter eine LT und muss vor der Umrechnung in BT entscheiden, ob der Wert im Sommer oder im Winter liegt. Für den Fall, dass die LT innerhalb der doppelten Stunde liegt, wird die LT als Winterzeit interpretiert. Dies wird mit dem Returnwert 2 bzw. 3 gemeldet.

Aufrufende OBs

Die FC 62 LT_BT kann in jeder Ablaufebene aufgerufen werden.

Aufrufumgebung

Der FC 62 benutzt intern folgende Funktionen. Diese Funktionen müssen Sie mit den hier angegebenen Nummern in ihr Projekt laden. FC 1 (AD_DT_TM), FC 7 (DT_DAY), FC 35 (SB_DT_TM)

Ausgabewerte / Fehler

RET_VAL	LT	Beschreibung
0	Basiszeit	Baustein fehlerfrei gelaufen
1	Basiszeit	Kein Fehler, aber Datums- sprung
2	Basiszeit	Die LT am Eingang liegt innerhalb der "doppelten" Stunde
3	Basiszeit	Wie 2, zusätzlich Datums- sprung
4	Basiszeit	Die LT am Eingang liegt innerhalb der "verbotenen" Stunde
5	Basiszeit	Wie 4, zusätzlich Datums- sprung
8082	DT#90-01-01-0:0:0	Ungültige Daten im Regel- Datenbaustein

Zeitfunktionen - "Time Functions" > FC 63 - S LTINT - Einstellen Uhrzeitalarm in Lokalzeit

15.6.4 FC 63 - S LTINT - Einstellen Uhrzeitalarm in Lokalzeit

Beschreibung

Der FC 63 stellt den gewünschten Uhrzeitalarm zum vorgegebenen Zeitpunkt. Dieser Zeitpunkt wird in Lokalzeit angegeben.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung		
OB_NR	INPUT	INT	Nr. des zu startenden OB (zul. 10 – 17)		
SDT	INPUT	BLOCK_DB	Startdatum und Uhrzeit in Lokalzeit (siehe SFC 28)		
PERIOD	INPUT	INT	Periode vom Ausgangspunkt SDT an: W#16#0000 = Einmal W#16#0201 = Minütlich W#16#0401 = Stündlich W#16#1001 = Täglich W#16#1201 = Wöchentlich W#16#1401 = Monatlich W#16#1801 = Jährlich W#16#2001 = Monatsende		
WS_DAT	INPUT	DATE_AND_TIME	Information zur Zeitzone sowie zur Winter-/ Sommerzeit Umschaltung (s.o.)		
RET_VAL	OUTPUT	INT	Fehlercode		

Arbeitsweise

Die am Eingang *LT* eingegebene Lokalzeit wird mittels der in einem DB hinterlegten Regel in die Basiszeit umgerechnet. Der DB enthält die Anzahl an 30 Minuten-Einheiten, durch die sich Basis- und Lokalzeit unterscheiden sowie die Differenz zwischen Sommerund Winterzeit, ebenfalls in Einheiten von 30 Minuten. (s.u.) Mit der errechneten Basiszeit wird der angegebene Uhrzeit-Alarm-OB parametriert und aktiviert. Ergibt sich bei der Berechnung ein Datumsüberlauf wird dies durch einen speziellen Rückgabewert gekennzeichnet.

"Verbotene Stunde"

Bei der Umschaltung von Winter- nach Sommerzeit wird die Lokalzeit um eine Stunde vorgestellt. Das bedeutet aber, dass die dazwischen liegende Stunde nicht durchlaufen wird. Für einen Zeitpunkt *LT* innerhalb dieser Stunde wird von der FC S_LTINT in Sommerzeit "gedacht". Dies wird mit dem Returnwert (RET_VAL) 4 bzw. 5 gemeldet.

"Doppelte Stunde"

Bei der Umschaltung von Sommer- nach Winterzeit wird die Lokalzeit um eine Stunde zurückgestellt. Das bedeutet aber, dass diese eine Stunde zweimal durchlaufen wird. (Für ME(S)Z gilt dafür die Bezeichnung 2A und 2B). Für einen Zeitpunkt LT innerhalb dieser Stunde ist also eine eindeutige Abbildung auf eine Basiszeit nicht möglich. Die FC S_LTINT erhält als Eingangsparameter eine LT und muss vor der Umrechnung in BT entscheiden, ob der Wert im Sommer oder im Winter liegt. Für den Fall, dass die LT innerhalb der doppelten Stunde liegt, wird die LT als Winterzeit interpretiert. Dies wird mit dem Returnwert (RET_VAL) 2 bzw. 3 gemeldet.

Aufrufende OBs

Der FC 63 S_LTINT kann in jeder Ablaufebene aufgerufen werden.

Aufrufumgebung

Der FC 63 S_LTINT benutzt intern folgende Funktionen. Diese Funktionen müssen Sie mit den hier angegebenen Nummern in ihr Projekt laden. FC 7 (DT_DAY), FC 35 (SB_DT_TM)

Zeitfunktionen - "Time Functions" > FC 63 - S_LTINT - Einstellen Uhrzeitalarm in Lokalzeit

Ausgabewerte / Fehler

RET_VAL	Beschreibung
0	Baustein fehlerfrei gelaufen
1	Kein Fehler, aber Datumssprung
2	Die LT am Eingang war innerhalb der "doppelten" Stunde
3	Wie 2, zusätzlich Datumssprung
4	Die LT am Eingang liegt innerhalb der "verbotenen" Stunde
5	Wie 4, zusätzlich Datumssprung
8082	Ungültige Daten im Regel-Datenbaustein
8090	Fehlerhafter Parameter OB_NR
8091	Fehlerhafter Parameter SDT
8092	Fehlerhafter Parameter PERIOD
80A1	Der eingestellte Startzeitpunkt liegt in der Vergangenheit
80A2	OB ist nicht geladen
80A3	OB kann nicht gestartet werden

Fetch/Write - "Fetch/Write Communication" > SFC 228 - RW KACHEL - Kacheldirektzugriff

16 Systembausteine - "System Blocks"

Baustein-Bibliothek "System Blocks"

Die Baustein-Bibliothek finden Sie im "Download Center" auf www.yaskawa.eu.com unter "Controls Library" als "Baustein-Bibliothek System Blocks - SW90KS0MA" zum Download. Die Bibliothek liegt als gepackte zip-Dateien vor. Sobald Sie die Bausteine verwenden möchten, müssen Sie diese in Ihr Projekt importieren. → "Controls Library einbinden"...Seite 68

16.1 Fetch/Write - "Fetch/Write Communication"

16.1.1 SFC 228 - RW KACHEL - Kacheldirektzugriff

Beschreibung

Über diesen SFC haben Sie direkten Zugriff auf den 4kByte großen Kachelbereich der CPU. Der Kachelbereich verteilt sich auf 4 Kacheln mit einer Größe von jeweils 1kByte. Durch Angabe von Kachel-Nr., -Offset und Datenbreite haben Sie über den SFC 228 schreibenden und lesenden Zugriff auf einen gewünschten Kachelbereich.

Dieser SFC wurde zu Testzwecken und zum Aufbau proprietärer Kommunikationssysteme entwickelt, und steht dem Anwender uneingeschränkt zur Verfügung. Bitte beachten, dass Sie durch einen schreibenden Zugriff auf einen Kachelbereich direkt in eine Kommunikation eingreifen können!

Bitte beachten Sie, dass dieser Baustein in der Bibliothek für das Siemens TIA Portal nicht enthalten ist.

Parameter

Name	Deklaration	Тур	Beschreibung
K_NR	IN	INT	Kachelnummer
OFFSET	IN	INT	Kacheloffset
R_W	IN	INT	Zugriff
SIZE	IN	INT	Datenbreite
RET_VAL	OUT	BYTE	Rückgabewert (0 = OK)
VALUE	IN_ OUT	ANY	Zeiger auf Bereich für Datentransfer

K_NR

Kachel-Nr.

- Geben Sie hier die Kachel-Nr. an, auf die Sie zugreifen möchten.
 - Wertebereich: 0 ... 3

OFFSET

Kachel-Offset

- Geben Sie hier einen Offset innerhalb der spezifizierten Kachel an.
 - Wertebereich: 0 ... 1023

R_W

Read/Write

- Über diesen Parameter spezifizieren Sie einen Lese- bzw. Schreibzugriff.
 - 0 = Lesezugriff
 - 1 = Schreibzugriff

Fetch/Write - "Fetch/Write Communication" > SFC 228 - RW_KACHEL - Kacheldirektzugriff

SIZE

Größe

■ Hiermit bestimmen Sie die Breite des Datenfelds, das Sie über K_NR und OFFSET definiert haben. Sie können die Werte 1, 2 und 4Byte einstellen.

RET_VAL (Rückgabewert)

Byte, in das eine Fehlermeldung zurückgeliefert wird.

VALUE

Ein-/Ausgabe-Bereich

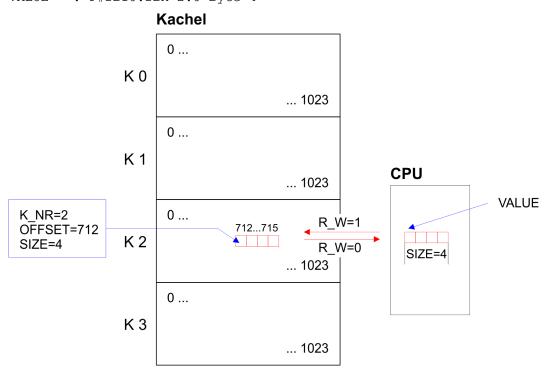
- Mit diesem Parameter spezifizieren Sie den Ein- bzw. Ausgabebereich für den Datentransfer.
- Bei einem Lesezugriff finden in dem bis zu 4Byte breiten Bereich die Daten, die aus dem Kachelbereich gelesen werden.
- Bei einem Schreibzugriff werden aus diesem Bereich die bis zu 4Byte breiten Daten in den Kachelbereich übertragen.
 - Parameterart: Zeiger

Beispiel

Das nachfolgende Beispiel zeigt den lesenden Zugriff auf 4Bytes ab Byte 712 in Kachel 2. Die gelesenen 4Byte werden in DB10 ab Byte 2 abgelegt. Hierzu ist folgender Aufruf erforderlich:

```
CALL SFC 228

K_NR :=2


OFFSET :=712

R_W :=0

SIZE :=4

RET_VAL :=MB10

VALUE :=P#DB10.DBX 2.0 Byte 4
```


Fehlermeldungen

Wert	Bedeutung
00h	kein Fehler aufgetreten
01h 05h	Interner Fehler: Für einen Parameter konnte keine gültige Adresse zugeordnet werden.
06h	die angegebene Kachel ist nicht vorhanden
07h	der Parameter SIZE ≠ 1, 2 oder 4 beim Lesezugriff
08h	der Parameter SIZE ≠ 1, 2 oder 4 beim Schreibzugriff
09h	der Parameter R_W ist ≠ 0 oder 1

16.1.2 SFC 230 ... 238 - Kachelkommunikation

16.1.2.1 Paramenterbeschreibung

Übersicht

Bitte beachten Sie, dass diese Bausteine in der Bibliothek für das Siemens TIA Portal nicht enthalten sind.

Durch die Hantierungsbausteine wird der Einsatz von Kommunikationsprozessoren in den CPUs von Yaskawa ermöglicht. Die Hantierungsbausteine steuern den gesamten Datenaustausch zwischen der CPU und den CPs. Vorteile der Hantierungsbausteine:

- wenig Anwenderprogrammspeicherplatz geht verloren
- kurze Laufzeiten der Bausteine

Die Hantierungsbausteine benötigen keine:

- Merkerbereiche
- Zeitbereiche
- Zählerbereiche

Alle nachfolgend behandelten Hantierungsbausteine haben eine einheitliche Schnittstelle zum Anwenderprogramm die folgende Parameter verwenden:

SSNR Schnittstellennummer

ANR Auftragsnummer

ANZW Anzeigenwort (Doppelwort)

IND Indirekte Angabe der relativen Anfangsadresse der Datenquelle bzw. des Datenziels

QANF/ZANF Relative Anfangsadresse innerhalb des Typs

PAFE Parametrierungsfehler

BLGR Blockgröße

SSNR

Schnittstellen-Nummer

Nummer der logischen Schnittstelle (Kacheladresse) auf die sich der betreffende Auftrag bezieht.

Parameterart: Integer

Sinnvoller Bereich: 0 ... 255

ANR

Auftragsnummer

- Angesprochene Auftragsnummer für die logische Schnittstelle.
 - Parameterart: Integer
 - Sinnvoller Bereich: 1 ... 223

ANZW

Anzeigenwort (Doppelwort)

- Adresse des Anzeigendoppelwortes im Anwenderspeicher, in dem die Abarbeitung des unter ANR angegebenen Auftrages angezeigt wird.
 - Parameterart: Doppelwort
 - Erlaubter Bereich: DW oder MW; belegt wird jeweils DW und DW+1 oder MW und MW+2

Die Angabe DW bezieht sich auf den vor dem Aufruf aufgeschlagenen Datenbaustein oder auf den direkt angegebenen DB.

IND

Art der Parametrierung (direkt, indirekt)

- Über diesen Parameter bestimmen Sie die Art der Daten, auf die der Zeiger QANF zeigt.
 - 0: QANF zeigt direkt auf den Datenanfang der Quell- bzw. Zieldaten.
 - 1: der Zeiger QANF/ZANF zeigt auf eine Speicherzelle, ab der die Quell- bzw.
 Zieldaten definiert sind (indirekt).
 - 2: der Zeiger QANF/ZANF zeigt auf einen Speicherbereich in dem sich die Quellund Zielangaben befinden (indirekt).
 - 5: der Zeiger QANF/ZANF zeigt auf eine Speicherzelle, ab der die Quell- bzw.
 Zielparameter und Parameter zum Anzeigenwort definiert sind (indirekt).
 - 6: der Zeiger QANF/ZANF zeigt auf einen Speicherbereich in dem die Quell- bzw.
 Zielparameter und Parameter zum Anzeigenwort definiert sind (indirekt).
 - Parameterart: Integer
 - Erlaubte Zahlen: 0, 1, 2, 5, 6

Bitte beachten Sie, dass bei IND = 5 bzw. IND = 6 der Parameter ANZW ignoriert wird!

QANF/ZANF

Relative Anfangsadresse der Datenquelle bzw. des Datenziels und bei *IND* = 5 bzw. *IND* = 6 des Anzeigenworts.

- Über diesen Parameter vom Typ Zeiger (Any-Pointer) können Sie die Relative Anfangsadresse und den Typ der Datenquelle (bei SEND) bzw. des Datenziels (bei RECEIVE) angeben.
- Bei IND = 5 bzw. IND = 6 befinden sich in der Datenquelle auch die Parameter zum Anzeigenwort.
 - Parameterart: Zeiger
 - Sinnvoller Bereich: DB, M, A, E

Beispiel:

P#DB10.DBX0.0 BYTE 16 P#M0.0 BYTE 10 P#E 0.0 BYTE 8 P#A 0.0 BYTE 10

BLGR

Blockgröße

- Bei Neustart wird mit Hilfe von "SYNCHRON" die Blockgröße (Größe der Datenblöcke) zwischen den Stationen ausgehandelt.
- Hierbei bedeutet große Bockgröße = hoher Datendurchsatz aber auch lange Laufzeit und damit hohe Zykluszeitbelastung.
- Kleine Blockgröße = kleiner Datendurchsatz aber auch kurze Laufzeiten der Bausteine.

Als Blockgröße kann eingestellt werden:

Wert	Blockgröße	Wert	Blockgröße
0	Default (64Byte)	4	128Byte
1	16Byte	5	256Byte
2	32Byte	6	512Byte
3	64Byte	255	512Byte

Parameterart: Integer

Möglicher Bereich: 0 ... 255

PAFE

Fehleranzeige bei Parametrierungsfehler

- Das hier angegebene "BYTE" (Ausgang, Merker) wird gesetzt, wenn der Baustein einen "Parametrierungsfehler" erkennt z.B. Schnittstelle (Anschaltung) nicht vorhanden oder unzulässige Parametrierung von QANF/ZANF erfolgte.
 - Parameterart: Byte
 - Sinnvoller Bereich: AB 0 ... AB127, MB 0...MB 255

16.1.2.2 Parameterübergabe

direkte/indirekte Parametrierung

Ein Hantierungsbaustein kann direkt oder indirekt parametriert werden. Nur der Parameter "PAFE" muss immer direkt angegeben werden. Bei der direkten Parametrierung verarbeitet der Hantierungsbaustein die beim Bausteinaufruf angegebenen Parameter unmittelbar. Bei der indirekten Parametrierung werden dem Hantierungsbaustein per Bausteinparameter Zeiger, die auf Parameterfelder (Datenbausteine bzw. Datenworte) zeigen, übergeben. Die Parameter SSNR, ANR, IND und BLGR sind von Typ "Integer" und können somit indirekt parametriert werden.

Beispiel

Direkte Parameterübergabe

```
CALL
      SFC
           230
       SSNR:=0
       ANR :=3
       IND :=0
       QANF:=P#A 0.0 BYTE 16
       PAFE:=MB79
       ANZW:=MD44
     SFC
           230
CALL
       SSNR:=MW10
       ANR :=MW12
       IND :=MW14
       QANF:=P#DB10.DBX0.0 BYTE 16
       PAFE:=MB80
```

ANZW:=MD48

Indirekte Parameterübergabe

Bitte beachten Sie, dass die Merkerworte zuvor mit entsprechenden Werten zu laden sind.

16.1.2.3 Quell- bzw. Zielangaben

Übersicht

Sie haben die Möglichkeit die Angaben für Quelle, Ziel und für *ANZW* direkt anzugeben oder indirekt in einem Baustein abzulegen, auf den der Zeiger *QANF / ZANF* bzw. *ANZW* zeigt. Der Parameter *IND* dient als Umschaltkriterium für die direkte und indirekte Parametrierung.

Direkte Parametrierung der Quell- und Zielangaben (*IND* = 0)

Mit *IND* = 0 geben Sie an, dass der Zeiger *QANF / ZANF* direkt auf die Quell- bzw. Zieldaten zeigt. Nachfolgend sehen Sie eine Tabelle über mögliche *QANF / ZANF*-Parameter bei der direkten Parametrierung:

QTYP/ZTYP	Daten in DB	Daten in MB	Daten in AB Prozess- abbild der Ausgänge	Daten in EB Prozess- abbild der Eingänge
Zeiger: Beispiel:	P#DBa.DBX b.0 BYTE CP#DB10.DBX 0.0 BYTE 8	P#M b.0 BYTE cP#M 5.0 BYTE 10	P#A b.0 BYTE cP#A 0.0 BYTE 2	P#E b.0 BYTE cP#E 20.0 BYTE 1
DB, MB, AB, EB Bedeutung	P#DBa "a" steht für die DB-Nr., aus dem die Quelldaten ent- nommen werden oder in den die Zieldaten transferiert werden.	P#M kennzeichnet, dass die Daten in einem MB abgelegt sind.	P#A kennzeichnet, dass die Daten im Aus- gangsbyte abgelegt sind.	P#E kennzeichnet, dass die Daten im Ein- gangsbyte abgelegt sind.
erlaubter Bereich für "a"	0 32767	irrelevant	irrelevant	irrelevant
Daten-/ Merker-Byte, AB, EB Bedeutung	DW-Nr., ab der die Daten entnommen oder geschrieben werden.	Merkerbyte-Nr., ab der die Daten entnommen oder geschrieben werden.	Ausgangs-Byte-Nr., ab der die Daten entnommen oder geschrieben werden.	Eingangsbyte-Nr., ab der die Daten entnommen oder geschrieben werden.
erlaubter Bereich für "b"	0.0 2047.0	0 255	0 127	0 127
BYTE C Bedeutung erlaubter Bereich für "c"	Länge des Quell-/ Ziel-Datenblocks in Worten. 1 2048	Länge des Quell-/ Ziel-Datenblocks in Bytes. 1 255	Länge des Quell-/ Ziel-Datenblocks in Bytes. 1 128	Länge des Quell-/ Ziel-Datenblocks in Bytes. 1 128

Indirekte Parametrierung der Quell- und Zielangaben (IND = 1 oder IND = 2)

Bei der indirekten Adressierung zeigt *QANF / ZANF* auf einen Speicherbereich, in dem die Adressen der Quell- bzw. Ziel-Bereiche hinterlegt sind. Hierbei können Sie entweder für Datenquelle und Datenziel einen Bereich angeben (*IND* = 1) oder für Datenquelle und Datenziel jeweils einen Bereich bestimmen (*IND* = 2). In der nachfolgenden Tabelle finden Sie mögliche QANF / ZANF-Parameter bei der indirekten Parametrierung:

QTYP/ZTYP	IND = 1		IND = 2			
Bedeutung	parameter.	dressierung für Quell- oder Ziel- Die Quell- oder Zielparameter einem DB hinterlegt.	Indirekte Adressierung für Quell- und Zielparamete Die Quell- und Zielparameter werden hintereinand einem DB hinterlegt.			
	QANF/ZAN	IF:	QANF/Z	QANF/ZANF:		
	DW +0	Datentyp Quelle	DW +0	Datentyp Quelle	Beschreibung Daten-	
	+2	DB-Nr. bei Typ "DB" ansonsten irrelevant	+2	DB-Nr. bei Typ "DB" ansonsten irrelevant	quelle	
	+4	Anfangsadresse	+4	Anfangsadresse		
	+6	Länge in Byte	+6	Länge in Byte		
			+8	Datentyp Ziel	Beschreibung Daten-	
			+10	DB-Nr. bei Typ "DB" ansonsten irrelevant	ziel	
			+12	Anfangsadresse		
			+14	Länge in Byte		
erlaubte DB- Nr.	0 32767		0 32767			
Daten-Wort Bedeutung	DW-Nr., ab der die Daten hinterlegt sind		DW-Nr., ab der die Daten hinterlegt sind		egt sind	
erlaubter Bereich	0.0 2047.0		0.0 20	047.0		
Länge Bedeutung	Länge des DBs in Byte		Länge des DBs in Byte			
erlaubter Bereich	8 fix		16 fix			

Indirekte Parametrierung von Quell- Zielangaben und ANZW (IND = 5 oder IND = 6) Bei der indirekten Adressierung zeigt *QANF / ZANF* auf einen Speicherbereich, in dem die Adressen der Quell- bzw. Ziel-Bereiche und des Anzeigeworts hinterlegt sind. Hierbei können Sie entweder für Datenquelle oder -ziel und Anzeigenwort einen Bereich angeben (*IND* = 5) oder für Datenquelle, Datenziel und Anzeigenwort jeweils getrennte Bereiche bestimmen (*IND* = 6). In der nachfolgenden Tabelle finden Sie mögliche *QANF / ZANF*-Parameter bei der indirekten Parametrierung:

QTYP/ZTYP	IND = 5			IND = 6		
Bedeutung	Indirekte Adressierung für Quell- oder Zielparameter und Anzeigenwort. Die Quell- oder Ziel und ANZW-Parameter werden hintereinander in einem DB hinterlegt. QANF/ZANF			Indirekte Adressierung für Quell- und Zielparameter und Anzeigenwort. Die Quell-, Ziel- und ANZW-Parameter werden hintereinander in einem DB hinterlegt. QANF/ZANF		
	DW +0	Datentyp Quelle	Beschreibung	DW +0	Datentyp Quelle	Beschreibung Daten-
	+2	DB-Nr. bei Typ "DB" ansonsten irrelevant	Datenquelle/- ziel	+2	DB-Nr. bei Typ "DB" ansonsten irrelevant	quelle
	+4	Anfangsadresse		+4	Anfangsadresse	
	+6	Länge in Byte		+6	Länge in Byte	
	+8	Datentyp Quelle	Beschreibung	+8	Datentyp Ziel	Beschreibung Daten-
	+10	DB-Nr. bei Typ "DB" ansonsten irrelevant	Anzeigenwort	+10	DB-Nr. bei Typ "DB" ansonsten irrelevant	ziel
	+12	+12 Anfangsadresse		+12	Anfangsadresse	
				+14	Länge in Byte	Beschreibung Anzei-
				+16	Datentyp Quelle	
				+18	DB-Nr. bei Typ "DB" ansonsten irrelevant	genwort
				+20	Anfangsadresse	
erlaubte DB- Nr.	0 3276	7		0 3276	7	
Daten-Wort Bedeutung	DW-Nr., a	ab der die Daten hii	nterlegt sind	DW-Nr., ab der die Daten hinterlegt sind		egt sind
erlaubter Bereich	0.0 2047.0		0.0 2047.0			
Länge Bedeutung	Länge des DBs in Byte		Länge des DBs in Byte			
erlaubter Bereich	14 fix			22 fix		

16.1.2.4 Anzeigenwort ANZW

Status- und Fehleranzeigen

Status und Fehleranzeigen liefern die Hantierungsbausteine:

- über das Anzeigenwort *ANZW* (Informationen zur Auftragsbearbeitung).
- über das Parametrierfehlerbyte PAFE (Anzeige einer fehlerhaften Auftragsparametrierung).

Inhalt und Aufbau Anzeigenwort ANZW

Das "Anzeigenwort" zeigt den Zustand für einen bestimmten Auftrag auf einem CP an. Im SPS-Programm sollte für jeden Auftrag ein eigenes "Anzeigenwort" für jeden definierten Auftrag bereitgestellt werden. Das Anzeigenwort hat den folgenden prinzipiellen Aufbau:

Byte	Bit 7 Bit 0
0	 Bit 3 Bit 0: Fehlerverwaltung CPU 0: kein Fehler 1 5: CPU-Fehler 6 15: CP-Fehler Bit 7 Bit 4: reserviert
1	 Statusverwaltung CPU Bit 0: Handshake sinnvoll (Daten vorhanden) 0: RECEIVE gesperrt 1: RECEIVE freigegeben Bit 1: Auftrag läuft 0: SEND/FETCH freigegeben 1: SEND/FETCH gesperrt Bit 2: Auftrag fertig ohne Fehler Bit 3: Auftrag fertig mit Fehler Datenverwaltung Hantierungsbaustein Bit 4: Datenübernahme/-übergabe läuft Bit 5: Datenübernahme erfolgt Bit 6: Datenübernahme erfolgt Bit 7: Disable/Enable Datenblock 1: gesperrt 0: freigegeben
2 3	Längenwort Hantierungsbaustein

Im "Längenwort" hinterlegen die Hantierungsbausteine (SEND, RECEIVE) die für den entsprechenden Auftrag bereits transferierten Daten; empfangene Daten in Empfangsaufträgen; bereits gesendete Daten in Sendeaufträgen. Die Anzeige im "Längenwort" erfolgt immer in Bytes und absolut.

Fehlerverwaltung Byte 0, Bit 0 ... Bit 3

In diesen Bits werden die Fehleranzeigen des Auftrags angezeigt. Diese Fehleranzeigen sind nur gültig, wenn auch gleichzeitig das Bit "Auftrag fertig mit Fehler" im Statusbit gesetzt ist. Folgende Fehlermeldungen können ausgegeben werden:

0 kein Fehler

Sollte das Bit "Auftrag fertig mit Fehler" gesetzt sein, so hat der CP die Verbindung neu aufbauen müssen, wie z.B. nach einem Neustart oder RESET.

1 falscher Q/ZTYP am HTB

Auftrag wurde mit falscher TYP-Kennung parametriert.

2 Bereich im AG nicht vorhanden

Beim Anstoß des Auftrags wurde eine falsche DB-NR parametriert.

3 Bereich im AG zu klein

Die Summe aus Q/ZANF und Q/ZLAE überschreitet die Bereichsgrenzen. Die Bereichsgrenze wird bei Datenbausteinen durch die Bausteingröße bestimmt. Bei Merkern, Zeiten, Zählern usw. ist die Bereichsgröße AG-abhängig.

4 QVZ-Fehler im AG

Mit dem Quell- bzw. Zielparameter wurde ein Bereich im AG angegeben, dessen Speicher defekt oder nicht bestückt ist. Der QVZ-Fehler kann nur bei Q/ZTYP AS, PB, QB oder bei Speicherdefekten auftreten.

5 Fehler beim Anzeigenwort

Das parametrierte Anzeigenwort kann nicht bearbeitet werden. Dieser Fehler tritt auf, wenn mit *ANZW* ein Datenwort bzw. Doppelwort angegeben wurde, das sich nicht oder nicht mehr in dem spezifizierten Datenbaustein befindet d.h. DB zu klein oder nicht vorhanden.

6 kein gültiges ORG-Format

Das Datenziel bzw. die Datenquelle ist weder beim Hantierungsbaustein (Q/TYP="NN") noch im Verbindungsbaustein angegeben.

7 Reserviert

8 keine freien Transportverbindungen

Die Transportverbindungskapazitäten sind überschritten. Löschen Sie unnötige Verbindungen.

9 Remote-Fehler

Bei einem RAD/WRITE-Auftrag ist ein Fehler im Kommunikationspartner aufgetreten.

A Verbindungsfehler

Die Verbindung für einen Auftrag ist nicht bzw. noch nicht aufgebaut. Der Fehler verschwindet, sobald eine Verbindung aufgebaut werden kann. Sind alle Verbindungen des CPs unterbrochen, so deutet dies auf einen Defekt der Baugruppe oder des Buskabel hin. Der Fehler kann auch durch eine fehlerhafte Parametrierung ausgelöst werden, wie z.B. fehlerhafte Adressierung.

B Handshakefehler

Dies kann ein Systemfehler sein oder die Datenblockgröße ist zu groß gewählt.

C Anstoßfehler

Zum Anstoß des Auftrags wurde ein falscher Hantierungsbaustein benutzt oder ein zu großer Datenblock übergeben.

D Abbruch nach RESET

Hier handelt es sich um eine Betriebsmeldung. Bei Priorität 1 und 2 ist die Verbindung unterbrochen und wird neu aufgebaut, sobald sich der Kommunikationspartner auf eine neue Verbindung eingestellt hat. Bei Priorität 3 Verbindungen ist die Verbindung gelöscht, ein neuer Anstoß ist möglich.

E Auftrag mit Urladefunktion

Dies ist eine Betriebsmeldung. Der Auftrag ist ein RAD/WRITE-PASSIV und kann vom AG aus nicht gestartet werden.

F Auftrag nicht vorhanden

Der angesprochene Auftrag ist nicht auf dem CP parametriert. Dieser Fehler kann auftreten, wenn SSNR/A-NR Kombination im Hantierungsbaustein falsch oder kein Verbindungsbaustein eingetragen ist.

Die Bits 4 bis 7 von Byte 2 sind für Erweiterungen reserviert.

Statusverwaltung Byte 1, Bit 0 ... Bit 3

Hier können Sie erkennen, ob ein Auftrag bereits gestartet ist, ob hierbei Fehler aufgetreten sind oder ob der Auftrag gesperrt ist, dass beispielsweise eine virtuelle Verbindung nicht mehr besteht.

Bit 0 - Handshake sinnvoll

Setzen:

Durch die Anschaltung entsprechend der "Löschen"-Anzeige im Auftragsstatus-Bit. Handshake sinnvoll (= 1) wird beim RECEIVE-Baustein genutzt. (Telegramm vorhanden bei PRO 1 oder RECEIVE-Anstoß möglich bei PRO 2/3).

- Auswerten:

Durch den RECEIVE-Baustein: Nur wenn das Bit gesetzt ist, leitet der RECEIVE den Handshake mit dem CP ein. Durch die Anwendung: Für RECEIVE-Anfrage (Abfrage, ob Telegramm vorhanden bei PRO 1).

Bit 1 - Auftrag läuft

- Setzen:

Durch die Anschaltung, wenn Auftrag an CP erteilt ist.

Löschen:

Durch die Anschaltung, wenn ein Auftrag abgearbeitet ist (z.B. Quittung eingetroffen).

– Auswerten:

Durch die Hantierungsbausteine: Ein neuer Auftrag wird nur erteilt, wenn der "alte" Auftrag abgearbeitet ist. Durch den Anwender: um zu erfahren, ob das Triggern eines neuen Auftrags sinnvoll ist.

Bit 2 - Auftrag fertig ohne Fehler

Setzen:

Durch die Anschaltung, wenn der entsprechende Auftrag ohne Fehler abgeschlossen wurde.

Löschen:

Durch die Anschaltung, wenn der Auftrag erneut ausgelöst wird.

Auswerten:

Durch den Anwender zur Prüfung, ob der Auftrag fehlerlos abgeschlossen wurde.

Bit 3 - Auftrag fertig mit Fehler

Setzen:

Durch die Anschaltung, wenn der entsprechende Auftrag mit Fehler abgeschlossen wurde. Die Fehlerursache ist dann im High-Teil des Anzeigenwortes verschlüsselt.

Löschen:

Durch die Anschaltung, wenn der Auftrag erneut ausgelöst wird.

Auswerten:

Durch den Anwender: Zur Prüfung, ob der Auftrag mit Fehler abgeschlossen, wurde. Ist die Kennung "Auftrag fertig mit Fehler" gesetzt, steht im High-Byte des Anzeigenwortes die Fehlerursache.

Datenverwaltung Byte 1, Bit 4 ... Bit 7

Hier ist verschlüsselt, ob der Datentransfer für den Auftrag noch läuft oder ob die Datenübergabe bzw. Datenübernahme bereits abgeschlossen ist. Mit dem Bit "Enable / Disable" kann der Datentransfer für den Auftrag gesperrt werden. (Disable = 1; Enable = 0).

Bit 4 - Datenübernahme / Datenübergabe läuft

Setzen:

Durch die Hantierungsbausteine SEND, RECEIVE, wenn die Übergabe/Übernahme für einen Auftrag begonnen wurde, z.B. wenn Daten über die ALL-Funktion (DBA-Ersatz) ausgetauscht werden, der Anstoß jedoch mit SEND-DIREKT erfolgte.

Löschen:

Durch die Hantierungsbausteine SEND, RECEIVE, wenn der Datenaustausch für einen Auftrag beendet ist (letzter Teilblock übertragen).

Auswerten:

Durch den Anwender: Während der Datenübertragung CP <<->> AG darf der Anwender den Datensatz eines Auftrags nicht mehr verändern. Bei PRO 0/1 Aufträgen ist dies unkritisch, da hierbei der Datenaustausch in einem Baustein-Durchlauf erledigt werden kann. Größere Datenmengen können jedoch nur in Blöcken übertragen werden, wobei diese Blockung über mehrere AG-Zyklen verteilt wird. Zur Wahrung der Datenkonsistenz ist zu prüfen ob der Datenblock gerade übertragen wird, bevor dessen Inhalt geändert wird.

Bit 5 - Datenübergabe erfolgt

Setzen:

Durch den Hantierungsbaustein SEND, wenn die Datenübergabe für einen Auftrag erfolgt ist.

Löschen:

Durch den Hantierungsbaustein SEND, wenn für einen neuen Auftrag (neue TRIG-GERN) mit dem Transfer der Daten begonnen wurde. Durch den Anwender: Wenn die Auswertung erfolgte (Flankenbildung).

Auswerten:

Durch den Anwender: Mit diesem Bit ist zu ermitteln, ob der Datensatz für einen Auftrag schon auf den CP übertragen wurde bzw. wann ein neuer Datensatz für einen laufenden Auftrag (z.B. zyklische Übertragung) bereitgestellt werden kann.

■ Bit 6 - Datenübernahme erfolgt

Setzen:

Durch RECEIVE, wenn die Übernahme von Daten für einen Auftrag abgeschlossen wurde.

Löschen:

Durch RECEIVE, wenn für einen neuen Auftrag (neue TRIGGERN) mit dem Transfer der Daten ins AG begonnen wurde. Durch den Anwender, wenn die Auswertung erfolgt (Flankenbildung).

- Auswerten:

Durch den Anwender: Mit diesem Bit kann der Anwender ermitteln, ob der Datensatz eines Auftrags schon auf das AG übertragen wurde bzw. wann ein neuer Datensatz für einen laufenden Auftrag ins AG transferiert wurde.

Bit 7 - Disable / Enable Datenblock

Setzen:

Durch den Anwender, um das Beschreiben eines Bereichs durch den RECEIVE-Baustein bzw. das Auslesen aus einem Bereich durch den SEND-Baustein zu verhindern (nur beim 1. Datenblock).

Löschen:

Durch den Anwender, um den zugehörigen Datenbereich freizugeben.

Auswerten:

Durch die Hantierungsbausteine SEND und RECEIVE. Ist das Bit 7 gesetzt, führen die Bausteine keinen Daten-verkehr durch, sondern melden dem CP den Fehler.

Längenwort Byte 2 und Byte

Im Längenwort hinterlegen die Hantierungsbausteine (SEND, RECEIVE) die Menge für den entsprechenden Auftrag bereits transferierten Daten, d.h. bei Empfangsaufträgen die bereits empfangene Datenmenge, bei Sendeaufträgen die bereits gesendete Datenmenge.

Beschreiben: Durch SEND, RECEIVE während des Datenaustausches. Das "Längen-

Wort" wird errechnet aus: aktuelle Übertragungsanzahl + Anzahl bereits

ausgetauschter Daten

Löschen: Durch Überschreiben bzw. mit jedem neuen SEND, RECEIVE, FETCH.

Wenn das Bit "Auftrag fertig ohne Fehler" bzw. "Datenübergabe/-Übernahme erfolgt" gesetzt ist, steht im "Längen-Wort" die aktuelle Quell- bzw. Ziellänge. Wenn das Bit "Auftrag fertig mit Fehler" gesetzt ist, beinhaltet das Längenwort die bis zum Fehlerfall übertragene Datenanzahl.

Status- und Fehleranzeigen

Im Folgenden sind wichtige Status- und Fehlermeldungen der CPU aufgeführt, die im "Anzeigenwort" erscheinen können. Die Darstellung hierbei erfolgt in "HEX"-Mustern. Das Zeichen X steht für "nicht bestimmt" bzw. für "irrelevant"; Nr. ist die Fehlernummer.

- X F X A Die Fehlerkennung "F" besagt, dass der entsprechende Auftrag auf dem CP nicht definiert ist. Die Statuskennung A bewirkt, dass der Auftrag gesperrt ist (für SEND / FETCH und RECEIVE).
- X A X A Die Fehlerkennung "A" zeigt an, dass die Verbindung des Kommuni-kationsauftrags nicht bzw. noch nicht aufgebaut ist. Mit der Statuskennung "A" ist sowohl der SEND als auch der RECEIVE und FETCH gesperrt.
- X 0 X 8 Die Verbindung ist neu aufgebaut (z.B. nach einem CP-Neuanlauf), der SEND ist freigegeben (SEND-Kommunikationsauftrag).
- X 0 X 9 Die Verbindung ist neu aufgebaut, der RECEIVE ist freigegeben (RECEIVE-Kommunikationsauftrag).
- X 0 2 4 Der SEND ist ohne Fehler abgearbeitet worden, die Daten wurden übertragen.
- X 0 4 5 Der RECEIVE ist ohne Fehler abgearbeitet worden, die Daten sind auf dem AG angekommen.
- X 0 X 2 Der SEND-, RECEIVE-, READ- bzw. WRITE-Auftrag läuft. Bei SEND hat sich der Partner noch nicht auf den RECEIVE eingestellt. Bei RECEIVE hat der Partner noch kein SEND abgesetzt.

Wichtige Anzeigenwortzustände

Anzeigen bei SEND

Zustand unter H1	Prio 0/1	Prio 2	Prio 3/4
Zustand unter TCP/IP	Prio 1	Prio 2	Prio 3
nach Neustart	0 A 0 A	0 A 0 A	0008
nach Verbindungsaufbau	X 0 X 8	X 0 X 8	
nach Anstoß	X 0 X 2	X 0 X 2	X 0 X 2
fertig ohne Fehler	X 0 2 4	X 0 2 4	X 0 2 4
fertig mit Fehler	X Nr X 8	X Nr X 8	X Nr X 8
nach RESET	XDXA	XDXA	X D X 8

Anzeigen bei RECEIVE

Zustand unter H1	Prio 0/1	Prio 2	Prio 3/4
Zustand unter TCP/IP	Prio 1	Prio 2	Prio 3
nach Neustart	0 A 0 A	0 A 0 A	0001

Fetch/Write - "Fetch/Write Communication" > SFC 230 ... 238 - Kachelkommunikation

Zustand unter H1	Prio 0/1	Prio 2	Prio 3/4
Zustand unter TCP/IP	Prio 1	Prio 2	Prio 3
nach Verbindungsaufbau	X 0 X 4	X 0 0 9	
nach Anstoß	X 0 X 2	X 0 X 2	X 0 X 2
Telegramm da	X 0 X 1		
fertig ohne Fehler	X 0 4 1	X 0 4 5	X 0 4 5
fertig mit Fehler	X Nr X 8	X Nr X 9	X Nr X 9
nach RESET	XDXA	XDXA	X D X 9

Anzeigen bei READ/WRITE-AKTIV

Zustand unter H1	Prio 0/1	Prio 2	Prio 3/4
Zustand unter TCP/IP	Prio 1	Prio 2	Prio 3
nach Neustart		0 A 0 A	
nach Verbindungsaufbau		X 0 0 8	
nach Anstoß		X 0 X 2	
READ fertig		X 0 4 4	
WRITE fertig		X 0 2 4	
fertig mit Fehler		X Nr X 8	
nach RESET		XDXA	

16.1.2.5 Parametrierfehler *PAFE*

PAFE wird gesetzt (Ausgang oder Merker), wenn der Baustein einen "Parametrierungsfehler" erkennt, z.B. Schnittstelle nicht vorhanden oder unzulässige Parametrierung von *QANF / ZANF* erfolgte. *PAFE* hat folgenden Aufbau:

Byte	Bit 7 Bit 0
0	 Bit 0: Fehler 0: kein Fehler 1: Fehler vorhanden, Fehler-Nr. in Bit 4 Bit 7 Bit 3 Bit 1: reserviert Bit 7 Bit 4: Fehler-Nr. 0: kein Fehler 1: falsches ORG-Format 2: Bereich nicht vorhanden (DB nicht vorhanden) 3: Bereich zu klein 4: QVZ-Fehler 5: falsches Anzeigenwort 6: keine Quell-/Zielparameter bei SEND/RECEIVE ALL 7: Schnittstelle nicht vorhanden 8: Schnittstelle unklar 9: Schnittstelle überlastet A: reserviert B: unzulässige Auftrags-Nr. C: Schnittstelle des CPs quittiert nicht oder negativ

Fetch/Write - "Fetch/Write Communication" > SFC 230 - SEND - Senden an Kachel

Byte	Bit 7 Bit 0
	D: Parameter BLGR nicht zulässig
	- E: reserviert
	- F: reserviert

16.1.3 SFC 230 - SEND - Senden an Kachel

Beschreibung

Bitte beachten Sie, dass dieser Baustein in der Bibliothek für das Siemens TIA Portal nicht enthalten ist.

Der SEND-Baustein dient zum Auslösen eines Sende-Auftrags zu einem CP. SEND wird im Normalfall im zyklischen Teil des Anwenderprogramms aufgerufen. Die Einbindung des Bausteins im Interrupt oder Weck-Programmteil ist zwar möglich, das Anzeigenwort (ANZW) kann hierbei jedoch nicht zyklisch aktualisiert werden, dies sollte durch den CONTROL-Baustein übernommen werden.

Der Verbindungsaufbau mit dem CP wird für die Datenübergabe und für die Aktivierung eines Send-Anstoßes nur dann aufgenommen, wenn:

- dem FB VKE (Verknüpfungsergebnis) "1" übergeben wurde.
- der CP den Auftrag freigegeben hat.
 (Bit "Auftrag läuft" im ANZW = 0).

Im Leerlauf des Bausteins wird nur das Anzeigenwort aktualisiert.

Parameter

Name	Deklaration	Тур	Beschreibung
SSNR	IN	INT	Schnittstellennummer
ANR	IN	INT	Auftragsnummer
IND	IN	INT	Adressierungsmodus
QANF	IN	ANY	Zeiger auf Datenquelle
PAFE	OUT	BYTE	Parametrierungsfehler
ANZW	IN_OUT	DWORD	Anzeigenwort

SEND_ALL zur Datenübergabe

Kann der CP die Daten direkt übernehmen, überträgt der SEND-Baustein die angeforderten Daten in einem Zug zum CP. Signalisiert der CP jedoch, dass er nur die Parameter des Auftrages wünscht oder ist die Anzahl der zu übergebenden Daten zu groß, werden dem CP nur die Sende-Parameter bzw. die Parameter mit dem ersten Datenblock übergeben. Die Daten oder der Folgeblock zu diesen Aufträgen fordert der CP über SEND_ALL bei der CPU an. Hierzu ist es jedoch erforderlich, dass mindestens einmal im Zyklus der Baustein SEND_ALL aufgerufen wird. Die Bedienoberfläche ist in allen "Anstoßarten" für den Anwender der Bausteine gleich, nur der Zeitpunkt der Datenübergabe ist bei den zuletzt genannten Fällen um mindestens einen CPU-Zyklus verschoben.

Fetch/Write - "Fetch/Write Communication" > SFC 231 - RECEIVE - Empfangen von Kachel

16.1.4 SFC 231 - RECEIVE - Empfangen von Kachel

Beschreibung

Bitte beachten Sie, dass dieser Baustein in der Bibliothek für das Siemens TIA Portal nicht enthalten ist.

Der RECEIVE-Baustein dient zum Empfangen von Daten von einem CP. Im Normalfall wird der RECEIVE-Baustein im zyklischen Teil des Anwenderprogramms aufgerufen. Die Einbindung des Bausteins im Interrupt oder Weck-Programmteil ist ebenso möglich, dabei wird jedoch das Anzeigenwort nicht zyklisch aktualisiert. Diese Funktion muss dann der CONTROL-Baustein übernehmen.

Der Quittungsverkehr mit dem CP (Auftragsanstoß) wird vom RECEIVE-Baustein nur aufgenommen wenn:

- dem FB VKE "1" übergeben wurde und
- der CP den Auftrag freigeben hat (Bit "Handshake sinnvoll" = 1).

Parameter

Name	Deklaration	Тур	Beschreibung
SSNR	IN	INT	Schnittstellenummer
ANR	IN	INT	Auftragsnummer
IND	IN	INT	Adressierungsmodus
ZANF	IN	ANY	Zeiger auf Datenziel
PAFE	OUT	BYTE	Parametrierungsfehler
ANZW	IN_OUT	DWORD	Anzeigenwort

Im "Leerlauf" des Bausteins wird nur das Anzeigenwort aktualisiert. Der RECEIVE-Baustein verhält sich unterschiedlich je nach Art der Versorgung und der CP-Reaktion:

- Wird vom CP ein Parametersatz geliefert, obwohl der RECEIVE-Baustein selbst mit den Zielparametern versorgt wurde, haben die Parameterangaben am Baustein Priorität gegenüber dem Parametersatz vom CP.
- Große Datenmengen können nur in Blöcken übernommen werden. Hierzu ist es erforderlich, solche Folgeblöcke mit RECEIVE_ALL in die CPU zu übertragen. Der Aufruf des RECEIVE_ALL mindestens einmal im zyklischen Programmablauf pro CP-Schnittstelle ist daher immer dann erforderlich, wenn mit einem CP größere Datenblöcke ausgetauscht werden sollen. Ebenso ist die zyklische Einbindung des RECEIVE_ALL erforderlich, wenn der CP den RECEIVE nur zur Freigabe eines Empfangtelegramms benutzt und die Daten über die "Hintergrundkommunikation" der CPU übergibt.

Fetch/Write - "Fetch/Write Communication" > SFC 232 - FETCH - Anfordern von Kachel

16.1.5 SFC 232 - FETCH - Anfordern von Kachel

Beschreibung

Bitte beachten Sie, dass dieser Baustein in der Bibliothek für das Siemens TIA Portal nicht enthalten ist.

Der FETCH-Baustein dient dem Auslösen eines "Holauftrags" auf einer Gegenstation. Mit dem FETCH-Auftrag werden Daten-Quelle und -Ziel definiert und die Datenquelle an die Gegenstation übertragen. Bei der CPU von Yaskawa erfolgt die Angabe von Quelle und Ziel über einen Zeiger-Parameter. Die Gegenstation stellt die Daten aus der Quelle bereit und schickt diese über SEND_ALL an die anfordernde Station zurück. Über RECEIVE_ALL werden die Daten empfangen und im Ziel abgelegt. Die Aktualisierung des Anzeigenworts erfolgt über FETCH bzw. CONTROL.

Der Quittungsverkehr für den Anstoß des FETCH wird nur aufgenommen, wenn:

- dem Baustein VKE "1" übergeben
- im entsprechenden CP-Anzeigenwort die Funktion freigegeben wurde (Auftrag läuft = 0).

Parameter

Name	Deklaration	Тур	Beschreibung
SSNR	IN	INT	Schnittstellenummer
ANR	IN	INT	Auftragsnummer
IND	IN	INT	Adressierungsmodus
ZANF	IN	ANY	Zeiger auf Datenziel
PAFE	OUT	BYTE	Parametrierungsfehler
ANZW	IN_OUT	DWORD	Anzeigenwort

Angaben zur indirekten Parametrierung → "Quell- bzw. Zielangaben"...Seite 995

Fetch/Write - "Fetch/Write Communication" > SFC 234 - RESET - Rücksetzen Kachel

16.1.6 SFC 233 - CONTROL - Control Kachel

Beschreibung

Bitte beachten Sie, dass dieser Baustein in der Bibliothek für das Siemens TIA Portal nicht enthalten ist.

Der CONTROL-Baustein hat folgende Aufgaben:

- Aktualisierung des Anzeigenworts
- Abfrage, ob ein bestimmter Auftrag des CP zur Zeit "tätig" ist, z.B. Nachfrage nach einem Empfangstelegramm
- Abfrage des CP, welcher Auftrag zur Zeit bearbeitet wird

Der CONTROL-Baustein nimmt keinen Quittungsverkehr mit dem CP auf, sondern überträgt nur die Anzeigen aus dem "Auftragsstatus" zum parametrierten Anzeigenwort. Der Baustein ist nicht VKE abhängig und sollte im zyklischen Teil des Programms aufgerufen werden.

Parameter

Name	Deklaration	Тур	Beschreibung
SSNR	IN	INT	Schnittstellennummer
ANR	IN	INT	Auftragsnummer
PAFE	OUT	BYTE	Parametrierungsfehler
ANZW	IN_OUT	DWORD	Anzeigenwort

ANR

Bei einer $ANR \neq 0$ wird das Anzeigenwort in der gleichen Weise aufgebaut und bearbeitet wie bei allen anderen Hantierungsbausteinen. Wird der Parameter ANR mit 0 versorgt, überträgt der CONTROL-Befehl den Inhalt der Auftragsstatuszelle 0 zum LOW-Teil des Anzeigenworts. In die Auftragsstatuszelle 0 schreibt der CP die Nummer des aktuellen Auftrags, d.h. des Auftrags, der gerade bearbeitet wird, wie z.B. die Auftragsnummer eines Telegramms.

16.1.7 SFC 234 - RESET - Rücksetzen Kachel

Beschreibung

Bitte beachten Sie, dass dieser Baustein in der Bibliothek für das Siemens TIA Portal nicht enthalten ist.

Die RESET ALL-Funktion wird mit der Auftragsnummer 0 angewählt. Sie setzt alle Aufträge dieser logischen Schnittstelle zurück; z.B. löscht sie alle Auftragsdaten und bricht alle laufenden Aufträge ab. Mit einer "direkten" Funktion ($ANR \neq 0$) wird nur der angegebene Auftrag auf der logischen Schnittstelle zurückgesetzt. Der Baustein arbeitet VKE-abhängig und kann von zyklischen, zeitgesteuerten oder alarmgesteuerten Programmteilen aus aufgerufen werden.

Parameter

Name	Deklaration	Тур	Beschreibung
SSNR	IN	INT	Schnittstellennummer
ANR	IN	INT	Auftragsnummer
PAFE	OUT	BYTE	Parametrierfehler

Fetch/Write - "Fetch/Write Communication" > SFC 235 - SYNCHRON - Synchronisieren Kachel

Betriebsarten

Der Baustein kennt folgende beiden Betriebsarten:

- RESET ALL
- RESET DIREKT

16.1.8 SFC 235 - SYNCHRON - Synchronisieren Kachel

Beschreibung

Bitte beachten Sie, dass dieser Baustein in der Bibliothek für das Siemens TIA Portal nicht enthalten ist.

Der Baustein stellt im CPU-Anlauf die Synchronisation zwischen CPU und CP her und ist daher in den Anlauf-OBs aufzurufen. Gleichzeitig wird der Übergabebereich der Schnittstelle gelöscht und voreingestellt, sowie die Blockgröße zwischen CP und CPU ausgehandelt.

Parameter

Name	Deklaration	Тур	Beschreibung
SSNR	IN	INT	Schnittstellenummer
BLGR	IN	INT	Blockgröße
PAFE	OUT	BYTE	Parametrierfehler

Blockgröße

Zur Vermeidung von langen Zykluszeiten ist es sinnvoll große Datenmengen in kleinen Blöcken zwischen CPU und CP zu übertragen. Die Größe dieser Blöcke stellen Sie über die "Blockgröße" ein. Hierbei bedeutet große Bockgröße = hoher Datendurchsatz aber auch lange Laufzeit und damit hohe Zykluszeitbelastung. Kleine Blockgröße = kleiner Datendurchsatz aber auch kleine Laufzeiten der Bausteine. Als Blockgröße kann eingestellt werden:

Wert	Blockgröße	Wert	Blockgröße
0	Default (64Byte)	4	128Byte
1	16Byte	5	256Byte
2	32Byte	6	512Byte
3	64Byte	255	512Byte

Parameterart:	Integer
Möglicher Bereich:	0 255

Fetch/Write - "Fetch/Write Communication" > SFC 236 - SEND_ALL - Alles senden an Kachel

16.1.9 SFC 236 - SEND ALL - Alles senden an Kachel

Beschreibung

Bitte beachten Sie, dass dieser Baustein in der Bibliothek für das Siemens TIA Portal nicht enthalten ist.

Mit dem SEND_ALL-Baustein werden die Daten von der CPU an den CP unter Verwendung der eingestellten Blockgröße übermittelt. Die Lage und Größe des Datenbereichs, der mit SEND_ALL zu übermitteln ist, muss zuvor über einen SEND bzw. FETCH-Aufruf definiert werden. Im Anzeigenwort, das dem betreffenden Auftrag zugeordnet ist, werden die Bits "Enable/Disable", "Datenübergabe erfolgt" sowie "Datenübergabe läuft" ausgewertet oder beeinflusst.

Parameter

Name	Deklaration	Тур	Beschreibung
SSNR	IN	INT	Schnittstellennummer
PAFE	OUT	BYTE	Parametrierfehler
ANZW	IN_OUT	DWORD	Anzeigenwort

ANZW

Im Baustein-Anzeigenwort, das im SEND_ALL-Baustein parametriert ist, wird die aktuelle Auftragsnummer hinterlegt (0 bedeutet Leerdurchlauf). Die Anzahl der übertragenen Daten zu einem Auftrag zeigt SEND_ALL in dem Datenwort an, das dem Anzeigenwort folgt.

In folgenden Fällen ist mindestens einmal SEND_ALL im Zyklus-Baustein OB 1 aufzurufen:

- wenn der CP selbständig Daten von der CPU anfordern kann.
- wenn ein CP-Auftrag mit einem SEND angestoßen wird, der CP die Daten zu diesem Auftrag jedoch erst über die "Hintergrundkommunikation" bei der CPU anfordert.
- wenn die Anzahl der Daten, die mit einem SEND dem CP übergeben werden sollen, größer als die eingestellte Blockgröße ist.

Fetch/Write - "Fetch/Write Communication" > SFC 237 - RECEIVE ALL - Alles empfangen von Kachel

16.1.10 SFC 237 - RECEIVE_ALL - Alles empfangen von Kachel

Beschreibung

Bitte beachten Sie, dass dieser Baustein in der Bibliothek für das Siemens TIA Portal nicht enthalten ist.

Mit dem RECEIVE_ALL-Baustein werden die Daten, die vom CP empfangen werden, vom CP an die CPU unter Verwendung der eingestellten Blockgröße übermittelt. Die Lage und Größe des Datenbereichs, der mit RECEIVE_ALL zu übermitteln ist, muss zuvor über einen RECEIVE-Aufruf definiert werden. Im Anzeigenwort, das dem zu bearbeitenden Auftrag zugeordnet ist, werden die Bits "Enable/Disable", "Datenübernahme erfolgt" sowie "Datenübernahme/-übergabe läuft" ausgewertet oder beeinflusst und im Folgewort die "Empfangslänge" angezeigt.

Parameter

Name	Deklaration	Тур	Beschreibung
SSNR	IN	INT	Schnittstellenummer
PAFE	OUT	BYTE	Parametrierfehler
ANZW	IN_OUT	DWORD	Anzeigenwort

ANZW

Im Baustein-Anzeigenwort, das im RECEIVE_ALL-Baustein parametriert ist, wird die aktuelle Auftragsnummer hinterlegt, für den RECEIVE_ALL aktiv war. Im Leerlauf des RECEIVE_ALL ist das Baustein-Anzeigenwort gelöscht.

In folgenden Fällen ist mindestens einmal RECEIVE_ALL im Zyklus-Baustein OB 1 aufzurufen:

- wenn der CP selbständig Daten an die CPU senden soll.
- wenn ein CP-Auftrag mit RECEIVE angestoßen wird, der CP die Daten zu diesem Auftrag jedoch erst über die "Hintergrundkommunikation" an die CPU weitergeben kann.
- wenn die Anzahl der Daten, die mit einem RECEIVE an die CPU übergeben werden sollen, größer als die eingestellte Blockgröße ist.

Datei-Funktionen SPEED7-CPUs - "File Functions SPEED7 CPUs" > FC/SFC 195 und FC/SFC 208...215 - Speicherkarten-Zugriff

16.1.11 SFC 238 - CTRL1 - Control1 Kachel

Beschreibung

Bitte beachten Sie, dass dieser Baustein in der Bibliothek für das Siemens TIA Portal nicht enthalten ist.

Dieser Baustein ist identisch mit dem CONTROL-Baustein SFC 233 mit der Ausnahme, dass das Anzeigenwort vom Typ Pointer ist und noch *IND* als weiterer Parameter eingefügt wurde. Der Parameter *IND* ist für zukünftige Erweiterungen reserviert. Der CONTROL-Baustein hat folgende Aufgaben:

- Aktualisierung des Anzeigenworts
- Abfrage, ob ein bestimmter Auftrag des CP zur Zeit "tätig" ist, z.B. Nachfrage nach einem Empfangstelegramm
- Abfrage des CP, welcher Auftrag zur Zeit bearbeitet wird

Der CONTROL-Baustein nimmt keinen Quittungsverkehr mit dem CP auf, sondern überträgt nur die Anzeigen aus dem "Auftragsstatus" zum parametrierten Anzeigenwort. Der Baustein ist nicht VKE abhängig und sollte im zyklischen Teil des Programms aufgerufen werden.

Parameter

Name	Deklaration	Тур	Beschreibung
SSNR	IN	INT	Schnittstellenummer
ANR	IN	INT	Auftragsnummer
IND	IN	INT	reserviert
PAFE	OUT	BYTE	Parametrierfehler
ANZW	IN_OUT	DWORD	Anzeigenwort

ANR

Bei einer $ANR \neq 0$ wird das Anzeigenwort in der gleichen Weise aufgebaut und bearbeitet wie bei allen anderen "Hantierungsbausteinen". Wird der Parameter ANR mit 0 versorgt, überträgt der CTRL1-Befehl den Inhalt der Auftragsstatuszelle 0 zum LOW-Teil des Anzeigenworts. In die Auftragsstatuszelle 0 schreibt der CP die Nummer des aktuellen Auftrags, d.h. des Auftrags, der gerade bearbeitet wird, wie z.B. die Auftragsnummer eines Telegramms.

IND

Der Parameter *IND* hat zur Zeit keine Funktion und ist für zukünftige Erweiterungen reserviert.

ANZW

Das Anzeigenwort ANZW ist vom Typ Pointer. Somit haben Sie auch die Möglichkeit das Anzeigenwort in einem Datenbaustein abzulegen.

16.2 Datei-Funktionen SPEED7-CPUs - "File Functions SPEED7 CPUs"

16.2.1 FC/SFC 195 und FC/SFC 208...215 - Speicherkarten-Zugriff

Übersicht

Mit den FC/SFC 195 und FC/SFC 208 ... FC/SFC 215 haben Sie die Möglichkeit den Speicherkarten-Zugriff in Ihr Anwenderprogramm einzubinden. Folgende Parameter sind für den Einsatz der FC/SFCs erforderlich:

Datei-Funktionen SPEED7-CPUs - "File Functions SPEED7 CPUs" > FC/SFC 195 - FILE ATT - Datei-Attribute ändern

HANDLE, FILENAME

Der Zugriff erfolgt über eine *HANDLE*-Nr., die Sie durch Aufruf des FC/SFC 208 FILE_OPN bzw. FC/SFC 209 FILE_CRE einem *FILENAME* zuordnen können. Gleichzeitig dürfen maximal 4 *HANDLE* belegt sein (0 ... 3). Durch Schließen mit FC/SFC 210 FILE_CLO wird eine geöffnete Datei geschlossen und der *HANDLE* wieder freigegeben.

MEDIA

Geben Sie als Media-Format für die MMC eine 0 an. Andere Formate werden zur Zeit nicht unterstützt.

ORIGIN, OFFSET

Das Lesen und Schreiben erfolgt ab der Position einer Schreib/Lesemarke. Nach dem Öffnen bzw. neu Anlegen einer Datei befindet sich die Schreib/Lesemarke auf Position 0. Mit dem FC/SFC 213 FILE_SEK können Sie die Schreib/Lesemarke ab einer *ORIGIN*-Position um einen *OFFSET* (Anzahl Bytes) verschieben.

REQ. BUSY

- Mit REQ = 1 aktivieren Sie die entsprechende Funktion.
- Ist REQ = 0 erhalten Sie den aktuellen Status einer Funktion über RETVAL zurückgeliefert.
- BUSY = 1 zeigt an, dass die entsprechende Funktion bearbeitet wird.

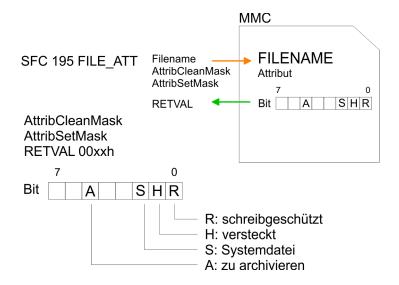
RETVAL

Nach Abarbeitung einer Funktion liefert RETVAL einen Zahlencode zurück:

RETVAL = 0:	Funktion wurde fehlerfrei ausgeführt.
0 < RETVAL < 7000h:	RETVAL = Länge der transferierten Daten (nur FC/SFC 211 und FC/SFC 212).
7000h ≤ RETVAL < 8000h:	Zeigt den Bearbeitungs-Status der Funktion.
RETVAL ≥ 8000h:	Kennzeichnet einen Fehler, der bei dem entsprechenden FC/SFC näher beschrieben ist.

VORSICHT

Für den Zugriff auf Speicherkarte sind folgende Hinweise zu berücksichtigen, deren Nichtbeachtung zu Datenverlust auf der Speicherkarte führen kann:


- Es dürfen maximal 4 Handle (0 ... 3) gleichzeitig belegt sein!
- Dateinamen müssen dem 8.3 Format ohne Sonderzeichen entsprechen!
- Mit diesen FC/SFCs haben Sie ausschließlich Zugriff auf die oberste Verzeichnis-Ebene (Root-Verzeichnis) der Speicherkarte!
- Sie dürfen ausschließlich Dateien umbenennen bzw. löschen, die Sie zuvor mit FC/SFCs 210 FILE_CLO geschlossen haben!

16.2.2 FC/SFC 195 - FILE ATT - Datei-Attribute ändern

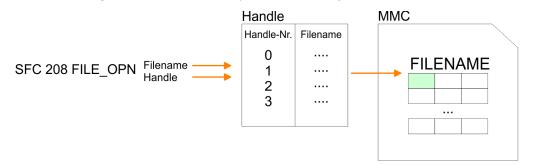
Beschreibung

Unter Einsatz von FILE_ATT können Sie die Datei-Attribute einer Datei im Root-Verzeichnis der Speicherkarte ändern. Geben Sie hierzu einen Dateinamen an. Durch Vorgabe eines Bitmusters können Sie mit *ATTRIBCLEANMASK* das entsprechende Attribut rücksetzen bzw. mit *ATTRIBSETMASK* setzen. Bitte beachten Sie, dass hierbei das Setzen Vorrang gegenüber dem Rücksetzen hat. Über *RETVAL* 00xxh bekommen Sie den aktuellen Zustand der Dateiattribute nach Befehlsausführung zurückgeliefert. Wenn Sie *ATTRIBCLEANMASK* und *ATTRIBSETMASK* den Wert 00h übergeben, können Sie über *RETVAL* den aktuellen Status der Dateiattribute ermitteln.

Datei-Funktionen SPEED7-CPUs - "File Functions SPEED7 CPUs" > FC/SFC 195 - FILE ATT - Datei-Attribute ändern

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
REQ	IN	BOOL	Funktion aktivieren
MEDIA	IN	INT	0 = MMC
FILENAME	IN	STRING[254]	Dateiname (muss im 8.3-Format sein)
ATTRIBCLEANMASK	IN	BYTE	Bit-Maske Datei-Attribute zurücksetzen
ATTRIBSETMASK	IN	BYTE	Bit-Maske Datei-Attribute setzen
RETVAL	OUT	WORD	Rückgabewert (00xxh=OK mit xx: Attribute)
BUSY	OUT	BOOL	Funktion wird bearbeitet


Code	Beschreibung
00xxh	OK, Attribute wurden geändert mit xx: Attribute
7000h	REQ = 0, BUSY = 0 (nichts ist zu tun)
7001h	REQ = 1, 1. Aufruf
7002h	Baustein wird bearbeitet
A001h	Der angegebene MEDIA-Typ ist falsch
A002h	Fehler im Parameter ATTRIBSETMASK
A004h	Datei FILENAME existiert nicht
A005h	FILENAME ist ein Verzeichnis
A006h	Datei ist geöffnet
A007h	Speicherkarte schreibgeschützt
A010h	Dateifehler FILENAME
A100h	Allgemeiner Filesystem-Fehler (z.B. keine Speicherkarte gesteckt)

Datei-Funktionen SPEED7-CPUs - "File Functions SPEED7 CPUs" > FC/SFC 208 - FILE OPN - Datei öffnen

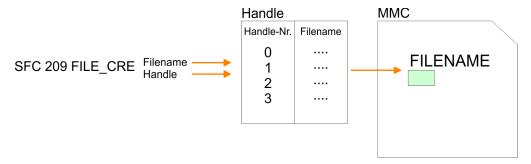
16.2.3 FC/SFC 208 - FILE OPN - Datei öffnen

Beschreibung

Eine Datei auf der Speicherkarte können Sie mit dem FC/SFC 208 öffnen. Hierbei wird ein *HANDLE* mit dem entsprechenden *FILENAME* verknüpft. Durch Angabe des *HANDLE* haben Sie jetzt solange lesenden und schreibenden Zugriff auf die Datei, bis die Datei mit FC/SFC 210 FILE_CLO wieder geschlossen wird. *REQ* = 1 löst die Funktion aus. Nach dem Öffnen steht die Schreib/Lesemarke auf 0.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
REQ	IN	BOOL	Funktion aktivieren
MEDIA	IN	INT	0 = MMC
FILENAME	IN	STRING[254]	Dateiname (muss im 8.3-Format sein)
HANDLE	IN	INT	Index der Datei 0 3
RETVAL	OUT	WORD	Rückgabewert (0 = OK)
BUSY	OUT	BOOL	Funktion wird bearbeitet


Code	Beschreibung
0000h	OK
7000h	REQ = 0, BUSY = 0 (nichts ist zu tun)
7001h	REQ = 1, 1. Aufruf
7002h	Baustein wird bearbeitet
8010h	Parameter FILENAME ist nicht verfügbar (z.B. DB nicht geladen)
8011h	FILENAME fehlerhaft
	(entspricht nicht dem Format 8.3 oder Sonderzeichen)
8100h	Der angegebene HANDLE ist ungültig
9001h	HANDLE ist bereits anderer Datei zugeordnet
9002h	Eine andere Funktion wurde über den HANDLE aufgerufen und ist fertig
9003h	Eine andere Funktion wurde über den HANDLE aufgerufen und ist nicht fertig
A000h	Systeminterner Fehler aufgetreten
A001h	Der angegebene MEDIA-Typ ist falsch
A003h	Es ist ein allgemeiner Fehler im Filesystem aufgetreten
A004h	Die unter FILENAME angegebene Datei existiert nicht bzw. ist ein Verzeichnis
A100h	Allgemeiner Filesystem-Fehler (z.B. keine Speicherkarte gesteckt)

Datei-Funktionen SPEED7-CPUs - "File Functions SPEED7 CPUs" > FC/SFC 209 - FILE CRE - Datei anlegen

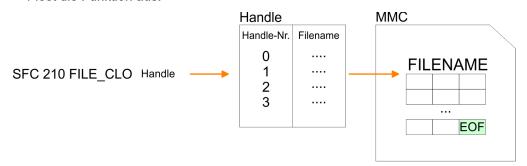
16.2.4 FC/SFC 209 - FILE CRE - Datei anlegen

Beschreibung

Durch Einsatz dieses Bausteins können Sie bei einer gesteckten Speicherkarte eine neue Datei mit dem entsprechenden Dateinamen anlegen und für den Lese-/Schreib-Zugriff öffnen. Bitte beachten Sie, dass ausschließlich Dateien auf der obersten Verzeichnis-Ebene erzeugt werden können. *REQ* = 1 löst die Funktion aus. Nach dem Öffnen steht die Schreib/Lesemarke auf 0.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
REQ	IN	BOOL	Funktion aktivieren
MEDIA	IN	INT	0 = MMC
FILENAME	IN	STRING[254]	Dateiname (muss im 8.3-Format sein)
HANDLE	IN	INT	Index der Datei 0 3
RETVAL	OUT	WORD	Rückgabewert (0 = OK)
BUSY	OUT	BOOL	Funktion wird bearbeitet


Code	Beschreibung
0000h	OK
7000h	REQ = 0, BUSY = 0 (nichts ist zu tun)
7001h	REQ = 1, 1. Aufruf
7002h	Baustein wird bearbeitet
8010h	Parameter FILENAME ist nicht verfügbar (z.B. DB nicht geladen)
8011h	FILENAME fehlerhaft (entspricht nicht dem Format 8.3 oder Sonderzeichen)
8100h	Der angegebene HANDLE ist ungültig
9001h	HANDLE ist bereits anderer Datei zugeordnet
9002h	Eine andere Funktion wurde über den HANDLE aufgerufen und ist fertig
9003h	Eine andere Funktion wurde über den HANDLE aufgerufen und ist nicht fertig
A000h	Systeminterner Fehler aufgetreten
A001h	Der angegebene MEDIA-Typ ist falsch
A003h	Es ist ein allgemeiner Fehler im Filesystem aufgetreten
A004h	Es ist kein Root-Eintrag im Verzeichnis verfügbar
A005h	Speicherkarte ist schreibgeschützt
A100h	Allgemeiner Filesystem-Fehler (z.B. keine Speicherkarte gesteckt)

Datei-Funktionen SPEED7-CPUs - "File Functions SPEED7 CPUs" > FC/SFC 210 - FILE CLO - Datei schließen

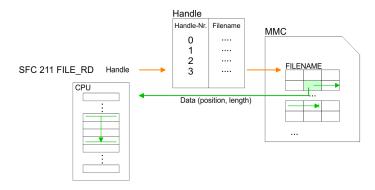
16.2.5 FC/SFC 210 - FILE_CLO - Datei schließen

Beschreibung

Mit diesem Baustein können Sie eine geöffnete Datei schließen. Hierbei wird ein EOF (End of File) angefügt, die Datei geschlossen und der *HANDLE* wieder freigegeben. *REQ* = 1 löst die Funktion aus.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
REQ	IN	BOOL	Funktion aktivieren
HANDLE	IN	INT	Index der Datei 0 3
RETVAL	OUT	WORD	Rückgabewert (0 = OK)
BUSY	OUT	BOOL	Funktion wird bearbeitet


Code	Beschreibung
0000h	OK
7000h	REQ = 0, BUSY = 0 (nichts ist zu tun)
7001h	REQ = 1, 1. Aufruf
7002h	Baustein wird bearbeitet
8100h	Der angegebene HANDLE ist ungültig
9001h	Dem HANDLE ist kein Dateiname zugeordnet
9002h	Eine andere Funktion wurde über den HANDLE aufgerufen und ist fertig
9003h	Eine andere Funktion wurde über den HANDLE aufgerufen und ist nicht fertig
A000h	Systeminterner Fehler aufgetreten
A100h	Allgemeiner Filesystem-Fehler (z.B. keine Speicherkarte gesteckt)

Datei-Funktionen SPEED7-CPUs - "File Functions SPEED7 CPUs" > FC/SFC 211 - FILE RD - Datei lesen

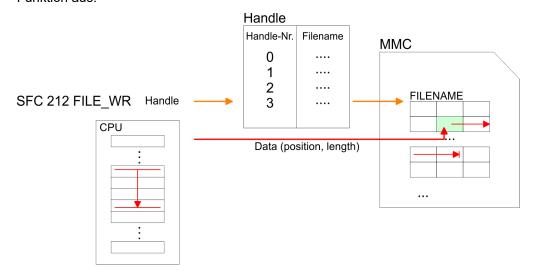
16.2.6 FC/SFC 211 - FILE RD - Datei lesen

Beschreibung

Hiermit können Sie ab einer ORIGIN-Position (Position der Schreib-/Lesemarke) von der Speicherkarte über den geöffneten Handle Daten in die CPU übertragen. Pro Aufruf können maximal 512Byte übertragen werden. Durch Angabe von *DATA* bestimmen Sie Speicherort und Länge des Schreib-Bereichs in Ihrer CPU. *REQ* = 1 löst die Funktion aus.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
REQ	IN	BOOL	Funktion aktivieren
HANDLE	IN	INT	Index der Datei 0 3
DATA	IN	ANY	Zeiger auf Speicherort und Länge des Schreibbereichs
RETVAL	OUT	WORD	Rückgabewert (0 = OK)
BUSY	OUT	BOOL	Funktion wird bearbeitet


Code	Beschreibung
0xxxh	0 = OK, 0xxx = Länge gelesener Daten
7000h	REQ = 0, BUSY = 0 (nichts ist zu tun)
7001h	REQ = 1, 1. Aufruf
7002h	Baustein wird bearbeitet
8010h	Pointer in DATA ist vom Typ BOOL
8011h	Pointer in DATA kann nicht dekodiert werden (z.B. DB nicht geladen)
8012h	Datenlänge ist größer als 512Byte
8013h	Es wurde versucht auf einen schreibgeschützten DB zuzugreifen
8100h	Der angegebene HANDLE ist ungültig
9001h	Für diesen HANDLE ist keine Datei geöffnet
9002h	Eine andere Funktion wurde über den HANDLE aufgerufen und ist fertig
9003h	Eine andere Funktion wurde über den HANDLE aufgerufen und ist nicht fertig
A000h	Systeminterner Fehler aufgetreten
A003h	interner Fehler
A100h	Allgemeiner Filesystem-Fehler (z.B. keine Speicherkarte gesteckt)

Datei-Funktionen SPEED7-CPUs - "File Functions SPEED7 CPUs" > FC/SFC 212 - FILE WR - Datei schreiben

16.2.7 FC/SFC 212 - FILE WR - Datei schreiben

Beschreibung

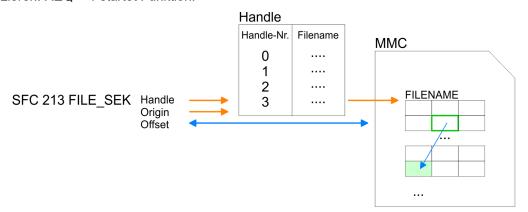
Für Schreibzugriffe auf die Speicherkarte ist dieser Baustein zu verwenden. Hierbei werden Daten von der unter *DATA* angegebenen Position und Länge in der CPU über den entsprechenden *HANDLE* ab der Schreib-/Lese-Position auf die Speicherkarte geschrieben. Pro Aufruf können maximal 512Byte übertragen werden. *REQ* = 1 löst die Funktion aus.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
REQ	IN	BOOL	Funktion aktivieren
HANDLE	IN	INT	Index der Datei 0 3
DATA	IN	ANY	Zeiger auf Speicherort und Länge des Schreibbereichs
RETVAL	OUT	WORD	Rückgabewert
BUSY	OUT	BOOL	Funktion wird bearbeitet

Der Parameter *RETVAL* liefert die Länge der geschriebenen Daten zurück. Der Baustein liefert keine Fehlermeldung, wenn die Speicherkarte voll ist. Der Anwender muss überprüfen, dass die Anzahl der geforderten zu schreibenden Bytes der in *RETVAL* zurück gelieferten geschriebenen Bytes entspricht.

Code	Beschreibung
0xxxh	0 = OK, 0xxx = Länge geschriebener Daten
7000h	REQ = 0, BUSY = 0 (nichts ist zu tun)
7001h	REQ = 1, 1. Aufruf
7002h	Baustein wird bearbeitet
8010h	Pointer in DATA ist vom Typ BOOL
8011h	Pointer in DATA kann nicht dekodiert werden (z.B. DB nicht geladen)
8012h	Datenlänge ist größer als 512Byte
8100h	Der angegebene HANDLE ist ungültig
9001h	Für diesen HANDLE ist keine Datei geöffnet
9002h	Eine andere Funktion wurde über den HANDLE aufgerufen und ist fertig
9003h	Eine andere Funktion wurde über den HANDLE aufgerufen und ist nicht fertig


Datei-Funktionen SPEED7-CPUs - "File Functions SPEED7 CPUs" > FC/SFC 213 - FILE SEK - Position Schreib-/Lesemarke

Code	Beschreibung
A000h	Systeminterner Fehler aufgetreten
A002h	Die Datei ist schreibgeschützt
A003h	Interner Fehler
A004h	Speicherkarte ist schreibgeschützt
A100h	Allgemeiner Filesystem-Fehler (z.B. keine Speicherkarte gesteckt)

16.2.8 FC/SFC 213 - FILE_SEK - Position Schreib-/Lesemarke

Beschreibung

Mit FILE_SEK können Sie die Position der Schreib-/Lesemarke für den entsprechenden *HANDLE* ändern bzw. ermitteln. Durch Angabe von *ORIGIN* als Startposition und einem *OFFSET* können Sie für den entsprechenden *HANDLE* die Schreib-/Lesemarke platzieren. *REQ* = 1 startet Funktion.

Parameter

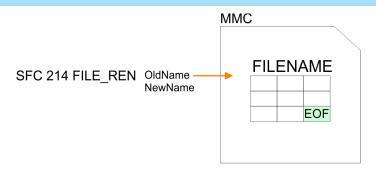
Parameter	Deklaration	Datentyp	Beschreibung
REQ	IN	BOOL	Funktion aktivieren
HANDLE	IN	INT	Index der Datei 0 3
ORIGIN	IN	INT	0 = Datei-Anfang, 1 = aktuelle Position, 2 = Dateiende
RETVAL	OUT	WORD	Rückgabewert (0 = OK)
BUSY	OUT	BOOL	Funktion wird bearbeitet
OFFSET	INOUT	DINT	Offset Schreib-/Lesemarke

Code	Beschreibung
0000h	OK, OFFSET beinhaltet die Aktuelle Schreib-/Lese-Position
7000h	REQ = 0, BUSY = 0 (nichts ist zu tun)
7001h	REQ = 1, 1. Aufruf
7002h	Baustein wird bearbeitet
8100h	Der angegebene HANDLE ist ungültig
9001h	Für diesen HANDLE ist keine Datei geöffnet
9002h	Eine andere Funktion wurde über den HANDLE aufgerufen und ist fertig
9003h	Eine andere Funktion wurde über den HANDLE aufgerufen und ist nicht fertig

Datei-Funktionen SPEED7-CPUs - "File Functions SPEED7 CPUs" > FC/SFC 214 - FILE REN - Datei umbenennen

Code	Beschreibung
A000h	Systeminterner Fehler aufgetreten
A004h	ORIGIN-Parameter ist fehlerhaft
A100h	Allgemeiner Filesystem-Fehler (z.B. keine Speicherkarte gesteckt)

16.2.9 FC/SFC 214 - FILE_REN - Datei umbenennen


Beschreibung

Unter Einsatz von FILE_REN können Sie den unter *OLDNAME* angegebenen Dateinamen ändern in *NEWNAME*.

VORSICHT

Bitte beachten Sie, dass Sie nur Dateien umbenennen dürfen, die zuvor mit File_CLO geschlossen wurden. Ansonsten könnte dies zu Datenverlust auf der Speicherkarte führen!

Parameter

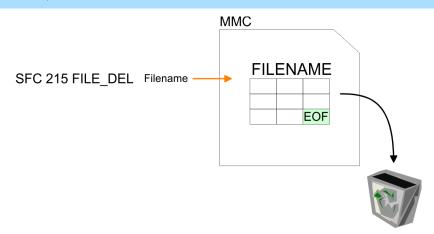
Parameter	Deklaration	Datentyp	Beschreibung
REQ	IN	BOOL	Funktion aktivieren
MEDIA	IN	INT	0 = MMC
OLDNAME	IN	STRING[254]	Alter Dateiname (muss im 8.3-Format sein)
NEWNAME	IN	STRING[254]	Neuer Dateiname (muss im 8.3-Format sein)
RETVAL	OUT	WORD	Rückgabewert (0 = OK)
BUSY	OUT	BOOL	Funktion wird bearbeitet

Code	Beschreibung
0000h	OK, Datei wurde umbenannt
7000h	REQ = 0, BUSY = 0 (nichts ist zu tun)
7001h	REQ = 1, 1. Aufruf
7002h	Baustein wird bearbeitet
8010h	Parameter OLDNAME ist nicht verfügbar (z.B. DB nicht geladen)
8011h	OLDNAME fehlerhaft
	(entspricht nicht dem 8.3 Format oder Sonderzeichen)
8020h	Parameter NEWNAME ist nicht verfügbar (z.B. DB nicht geladen)

Datei-Funktionen SPEED7-CPUs - "File Functions SPEED7 CPUs" > FC/SFC 215 - FILE DEL - Datei löschen

Code	Beschreibung
8021h	NEWNAME fehlerhaft
	(entspricht nicht dem 8.3 Format oder Sonderzeichen)
A000h	Systeminterner Fehler aufgetreten
A001h	Der angegebene MEDIA-Typ ist falsch
A003h	Der neue Dateiname NEWNAME existiert schon
A004h	Datei OLDNAME existiert nicht
A006h	Datei OLDNAME ist geöffnet
A007h	Speicherkarte schreibgeschützt
A100h	Das Filesystem liefert einen Fehler beim Anlegen der Datei (z.B. keine Speicherkarte gesteckt)

16.2.10 FC/SFC 215 - FILE_DEL - Datei löschen


Beschreibung

Mit diesem Baustein können Sie eine Datei auf der Speicherkarte löschen. Geben Sie hierzu unter *FILENAME* den Namen der zu löschenden Datei an.

VORSICHT

Bitte beachten Sie, dass Sie nur Dateien löschen dürfen, die zuvor mit File_CLO geschlossen wurden. Ansonsten könnte dies zu Datenverlust auf der Speicherkarte führen!

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
REQ	IN	BOOL	Funktion aktivieren
MEDIA	IN	INT	0 = MMC
FILENAME	IN	STRING[254]	Dateiname (muss im 8.3-Format sein)
RETVAL	OUT	WORD	Rückgabewert (0 = OK)
BUSY	OUT	BOOL	Funktion wird bearbeitet.

Code	Beschreibung
0000h	OK, Datei wurde gelöscht
7000h	REQ = 0, BUSY = 0 (nichts ist zu tun)

Datei-Funktionen SPEED7-CPUs - "File Functions SPEED7 CPUs" > FC/SFC 215 - FILE_DEL - Datei löschen

Code	Beschreibung
7001h	REQ = 1, 1. Aufruf
7002h	Baustein wird bearbeitet
8010h	Parameter FILENAME ist nicht verfügbar (z.B. DB nicht geladen)
8011h	FILENAME ist fehlerhaft
	(z.B. entspricht nicht dem 8.3 Format oder Sonderzeichen)
A000h	Systeminterner Fehler aufgetreten
A001h	Der angegebene MEDIA-Typ ist falsch
A002h	Die Datei ist schreibgeschützt
A004h	Datei FILENAME existiert nicht
A005h	FILENAME ist ein Verzeichnis - nicht löschbar
A006h	Datei ist geöffnet
A007h	Speicherkarte schreibgeschützt.
A100h	Allgemeiner Filesystem-Fehler (z.B. keine Speicherkarte gesteckt)

Datei-Funktionen Standard-CPUs - "File Functions Standard CPUs" > SFC 220 ... 222 - MMC-Zugriff

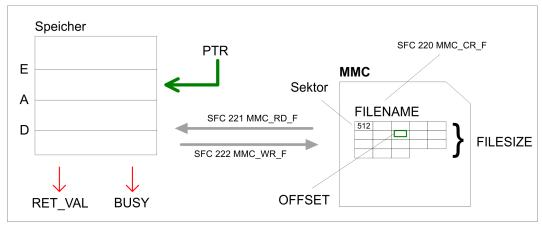
16.3 Datei-Funktionen Standard-CPUs - "File Functions Standard CPUs"

16.3.1 SFC 220 ... 222 - MMC-Zugriff

Übersicht

Bitte beachten Sie, dass diese Bausteine in der Bibliothek für das Siemens TIA Portal nicht enthalten sind.

Mit den hier aufgeführten SFCs haben Sie die Möglichkeit den Zugriff auf eine MMC in Ihr Anwenderprogramm einzubinden. Hierbei können Sie bei einer gesteckten MMC eine neue Datei anlegen bzw. eine bestehende Datei für den Zugriff öffnen. Solange Sie keine neue Datei öffnen haben Sie über Lese-/Schreib-Befehle Zugriff auf diese Datei.


Einschränkungen

Für den Einsatz der SFCs 220, 221 und 222 sind folgende Einschränkungen zu beachten:

- Ein lesender bzw. schreibender Zugriff auf die MMC kann nur dann erfolgen, wenn die Datei zuvor mit dem SFC 220 angelegt bzw. geöffnet wurde.
- Es ist darauf zu achten, dass die Daten immer unfragmentiert auf der MMC abliegen, da nur zusammenhängende Datenblöcke gelesen bzw. geschrieben werden können.
- Werden Daten auf die MMC mit einem externen MMC-Kartenleser übertragen, so können diese fragmentiert sein d.h. die Daten werden in Blöcke aufgeteilt. Dies können Sie vermeiden, indem Sie die MMC vor dem Schreibzugriff formatieren.
- Bei einem Schreibzugriff von der CPU auf die MMC werden die Daten immer unfragmentiert auf der MMC abgelegt.
- Beim Öffnen einer schon bestehenden Datei sind für FILENAME und FILESIZE immer die Angaben zu verwenden, die Sie beim Anlegen der Datei verwendet haben.
- Eine MMC ist eingeteilt in Sektoren. Jeder Sektor hat eine Größe von 512Byte. Sektorübergreifendes Lesen bzw. Schreiben ist nicht möglich. Ein Zugriff auf sektorübergreifende Daten kann nur dann erfolgen, wenn Sie für jeden Sektor einen Schreibbzw. Lesebefehl verwenden. Mit der Offset-Angabe bestimmen Sie den jeweiligen Sektor.

Die nachfolgende Abbildung zeigt die Verwendung der einzelnen SFCs und deren Variablen:

CPU

Für Lese- und Schreibzugriffe auf die MMC muss zuvor mit dem SFC 220 die Datei geöffnet werden!

Datei-Funktionen Standard-CPUs - "File Functions Standard CPUs" > SFC 220 - MMC CR F - MMC-Datei erstellen oder öffnen

16.3.2 SFC 220 - MMC_CR_F - MMC-Datei erstellen oder öffnen

Beschreibung

Bitte beachten Sie, dass dieser Baustein in der Bibliothek für das Siemens TIA Portal nicht enthalten ist.

Unter Einsatz dieses Bausteins können Sie bei einer gesteckten MMC eine neue Datei anlegen bzw. eine bestehende Datei für den Zugriff öffnen. Solange Sie keine neue Datei öffnen, können Sie über Lese-/Schreib-Befehle auf diese Datei zugreifen. Näheres hierzu und zu den Einschränkungen → "SFC 220 ... 222 - MMC-Zugriff"...Seite 1023.

j

Da der Aufruf des SFC im OB 1 zur Zykluszeit-Überschreitung führen kann, ist der SFC stattdessen im OB 100 aufzurufen.

Parameter

Name	Deklaration	Тур	Beschreibung
FILENAME	IN	STRING[254]	Dateiname
FILESIZE	IN	DWORD	Dateigröße
RET_VAL	OUT	WORD	Rückgabewert (0 = OK)

FILENAME

Geben Sie hier den Dateinamen an, unter dem Ihre Daten auf der MMC abzulegen sind bzw. abliegen. Der Dateiname mit Endekennung 00h darf eine maximale Länge von 13 Zeichen nicht überschreiten:

- 8 Zeichen für Name
- 1 Zeichen für "."
- 3 Zeichen für Dateierweiterung
- 1 Zeichen 00h als Endekennung

Aus softwaretechnischen Gründen müssen Sie das nächste Byte hinter dem Dateinamen mit 00h beschreiben (Endekennung Dateiname).

FILESIZE

Unter *FILESIZE* bestimmen Sie die Größe der Nutzdaten in Byte. Bei Zugriff auf eine schon bestehende Datei ist neben dem *FILENAME* die Angabe der vorgegebenen *FILE-SIZE* zwingend erforderlich. Die Angabe einer "Joker"-Länge wird zur Zeit nicht unterstützt.

Struktur

Byte 0	Byte 1	Byte 2	Byte 3	 Byte 255
Max. Länge	belegte Länge	ASCII-Wert 1	ASCII-Wert 2	 ASCII-Wert 254

Datei-Funktionen Standard-CPUs - "File Functions Standard CPUs" > SFC 221 - MMC RD F - MMC-Datei lesen

RET_VAL (Rückgabewert)

Wert	Beschreibung
Diagnosemeldungen	
0000h	keine Fehler (tritt nur beim Erzeugen einer neuen Datei auf).
0001h	Datei existiert schon, ist unfragmentiert und die Längenangabe <i>FILESIZE</i> ist identisch oder kleiner als die reale Dateigröße.
8001h	Es ist keine oder eine vom Typ unbekannte MMC gesteckt.
Fehlermeldungen	
8002h	Es befindet sich keine FAT auf der MMC.
A001h	Es wurde kein Dateiname angegeben. Diese Meldung kommt nur dann, wenn der Dateiname sich beispielsweise in einem nicht geladenen DB befindet.
A002h	Der angegebene Dateiname ist falsch (nicht 8.3 oder leer).
A003h	Die Datei existiert schon, aber die unter <i>FILESIZE</i> angegebene Größe ist größer als die existierende Datei.
A004h	Die Datei existiert schon, ist aber fragmentiert und kann nicht geöffnet werden.
A005h	Es ist kein ausreichender Speicherplatz auf der MMC vorhanden.
A006h	Es existiert kein freier Eintrag im Root-Verzeichnis. Abhängig von der eingesetzten MMC dürfen sich mindestens 16 bis maximal 512 Einträge im Root-Verzeichnis befinden.
B000h	Es ist ein interner Fehler aufgetreten.

16.3.3 SFC 221 - MMC RD F - MMC-Datei lesen

Beschreibung

Bitte beachten Sie, dass dieser Baustein in der Bibliothek für das Siemens TIA Portal nicht enthalten ist.

Über den SFC 221 können Sie von einer gesteckten MMC lesen. Bitte beachten Sie, dass die Datei zuvor mit dem SFC 220 für den Zugriff zu öffnen ist und die Datei unfragmentiert vorzuliegen hat. Näheres hierzu und zu den Einschränkungen → "SFC 220 ... 222 - MMC-Zugriff"... Seite 1023.

Parameter

Name	Deklaration	Тур	Beschreibung
PTR	IN	ANY	Zeiger auf Datenbereich für Lesedaten
OFFSET	IN	DWORD	Offset der Daten innerhalb der Datei
BUSY	OUT	BOOL	Auftragsstatus
RET_VAL	OUT	WORD	Rückgabewert (0 = OK)

PTR Diese Variable vom Typ Pointer zeigt auf einen Datenbereich in der CPU, der mit dem Inhalt der MMC zu beschreiben ist.

OFFSET Hiermit bestimmen Sie auf der MMC innerhalb des Files den Anfang der Daten, die in die CPU zu übertragen sind.

Datei-Funktionen Standard-CPUs - "File Functions Standard CPUs" > SFC 222 - MMC WR F - MMC-Datei schreiben

BUSY

Während der Datenübertragung bleibt dieses Bit gesetzt. Ist der Datentransfer abgeschlossen wird das Bit zurückgesetzt.

RET_VAL (Rückgabewert)

Wert	Bedeutung
0000h	keine Fehler (Daten wurden gelesen)
8001h	Es ist keine oder eine vom Typ unbekannte MMC gesteckt.
8002h	Es befindet sich keine FAT auf der MMC.
9000h	Es wurde versucht ein Bit zu lesen (Boolean-Variable). Das bitweise Lesen ist nicht möglich.
9001h	Pointerangabe ist fehlerhaft (zeigt z.B. außerhalb eines DBs)
9002h	Die Dateilänge wurde überschritten.
9003h	Es wurde versucht die Sektorgrenze von 512 zu überschreiten. Sektorübergreifendes Lesen ist nicht möglich.
B000h	Es ist ein interner Fehler aufgetreten.

16.3.4 SFC 222 - MMC_WR_F - MMC-Datei schreiben

Beschreibung

Bitte beachten Sie, dass dieser Baustein in der Bibliothek für das Siemens TIA Portal nicht enthalten ist.

Über den SFC 222 können Sie auf eine gesteckte MMC schreiben. Bitte beachten Sie, dass die Datei zuvor mit dem SFC 220 für den Zugriff zu öffnen ist und die Datei unfragmentiert vorzuliegen hat. Näheres hierzu und zu den Einschränkungen → "SFC 220 ... 222 - MMC-Zugriff"...Seite 1023.

Parameter

Name	Deklaration	Тур	Beschreibung
PTR	IN	ANY	Zeiger auf Datenbereich für Schreibdaten
OFFSET	IN	DWORD	Offset der Daten innerhalb der Datei
BUSY	OUT	BOOL	Auftragsstatus
RET_VAL	OUT	WORD	Rückgabewert (0 = OK)

PTR Diese Variable vom Typ Pointer zeigt auf einen Datenbereich in der CPU, der die Daten beinhaltet, die auf die MMC zu schreiben sind.

OFFSET

Hiermit bestimmen Sie auf der MMC innerhalb der Datei den Anfang der Daten, ab dem die Daten geschrieben werden.

BUSY Während der Datenübertragung bleibt dieses Bit gesetzt. Ist der Datentransfer abgeschlossen wird das Bit zurückgesetzt.

Datei-Funktionen Standard-CPUs - "File Functions Standard CPUs" > SFC 222 - MMC_WR_F - MMC-Datei schreiben

Wert	Bedeutung
0000h	keine Fehler
8001h	Es ist keine oder eine falsche MMC gesteckt.
8002h	Es befindet sich keine FAT auf der MMC.
9000h	Es wurde versucht ein Bit zu schreiben (Boolean-Variable).
	Das bitweise Schreiben ist nicht möglich.
9001h	Pointerangabe ist fehlerhaft (zeigt z.B. außerhalb eines DBs).
9002h	Die Dateilänge wurde überschritten.
9003h	Es wurde versucht die Sektorgrenze von 512 zu überschreiten.
	Sektorübergreifendes Lesen ist nicht möglich.
B000h	Es ist ein interner Fehler aufgetreten.

Systemfunktionen - "System Functions" > FC/SFC 25 - COMPRESS - Komprimieren Anwenderspeicher

16.4 Systemfunktions-Blöcke - "System Function Blocks"

16.4.1 FB/SFB 7 - TIMEMESS - Zeitmessung

Im Gegensatz zum FC/SFC 53 liefert der FB/SFB 7 die Differenz zwischen zwei Aufrufen in μ s zurück. Mit *RESET* = 1 wird der aktuelle μ s Zählerstand im InstDB gespeichert. Ein erneuter Aufruf mit *RESET* = 0 liefert über *VALUE* den Differenzwert zum ersten Aufruf in μ s.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
RESET	IN	BOOL	RESET = 1 startet Zähler
VALUE	OUT	DWORD	Differenz in µs

RESET

Mit *RESET* = 1 wird der aktuelle Zählerstand im InstDB gespeichert. Der Wert in *VALUE* wird hierbei nicht beeinflusst.

VALUE

Nach einem Aufruf mit *RESET* = 0 liefert *VALUE* die zeitliche Differenz zwischen den zwei FB/SFB 7 Aufrufen zurück.

16.5 Systemfunktionen - "System Functions"

16.5.1 FC/SFC 25 - COMPRESS - Komprimieren Anwenderspeicher

Entstehen von Speicherlücken Durch mehrfaches Löschen und Nachladen von Bausteinen können sowohl im Ladeals auch im Arbeitsspeicher Lücken entstehen, die den nutzbaren Speicherbereich verringern.

Beschreibung

Bitte beachten Sie, dass dieser Baustein in der Bibliothek für den Siemens SIMATIC Manager nicht enthalten ist.

Mit der FC/SFC 25 COMPRESS stoßen Sie die Komprimierung sowohl des RAM-Anteils des Ladespeichers als auch des Arbeitsspeichers an. Der Komprimiervorgang ist derselbe wie nach einem externen Anstoß im Betriebszustand RUN (Stellung des Betriebsartenschalters).

Ist die Komprimierung aufgrund eines externen Anstoßes (über Baugruppenzustand) bereits aktiv, führt der Aufruf der FC/SFC 25 zur Fehleranzeige.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
RET_VAL	OUTPUT	INT	E, A, M, D, L	Fehlerinformation
BUSY	OUTPUT	BOOL	E, A, M, D, L	Information, ob Komprimierung aufgrund der FC/SFC 25 aktiv ist.
				(1 bedeutet aktiv)

Systemfunktionen - "System Functions" > FC/SFC 53 - uS Tick - Zeitmessung

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
DONE	OUTPUT	BOOL	E, A, M, D, L	Information, ob der Komprimiervorgang, der durch die FC/SFC 25 angestoßen wurde, erfolgreich beendet wurde.
				(1 bedeutet erfolgreich beendet)

Kontrolle über Komprimiervorgang

Bei einem einmaligen Aufruf der FC/SFC 25 COMPRESS stoßen Sie den Komprimiervorgang an.

Der FC/SFC 25 ist im Zyklus aufzurufen. Nach jedem Aufruf ist zunächst der Parameter *RET_VAL* zu bewerten. Für den Fall, dass er den Wert 0 hat, sind die Parameter *BUSY* und *DONE* zu bewerten. Ist *BUSY* = 1 und *DONE* = 0, so weist dies darauf hin, dass der Komprimiervorgang noch aktiv ist. Erst wenn *BUSY* den Wert 0 und *DONE* den Wert 1 annimmt, wurde der Komprimiervorgang erfolgreich beendet.

Falls danach die FC/SFC 25 wieder aufgerufen wird, wird erneut ein Komprimieren angestoßen.

16.5.2 FC/SFC 53 - uS_Tick - Zeitmessung

Mit diesem Baustein können Sie den in der SPEED7-CPU integrierten µs-Ticker auslesen. Der µs-Ticker ist ein 32Bit µs Zeitzähler, der bei jedem Neustart mit 0 beginnt und bis 2³2-¹µs zählt. Bei einem Überlauf startet der Zähler wieder bei 0. Mittels Differenzbildung der *RETVAL*-Ergebnisse von 2 FC/SFC 53 Aufrufen vor und nach einer Anwendung können Sie auf diese Weise die Laufzeit der Anwendung in µs ermitteln.

Laufzeit in Abhängigkeit vom Betriebszustand

Zustand	μs-Systemzeit
Anlauf	beginnt bei 0 und wird ständig aktualisiert
RUN	wird ständig aktualisiert
STOP	wird angehalten (Zeit kann nicht ausgelesen werden)
Neustart	beginnt wieder bei 0

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
RETVAL	OUT	DINT	Systemzeit in µs

RETVAL

Der Parameter RETVAL enthält die gelesene Systemzeit im Bereich von 0 ... 2³²-1µs.

Bitte beachten Sie für weitere Berechnungen, dass die Systemzeit in einem vorzeichenbehafteten Datentyp zurückgegeben wird.

Systemfunktionen - "System Functions" > FC/SFC 54 - RD DPARM - Vordefinierte Parameter lesen

16.5.3 FC/SFC 54 - RD DPARM - Vordefinierte Parameter lesen

Beschreibung

Bitte beachten Sie, dass dieser Baustein in der Bibliothek für den Siemens SIMATIC Manager nicht enthalten ist.

Mit dem SFC 54 RD_DPARM (read defined parameter) wird der Datensatz mit der Nummer *RECNUM* des adressierten Moduls aus dem zugehörigen SDB1xy gelesen.

Durch den Parameter *RECORD* wird der Zielbereich festgelegt, in den der gelesene Datensatz eingetragen wird.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
IOID	INPUT	BYTE	E, A, M, D, L,	Kennung des Adressbereichs:
			Konstante	54h = Peripherie Eingang (PE)
				55h = Peripherie Ausgang (PA)
				Handelt es sich um ein Mischmodul, ist die Bereichskennung der niedrigeren Adresse anzu- geben. Bei gleichen Adressen ist 54h anzu- geben.
LADDR	INPUT	WORD	E, A, M, D, L,	Logische Basisadresse des Moduls.
			Konstante	Bei einem Mischmodul ist die kleinere der beiden Adressen anzugeben.
RECNUM	INPUT	BYTE	E, A, M, D, L, Konstante	Datensatznummer
				(zulässige Werte: 0 240)
RET_VAL	OUTPUT	INT	E, A, M, D, L	Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen Fehlercode. Zusätzlich: Länge des gelesenen Datensatzes in Bytes, falls der gelesene Datensatz in den Zielbereich passt und bei der Übertragung kein Fehler auftrat.
RECORD	OUTPUT	ANY	E, A, M, D, L	Zielbereich für den gelesenen Datensatz. Es ist nur der Datentyp BYTE zulässig.

RET_VAL (Rückgabewert)

Bei RET_VAL = 8xxxh sind zwei Fälle zu unterscheiden:

- Temporäre Fehler (Fehlercodes 80A2h ... 80A4h, 80Cxh):

 Bei dieser Fehlerart besteht die Möglichkeit, dass sich der Fehler ohne Ihr Zutun behebt, es wäre also sinnvoll, den SFC erneut (ggf. mehrfach) aufzurufen.

 Beispiel für temporäre Fehler: Benötigte Betriebsmittel sind momentan belegt (80C3h).
- Permanente Fehler (Fehlercodes 809xh, 80A1h, 80Bxh, 80Dxh): Bei dieser Fehlerart kann der Fehler nicht ohne Ihr Zutun behoben werden. Ein erneuter Aufruf des SFC ist erst wieder sinnvoll, wenn der Fehler beseitigt wurde. Beispiel für permanente Fehler: Falsche Länge des zu übertragenden Datensatzes (80B1h).

Systemfunktionen - "System Functions" > SFC 75 - SET ADDR - PROFIBUS MAC-Adresse setzen

Wert	Beschreibung
7000h	Erstaufruf mit <i>REQ</i> = 0: keine Datenübertragung aktiv;
	BUSY hat den Wert 0.
7001h	Erstaufruf mit REQ = 1: Datenübertragung angestoßen;
	BUSY hat den Wert 1.
7002h	Zwischenaufruf (REQ irrelevant): Datenübertragung bereits aktiv;
	BUSY hat den Wert 1.
8090h	Angegebene logische Basisadresse ungültig: Es ist keine Zuordnung im SDB1/SDB2x vorhanden, oder es ist keine Basisadresse.
8092h	In ANY-Referenz ist eine Typangabe ungleich BYTE angegeben.
8093h	Für das über LADDR und IOID ausgewählte Modul ist dieser SFC nicht zulässig.
80B1h	Die Länge des durch RECORD festgelegten Zielbereichs ist zu klein.
80D0h	Im zugehörigen SDB ist kein Eintrag für das Modul vorhanden.
80D1h	Die Datensatznummer ist im zugehörigen SDB für das Modul nicht projektiert.
80D2h	Das Modul ist laut Typkennung nicht parametrierbar.
80D3h	Auf den SDB kann nicht zugegriffen werden, da er nicht vorhanden ist.
80D4h	SDB-Strukturfehler: SDB-interner Zeiger zeigt außerhalb SDB.

16.5.4 SFC 75 - SET_ADDR - PROFIBUS MAC-Adresse setzen

Beschreibung

Mit diesem SFC können Sie die MAC-Adresse der integrierten PROFIBUS-Schnittstelle einer CPU ändern. Die Funktion ist nur in der Betriebsart passiver DP-Slave möglich. Zur Identifikation dient die Diagnoseadresse. Der SFC arbeitet asynchron und kann nur auf eine Schnittstelle angewendet werden. Bei STOP und anschließendem Warmstart bleibt die eingestellte Netzadresse erhalten. Bei PowerOFF-PowerON und bei Urlöschen erhält die Schnittstelle wieder ihre projektierte Teilnehmernummer. Der DP-Slave nimmt konsequent die Identität des DP-Slaves mit der neuen Adresse an. Gegenüber dem DP-Master fällt der DP-Slave mit der alten Adresse aus und ein DP-Slave mit der neuen Adresse kehrt wieder. Wird eine Adresse gewählt, die schon ein anderer Teilnehmer am DP-Strang besitzt, fallen beide Slaves bezogen auf die DP-Kommunikation aus.

Parameter

Parameter	Deklaration	Datentyp	Speicherbereich	Beschreibung
REQ	INPUT	BOOL	E, A, M, D, L	Funktionsanstoß mit REQ = 1
LADDR	INPUT	WORD	E, A, M, D, L	Identifikation der Schnittstelle
ADDR	INPUT	BYTE	E, A, M, D, L	Neue Teilnehmeradresse
RET_VAL	OUTPUT	INT	E, A, M, D, L	Fehlercode
BUSY	OUTPUT	BOOL	E, A, M, D, L	BUSY = 1: In Bearbeitung

Wert	Beschreibung
0000h	Der Auftrag wurde fehlerfrei durchgeführt
7000h	Aufruf mit REQ = 0 (Aufruf ohne Bearbeitung),
	BUSY hat den Wert 0, es ist keine Datenübertragung aktiv
7001h	Erstaufruf mit REQ = 1: Datenübertragung angestoßen; BUSY hat den Wert 1

Systemfunktionen - "System Functions" > FC/SFC 193 - AI OSZI - Oszilloskop-/FIFO-Funktion

Wert	Beschreibung
7002h	Zwischenaufruf (REQ irrelevant): Datenübertragung bereits aktiv; BUSY hat den Wert 1
8xyyh	Allgemeine Fehlerinformation
	→ "Allgemeine und spezifische Fehlercodes RET_VAL"Seite 65
8090h	Identifikation der Schnittstellen: Logische Adresse ist ungültig
8091h	Neue Teilnehmeradresse ist ungültig
8093h	Identifikation der Schnittstellen: Logische Adresse ist keine Schnittstelle
809Bh	Funktion nicht durchführbar (z.B. Schnittstelle ist kein DP-Slave oder aktiv)
80C3h	Ressourcenmangel (z.B. Mehrfachaufruf des SFC)

16.5.5 FC/SFC 193 - Al_OSZI - Oszilloskop-/FIFO-Funktion

Beschreibung

Der FC/SFC 193 dient der Ansteuerung der Oszilloskop-/FIFO-Funktion von analogen Eingabe-Kanälen, welche diese Funktionalität besitzen. Er ermöglicht das Starten der Aufzeichnung und das Auslesen der aufgezeichneten Daten. Je nach Parametrierung ergeben sich folgende Möglichkeiten:

Oszilloskop-Betrieb

- Je nach Trigger-Bedingung können Sie bei Flankenauswertung die Überwachung des eingestellten Kanals starten bzw. im manuellen Betrieb die Aufzeichnung starten.
- Sobald der Speicher voll ist haben Sie mit dem FC/SFC 193 Zugriff auf die aufgezeichneten Messwerte.

FIFO-Betrieb

- Die Aufzeichnung starten.
- Jederzeit den Puffer lesen.

Hinweis!

Der Aufruf des FC/SFC darf nur aus einer Prioritätsebene erfolgen, zum Beispiel nur aus OB 1 oder nur aus OB 35.

Das Modul muss zuvor parametriert werden.

Zum Starten und zum Auslesen ist jeweils ein Aufruf des FC/SFC 193 erforderlich. Die Unterscheidung der beiden Aufruf-Varianten erfolgt im Parameter MODE.

Parameter

Parameter	Deklaration	Datentyp	Funktion in Abhängig von MODE
REQ	IN	BOOL	Funktion ausführen (Starten/Auslesen)
LADR	IN	WORD	Basisadresse des Moduls
MODE	IN	WORD	Modus (Starten/Auslesen)
CHANNEL	IN	BYTE	Kanal, der ausgelesen werden soll
OFFSET	IN	DWORD	Adress-Offset beim Auslesen (nicht im FIFO-Betrieb)
RECORD	IN	ANY	Bereich für die ausgelesenen Daten
RETVAL	OUT	WORD	Rückgabewert (0 = OK)

Systemfunktionen - "System Functions" > FC/SFC 193 - AI_OSZI - Oszilloskop-/FIFO-Funktion

Parameter	Deklaration	Datentyp	Funktion in Abhängig von MODE
BUSY	OUT	BOOL	Funktion wird bearbeitet
TIMESTAMP	OUT	DWORD	Zeitstempel (nur bei Flankenauswertung)
LEN	INOUT	DWORD	Anzahl der Werte, die pro Kanal zu bearbeiten sind

REQ

- Abhängig vom eingestellten MODE lässt sich durch Setzen dieses Bits die Aufzeichnung starten bzw. das Auslesen beginnen.
- Je nach Trigger-Bedingung wird bei Flankenauswertung die Überwachung des eingestellten Kanals oder im manuellen Betrieb die Aufzeichnung gestartet.
- Ist unter MODE der Befehl "Auslesen" eingestellt, werden die Daten aus dem Modul gelesen.

LADR

Logische Basisadresse des Moduls.

MODE

Den FC/SFC 193 können Sie in 3 verschiedenen Modi aufrufen. Den entsprechenden Modus geben Sie über *MODE* vor. Durch Setzen von *REQ* wird der entsprechende Modus ausgeführt. Folgende Werte werden unterstützt:

- 01h: Je nach Parametrierung Aufzeichnung starten bzw. Flankenüberwachung starten
- 00h: Daten über mehrere Zyklen lesen bis BUSY = 0 erfolgt.
- 80h: Daten in einem Zugriff lesen

CHANNEL

Hier wird der Kanal angegeben, der ausgelesen werden soll. Mit jedem Aufruf kann nur jeweils ein Kanal ausgelesen werden. Für Start-Aufrufe mit *MODE* = 01h ist dieser Parameter irrelevant.

OFFSET

- Der Adress-Offset gibt einen Offset-Wert der Adresse beim Auslesen an. Dies ermöglicht den Zugriff auf Teilbereiche der aufgezeichneten Daten.
- Der Wert für den maximale Offset-Wert hängt von der Anzahl der pro Kanal aufgezeichneten Werte ab.
- Im FIFO-Betrieb wird OFFSET nicht unterstützt und deshalb dieser Parameter ignoriert.

RECORD

- Hier können Sie einen Bereich definieren, in dem die gelesenen Werte zu speichern sind.
- Im FIFO-Betrieb werden hier alle Werte des eingestellten Kanals ausgelesen, die zum Zeitpunkt des Auslesens aufgezeichnet wurden.
- Bitte tragen Sie hierfür Sorge, dass der Puffer eine ausreichende Größe zur Aufnahme der Daten besitzt, ansonsten erhalten Sie eine Fehlermeldung.

BUSY

- BUSY = 1 zeigt an, dass die entsprechende Funktion bearbeitet wird.
- Mit BUSY = 0 ist die Bearbeitung der Funktion abgeschlossen.

TIMESTAMP

- In jedem SPEED-Bus-Modul läuft eine interne Uhr mit der Auflösung von 1µs mit.
- Der Rückgabewert entspricht der Uhrzeit auf dem SPEED-Bus- Modul, bei der das Trigger-Ereignis eingetreten ist.

Systemfunktionen - "System Functions" > FC/SFC 193 - Al OSZI - Oszilloskop-/FIFO-Funktion

- TIMESTAMP ist ausschließlich im flankengesteuerten Oszilloskop-Betrieb verfügbar.
- Er ist gültig solange der Auftrag läuft (*RETVAL* = 7xxxh) bzw. wenn dieser ohne Fehler beendet wurde (*RETVAL* = 0000h).

LEN

Der als IN/OUT realisierte Längenparameter wird beim Funktionsaufruf in den unterschiedlichen Modi verschieden interpretiert.

Modus: starten (MODE: = 01h)

Unter *MODE* = 01h kommt dieser Parameter ausschließlich bei manuellem Oszilloskop-Start zum Einsatz. Hier übergeben Sie die gewünschte Anzahl der Werte, die pro Kanal aufzuzeichnen sind. In diesem Modus liefert *LEN* keinen Wert zurück.

Modus: auslesen (MODE: = 00h oder 80h)

Bei *MODE* = 00h bzw. 80h geben Sie hier die Anzahl der Werte an, die auszulesen sind. Im FIFO-Betrieb wird dieser Parameter beim Aufruf nicht berücksichtigt. *LEN* liefert als Rückgabewert die Anzahl der Werte, die ausgelesen wurden.

RETVAL (Rückgabewert)

Zusätzlich zu den hier aufgeführten modulspezifischen Fehlercodes sind auch noch die allgemeingültigen Fehlercodes für FC/SFCs als Rückgabewert möglich.

RETVAL	Beschreibung in Abhängigkeit vom BUSY-Bit	BUSY
Byte		
0	Bit 1, 0:	
	00: Aufruf mit Request: = 0 (Leerlauf, warte auf <i>REQ</i> = 1).	0
	01: Erstaufruf mit <i>REQ</i> : = 1	1
	10: Folgeaufruf mit <i>REQ</i> : = 1	1
	11: Oszilloskop zeichnet gerade auf.	1
	Bit 2: Request: = 1, aber Aufzeichnung wurde noch nicht gestartet (MODE: = 00h oder MODE: = 80h)	0
	Bit 3: reserviert	-
	Bit 4: Trigger-Ereignis eingetreten und Aufzeichnung läuft	1
	Bit 5: Warte auf Trigger-Ereignis	1
	Bit 76: reserviert	-
1	Bit 0: reserviert	-
	Bit 1: Die Anzahl der aufgezeichneten Werte ist größer als die Länge des durch <i>RECORD</i> aufgespannten Zielbereichs (in Worten).	0
	Bit 2: Die Anzahl der aufgezeichneten Werte ist größer als die übergebene Länge am Parameter <i>LEN</i> und dem <i>OFFSET</i> .	0
	Bit 3: Im FIFO-Betrieb ist der Puffer übergelaufen.	0
	Bit 74:	
	0000: Auftrag beendet ohne Fehler	0
	0111: Auftrag läuft	1
	1000: Auftrag beendet mit Fehler	0

Systemfunktionen - "System Functions" > FC/SFC 193 - Al_OSZI - Oszilloskop-/FIFO-Funktion

Auftrag beendet ohne Fehler

RETVAL	Beschreibung in Abhängigkeit vom BUSY-Bit	BUSY
0000h	Auftrag wurde ohne Fehler durchgeführt	0

Auftrag beendet mit Fehler

RETVAL	Beschreibung in Abhängigkeit vom BUSY-Bit	BUSY
8002h:	Die Oszilloskop-/FIFO-Funktion ist nicht projektiert.	0
8003h:	Es ist ein interner Fehler aufgetreten - kontaktieren Sie Yaskawa.	0
8005h:	Der angegebene Kanal kann nicht ausgelesen werden - falsche Kanal-Nummer.	0
8007h:	Der Wert unter OFFSET ist größer als die Anzahl der aufgezeichneten Werte.	0
8090h:	Es ist kein SPEED-Bus-Modul unter dieser Adresse verfügbar.	0
80D2h:	LADR liegt außerhalb des Peripherieadressbereichs.	0

Systemfunktionen - "System Functions" > FC/SFC 194 - DP EXCH - Datenaustausch mit CP342S

16.5.6 FC/SFC 194 - DP EXCH - Datenaustausch mit CP342S

Beschreibung

Mit dem FC/SFC 194 können Sie Daten zwischen Ihrer CPU und einem über SPEED-Bus angebunden PROFIBUS-DP-Master austauschen. Normalerweise blendet jeder PROFIBUS-DP-Master seinen E/A-Bereich im Peripherie-Bereich der CPU ein. Hierbei können Sie über die Hardware- Konfiguration einen Peripherie-Bereich von 0 ... 2047 adressieren. Da dies die maximale Anzahl an PROFIBUS-DP-Master-Modulen am SPEED-Bus einschränkt, haben Sie die Möglichkeit das Mapping an dem entsprechenden DP-Master zu deaktivieren und statt dessen den Zugriff über Hantierungsbaustein zu aktivieren. Hierbei können Sie mit dem FC/SFC 194 Daten von der CPU in einen definierten Bereich des DP-Master schreiben und Daten aus einem definierten Bereich des DP-Master lesen.

Parameter

Parameter	Deklaration	Datentyp	Funktion in Abhängig von MODE
LADR	IN	WORD	Basisadresse des DP-Master-Moduls am SPEED-Bus
MODE	IN	WORD	Modus (0 = lesen / 1 = schreiben)
LEN	IN	WORD	Länge des Datenbereichs im DP-Master
OFFSET	IN	DWORD	Beginn des Datenbereichs im DP-Master
RETVAL	OUT	WORD	Rückgabewert (0 = OK)
DATA	IN OUT	ANY	Zeiger auf Datenbereich in der CPU

LADR Logische Basisadresse des Moduls.

MODE Den FC/SFC 194 können Sie mit folgenden Modi aufrufen:

0000 = Daten transferieren von DP-Master in die CPU.

0001 = Daten transferieren von der CPU in den DP-Master.

LEN Hier definieren Sie die Länge des Datenbereichs im DP-Master.

OFFSETDefinieren Sie hier den Beginn des Datenbereichs im DP-Master. Bitte beachten Sie, dass der über *OFFSET* und *LEN* definierte Bereich den über die Hardware-Konfiguration

parametrierten Bereich im DP-Master nicht überschreitet.

RETVAL (Rückgabewert)Zusätzlich zu den hier aufgeführten modulspezifischen Fehlercodes sind auch noch die allgemeingültigen Fehlercodes für FC/SFCs als Rückgabewert möglich. → "Allgemeine"

und spezifische Fehlercodes RET VAL"...Seite 65

RETVAL	Beschreibung
0000h	Kein Fehler
8001h	LADR konnte keinem DP-Master am SPEED-Bus zugeordnet werden.
8002h	Wert des Parameters MODE ist außerhalb der Grenzen.
8003h	Wert des Parameters <i>LEN</i> ist 0.
8004h	Wert des Parameters LEN ist größer als der unter DATA definierte Datenbereich.
8005h	Der über OFFSET und LEN definierte Bereich liegt außerhalb 02047.

Systemfunktionen - "System Functions" > FC/SFC 219 - CAN_TLGR - CANopen-Kommunikation

RETVAL	Beschreibung
8006h	Der über <i>LADR</i> definierte DP-Master ist nicht für den Zugriff über Hantierungsbaustein parametriert. Aktivieren Sie in den Eigenschaften des DP-Master "IO-Mode HTB".
8008h	Lücke(n) im Eingangsbereich vorhanden.
8009h	Lücke(n) im Ausgangsbereich vorhanden.
8010h	Fehler beim Zugriff auf Eingabebereich (z.B. DP-Master ist nicht erreichbar)
8011h	Fehler beim Zugriff auf Ausgabebereich (z.B. DP-Master ist nicht erreichbar)
8Fxxh	DATA fehlerhaft (xx) → "Allgemeine und spezifische Fehlercodes RET_VAL"Seite 65

16.5.7 FC/SFC 219 - CAN_TLGR - CANopen-Kommunikation

FC/SFC 219 CAN_TLGR SDO-Anforderung an CAN-Master Jede SPEED7-CPU hat den FC/SFC 219 integriert. Hiermit können Sie von Ihrem SPS-Programm auf Ihrem CAN-Master einen SDO- Lese- oder Schreibzugriff auslösen. Hierbei adressieren Sie den Master über die Steckplatz-Nr. und den Ziel- Slave über seine CAN-Adresse. Die Prozessdaten bestimmen Sie durch Angabe von *INDEX* und *SUBINDEX*. Über SDO kann pro Zugriff maximal ein Datenwort Prozessdaten übertragen werden.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
REQUEST	IN	BOOL	Funktion aktivieren
SLOT_MASTER	IN	BYTE	SPEED-Bus Steckplatz (101 116)
NODEID	IN	BYTE	CAN-Adresse (1 127)
TRANSFERTYP	IN	BYTE	Transfertyp
INDEX	IN	DWORD	CANopen Index
SUBINDEX	IN	DWORD	CANopen Subindex
CANOPENERROR	OUT	DWORD	CANopen Fehler
RETVAL	OUT	WORD	Rückgabewert (0 = OK)
BUSY	OUT	BOOL	Funktion wird bearbeitet
DATABUFFER	INOUT	ANY	Datenpuffer für FC/SFC-Kommunikation

REQUEST Steuerparameter: 1: Anstoß des Auftrags

SLOT_MASTER 101...116: Steckplatz 1 ... 16 von Master auf SPEED-Bus

NODELD Adresse des CANopen Knotens (1...127)

TRANSFERTYPE 40h: Lesen SDO 23h: Schreiben SDO (1 DWORD)

2Bh: Schreiben SDO (1 WORD) 2Fh: Schreiben SDO (1 BYTE) Systemfunktionen - "System Functions" > FC/SFC 219 - CAN_TLGR - CANopen-Kommunikation

INDEX CANopen Index

SUBINDEX CANopen Subindex

SLOT_MASTER 0: System 200 CPU 21xCAN

 1...32:
 System 200 IM 208CAN

 101...115:
 System 300S 342-1CA70

CANOPENERROR Liegt kein Fehler vor, so liefert *CANOPENERROR* eine 0 zurück. Im Fehlerfall beinhaltet

CANOPENERROR eine der nachfolgend aufgeführten Fehlermeldungen, die vom CAN-

Master generiert wird:

Code	Beschreibung
0503 0000h	Toggle-Bit nicht geändert
0504 0000h	SDO Protokoll Time-out
0504 0001h	Client/Server Befehlsspezifizierung nicht gültig oder unbekannt
0504 0002h	Ungültige Blockgröße (nur Block-Modus)
0504 0003h	Ungültige Sequenznummer (nur Block-Modus)
0504 0004h	CRC Fehler (nur Block-Modus)
0504 0005h	Unzureichender Speicher
0601 0000h	Lesezugriff auf ein Nur-Schreiben-Objekt
0601 0001h	Schreibzugriff auf ein Nur-Lesen-Objekt
0602 0000h	Objekt nicht im Objektverzeichnis vorhanden
0604 0041h	Objekt kann nicht ins PDO gemappt werden
0604 0042h	Anzahl und Länge der zu mappenden Objekte überschreitet PDO-Länge
0604 0043h	Generelle Parameterinkompatibilität
0604 0047h	Generelle interne Inkompatibilität im Gerät
0606 0000h	Zugriffsfehler wegen Hardwareausfall
0607 0010h	Datentyp nicht korrekt, Länge der Serviceparameter nicht korrekt
0607 0012h	Datentyp nicht korrekt, Serviceparameter zu lang
0607 0013h	Datentyp nicht korrekt, Serviceparameter zu kurz
0609 0011h	Subindex existiert nicht
0609 0030h	Wertebereich der Parameter überschritten (nur für Schreibzugriff)
0609 0031h	Zu schreibender Parameterwert ist zu hoch
0609 0032h	Zu schreibender Parameterwert ist zu niedrig
0609 0036h	Maximumwert ist kleiner als Minimumwert
0800 0000h	Genereller Fehler
0800 0020h	Die Daten können entweder nicht transferiert oder nicht in der SPS gespeichert werden.
0800 0021h	Die Daten können wegen lokaler Kontrollen entweder nicht transferiert oder nicht in der SPS gespeichert werden.

Systemfunktionen - "System Functions" > FC/SFC 254 - RW SBUS - IBS-Kommunikation

Code	Beschreibung
0800 0022h	Die Daten können wegen aktuellem Modulstatus entweder nicht transferiert oder nicht in der SPS gespeichert werden.
0800 0023h	Dynamische Objektverzeichnisgenerierung fehlgeschlagen oder kein Objektverzeichnis gefunden (z.B. Objektverzeichnis wird aus Datei generiert und ein Dateifehler ist aufgetreten).

RETVAL

Wird die Funktion fehlerfrei ausgeführt, enthält der Rückgabewert die gültige Länge der Antwortdaten: 1: Byte, 2: Wort, 4: Doppelwort Tritt während der Bearbeitung der Funktion ein Fehler auf, enthält der Rückgabewert einen der nachfolgend aufgeführten Fehlercodes.

Code	Beschreibung
F021h	Ungültige Slave-Adresse (Aufrufparameter gleich 0 oder größer 127)
F022h	Ungültiger Transfertyp (Wert ungleich 40h, 23h, 2Bh, 2Fh)
F023h	Ungültige Datenlänge (der Datenpuffer ist zu klein, beim SDO-Lesezugriff sollte dieser mindestens 4Byte groß sein, beim SDO-Schreibzugriff sollte dieser 1Byte, 2Byte oder 4Byte groß sein)
F024h	Der FC/SFC wird nicht unterstützt.
F025h	Schreibpuffer im CANopen-Master ist voll, Service kann zur Zeit nicht bearbeitet werden.
F026h	Lesepuffer im CANopen-Master ist voll, Service kann zur Zeit nicht bearbeitet werden.
F027h	Der SDO-Lese- oder Schreibzugriff wurde fehlerhaft beantwortet → "CANOPE-NERROR"Seite 1038.
F028h	SDO-Timeout (es wurde kein CANopen-Teilnehmer mit der Node-ID gefunden).

BUSY

Solange BUSY = 1 ist der aktuelle Auftrag ist noch nicht beendet.

DATABUFFER

- Datenbereich, über den der FC/SFC kommuniziert. Geben Sie hier einen ANYPointer vom Typ Byte an.
- SDO-Lesezugriff: Zielbereich für die gelesenen Nutzdaten.
- SDO-Schreibzugriff: Quellbereich für die zu schreibenden Nutzdaten.

Sofern eine SDO-Anforderung fehlerfrei abgearbeitet wurde, enthält RETVAL die Länge der gültigen Antwortdaten in (1, 2 oder 4Byte) und CANOPENERROR den Wert 0.

16.5.8 FC/SFC 254 - RW_SBUS - IBS-Kommunikation

Beschreibung

Dieser Baustein dient den INTERBUS-FCs 20x als Kommunikationsbaustein zwischen INTERBUS-Master und CPU. Für den Einsatz der INTERBUS-FCs 20x ist der FC/SFC 254 als Baustein in Ihr Projekt einzubinden.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
READ/WRITE	IN	Byte	0 = Lesen, 1 = Schreiben
LADDR	IN	WORD	Logical Adresse INTERBUS-Master

Systemfunktionen - "System Functions" > FC/SFC 254 - RW SBUS - IBS-Kommunikation

Parameter	Deklaration	Datentyp	Beschreibung
IBS_ADDR	IN	WORD	Adresse INTERBUS-Master
DATAPOINTER	IN	ANY	Zeiger auf Datenbereich in der CPU
RETVAL	OUT	WORD	Rückgabewert (0 = OK)

READ/WRITE Hiermit bestimmen Sie die Transferrichtung aus CPU-Sicht. Mit *READ* lesen Sie Daten

aus dem Dual-port-memory des INTERBUS-Master.

LADDR Geben Sie hier die Adresse (Logical Address) an, ab der das Register des Masters in der

CPU eingeblendet wird. Beim Hochlauf der CPU werden, sofern keine Hardware-Konfiguration vorliegt, die INTERBUS-Master nach folgender Formel im E/A-Adress-Bereich der

CPU abgelegt:

Anfangsadresse = 256 = (Steckplatz-101)+2048

Die Steckplatz-Nummerierung am SPEED-Bus beginnt bei 101 links der CPU und geht

von rechts nach links. Beispielsweise hat der 1. Steckplatz die Adresse 2048, der 2. den

Steckplatz 2304 usw.

IBS_ADDR Adresse im Adressraum des INTERBUS-Master.

DATAPOINTER Zeiger auf Datenbereich in der CPU.

RETVAL Wert, den die Funktion zurück liefert. Bei 0 ist alles OK.

Übersicht - SZL

17 SZL Systemzustandslisten

17.1 Übersicht - SZL

SZL

In diesem Kapitel sind die Teillisten der Systemzustandsliste beschrieben, die mittels SFC 51 RDSYSST, über Ihr Anwenderprogramm oder über den Hardware-Konfigurator ausgelesen werden können. SZL-Teillisten, welche ausschließlich dem internen Gebrauch dienen, sind hier nicht näher beschrieben. Die SZL (**S**ystem**z**ustandsliste) beschreibt den aktuellen Zustand eines Automatisierungssystems. Sie enthält folgende Informationen:

Systemdaten

- Dies sind feste oder parametrierte Kenndaten einer CPU wie CPU Ausbau, Zustand der Prioritätsklassen und Kommunikation.
- Zustandsinformation in der CPU
 - Diese beschreibt den Zustand der Komponenten, welche durch die Systemdiagnose überwacht werden.
- Diagnosedaten
 - Die Diagnosedaten der diagnosefähigen Baugruppen, welche der CPU zugeordnet sind.
- Diagnosepuffer
 - Diagnoseeinträge des Diagnosepuffers in der Reihenfolge ihres Auftretens.

SZL-Teilliste

- Sie können immer nur auf Teillisten der SZL zugreifen. Die Teillisten sind virtuelle Listen, d.h. sie werden vom Betriebssystem nur auf Anforderung zusammengestellt und können ausschließlich nur gelesen werden.
- Sie können eine Teilliste bzw. einen Teillistenauszug beispielsweise mit dem SFC 51 RDSYSST auslesen. Hierbei bestimmen Sie mit den Parametern SZL_ID und INDEX was Sie auslesen möchten.
- Der INDEX ist nicht immer erforderlich. Er dient der Bestimmung eines Objekts innerhalb einer Teilliste.

Eine Teilliste hat immer folgende Struktur:

- Kopf (Header)
 - SZL-ID
 - Index
 - Länge eines Datensatzes in Byte
 - Anzahl der Datensätze der Teilliste
- Datensätze
 - Ein Datensatz einer Teilliste hat eine bestimmte Länge, abhängig von den Informationen der Teilliste. Wie die Datenworte in einem Datensatz belegt sind, hängt von der Teilliste ab.

SZL-ID

Aufbau

	SZL-ID															
	High-Byte						Low-Byte									
Bitnummer	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

SZL-Teillisten

	SZL-ID							
CPU: 0000	Nummer des Teilliste- nauszugs: Bestimmung der Unter- menge der Teilliste	Nummer der Teilliste: Bestimmung der Teilliste der SZL						

17.2 SZL-Teillisten

- Nachfolgend sind alle SZL-Teillisten mit zugehöriger SZL-ID aufgeführt, welche vom SPEED7-System unterstützt werden.
- SZL-Teillisten, welche ausschließlich dem internen Gebrauch dienen, sind hier nicht näher beschrieben.

SZL-Teillisten	SZL-ID
SZL Inhaltsverzeichnis	xy00h
Baugruppen-Identifikation	xy11h
CPU-Merkmale	xy12h
Anwenderspeicherbereiche	xy13h
Systembereiche	xy14h
Bausteintypen	xy15h
Zustand aller LEDs	xy19h
Identifikation einer Komponente	xy1Ch
Alarmstatus	xy22h
Kommunikationszustandsdaten	xy32h
Ethernet-Details einer Baugruppe	xy37h
Status der TCON-Verbindungen	xy3Ah
Diagnoseinformationen zur WebVisu	xy3Eh
Konfiguration von Access way	xy3Fh
Zustand der LEDs	xy74h
Zustandsinfo CPU	xy91h
Stationszustandsinformation (DPM)	xy92h
Stationszustandsinformation (DPM, PROFINET-IO und EtherCAT)	xy94h
Zustandsinfo DPM-, PROFINET-IO-Systeme	xy95h
Baugruppenzustandsinformation PROFINET/EtherCAT/PB-DP	xy96h
Diagnosepuffer der CPU/CP	xyA0h
Baugruppen-Diagnoseinfo (Datensatz 0)	xyB1h
Baugruppen-Diagnoseinfo (Datensatz 1) über physikalische Adresse	xyB2h
Baugruppen-Diagnoseinfo (Datensatz 1) über logische Adresse	xyB3h
Diagnoseinfo DP-Slave	xyB4h
Information EtherCAT Master/Slave	xyE0h

SZL-Teillisten

SZL-Teillisten	SZL-ID
EtherCAT-Bussystem	xyE1h
Informationen SBUS-Module	xyF4h
Statistik Informationen zu OBs xyFAh	
Status der VSC-Features der System SLIO CPU	xyFCh

Baugruppen-Identifikation - SZL-ID: xy11h

17.3 Baugruppen-Identifikation - SZL-ID: xy11h

Beschreibung

Über die Teilliste mit der *SZL_ID* xy11h erhalten Sie Identifikations-Daten ihrer Baugruppe.

Header

Inhalt	Wert	Beschreibung
SZL_ID	0011h	Alle Identifikations-Datensätze
	0111h	Ein einzelner Identifikations-Datensatz
	0F11h	SZL-Teillistenkopfinformation
INDEX xxxxh 0001h 0006h 0007h 0081h 0082h	xxxxh	Auswahl der Identifikationsdaten:
	0001h	Identifikations-Daten des Moduls
	0006h	Identifikations-Daten der Basishardware
	0007h	Identifikations-Daten der Basisfirmware
	Identifikation der Firmware	
	0082h	Identifikation der SVN-Version CPU
	0083h	Identifikation der SVN-Version CP
6501h ¹ 6506h ¹ 6507h ¹ 6601h ¹ 6606h ¹ 6607h ¹	6501h ¹	Identifikation des Moduls: CP auf dem 1. SPEED-Bus-Slot (Userslot = 101)
	6506h ¹	Identifikation der Basishardware: CP auf dem 1. SPEED-Bus-Slot (Userslot = 101)
	6507h ¹	Identifikation der Basisfirmware: CP auf dem 1. SPEED-Bus-Slot (Userslot = 101)
	6601h ¹	Identifikation des Moduls: CP auf dem 2. SPEED-Bus-Slot (Userslot = 102)
	6606h ¹	Identifikation der Basishardware: CP auf dem 2. SPEED-Bus-Slot (Userslot = 102)
	6607h ¹	Identifikation der Basisfirmware: CP auf dem 2. SPEED-Bus-Slot (Userslot = 102)
	6701h ¹	Identifikation des Moduls: CP auf dem 3. SPEED-Bus-Slot (Userslot = 103)
	6706h ¹	Identifikation der Basishardware: CP auf dem 3. SPEED-Bus-Slot (Userslot = 103)
	6707h ¹	Identifikation der Basisfirmware: CP auf dem 3. SPEED-Bus-Slot (Userslot = 103)
	6801h ¹	Identifikation des Moduls: CP auf dem 4. SPEED-Bus-Slot (Userslot = 104)
	6806h ¹	Identifikation der Basishardware: CP auf dem 4. SPEED-Bus-Slot (Userslot = 104)
	6807h ¹	Identifikation der Basisfirmware: CP auf dem 4. SPEED-Bus-Slot (Userslot = 104)
	6901h ¹	Identifikation des Moduls: CP auf dem 5. SPEED-Bus-Slot (Userslot = 105)
	6906h ¹	Identifikation der Basishardware: CP auf dem 5. SPEED-Bus-Slot (Userslot = 105)
	6907h ¹	Identifikation der Basisfirmware: CP auf dem 5. SPEED-Bus-Slot (Userslot = 105)
	6A01h ¹	Identifikation des Moduls: CP auf dem 6. SPEED-Bus-Slot (Userslot = 106)
	6A06h1	Identifikation der Basishardware: CP auf dem 6. SPEED-Bus-Slot (Userslot = 106)
	6A07h ¹	Identifikation der Basisfirmware: CP auf dem 6. SPEED-Bus-Slot (Userslot = 106)
6	6B01h ¹	Identifikation des Moduls: CP auf dem 7. SPEED-Bus-Slot (Userslot = 107)
	6B06h ¹	Identifikation der Basishardware: CP auf dem 7. SPEED-Bus-Slot (Userslot = 107)
	6B07h ¹	Identifikation der Basisfirmware: CP auf dem 7. SPEED-Bus-Slot (Userslot = 107)
	6C01h ¹	Identifikation des Moduls: CP auf dem 8. SPEED-Bus-Slot (Userslot = 108)

Baugruppen-Identifikation - SZL-ID: xy11h

Inhalt	Wert	Beschreibung
	6C06h1	Identifikation der Basishardware: CP auf dem 8. SPEED-Bus-Slot (Userslot = 108)
	6C07h ¹	Identifikation der Basisfirmware: CP auf dem 8. SPEED-Bus-Slot (Userslot = 108)
	6D01h ¹	Identifikation des Moduls: CP auf dem 9. SPEED-Bus-Slot (Userslot = 109)
	6D06h ¹	Identifikation der Basishardware: CP auf dem 9. SPEED-Bus-Slot (Userslot = 109)
	6D07h ¹	Identifikation der Basisfirmware: CP auf dem 9. SPEED-Bus-Slot (Userslot = 109)
	6E01h ¹	Identifikation des Moduls: CP auf dem 10. SPEED-Bus-Slot (Userslot = 110)
	6E06h ¹	Identifikation der Basishardware: CP auf dem 10. SPEED-Bus-Slot (Userslot = 110)
	6E07h ¹	Identifikation der Basisfirmware: CP auf dem 10. SPEED-Bus-Slot (Userslot = 110)
	CE01h ¹	Identifikation des Moduls: CP in der CPU (Userslot = 206)
	CE06h ¹	Identifikation der Basishardware: CP in der CPU (Userslot = 206)
	CE07h ¹	Identifikation der Basisfirmware: CP in der CPU (Userslot = 206)
LENTHDR	001Ch	Ein Datensatz ist 14Worte lang (28Byte)
N_DR	xxxxh	Anzahl der Datensätze
		 Für SZL_ID 0F11h: 6 Datensätze (einschließlich INDEX 0082h und 0083h) Für SZL_ID 0011h: 4 Datensätze (ohne Anzahl der Datensätze 0082h)
1) Dieser INDEX existiert nur in den CPUs 300S+ (ab V3.7)		

Baugruppen-Identifikation - SZL-ID: xy11h

Datensatz SZL_ID: xy11h

CPU nicht als Siemens 318-2AJ00 projektiert

INDEX Offset	Länge	Beschreibung
0	1Wort	Nummer eines Identifikations-Datensatzes
2	20Byte	 0001h und 0006h: Bestellnummer (MlfB) der Baugruppe; String aus 19 Zeichen und einem Blank (20h) z.B.: 6ES7 315-2EH14 0007h: Leerzeichen (20h) 0081h: Produktname und Ausgabestand: z.B.: 015-CEFPR00-0100 0082h: Text: "SVN Revision" 0083h: Text: "SVN Revision CP"
22	1Wort	reserviert
24	1Wort	 0001h und 0006h: Ausgabestand der Baugruppe 0007h: "V" und erste Ziffer der Versionskennung 0081h: Versionskennung: erste Ziffer in ASCII, zweite Ziffer in Hex 0082h: High-Word der "SVN-Revision" in Hex 0083h: High-Word der "SVN-Revision CP" in Hex
26	1Wort	 0001h und 0006h: reserviert 0007h: restliche Ziffern der Versionskennung 0081h: Versionskennung: dritte und vierte Ziffer in Hex 0082h: Low-Word der "SVN-Revision" in Hex 0083h: Low-Word der "SVN-Revision CP" in Hex

CPU als Siemens 318-2AJ00 projektiert

INDEX Offset	Länge	Beschreibung
0	1Wort	Nummer eines Identifikations-Datensatzes
2	20Byte	 0001h und 0006h: Bestellnummer (MlfB) der Baugruppe; String aus 19 Zeichen und einem Blank (20h) z.B.: 6ES7 318-2AJ00-0AB0 0007h: Produktname und Ausgabestand: z.B.: 317-4NE23-0119
22	1Wort	reserviert
24	1Wort	 0001h und 0006h: Ausgabestand der Baugruppe 0007h: "V" und erste Ziffer der Versionskennung
26	1Wort	 0001h und 0006h: reserviert 0007h: restliche Ziffern der Versionskennung

CPU-Merkmale - SZL-ID: xy12h

CPs

INDEX Offset	Länge	Beschreibung
0	1Wort	Nummer eines Identifikations-Datensatzes (0x6501h 0xCE07h)
2	20Byte	 xx01h und xx06h: Bestellnummer (MlfB) der Baugruppe; String aus 19 Zeichen und einem Blank (20h) xx07h: Produktname
22	1Wort	reserviert
24	1Wort	 xx01h und xx06h: Ausgabestand des CP xx07h: "V" und erste Ziffer der Versionskennung
26	1Wort	 xx01h und xx06h: reserviert xx07h: zweite und dritte Ziffer der Versionskennung

17.4 CPU-Merkmale - SZL-ID: xy12h

Beschreibung

Hier können sie die Hardware-spezifischen Merkmale Ihrer CPU ermitteln, indem Sie die entsprechende Merkmalkennung vorgeben.

Header

Inhalt	Wert	Beschreibung
SZL_ID	0012h	Alle CPU-Merkmale
	0112h	CPU-Merkmale einer Gruppe.
	0F12h	SZL-Teillistenkopfinformation
INDEX	xxxxh	CPU-Merkmale einer Gruppe:
	0000h	MC7-Bearbeitungseinheit
	0100h	Zeitsystem
	0200h	Systemverhalten
	0300h	MC7-Sprachbeschreibung der CPU
LENTHDR	0002h	Ein Datensatz ist 1Wort lang (2Byte).
N_DR	xxxxh	Anzahl der Datensätze

Datensatz

- SZL_ID: 0012h
 - Alle für Ihre CPU relevanten Datensätze der CPU-Merkmale werden ausgegeben. Sie folgen lückenlos hintereinander. Für jedes vorhandene Merkmal ist eine Merkmalkennung abgelegt, sie ist 1Wort lang. Die Merkmalkennungen finden Sie nachfolgend.
- SZL_ID: 0112h
 - Es werden immer alle für die Gruppe relevanten Datensätze ausgegeben. Sie folgen lückenlos aufeinander.

Merkmalkennungen

Kennungen	Beschreibung
0000h - 00FFh	MC7-Bearbeitungseinheit

CPU-Merkmale - SZL-ID: xy12h

Kennungen	Beschreibung
0001h	Codegenerierende MC7-Bearbeitung
0002h	MC7-Interpreter
0100h - 01FFh	Zeitsystem
0101h	1ms-Zeitauflösung
0102h	10ms-Zeitauflösung
0103h	keine Echtzeituhr
0104h	BCD-Uhrzeitformat
0105h	gesamte Uhrzeitfunktionalität
	(Uhrzeit stellen, Uhrzeitstatus setzen und lesen, Uhrzeitsynchronisation: Uhrzeit Slave und Uhrzeit Master)
0300h - 03FFh	MC7-Sprachbeschreibung der CPU
0301h	reserviert
0302h	alle 32-Bit-Festpunktbefehle
0303h	alle Gleitpunktrechenbefehle
0304h	sin, asin, cos, acos, tan, atan, sqr, sqrt, in, exp
0305h	AKKU3/AKKU4 mit den zugehörigen Befehlen
	(ENT, PUSH, POP, LEAVE)
0306h	Master Control Relay-Befehle
0307h	Adressregister 1 vorhanden mit den zugehörigen Befehlen
0308h	Adressregister 2 vorhanden mit den zugehörigen Befehlen
0309h	Befehle zur bereichsübergreifenden Adressierung
030Ah	Befehle zur bereichsinternen Adressierung
030Bh	alle speicherindirekt adressierten Befehle über M
030Ch	alle speicherindirekt adressierten Befehle über DB
030Dh	alle speicherindirekt adressierten Befehle über DI
030Eh	alle speicherindirekt adressierten Befehle über LD
030Fh	alle Befehle zur Parameterübergabe in FCs
0310h	Flankenmerkerbefehle über E
0311h	Flankenmerkerbefehle über A
0312h	Flankenmerkerbefehle über M
0313h	Flankenmerkerbefehle über DB
0314h	Flankenmerkerbefehle über DI
0315h	Flankenmerkerbefehle über LD
0316h	Dynamische Auswertung des ERAB-Bits
0317h	Dyn. Lokaldatenbereich mit den zugehörigen Befehlen

Anwenderspeicherbereiche - SZL-ID: xy13h

17.5 Anwenderspeicherbereiche - SZL-ID: xy13h

Beschreibung Über die Teilliste mit der SZL_ID xy13h erhalten Sie Informationen über die Speicherbe-

reiche der CPU.

Header

Inhalt	Wert	Beschreibung
SZL_ID	0013h	Datensätze für alle Speicherbereiche
	0113h	Datensatz für einen Speicherbereich
	0F13h	SZL-Teillistenkopfinformation
INDEX		Angabe eines Speicherbereichs (nur SZL_ID 0113h)
	0001h	Arbeitspeicher
	0002h	Ladespeicher integriert
	0003h	Ladespeicher gesteckt
	0004h	max. steckbarer Ladespeicher
	0005h	Größe des Backup-Speichers
LENTHDR	0024h	Ein Datensatz ist 18Worte lang (36Byte).
N_DR	xxxxh	Anzahl der Datensätze

Datensatz SZL_ID: xy13h

INDEX Offset	Länge	Beschreibung
0	1Wort	INDEX eines Speicherbereichs 0001h: Arbeitspeicher 0002h: Ladespeicher integriert 0003h: Ladespeicher gesteckt 0004h: max. steckbarer Ladespeicher 0005h: Größe des Backup-Speichers
2	1Wort	Speichertyp: 0001h: flüchtiger Speicher (RAM) 0002h: nicht flüchtiger Speicher (EPROM) 0003h: gemischter Speicher (RAM und EPROM)
4	2Worte	Gesamtgröße des selektierten Speichers (Summe von Ber1 und Ber2)
8	1Wort	Logischer Modus des Speichers: Bit 0: RAM Bit 1: EPROM Bit 2: RAM und EPROM Für Arbeitsspeicher: Bit 3: Code und Daten getrennt Bit 4: Code und Daten gemeinsam
10	1Wort	0 (fix)

Systembereiche - SZL-ID: xy14h

INDEX Offset	Länge	Beschreibung
12	2Worte	Größe RAM in Byte
16	2Worte	Größe des belegten RAM
20	2Worte	Größter freier Block im RAM
		■ "0": falls keine Informationen vorhanden oder Information nicht ermittelbar
24	2Worte	Größe des EPROM in Byte
28	2Worte	Größe des belegten EPROM
32	2Worte	Größter freier Block im EPROM
		■ "0": falls keine Informationen vorhanden oder Information nicht ermittelbar

17.6 Systembereiche - SZL-ID: xy14h

Beschreibung

Über die Teilliste mit der *SZL_ID* xy14h erhalten Sie Informationen über die Systembereiche der CPU.

Header

Inhalt	Wert	Beschreibung
SZL_ID	0014h	Alle Systembereiche einer CPU
	0F14h	SZL-Teillistenkopfinformation
INDEX	xxxxh	irrelevant
LENTHDR	0008h	Ein Datensatz ist 4Worte lang (8Byte)
N_DR	0009h	Anzahl der Datensätze
		Achten Sie darauf, dass Sie die Anzahl der Datensätze mindestens mit 9 parametrieren.
		■ Wird der Zielbereich zu klein gewählt, liefert der SFC 51 RDSYSST keinen Datensatz.

Systembereiche - SZL-ID: xy14h

Datensatz SZL_ID: xy14h

INDEX Offset	Länge	Beschreibung
0	1Wort	INDEX des Systembereichs
		■ 0001h: Prozessabbild Eingänge (PAE in Byte)
		■ 0002h: Prozessabbild Ausgänge (PAA in Byte)
		■ 0003h: Merker (Anzahl in Bit)
		 Dieser INDEX wird nur von einer CPU geliefert, deren Merkeranzahl in einem Wort dargestellt werden kann. Falls Ihre CPU diesen Wert nicht liefert, werten Sie bitte den Index 0008h aus.
		■ 0004h: Zeiten (Anzahl)
		■ 0005h: Zähler (Anzahl)
		0006h: Anzahl der Byte im logischen Adressraum
		0007h: Lokaldaten (gesamter Lokaldatenbereich der CPU in Byte)
		 Dieser INDEX wird nur von CPUs geliefert, bei denen die Länge des gesamten Lokaldatenbereichs in einem Wort dargestellt werden kann. Falls Ihre CPU diesen Wert nicht liefert, werten Sie bitte den Index 0009h aus.
		■ 0008h: Merker (Anzahl in Byte)
		0009h: Lokaldaten (gesamter Lokaldatenbereich der CPU in kByte)
2	1Wort	Speichertyp:
		■ 0001h: RAM
		■ 0002h: EPROM
4	1Wort	Anzahl der unter INDEX definierten Elemente des Systembereichs.
6	1Wort	Anzahl der unter INDEX definierten remanenten Elemente des Systembereichs.

Bausteintypen - SZL-ID: xy15h

17.7 Bausteintypen - SZL-ID: xy15h

Beschreibung

Sie erhalten Informationen über alle Bausteintypen (OBs, DBs, SDBs, FCs und FBs) die in der CPU vorhanden sind.

Header

Inhalt	Wert	Beschreibung
SZL_ID	0015h	Datensätze aller Bausteintypen einer CPU (Standardbausteine)
	0115h	Datensatz eines Bausteintyps einer CPU
	0815h	Datensatz eines Bausteintyps einer CPU (produktspezifische Bausteine)
	0F15h	Liefert die Anzahl der Datensätze und die Größe der Datensätze für Standardbausteine.
8F15h	8F15h	Liefert die Anzahl der Datensätze und die Größe der Datensätze für Bausteine von Yaskawa.
INDEX	xxxxh	irrelevant
LENTHDR	0000A	Ein Datensatz ist 5Worte lang (10Byte)
N_DR	xxxxh	Anzahl der Datensätze

Datensatz SZL_ID: 0115h

INDEX Offset	Länge	Beschreibung
0	1Wort	Bausteintyp-Nummer: 0800h: OB 0A00h: DB 0B00h: SDB 0C00h: FC 0E00h: FB 8800h: VOB 8A00h: VDB 8B00h: VSDB 8C00h: VFC 8E00h: VFB
2	1Wort	 Maximale Anzahl der Bausteine des Typs: bei OBs: max. mögliche Anzahl OBs einer CPU bei DBs: max. mögliche Anzahl DBs einschließlich DB0 bei SDBs: max. mögliche Anzahl SDBs einschließlich SDB2 bei FCs und FBs: max. mögliche Anzahl ladbarer Bausteine
4	1Wort	Maximale Gesamtgröße des Ladeobjekts in kByte
6	2Worte	Maximale Länge des Arbeitsspeicheranteils eines Bausteins in Byte

Bausteintypen - SZL-ID: xy15h

Datensatz SZL_ID: 0815h

INDEX Offset	Länge	Beschreibung
0	1Wort	Bausteintyp-Nummer (produktspezifisch): 8800h: VOB 8A00h: VDB 8B00h: VSDB 8C00h: VFC
2	1Wort	 Maximale Anzahl der Bausteine des Typs: bei OBs: max. mögliche Anzahl OBs einer CPU bei DBs: max. mögliche Anzahl DBs einschließlich DB0 bei SDBs: max. mögliche Anzahl SDBs einschließlich SDB2 bei FCs und FBs: max. mögliche Anzahl ladbarer Bausteine
4	1Wort	Maximale Gesamtgröße des Ladeobjekts in kByte
6	2Worte	Maximale Länge des Arbeitsspeicheranteils eines Bausteins in Byte

17.8 Zustand aller LEDs - SZL-ID: xy19h

Beschreibung

Sie erhalten Informationen über alle LEDs der CPU.

Header

Inhalt	Wert	Beschreibung
SZL_ID	0019h	Zustand aller LEDs (außer produktspezifisch)
	0119h	Zustand einer LED, über INDEX zu spezifizieren
	0E19h	Zustand aller produktspezifischer LEDs
	0F19h	SZL-Teillistenkopfinformation
LENTHDR	0004h	Ein Datensatz ist 2Worte lang (4Byte)
N_DR	xxxxh	Anzahl der Datensätze

Datensatz SZL_ID: xy19h

INDEX Offset	Länge	0019h	0119h	0E19h	Wert	Bedeutung LED
0) 1Wort	х	х	-	0001h	SF (Sammelfehler)
		X	х	-	0004h	RUN
		x	x	-	0005h	STOP
		x	x	-	0006h	FRCE (Forcen)
						System MICRO CPU: fix 0
		x	x	-	0008h	BATF: 0 (fix)
						Dieser INDEX existiert nur in CPUs, die als CPU 318-2AJ00 projektiert werden.
						■ System SLIO CPU: fix 0
						System MICRO CPU: fix 0
		X	x	-	000Bh	BF1: BUSF1 (Busfehler Schnittstelle 1)
						System 300S CPU DPM: fix 0
						 System 300S CPU PN/EC: PROFIBUS ERR LED System SLIO CPU PN/EC: PROFIBUS BF LED
						System MICRO CPU: -
		x	x	-	000Ch	BF2: BUSF2 (PROFINET Busfehler Schnittstelle 2)
						■ System 300S CPU DPM: PROFIBUS ERR LED
					System 300S CPU PN/EC: PROFIBUS BF LED	
						System SLIO CPU PN/EC: CP BF1 LEDSystem MICRO CPU: -
		-	X	Х	0013h	BF3: BUSF3 (Busfehler Schnittstelle 3)
						System 300S CPU: -
						 System SLIO CPU: PROFINET über Ethernet-PG/OP- Kanal: virtuelle BF LED
						 System MICRO CPU: PROFINET über Ethernet- PG/OP-Kanal: virtuelle BF LED
						(produktspezifisch)

INDEX	Länge	0019h	0119h	0E19h	Wert	Bedeutung LED
Offset		X	Х	-	0015h	MT LED
						System SLIO CPU: CP: MT LED
						System MICRO CPU: -
		-	x	X	0025h	MT2 LED
						System 300S CPU: -
						System SLIO CPU: PROFINET über Ethernet-PG/OP- Kanal: virtuelle MT LED
						System MICRO CPU: PROFINET über Ethernet- PG/OP-Kanal: virtuelle MT LED
						(produktspezifisch)
		-	x	x	0100h	BS1 (Busstatus 1)
						System 300S CPU: EC LED
						System SLIO CPU PN/EC: BS1 LEDSystem MICRO CPU: -
						(produktspezifisch)
		-	X	х	0101h	BS2 (Busstatus Ethernet-PG/OP-Kanal)
						System 300S CPU: -
						System SLIO CPU: PROFINET über Ethernet-PG/OP-
						Kanal: virtuelle BS LED System MICRO CPU: PROFINET über Ethernet-
						PG/OP-Kanal: virtuelle BS LED
						(produktspezifisch)
		-	Х	x	1000h	Speicherkarten Zugriff LED
						System 300S CPU: MMC LED
						System SLIO CPU: SD LEDSystem MICRO CPU: virtuelle SD LED: blinkt mit 10Hz
						(produktspezifisch)
		-	x	x	1001h	PROFIBUS Data Exchange Slave LED
						System 300S Slave CPU: fix 0
						alle anderen System 300S CPU: -
						System SLIO CPU: -System MICRO CPU: -
						(produktspezifisch)
		-	Х	Х	1002h	System MICRO: Modulstatus (links grün)
						(produktspezifisch)
		-	Х	Х	1003h	System MICRO: Modulstatus (rechts grün)
						(produktspezifisch)
		-	Х	Х	1004h	System MICRO: Modulstatus (links rot)
						(produktspezifisch)
		-	Х	Х	1005h	System MICRO: Modulstatus (rechts gelb)
						(produktspezifisch)

INDEX Offset	Länge	0019h	0119h	0E19h	Wert	Bedeutung LED
		-	X	Х	2000h	 System 300S CPU: DPM: RUN LED System SLIO CPU: 0 (fix) System MICRO CPU: - (produktspezifisch)
		-	X	х	2001h	 System 300S CPU: PROFIBUS: ERR LED System SLIO CPU: PROFIBUS: BF LED System MICRO CPU: - (produktspezifisch)
		Ŧ	х	х	2002h	 System 300S CPU: PROFIBUS: DE LED System SLIO CPU: PROFIBUS: DE LED System MICRO CPU: - (produktspezifisch)
		-	Х	X	2003h	 System 300S CPU: DPM: IF LED System SLIO CPU: 0 (fix) System MICRO CPU: - (produktspezifisch)
		-	Х	х	6501h ¹	SF (Sammelfehler) vom CP auf dem 1. SPEED-Bus-Slot (Userslot = 101)
		-	Х	Х	6504h ¹	RUN vom CP auf dem 1. SPEED-Bus-Slot (Userslot = 101)
		-	Х	Х	6505h ¹	STOP vom CP auf dem 1. SPEED-Bus-Slot (Userslot = 101)
			Х	Х	6601h ¹	SF (Sammelfehler) vom CP auf dem 2. SPEED-Bus-Slot (Userslot = 102)
		-	Х	Х	6604h ¹	RUN vom CP auf dem 2. SPEED-Bus-Slot (Userslot = 102)
		-	Х	Х	6605h ¹	STOP vom CP auf dem 2. SPEED-Bus-Slot (Userslot = 102)
		-	Х	х	6701h ¹	SF (Sammelfehler) vom CP auf dem 3. SPEED-Bus-Slot (Userslot = 103)
		-	Х	х	6704h ¹	RUN vom CP auf dem 3. SPEED-Bus-Slot (Userslot = 103)
		-	Х	х	6705h ¹	STOP vom CP auf dem 3. SPEED-Bus-Slot (Userslot = 103)
		-	X	х	6801h ¹	SF (Sammelfehler) vom CP auf dem 4. SPEED-Bus-Slot (Userslot = 104)
		-	X	х	6804h ¹	RUN vom CP auf dem 4. SPEED-Bus-Slot (Userslot = 104)

INDEX Offset	Länge	0019h	0119h	0E19h	Wert	Bedeutung LED
		-	Х	Х	6805h ¹	STOP vom CP auf dem 4. SPEED-Bus-Slot (Userslot = 104)
		-	х	Х	6901h ¹	SF (Sammelfehler) vom CP auf dem 5. SPEED-Bus-Slot (Userslot = 105)
		-	X	х	6904h ¹	RUN vom CP auf dem 5. SPEED-Bus-Slot (Userslot = 105)
		-	Х	Х	6905h ¹	STOP vom CP auf dem 5. SPEED-Bus-Slot (Userslot = 105)
		-	Х	Х	6A01h ¹	SF (Sammelfehler) vom CP auf dem 6. SPEED-Bus-Slot (Userslot = 106)
		-	Х	Х	6A04h ¹	RUN vom CP auf dem 6. SPEED-Bus-Slot (Userslot = 106)
		*	Х	Х	6A05h ¹	STOP vom CP auf dem 6. SPEED-Bus-Slot (Userslot = 106)
		-	X	Х	6B01h ¹	SF (Sammelfehler) vom CP auf dem 7. SPEED-Bus-Slot (Userslot = 107)
		-	Х	Х	6B04h ¹	RUN vom CP auf dem 7. SPEED-Bus-Slot (Userslot = 107)
		-	X	Х	6B05h ¹	STOP vom CP auf dem 7. SPEED-Bus-Slot (Userslot = 107)
		-	х	Х	6C01h ¹	SF (Sammelfehler) vom CP auf dem 8. SPEED-Bus-Slot (Userslot = 108)
		-	Х	Х	6C04h1	RUN vom CP auf dem 8. SPEED-Bus-Slot (Userslot = 108)
		-	Х	Х	6C05h ¹	STOP vom CP auf dem 8. SPEED-Bus-Slot (Userslot = 108)
		-	Х	Х	6D01h ¹	SF (Sammelfehler) vom CP auf dem 9. SPEED-Bus-Slot (Userslot = 109)
		-	Х	Х	6D04h ¹	RUN vom CP auf dem 9. SPEED-Bus-Slot (Userslot = 109)
		-	Х	Х	6D05h*	STOP vom CP auf dem 9. SPEED-Bus-Slot (Userslot = 109)
		-	Х	х	6E01h ¹	SF (Sammelfehler) vom CP auf dem 10. SPEED-Bus-Slot (Userslot = 110)
		-	Х	Х	6E04h ¹	RUN vom CP auf dem 10. SPEED-Bus-Slot (Userslot = 110)
		-	Х	Х	6E05h1	STOP vom CP auf dem 10. SPEED-Bus-Slot (Userslot = 110)

INDEX Offset	Länge	0019h	0119h	0E19h	Wert	Bedeutung LED
		-	Х	Х	CE01h ¹	SF (Sammelfehler) vom CP in der CPU (Userslot = 206)
		-	X	Х	CE04h ¹	RUN vom CP in der CPU (Userslot = 206)
		-	X	Х	CE05h ¹	STOP vom CP in der CPU (Userslot = 206)
1) Dieser IND	EX existiert nur	in den CPUs S	system 300S+ ((ab V3.7)		
2	1Byte	1Byte	1Byte	1Byte		Zustand der LED: 0: aus 1: an
3	1Byte	1Byte	1Byte	1Byte		 Blinkzustand der LED: (dezimal) 0: blinkt nicht 1: blinkt normal (2Hz) 2: blinkt langsam (0,5Hz) Hinweis: Bei EtherCat systembedingt Blinkfrequenz: 1Hz 3: blinkt mit 1Hz (produktspezifisch) 4: blinkt mit 4Hz (produktspezifisch) 5: blinkt mit 2,5Hz (produktspezifisch) 6: blinkt mit 10Hz (produktspezifisch) 7: zyklisch: blinkt einmal kurz auf (200ms) dann 1000ms aus. (produktspezifisch) 8: zyklisch: blinkt zweimal kurz auf (200ms) dann 1000ms aus. (produktspezifisch) 9: zyklisch: blinkt dreimal kurz auf (200ms) dann 1000ms aus. (produktspezifisch) 10: zyklisch: bleibt 4 Sekunden an, dann 2 Sekunden aus. 11: blinkt mit 1,5Hz. (produktspezifisch) 12: blinkt alternierend mit 1Hz mit einer zweiten LED. (produktspezifisch) 13: blinkt mit 10Hz für 500ms, dann für 500ms aus. (produktspezifisch)

Identifikation einer Komponente - SZL-ID: xy1Ch

17.9 Identifikation einer Komponente - SZL-ID: xy1Ch

Beschreibung

Über diese Teilliste können Sie die CPU bzw. das Automatisierungssystem identifizieren.

Header

Inhalt	Wert	Beschreibung
SZL_ID	001Ch	Identifikations-Daten aller Komponenten
	011Ch	Identifikations-Daten einer Komponente
	0F1Ch	SZL-Teillistenkopfinformation
INDEX	0001h	Name des Automatisierungssystems
	0002h	Name der Baugruppe
	0003h	Anlagenkennzeichen der Baugruppe
	0005h	Seriennummer der Baugruppe
	0006h	Reserviert für das Betriebssystem
	0007h	Baugruppen-Typname
	0008h	Seriennummer der Speicherkarte - CID ohne CardType
	000Ah	OEM-Kennung einer Baugruppe
	000Bh	Ortskennzeichen einer Baugruppe
	00E0h	Seriennummer im Keyfile der aktivierten Speicherkarte (nur bei SZL_ID 011Ch)
	00E1h	Seriennummer im Keyfile der gesteckten Speicherkarte (nur bei SZL_ID 011Ch)
	00FFh	Seriennummer der Speicherkarte - CID mit CardType (nur bei SZL_ID 011Ch)
LENTHDR	xxxxh	 INDEX < 00E0h Ein Datensatz ist 17Worte lang (34Byte) INDEX = 00E0h, 00E1h Ein Datensatz ist 5Worte lang (10Byte) INDEX = 00FFh Ein Datensatz ist 19Worte lang (38Byte)
N_DR		Anzahl der Datensätze:
	0009h	bei SZL_ID: 001Ch
	0001h	bei SZL_ID: 011Ch

Datensatz

SZL_ID: xy1Ch INDEX: 0001h

INDEX Offset	Länge	Beschreibung		
0	1Wort	INDEX SZL_ID: 011C: Kennung der Komponente: 0001h		
2	12Worte	Name des Automatisierungssystems (max. 24 Zeichen) ¹		
26	4Worte	reserviert		
1) Sind die Namen bzw. Bezeichnungen kürzer als die jeweilige maximale Anzahl von Zeichen, wird mit 00h aufgefüllt.				

Identifikation einer Komponente - SZL-ID: xy1Ch

SZL_ID: xy1Ch INDEX: 0002h

INDEX Offset	Länge	Beschreibung		
0	1Wort	INDEX SZL_ID: 011C: Kennung der Komponente: 0002h		
2	12Worte	Name der Baugruppe (max. 24 Zeichen) ¹		
26	4Worte	reserviert		
1) Sind die Namen bzw. Bezeichnungen kürzer als die jeweilige maximale Anzahl von Zeichen, wird mit 00h aufgefüllt.				

SZL_ID: xy1Ch INDEX: 0003h

INDEX Offset	Länge	Beschreibung
0	1Wort	INDEX SZL_ID: 011C: Kennung der Komponente: 0003h
2	16Worte	Anlagenkennzeichen der Baugruppe (max. 32 Zeichen) ¹
1) Sind die Namen bzw. Bezeichnungen kürzer als die jeweilige maximale Anzahl von Zeichen, wird mit 00h aufgefüllt.		

SZL_ID: xy1Ch INDEX: 0005h

INDEX Offset	Länge	Beschreibung
0	1Wort	INDEX SZL_ID: 011C: Kennung der Komponente: 0005h
2	12Worte	Seriennummer der Baugruppe (max. 24 Zeichen) ¹
26	4Worte	reserviert
1) Sind die Namen bzw. Bezeichnungen kürzer als die jeweilige maximale Anzahl von Zeichen, wird mit 00h aufgefüllt.		

SZL_ID: xy1Ch INDEX: 0007h

INDEX Offset	Länge	Beschreibung
0	1Wort	INDEX SZL_ID: 011C: Kennung der Komponente: 0007h
2	16Worte	Baugruppen-Typname als Zeichenfolge (max. 32 Zeichen) ¹
1) Sind die Namen bzw. Bezeichnungen kürzer als die jeweilige maximale Anzahl von Zeichen, wird mit 00h aufgefüllt.		

SZL_ID: xy1Ch INDEX: 0008h

INDEX Offset	Länge	Beschreibung
0	1Wort	INDEX SZL_ID: 011C: Kennung der Komponente: 0008h
2	16Worte	Seriennummer der Speicherkarte (max. 32 Zeichen)¹
		 CID ohne CardType: bei einer MMC-Card: "MMC " + Seriennummer bei einer SD-Card: "SD " + Seriennummer (Product Serial Number aus CID) wenn keine Karte gesteckt ist: 0
1) Sind die Namen bzw. Bezeichnungen kürzer als die jeweilige maximale Anzahl von Zeichen, wird mit 00h aufgefüllt.		

SZL_ID: xy1Ch INDEX: 000Ah

INDEX Offset	Länge	Beschreibung
0	1Wort	INDEX SZL_ID: 011C: Kennung der Komponente: 000Ah
2	13Worte	OEM-Kennung als Zeichenfolge (max. 20 Zeichen)¹
28	3Worte	reserviert
1) Sind die Namen bzw. Bezeichnungen kürzer als die jeweilige maximale Anzahl von Zeichen, wird mit 00h aufgefüllt.		

SZL_ID: xy1Ch INDEX: 000Bh

INDEX Offset	Länge	Beschreibung
0	1Wort	INDEX SZL_ID: 011C: Kennung der Komponente: 000Bh
2	16Worte	Ortskennzeichen als Zeichenfolge (max. 32 Zeichen)¹
1) Sind die Namen bzw. Bezeichnungen kürzer als die jeweilige maximale Anzahl von Zeichen, wird mit 00h aufgefüllt.		

SZL_ID: xy1Ch INDEX: 00E0h

INDEX Offset	Länge	Beschreibung
0	1Wort	INDEX SZL_ID: 011C: Kennung der Komponente: 000Bh
2	5Worte	Seriennummer im Keyfile der aktivierten Speicherkarte (nur bei SZL_ID x11Ch)¹
1) Sind die Namen bzw. Bezeichnungen kürzer als die jeweilige maximale Anzahl von Zeichen, wird mit 00h aufgefüllt.		

SZL_ID: xy1Ch INDEX: 00E1h

INDEX Offset	Länge	Beschreibung
0	1Wort	INDEX SZL_ID: 011C: Kennung der Komponente: 00E1h
2	5Worte	Seriennummer im Keyfile der gesteckten Speicherkarte (nur bei SZL_ID x11Ch)¹
1) Sind die Namen bzw. Bezeichnungen kürzer als die jeweilige maximale Anzahl von Zeichen, wird mit 00h aufgefüllt.		

SZL_ID: xy1Ch INDEX: 00FFh

INDEX Offset	Länge	Beschreibung
		Seriennummer im Keyfile der gesteckten Speicherkarte (nur bei SZL_ID x11Ch)¹
0	2Worte	Manufacturer ID
4	2Worte	Application ID
8	4Worte	Product Name
16	2Worte	Product Revision
20	2Worte	Product Serial Number
24	2Worte	Manufacturer Month
28	2Worte	Manufacturer Year
32	2Worte	Card Type:
		■ 0 = MMC
		■ 1 = SD
		■ 2 = SDHC
1) Sind die Namen bzw. Bezeichnungen kürzer als die jeweilige maximale Anzahl von Zeichen, wird mit 00h aufgefüllt.		

17.10 Alarmstatus - SZL-ID: xy22h

Beschreibung

Über diese Teilliste erhalten Sie Informationen über den aktuellen Zustand der Alarmbearbeitung und der Alarmgenerierung.

Header

Inhalt	Wert	Beschreibung
SZL_ID	0222h	Status-Information zu den Alarm-OBs
		Die Alarmklasse geben Sie über INDEX an
INDEX	0001h	OB 1 (freier Zyklus)
	000Ah	OB 10 (Uhrzeitalarm)
	000Bh	OB 11 (Uhrzeitalarm)
	0014h	OB 20 (Verzögerungsalarm)
	0015h	OB 21 (Verzögerungsalarm)
	001Ch	OB 28 (Weckalarm)
	001Dh	OB 29 (Weckalarm)
	0020h	OB 32 (Weckalarm)
	0021h	OB 33 (Weckalarm)
	0022h	OB 34 (Weckalarm)
	0023h	OB 35 (Weckalarm)
	0028h	OB 40 (Prozessalarm)
	0029h	OB 41 (Prozessalarm)
	0037h	OB 55 (Status - Alarm)
	0038h	OB 56 (Update - Alarm)
	0039h	OB 57 (Manufacturer - Alarm)
	003Dh	OB 61 (Taktsynchron - Alarm)
	0050h	OB 80 (Asynchroner Fehleralarm)
	0051h	OB 81 (Asynchroner Fehleralarm)
	0052h	OB 82 (Asynchroner Fehleralarm)
	0053h	OB 83 (Asynchroner Fehleralarm)
	0055h	OB 85 (Asynchroner Fehleralarm)
	0056h	OB 86 (Asynchroner Fehleralarm)
	0057h	OB 87 (Asynchroner Fehleralarm)
	0064h	OB 100 (Anlauf)
	0066h	OB 102 (Anlauf)
	0079h	OB 121 (Synchroner Fehleralarm)
	007Ah	OB 122 (Synchroner Fehleralarm)
LENTHDR	001Ch	Ein Datensatz ist 14Worte lang (28Byte)
N_DR	0001h	Anzahl der Datensätze (immer 1)

Datensatz SZL_ID: xy22h

INDEX Offset	Länge	Beschreibung
0	10Worte	Startinfo des jeweiligen OBs, mit folgenden Ausnahmen:
		Beim OB 1 sind die aktuelle minimale (in Byte 8 und 9) und maximale Zykluszeit (in Byte 10 und 11) zu entnehmen
		(Zeitbasis: ms, Bytezählung bei 0 beginnend).
		 Während ein Auftrag für einen Verzögerungsalarm aktiv ist, enthalten die Bytes 8 11 (Bytezählung bei 0 beginnend) die von der parametrierten Verzögerungszeit noch verbleibende Restzeit in ms.
		Beim OB 80 sind die projektierte minimale (in Byte 8 und 9) und maximale Zykluszeit (in Byte 10 und 11) lesbar
		(Zeitbasis: ms, Bytezählung bei 0 beginnend).
		Bei Fehleralarmen ohne die aktuellen Informationen.
		Bei Alarmen ist in der Zustandsinfo die aktuelle Parametrierung der Alarmquelle enthalten.
		Bei Synchronfehlern wird als Prioritätsklasse 7Fh eingetragen, wenn die OBs noch nicht bearbeitet wurden, sonst Prioritätsklasse des letzten Aufrufs.
		Hat ein OB mehrere Startereignisse, welche zum Auskunftszeitpunkt noch nicht eingetragen sind, so wird als Ereignisnummer xyzzh geliefert: x: Ereignisklasse
		y: undefiniert
		zz: kleinste definierte Nummer der Gruppe
		Ansonsten wird die Nummer des letzten aufgetretenen Startereignisses verwendet.
20	1Wort	Bearbeitungskennungen:
		■ Bit 0: Alarmereignis ist durch Parametrierung:
		- 0 = freigegeben
		- 1 = gesperrt
		■ Bit 1: Alarmereignis wurde per SFC 39 "DIS_IRT":
		- 0 = freigegeben
		- 1 = gesperrt
		Bit 2: Generierauftrag liegt vor bei Zeitalarmen, Uhrzeit-/Verzögerungsalarm-OB gestartet, Weckalarm-OB wurde projektiert.
		- 0 = nicht aktiv
		1 = Alarmquelle ist aktiv
		■ Bit 3: reserviert
		■ Bit 4: Alarm-OB:
		0 = nicht geladen
		- 1 = geladen
		■ Bit 5: Alarm-OB ist durch TIS:
		- 0 = freigegeben
		- 1 = gesperrt
		Bit 6: Eintrag in Diagnosepuffer:
		- 0 = freigegeben
		1 = gesperrt■ Bit 15 7: reserviert
		= DIL 13 /. Teserviert

INDEX Offset	Länge	Beschreibung
22	1Wort	Reaktion bei nicht geladenem / gesperrtem OB:
		■ Bit 0: 1 = Alarmquelle sperren
		■ Bit 1: 1 = Alarmereignisfehler generieren
		■ Bit 2: 1 = CPU geht in den Betriebszustand STOP
		■ Bit 3: 1 = Alarm nur verwerfen
		■ Bit 15 4: reserviert
24	2Worte	Verwerfen durch TIS-Funktionen:
		■ Bit Nr. x gesetzt bedeutet:
		 Die Ereignisnummer, die um x größer ist als die kleinste Ereignisnummer des betreffenden OBs ist durch TIS-Funktion verworfen.

Datensatz SZL_ID: 0222h INDEX: 003Dh

Der Datensatz beinhaltet die Lokaldaten des OB 61 und weiteren Informationen zum Status des OB 61.

INDEX Offset	Länge	Beschreibung							
0	1Byte	Ereignisklasse und Kennungen:11h: Alarm ist aktiv							
1	1Byte	h: Startanforderung für OB 61							
2	1Byte	Parametrierte Prioritätsklasse; Default-Wert: 25							
3	1Byte	OB-Nummer: 61 64							
4	1Byte	reserviert							
5	1Byte	reserviert							
6	1 Bit	OB61_GC_VIOL: GC-Verletzung bei PROFIBUS-DP							
6	1 Bit	OB61_FIRST: Erste Ausführung nach Anlauf bzw. Haltzustand							
7	1Byte	Anzahl der ausgefallenen OB 61-Starts seit der letzten OB 61-Ausführung							
8	1Byte	PROFINET-IO System-ID des taktsynchronen PN-IO-Systems (100 115)							
9	1Byte	reserviert							
10	2Bytes	reserviert							
12	8Bytes	Datum und Uhrzeit, zu denen der OB angefordert wurde							
20	2Bytes	Bearbeitungskennungen (siehe unten)							
22	2Bytes	Reaktion bei nicht geladenem/gesperrtem OB (siehe unten)							
24	4Bytes	Verwerfen durch TIS-Funktionen (siehe unten)							

Zusätzliche Status-Informationen OB 61

INDEX Offset	Länge	Beschreibung
0	2 Bytes	Bearbeitungskennungen Bit 0: Alarmereignis ist durch Parametrierung: 0 = freigegeben 1 = gesperrt Bit 1: Alarmereignis wurde per SFC 39 "DIS_IRT": 0 = freigegeben 1 = gesperrt Bit 2: Generierungsauftrag für OB liegt vor: 0 = nicht aktiv 1 = Alarmquelle ist aktiv Bit 3: reserviert Bit 4: Ladestatus OB: 0 = nicht geladen 1 = geladen Bit 5: Alarm-OB ist durch TIS: 0 = freigegeben 1 = gesperrt Bit 6: Eintrag in Diagnosepuffer: 0 = freigegeben 1 = gesperrt Bit 15 7: reserviert
2	2 Bytes	Reaktion bei nicht geladenem / gesperrtem OB: Bit 0: 1 = Alarmquelle sperren Bit 1: 1 = Alarmereignisfehler generieren Bit 2: 1 = CPU geht in den Betriebszustand STOP Bit 3: 1 = Alarm nur verwerfen Bit 15 4: reserviert
4	4 Bytes	 Verwerfen durch TIS-Funktionen: ■ Bit Nr. x gesetzt bedeutet: – Die Ereignisnummer, die um x größer ist als die kleinste Ereignisnummer des betreffenden OBs ist durch TIS-Funktion verworfen.

17.11 Kommunikationszustandsdaten - SZL-ID: xy32h

Beschreibung

Über diese Teilliste erhalten Sie Informationen über die Kommunikationszustandsdaten.

Header

Inhalt	Wert	Beschreibung						
SZL_ID	0132h	Auslesen der Diagnose Information						
	0F32h	SZL-Teillistenkopfinformation						
INDEX	0001h	Allgemeine Kommunikationszustandsdaten						
	0002h	TIS-Zustand						
	0004h	Schutz-Zustand						
	0006h	Datenaustausch über SFBs						
	0008h	Zeitsystem (16Bit Betriebsstundenzähler 0 7)						
	0009h	MPI-Zustand						
	000Ah	K-Bus-Zustand						
	000Bh	Zeitsystem (32Bit Betriebsstundenzähler 0 7)						
LENTHDR	0028h	Ein Datensatz ist 20Worte lang (40Byte).						
		Die Belegung hängt vom Parameter INDEX ab.						
N_DR	_DR xxxxh Anzahl der Datensätze							

Datensatz

SZL_ID: 0132h INDEX: 0001h

Der Teillistenauszug enthält Informationen über allgemeine Zustandsdaten zur Kommunikation.

INDEX Offset	Länge	Beschreibung							
0	1Wort	Allgemeine Zustandsdaten zur Kommunikation							
2	1Wort	eservierte Anzahl PG-Verbindungen (Default = 1)							
4	1Wort	Reservierte Anzahl OP-Verbindungen (Default = 1)							
6	1Wort	Anzahl belegter PG-Verbindungen							
8	1Wort	Anzahl belegter OP-Verbindungen							
10	1Wort	Anzahl projektierter S7-Verbindungen (Default = 0)							
12	1Wort	Anzahl belegter S7-Verbindungen							
14	1Wort	Anzahl nicht belegter Verbindungs-Ressourcen							
16	1Wort	reserviert							
18	1Wort	Max. eingestellte Kommunikationslast der CPU in % (Default = 20%)							
20	7Worte	reserviert (0000h)							
34	1Byte	Reservierte Anzahl S7-Basis-Kommunikationsverbindungen (Default = 0)							
35	1Byte	Anzahl belegter S7-Basis-Kommunikationverbindungen (XPut/XGet/MPI)							
36	1Wort	Anzahl belegter sonstiger Verbindungen							

INDEX Offset	Länge	Beschreibung
38	1Wort	Dialog Mode Umschaltung (Kommunikationsdialog) im Siemens SIMATIC Manager:
		■ 0000h: Kommunikationsdialog
		- Siemens CPU 318
		- CPU 317-4NE12
		■ 0001h: Kommunikationsdialog
		- CPU 315-2AG10
		- CPU 317-2AJ10
		■ 0002h: reserviert
		■ 0003h: Kommunikationsdialog
		 Siemens CPU 315-2EH13 FW: V2.6
		- Siemens CPU 317-4EK14 FW: V3.x

Datensatz SZL_ID: 0132h INDEX: 0002h

Der Teillistenauszug enthält Informationen über den TIS-Zustand.

INDEX Offset	Länge	Beschreibung
0	1Wort	0002h: TIS-Zustand
2	1Wort	Anzahl der eingerichteten TIS-Aufträge
4	18Worte	reserviert

Datensatz SZL_ID: 0132h INDEX: 0004h

Der Teillistenauszug enthält Informationen über Schutz-Zustandsdaten.

INDEX Offset	Länge	eschreibung								
0	1Wort	0004h: Schutz-Zustandsdaten								
2	1Wort	Schutzstufe am Schlüsselschalter (mögliche Werte: 1, 2 oder 3)								
4	1Wort	 Parametrierte Schutzstufe (mögliche Werte: 0, 1, 2 oder 3 0: kein Passwort vergeben, parametrierte Schutzstufe ist ungültig) 								
6	1Wort	■ Gültige Schutzstufe der CPU - (mögliche Werte: 1, 2 oder 3)								
8	1Wort	Stellung des Betriebsartenschalters: 0: undefiniert bzw. nicht ermittelbar 1: RUN 2: RUN_P 3: STOP 4: MRES								
10	1Wort	Stellung des Schalters CRST/WRST: 0: undefiniert bzw. nicht ermittelbar 1: CRST (Cold Restart) 2: WRST (Warm Restart)								
12	1Wort	reserviert								
14	1Wort	Kennung für die Gültigkeit der vier folgenden Prüfsummen (0: ungültig)								

INDEX Offset	Länge	Beschreibung
16	1Wort	Prüfsumme 1 der Hardwarekonfiguration (Intel-Format):
		Exklusiv-Oder-Verknüpfung über die Längen aller Systemdatenbausteine
18	1Wort	Prüfsumme 2 der Hardwarekonfiguration (Intel-Format):
		Exklusiv-Oder-Verknüpfung über die Längen aller Systemdatenbausteine
20	1Wort	Prüfsumme 1 des Anwenderprogramms (Intel-Format):
		Exklusiv-Oder-Verknüpfung über die Längen der folgenden Bausteine: OBs, DBs, FBs, FCs
22	1Wort	Prüfsumme 2 des Anwenderprogramms (Intel-Format):
		Exklusiv-Oder-Verknüpfung über die Längen der folgenden Bausteine: OBs, DBs, FBs, FCs
24	8Worte	reserviert

Datensatz SZL_ID: 0132h INDEX: 0006h

Der Teillistenauszug enthält Informationen über den Datenaustausch der Kommunikations-SFBs für projektierte Verbindungen.

INDEX Offset	Länge	Beschreibung
0	1Wort	0006h: Datenaustausch über Kommunikations-SFBs für projektierte Verbindungen
2	4Worte	Benutzte Bausteine
10	1Byte	reserviert
11	1Wort	Anzahl der geladenen SFB-Instanzen
13	1Wort	Anzahl multicast genutzter Bausteine
15	25Byte	reserviert

Datensatz SZL_ID: 0132h INDEX: 0008h

Der Teillistenauszug enthält Informationen über den Zustand der 16Bit Betriebsstundenzähler 0 ... 7.

INDEX Offset	Länge	Beschreibung
0	1Wort	0008h: Zeitsystem-Zustand
2	1Wort	Zykluszeit der Synchronisationstelegramme
4	1Wort	Korrekturfaktor für die Uhrzeit
6	1Wort	Betriebsstundenzähler 0: Zeit in Stunden
8	1Wort	Betriebsstundenzähler 1: Zeit in Stunden
10	1Wort	Betriebsstundenzähler 2: Zeit in Stunden
12	1Wort	Betriebsstundenzähler 3: Zeit in Stunden
14	1Wort	Betriebsstundenzähler 4: Zeit in Stunden
16	1Wort	Betriebsstundenzähler 5: Zeit in Stunden
18	1Wort	Betriebsstundenzähler 6: Zeit in Stunden
20	1Wort	Betriebsstundenzähler 7: Zeit in Stunden

INDEX Offset	Länge	Beschreibung
22	4Worte	Aktuelles Datum und Uhrzeit (Format: Date_and_Time)
30	1Byte	 Bit x: Betriebsstundenzähler x mit 0 ≤ x ≤ 7 1: Betriebsstundenzähler läuft
31	1Byte	reserviert
32	1Byte	 Bit x: Überlauf von Betriebsstundenzähler x mit 0 ≤ x ≤ 7 1: Überlauf
33	1Byte	reserviert
34	3Worte	reserviert

Uhrzeit-Status

Status	Uhrzeit-Status															
	High-Byte							Low-Byte								
Bitnummer	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	VZ	VZ Korrekturwert					-	-	Std.	So/ Wi	-	R	es	-	-	Sync

Status

Bit	Beschreibung	Defaultwert
0	Synchronisationsausfall	0
	Dieser Parameter gibt an, ob die im Telegramm übertragene Uhrzeit von einem externen Uhrzeitmaster synchronisiert ist.	
	0: Synchronisation ausgefallen	
	■ 1: Synchronisation erfolgt	
	Hinweis:	
	Die Auswertung dieses Bits ist bei einer CPU nur bei ständiger externer Uhrzeitsynchronisation sinnvoll.	
1	Dieser Parameter wird nicht verwendet.	0
2	Dieser Parameter wird nicht verwendet.	0
4, 3	Uhrzeitauflösung bzw. Genauigkeit (Resolution) 00: 0,001s 01: 0,01s 10: 0,1s 11: 1s	00
5	Dieser Parameter wird nicht verwendet.	0
6	Sommer-/Winterzeit-Indikator	0
	Dieser Parameter zeigt an, ob die mittels Korrekturwert errechnete Lokalzeit die Sommerzeit oder die Winterzeit ist.	
	0: Winterzeit	
	■ 1: Sommerzeit	

Bit	Beschreibung	Defaultwert
7	Ankündigungsstunde	0
	Dieser Parameter gibt an, ob beim nächsten Stundenwechsel eine Umschaltung von Sommer- nach Winterzeit oder umgekehrt stattfindet.	
	0: findet nicht statt	
	1: findet statt	
8	reserviert	0
9	reserviert	0
14 10	Korrekturwert (Lokalzeit = Baugruppenzeit ± Korrekturwert * 0,5h)	00000
	Dieser Korrekturwert berücksichtigt die Zeitzone und die Zeitdifferenz.	
15	Vorzeichen für Korrekturwert	0
	0: positiv	
	■ 1: negativ	

Datensatz SZL_ID: 0132h INDEX: 0009h

Der Teillistenauszug enthält Informationen über den MPI-Zustand.

INDEX Offset	Länge	Beschreibung			
0	1Wort	0009h: MPI-Zustand			
2	2Worte	Benutzte Baudrate (hexadezimal codiert)			
4	17Worte	reserviert			

Datensatz SZL_ID: 0132h INDEX: 000Ah

Der Teillistenauszug enthält Informationen über den K-Bus.

INDEX Offset	Länge	Beschreibung			
0	1Wort	00Ah: Zustand K-Bus			
2	2Worte	Benutzte Baudrate (hexadezimal codiert)			
4	17Worte	reserviert			

Datensatz SZL_ID: 0132h INDEX: 000Bh

Der Teillistenauszug enthält Informationen über den Zustand der 32Bit Betriebsstundenzähler 0 ... 7.

INDEX Offset	Länge	Beschreibung			
0	1Wort	000Bh: Zeitsystem-Zustand			
2	1Byte	 Bit x: Betriebsstundenzähler x mit 0 ≤ x ≤ 7 1: Betriebsstundenzähler läuft 			
3	1Byte	reserviert			
4	1Byte	 Bit x: Überlauf von Betriebsstundenzähler x mit 0 ≤ x ≤ 7 1: Überlauf 			
5	1Byte	reserviert			

INDEX Offset	Länge	Beschreibung
6	1DWort	Betriebsstundenzähler 0: Zeit in Stunden
10	1DWort	Betriebsstundenzähler 1: Zeit in Stunden
14	1DWort	Betriebsstundenzähler 2: Zeit in Stunden
18	1DWort	Betriebsstundenzähler 3: Zeit in Stunden
22	1DWort	Betriebsstundenzähler 4: Zeit in Stunden
26	1DWort	Betriebsstundenzähler 5: Zeit in Stunden
30	1DWort	Betriebsstundenzähler 6: Zeit in Stunden
34	1DWort	Betriebsstundenzähler 7: Zeit in Stunden
38	1Wort	reserviert

Ethernet-Details einer Baugruppe - SZL-ID xy37h

17.12 Ethernet-Details einer Baugruppe - SZL-ID xy37h

Beschreibung

Über diese Teilliste erhalten Sie Informationen über die Konfiguration des TCP/IP-Stacks, die vom Hersteller vorgegebene MAC-Adresse und die Verbindungseigenschaften auf Schicht 2 - Sicherungsschicht (data link layer) der CP-Schnittstelle.

\int_{0}^{∞}

Informationen zum Ethernet-PG/OP-Kanal

- Bei CPUs mit integriertem PROFINET-CP oder EtherCAT-CP werden zwei Datensätze geliefert. Im 1. Datensatz finden Sie die Informationen zum CP und im 2. Datensatz die Informationen zum Ethernet-PG/OP-Kanals.
- Bei CPUs ohne CP wird ein Datensatz geliefert. Im diesem finden Sie die Informationen zum Ethernet-PG/OP-Kanals.
- Ist eine Schnittstelle nicht konfiguriert, wird in logaddr der Wert 2000h geliefert. Dies ist beim Ethernet-PG/OP-Kanal z.B. auch der Fall, wenn ein CP 343-1EX11, 343-1EX21 oder 343-1EX30 konfiguriert aber die Ethernet-Schnittstelle nicht vernetzt ist. Hierbei liefert SZL_ID: 0137h keinen Datensatz.

Header

Inhalt	Wert	Beschreibung	
SZL_ID	0037h	Details sämtlicher Ethernet-Schnittstellen	
	0137h	Details einer Ethernet-Schnittstelle	
	0F37h	SZL-Teillistenkopfinformation	
INDEX	0000h	falls die Details sämtlicher Ethernet-Schnittstellen angefordert werden	
		Logische Basisadresse der Ethernet-Schnittstelle, deren Details angefordert werden	
LENTHDR	0030h	Ein Datensatz ist 24Worte lang (48Byte)	
N_DR	xxxxh	Anzahl der Datensätze	

Ethernet-Details einer Baugruppe - SZL-ID xy37h

Datensatz

SZL_ID: xy37h

INDEX Offset	Name	Länge	Beschreibung
0	logaddr	2Byte	Logische Basisadresse der Schnittstelle
2	ip_addr	4Byte	IP-Adresse Die IP-Adresse wird in folgendem Format abgelegt (am Bsp.: a.b.c.d): ■ Offset x: a, ■ Offset x+1: b, ■ Offset x+2: c, ■ Offset x+3: d
6	subnetmask	4Byte	Subnetzmaske Die Subnetzmaske wird in folgendem Format abgelegt (am Bsp.: a.b.c.d): Offset x: a, Offset x+1: b, Offset x+2: c, Offset x+3: d
10	defaultrouter	4Byte	 IP-Adresse des Defaultrouters Wenn Sie keinen Defaultrouter projektiert haben, wird hier die IP-Adresse der Schnittstelle eingetragen.
14	mac_addr	6Byte	MAC-Adresse
20	source	1Byte	Herkunft der IP-Adresse: 00h: IP-Adresse nicht initialisiert 01h: IP-Adresse wurde projektiert 02h: IP-Adresse wurde über DCP eingestellt 03h: IP-Adresse wird von einem DHCP-Server bezogen 04h FFh: reserviert
21	reserved	1Byte	reserviert
22	dcp_mod_ timestamp	8Byte	Zeitstempel der letzten Änderung der IP-Adresse über DCP Hinweis: Der Inhalt dieses Felds darf nur ausgewertet werden, wenn Bit 1 in <i>source</i> gesetzt ist.

Ethernet-Details einer Baugruppe - SZL-ID xy37h

INDEX Offset	Name	Länge	Beschreibung
30	phys_mode1	1Byte	 Zustand von Port 1: Bit 0: Duplex-Mode (nur relevant, falls AUI-Mode = 0): 1: phys. Layer arbeitet vollduplex, 0: phys. Layer arbeitet halbduplex Bit 1: Baudratenkennung (nur relevant, falls AUI-Mode = 0): 1: phys. Layer arbeitet mit 100MBaud 0: phys. Layer arbeitet mit 10MBaud Bit 2: Link-Status: 1: phys. Layer hat Linkpulse, 0: phys. Layer hat keine Linkpulse Bit 3: Auto-Mode: 1: phys. Layer soll sich automatisch auf das LAN-Medium einstellen, 0: phys. Layer soll sich nicht automatisch auf das LAN-Medium einstellen Bit 6 4: 0 Bit 7: Gültigkeit: 0: phys_mode1 enthält keine gültigen Daten 1: phys_mode1 enthält gültige Daten Die Nummerierung der Ports ist identisch mit der Nummerierung in der Projektierung. Wenn die Schnittstelle nur einen Port hat, werden deren physikalische Eigenschaften bei Port 1 eingetragen.
31	phys_mode2	1Byte	Zustand von Port 2 (Aufbau wie phys_mode1)
45	phys_mode1 6	1Byte	Zustand von Port 16 (Aufbau wie phys_mode1)
46	reserved	2Byte	reserviert

Wenn Sie noch keine IP-Konfiguration durchgeführt haben, enthalten die Variablen ip_addr, subnetmask und defaultrouter jeweils den Wert Null.

TCON Verbindungen - SZL-ID: xy3Ah

17.13 TCON Verbindungen - SZL-ID: xy3Ah

Beschreibung

Über diese Teilliste erhalten Sie Informationen über die TCON Verbindungen in geeigneten CPUs.

Der Dialog "Offene Kommunikation über Industrial Ethernet" im Siemens SIMATIC Manager wird nur sichtbar wenn die SZL 003Ah und 0F3Ah existieren und abrufbar sind. Hierfür müssen sie im Inhaltsverzeichnis (SZL 0000h) eingetragen sein.

Die Diagnosedaten, die durch die SZL auslesbar sind, werden vom System mit einer Periode von einer Sekunde aktualisiert.

Header

Inhalt	Name	Beschreibung
SZL_ID	003Ah	Auslesen der Diagnose Information
	0F3Ah	SZL-Teillistenkopfinformation
INDEX		Status TCON Verbindung
LENTHDR	0094h	Länge des nachfolgenden Datensatzes 74Worte (148Byte)
N_DR	000xh	 0: TCON Online Diagnose nicht möglich (Button "Diagnose" im Siemens SIMATIC Manager = "grau"). Es wird nur der Header geliefert und keine weiteren Nutzdaten. >0: TCON Online Diagnose enabled

Datensatz

SZL_ID: xy3Ah INDEX: 003Ah

Der Teillistenauszug enthält Informationen über TCON Verbindungen in geeigneten CPUs.

INDEX Offset	Länge	Beschreibung			
0	1Wort	0100h: unbekannt			
2	1Wort	"laufende Verbindungsnummer": nicht Verbindungs-ID			
4	1Wort	Block_length ³ 40h: Von Offset 4 67 = 64 Byte			
6	1Wort	ID³: Verbindungs-ID			
8	1Byte	 connection_type³ Verbindungstyp: 11h = TCP/IP 12h = ISO on TCP 13h = UDP 01h = TCP (Kompatibilitätsmode) 			
9	1Byte	active_est ³			
10	1Byte	local_device_id³ 02h: CPU-Typ			
11	1Byte	local_tsap_id_len3			
12	1Byte	rem_subnet_id_len3			
13	1Byte	rem_staddr_len³ 04h: für IP-Adresse			
14	1Byte	rem_tsap_id_len³			

TCON Verbindungen - SZL-ID: xy3Ah

INDEX Offset	Länge	Beschreibung		
15	1Byte	next_staddr_len3		
16	16Byte	local_tsap_id (enthält TSAP oder Portnummer)³		
32	6Byte	rem_subnet_id³ für Routing		
38	6Byte	rem_staddr (remote IP-Adresse) ³		
44	16Byte	rem_tsap_id (enthält TSAP oder Portnummer) ³		
60	6Byte	next_staddr (next IP-Adresse)³ für Routing		
66	1Wort	spare ³		
68	4Byte	local_staddr (lokale IP-Adresse) ³		
72	8Byte	1. Zeitstempel ¹		
		Zeitstempel für 1. Verbindungsaufbauversuch		
80	8Byte	2. Zeitstempel ¹		
		Speicher für Zeitstempel 4 bei Verbindungsabbau		
88	8Byte	3. Zeitstempel ¹		
		Zeitstempel, der Fehlermeldung des letzten Verbindungsabbruchs.		
		Hierfür gibt es einen Fehlernummer (Offset: 132)		
96	8Byte	4. Zeitstempel ¹		
		Zeitstempel für erfolgreichen Verbindungsaufbau.		
		Wird bei Verbindungsabbau nach Zeitstempel 2 kopiert und gelöscht (alles auf 0 setzen)		
104	8Byte	5. Zeitstempel ¹		
		Zeitstempel des letzten fehlerhaften Verbindungsaufbauversuchs.		
		Hierfür gibt es einen Fehlernummer (Offset: 130)		
112	4Byte	rem_ip_addr (remote IP-Adresse) ⁴		
116	2Byte	rem_port_nr (remote Portnummer) ⁴		
118	2Byte	spare ⁴		
120	4Byte	rem_ip_addr (remote IP-Adresse) ⁵		
124	2Byte	rem_port_nr (remote Portnummer) ⁵		
126	2Byte	spare ⁵		
128	1Wort	 Verbindungszustand: 0000h: keine Anzeige 0001h: Verbindung ist aufgebaut 0002h: keine Anzeige 0003h: Verbindung wird passiv aufgebaut 0004h: Verbindung ist aktiv aufgebaut 0005h: Verbindung ist passiv aufgebaut > 0005h: keine Anzeige 		

TCON Verbindungen - SZL-ID: xy3Ah

INDEX Offset	Länge	Beschreibung
130	1Wort	 Fehlermeldung des letzten Verbindungsaufbauversuchs: 0000h: kein Fehler 0001h: lokaler Netzwerkfehler 0002h: Teilnehmer nicht erreichbar 0003h: lokaler Abbruch 0004h: Abbruch durch Partner 0005h: Abbruch wegen Zeitüberschreitung 0006h: Abbruch durch Protokollfehler 0007h: systeminterner Fehler (7) 0008h: systeminterner Fehler (8) 0009h: systeminterner Fehler (9) 000Ah: systeminterner Fehler (10) 000Bh: Verbindungsaufbauversuch zur eigenen Stationsadresse 000Ch: doppelte Adressierung ≥ 000Dh: unbekannter Fehler
132	1Wort	 Fehlermeldung des letzten Verbindungsabbruchs: 0000h: kein Fehler 0001h: lokaler Netzwerkfehler 0002h: Teilnehmer nicht erreichbar 0003h: lokaler Abbruch 0004h: Abbruch durch Partner 0005h: Abbruch wegen Zeitüberschreitung 0006h: Abbruch durch Protokollfehler 0007h: systeminterner Fehler (7) 0008h: systeminterner Fehler (8) 0009h: systeminterner Fehler (9) 000Ah: systeminterner Fehler (10) 000Bh: Verbindungsaufbauversuch zur eigenen Stationsadresse 000Ch: doppelte Adressierung ≥ 000Dh: unbekannter Fehler
134	1Wort	Aktuelle Verbindungsaufbauversuche, wird bei hergestellter Verbindung zurückgesetzt
136	1DWord	Anzahl Bytes gesendet
140	1DWord	Anzahl Bytes empfangen
144	1Wort	Anzahl erfolgreiche Verbindungsaufbauversuche
146	1Wort	0000h: unbekannt
136 140 144	1DWord 1DWord 1Wort	 0008h: systeminterner Fehler (8) 0009h: systeminterner Fehler (9) 000Ah: systeminterner Fehler (10) 000Bh: Verbindungsaufbauversuch zur eigenen Stationsadresse 000Ch: doppelte Adressierung ≥ 000Dh: unbekannter Fehler Aktuelle Verbindungsaufbauversuche, wird bei hergestellter Verbindung zurückgesetzt Anzahl Bytes gesendet Anzahl Bytes empfangen Anzahl erfolgreiche Verbindungsaufbauversuche

¹⁾ Zeitstempel (Datentyp: S7 Date and Time), Auflösung in Sekunden, Millisekunden sind genullt

³⁾ Felder entsprechend TCON Konfig DB (UDT65). Felder rem_staddr_len, rem_tsap_id_len, rem_staddr und rem_tsap_id werden bei hergestellter Verbindung mit Adressdaten des Verbindungspartners aktualisiert

⁴⁾ Felder entsprechend Adressen DB von TUSEND (UDT66)

⁵⁾ Felder entsprechend Adressen DB von TURCV nach Aufruf (UDT66)

Diagnoseinformationen zur WebVisu - SZL-ID: xy3Eh

17.14 Diagnoseinformationen zur WebVisu - SZL-ID: xy3Eh

Beschreibung

Über diese Teilliste erhalten Sie Informationen zu Diagnoseinformationen der WebVisu.

Header

Inhalt	Wert	Beschreibung
SZL_ID	003Eh	Datensätze aller WebVisu
	013Eh	Einzelner Datensatz: Auswahl über Konstante in INDEX
	113Eh	Einzelner Datensatz: Auswahl über logische Adresse der Schnittstelle in INDEX
	0F3Eh	SZL_Teillistenkopfinformation
INDEX	xxxxh	 SZL_ID = 013Eh: 0000h: reserviert 0001h: WebVisu CPU 0002h: WebVisu CP SZL_ID = 113Eh:
LENTHDR	000Eh	Ein Datensatz ist 13Worte lang (26Byte).
N_DR	xxxxh	Anzahl der Datensätze

Datensatz

SZL_ID: xy3Eh

INDEX Offset	Länge	Beschreibung
0	1Wort	Version der unterstützen API der WebVisu: ■ MSB = Major ■ LSB = Minor
2	1Wort	Statuscodes der WebVisu → "Statuscodes der WebVisu"Seite 1079
4	1Wort	Konfigurierte Portnummer des Webservers; 0000h: Webserver nicht aktiv.
6	1Wort	Konfigurierte Portnummer der HTTPS WebVisu; 0000h: WebVisu nicht aktiv.
8	1Byte	Anzahl der aktiven Sitzungen.
9	1Byte	Maximale Anzahl an parallel aktiven Sitzungen.
10	1Wort	Anzahl der Variablen, welche mindestens einmal verwendet werden.
12	1Wort	Maximale Anzahl verwendeter Variablen.
14	1Wort	Anzahl verwendeter großen Variablen (Strings). Bei INDEX Offset: 16 = 0000h: 0000h
16	1Wort	Maximale Anzahl verwendeter großen Variablen (Strings). Wenn Anzahl durch dynamischen Speicher vorgegeben: 0000h
18	1Wort	WebVisu-Projektgröße in kByte.
20	1Wort	Maximale WebVisu-Projektgröße in kByte.

Diagnoseinformationen zur WebVisu - SZL-ID: xy3Eh

INDEX Offset	Länge	Beschreibung
22	1DWort	Konfigurierte Features → "Feature Code"Seite 1080

Statuscodes der WebVisu

- Status Information
 - Hier bekommen Sie Information über die Zustände der WebVisu, welche keine Fehler- oder Anlaufhindernisse sind und keine Aktion erfordern.
- Anlaufhindernisse
 - Anlaufhindernisse stellen die fehlerlosen STOP-Zustände der WebVisu dar.
 Sie informieren darüber, welche Voraussetzungen zum Start der WebVisu nicht erfüllt sind.
- Fehler
 - Fehler stellen STOP-Zustände aufgrund eines Fehlers dar. Dies sind z.B. interne Softwarefehler, Fehler beim Lesen der Projektdatei und Fehler in der Konfiguration der WebVisu.

Bereich	Beschreibung
0x0000 - 0x0FFF	Status Information
0x1000 - 0x1FFF	Anlaufhindernisse (keine Fehler)
0x2000 - 0xDFFF	reserviert
0xE000 - 0xFFFF	Fehler

Statuscode	Beschreibung
0x0000	WebVisu ist aktiv/hochgefahren und kann geöffnet werden.
0x0001	WebVisu-Projekt wird geladen.
0x0002	WebVisu-Server wird heruntergefahren.
0x0003	WebVisu-STOP-Anfrage gestellt.
0x0004	WebVisu-Server ist heruntergefahren.
0x1000	WebVisu ist nicht freigeschaltet, externe Speicherkarte (VSD oder VSC) fehlt.
0x1001	WebVisu wurde durch den Anwender gesperrt.
0x1002	Kein WebVisu-Projekt vorhanden.
0x1003	In der CPU ist keine Hardware-Konfiguration geladen.
0x1004	Ungültige WebVisu-Konfiguration.
0x1005	WebVisu durch Zugriffseinstellung gesperrt.
0xE000	Fehler beim Initialisieren des Dateisystems.
0xE100	Fehler beim Laden des WebVisu-Projekts, Projektdatei zu groß.
0xE101	Fehler beim Laden des WebVisu-Projekts, Projektdatei möglicherweise korrupt.
0xE102	Fehler beim Löschen des WebVisu-Projekts.
0xE103	Zu löschendes WebVisu-Projekt wurde nicht im Speicher gefunden.
0xE104	CRC der WebVisu-Projektdatei ist nicht korrekt.
0xE200	WebVisu-Server hat sich unerwartet beendet.
0xE201	Interner Fehler - Initialisierung fehlgeschlagen Schritt 1.
0xE202	Interner Fehler - Initialisierung fehlgeschlagen Schritt 2.

Diagnoseinformationen zur WebVisu - SZL-ID: xy3Eh

Statuscode	Beschreibung
0xFFFF	Unerwarteter interner Fehler.

Feature Code

Bit	Beschreibung
0	1: HTTP aktiviert
1	1: HTTPS aktiviert
2	1: Passwortschutz aktiviert
3 31	reserviert

Konfiguration von "Access settings" - SZL-ID: xy3Fh

17.15 Konfiguration von "Access settings" - SZL-ID: xy3Fh

Beschreibung

Über die Teilliste erhalten Sie Informationen über die aktuelle Konfiguration von "Access settings". Mittels der "Zugriffseinstellungen" können Sie bei System SLIO CPUs (ab FW V2.6.0) den Zugriff auf Ports einschränken.

Header

Inhalt	Wert	Beschreibung
SZL_ID	003Fh	Status für alle Zugriffswege
	0F3Fh	SZL-Teillistenkopfinformation
INDEX	xxxxh	nicht relevant
LENTHDR	0040h	Ein Datensatz ist 32Worte lang (64Byte)
N_DR	0001h	Anzahl der Datensätze

Datensatz

SZL-ID: 03Fh

CPU

INDEX Offset	Datentyp	CPU	Beschreibung
0	ВҮТЕ	Ethernet Port 0	0: deaktiviert1: aktiviert
1	ВҮТЕ	Ethernet Port 1	0: deaktiviert1: aktiviert
2	ВҮТЕ	RAS (nur bei EtherCAT-CPUs)	0: deaktiviert1: aktiviert
3	BYTE	reserviert	
4	ВҮТЕ	NTP	0: deaktiviert1: aktiviert
5	ВҮТЕ	OPC_UA	0: deaktiviert1: aktiviert
6	ВҮТЕ	Offene Kommunikation über FB TSEND,	0: deaktiviert1: aktiviert
7	ВҮТЕ	DeviceWebSite	0: deaktiviert1: aktiviert
8	ВҮТЕ	WebVisu	0: deaktiviert1: aktiviert
9	ВҮТЕ	PG/OP Kommunikation (Ethernet)	0: deaktiviert1: aktiviert
10	ВҮТЕ	PG/OP-Routing (Zugangs- punkt Ethernet-PG/OP- Schnittstelle)	0: deaktiviert1: aktiviert
11	ВҮТЕ	Konfigurierte S7 Verbindungen mit NetPro	0: deaktiviert1: aktiviert

Konfiguration von "Access settings" - SZL-ID: xy3Fh

INDEX Offset	Datentyp	CPU	Beschreibung
12	ВҮТЕ	DCP	0: deaktiviert1: aktiviert
13	ВҮТЕ	LLDP	0: deaktiviert1: aktiviert
14	BYTE	Feldbus PN	0: deaktiviert1: aktiviert
15	BYTE	PG/OP Kommunikation (MPI/PB - Schnittstelle) inkl. S7 Basis Kommunikation	0: deaktiviert1: aktiviert
16	BYTE	PG/OP-Routing (Zugangs- punkt MPI/PB - Schnitt- stelle)	0: deaktiviert1: aktiviert
17	ВҮТЕ	Feldbus PB - I/O Daten	0: deaktiviert1: aktiviert
18	ВҮТЕ	PG/OP über PtP/(MPI) - Schnittstelle (wenn als MPI konfiguriert, sonst immer aktiviert)	0: deaktiviert1: aktiviert
19	ВҮТЕ	Globaldaten Kommunikation	0: deaktiviert1: aktiviert
20 31	BYTE	12Bytes reserviert	0

CP

INDEX Offset	Datentyp	СР	Beschreibung
32	ВҮТЕ	Ethernet Port 0	0: deaktiviert1: aktiviert
33	ВҮТЕ	Ethernet Port 1	0: deaktiviert1: aktiviert
34	ВҮТЕ	RAS (nur bei EtherCAT-CPUs)	0: deaktiviert1: aktiviert
35	BYTE	reserviert	
36	ВҮТЕ	NTP	0: deaktiviert1: aktiviert
37	ВҮТЕ	OPC_UA	0: deaktiviert1: aktiviert
38	ВҮТЕ	Offene Kommunikation über FB TSEND,	0: deaktiviert1: aktiviert
39	ВҮТЕ	DeviceWebSite	0: deaktiviert1: aktiviert
40	ВҮТЕ	WebVisu	0: deaktiviert1: aktiviert
41	ВҮТЕ	PG/OP Kommunikation (Ethernet)	0: deaktiviert1: aktiviert

Konfiguration von "Access settings" - SZL-ID: xy3Fh

INDEX Offset	Datentyp	CP	Beschreibung
42	ВҮТЕ	PG/OP-Routing (Zugangs- punkt Ethernet)	0: deaktiviert1: aktiviert
43	ВҮТЕ	Konfigurierte S7 Verbindungen mit NetPro	0: deaktiviert1: aktiviert
44	ВҮТЕ	DCP	0: deaktiviert1: aktiviert
45	ВҮТЕ	LLDP	0: deaktiviert1: aktiviert
46	ВҮТЕ	Feldbus PN	0: deaktiviert1: aktiviert
47 63	BYTE	17Byte reserviert	0

17.16 Zustand der LEDs - SZL-ID: xy74h

Beschreibung

Über diese Teilliste erhalten Sie Informationen über den Zustand der LEDs ihrer CPU.

Header

Inhalt	Wert	Beschreibung
SZL_ID	0074h	Zustand aller LEDs, außer der produktspezifischen LEDs
	0174h	Zustand einer bestimmten LED, zu spezifizieren über den INDEX
	0E74h	Zustand der produktspezifisch LEDs
	0F74h	SZL-Teillistenkopfinformation
INDEX		Für SZL_ID 0074h: irrelevant
		Für SZL_ID 0174h: INDEX spezifiziert die LED, für die der Zustand ausgelesen wird
		Für SZL_ID 0E74h: INDEX = 0000h (zwingend erforderlich)
LENTHDR	0004h	Ein Datensatz ist 2Worte lang (4Byte).
N_DR	xxxxh	Anzahl der Datensätze

Datensatz SZL-ID: xy74h

INDEX Offset	Länge	0074h	0174h	0E74h	Wert	Bedeutung LED
0	0 1Wort	x	x	-	0001h	SF (Sammelfehler)
		x	x	-	0004h	RUN
		x	x	-	0005h	STOP
		x	x	-	0006h	FRCE (Forcen)
						System MICRO CPU: fix 0
		x	x	-	0008h	BATF: 0 (fix)
						Dieser INDEX existiert nur in CPUs, die als CPU 318-2AJ00 projektiert werden.
						System SLIO CPU: fix 0System MICRO CPU: fix 0
		X	X	-	000Bh	BF1: BUSF1 (Busfehler Schnittstelle 1) System 300S CPU DPM: fix 0 System 300S CPU PN/EC: PROFIBUS ERR LED System SLIO CPU PN/EC: PROFIBUS BF LED System MICRO CPU: -
		X	X	·	000Ch	 BF2: BUSF2 (PROFINET Busfehler Schnittstelle 2) System 300S CPU DPM: PROFIBUS ERR LED System 300S CPU PN/EC: PROFIBUS BF LED System SLIO CPU PN/EC: CP BF1 LED System MICRO: -

INDEX Offset	Länge	0074h	0174h	0E74h	Wert	Bedeutung LED
Oliset		-	X	X	0013h	 BF3: BUSF3 (Busfehler Schnittstelle 3) System 300S CPU: INDEX nicht vorhanden System SLIO CPU: PROFINET über Ethernet-PG/OP-Kanal: virtuelle BF LED System MICRO CPU: PROFINET über Ethernet-PG/OP-Kanal: virtuelle BF LED (produktspezifisch)
		X	X	-	0015h	MT LED System SLIO CPU: CP: MT LED System MICRO CPU: -
		-	х	x	0025h	 MT2 LED System 300S CPU: - System SLIO CPU: PROFINET über Ethernet-PG/OP-Kanal: virtuelle MT LED System MICRO CPU: PROFINET über Ethernet-PG/OP-Kanal: virtuelle MT LED (produktspezifisch)
		-	X	X	0100h	BS1 (Busstatus 1) System 300S CPU: EC LED System SLIO CPU PN/EC: BS1 LED System MICRO CPU: - (produktspezifisch)
		-	x	х	0101h	 BS2 (Busstatus Ethernet-PG/OP-Kanal) System 300S CPU: - System SLIO CPU: PROFINET über Ethernet-PG/OP-Kanal: virtuelle BS LED System MICRO CPU: PROFINET über Ethernet-PG/OP-Kanal: virtuelle BS LED (produktspezifisch)
		-	х	х	1000h	Speicherkarten Zugriff LED System 300S CPU: MMC LED System SLIO CPU: SD LED System MICRO CPU: virtual SD LED: blinkt mit 10Hz (produktspezifisch)
		-	x	х	1001h	PROFIBUS Data Exchange Slave LED System 300S Slave CPU: fix 0 alle anderen System 300S CPUs: - System SLIO CPU: - System MICRO CPU: - (produktspezifisch)
		-	X	х	1002h	System MICRO: Modulstatus (links grün) (produktspezifisch)

INDEX Offset	Länge	0074h	0174h	0E74h	Wert	Bedeutung LED
		-	Х	Х	1003h	System MICRO: Modulstatus (rechts grün) (produktspezifisch)
		-	Х	X	1004h	System MICRO: Modulstatus (links rot) (produktspezifisch)
		-	Х	х	1005h	System MICRO: Modulstatus (rechts gelb) (produktspezifisch)
		-	x	х	2000h	 System 300S CPU: DPM: RUN LED System SLIO CPU: 0 (fix) System MICRO CPU: - (produktspezifisch)
		-	х	х	2001h	 System 300S CPU: PROFIBUS: ERR LED System SLIO CPU: PROFIBUS: BF LED System MICRO CPU: - (produktspezifisch)
		-	X	х	2002h	 System 300S CPU: PROFIBUS: DE LED System SLIO CPU: PROFIBUS: DE LED System MICRO CPU: - (produktspezifisch)
		-	X	X	2003h	 System 300S CPU: DPM: IF LED System SLIO CPU: 0 (fix) System MICRO CPU: - (produktspezifisch)
		-	X	Х	6501h ¹	SF (Sammelfehler) vom CP auf dem 1. SPEED-Bus-Slot (Userslot = 101)
		-	Х	Х	6504h ¹	RUN vom CP auf dem 1. SPEED-Bus-Slot (Userslot = 101)
		-	Х	Х	6505h ¹	STOP vom CP auf dem 1. SPEED-Bus-Slot (Userslot = 101)
		-	X	Х	6601h ¹	SF (Sammelfehler) vom CP auf dem 2. SPEED-Bus-Slot (Userslot = 102)
		-	Х	х	6604h ¹	RUN vom CP auf dem 2. SPEED-Bus-Slot (Userslot = 102)
		-	X	х	6605h ¹	STOP vom CP auf dem 2. SPEED-Bus-Slot (Userslot = 102)
		-	Х	Х	6701h ¹	SF (Sammelfehler) vom CP auf dem 3. SPEED-Bus-Slot (Userslot = 103)
		-	X	х	6704h ¹	RUN vom CP auf dem 3. SPEED-Bus-Slot (Userslot = 103)

INDEX Offset	Länge	0074h	0174h	0E74h	Wert	Bedeutung LED
		-	х	Х	6705h ¹	STOP vom CP auf dem 3. SPEED-Bus-Slot (Userslot = 103)
		-	X	х	6801h ¹	SF (Sammelfehler) vom CP auf dem 4. SPEED-Bus-Slot (Userslot = 104)
		-	Х	х	6804h ¹	RUN vom CP auf dem 4. SPEED-Bus-Slot (Userslot = 104)
		-	X	Х	6805h ¹	STOP vom CP auf dem 4. SPEED-Bus-Slot (Userslot = 104)
		-	X	Х	6901h ¹	SF (Sammelfehler) vom CP auf dem 5. SPEED-Bus-Slot (Userslot = 105)
		-	X	Х	6904h ¹	RUN vom CP auf dem 5. SPEED-Bus-Slot (Userslot = 105)
		-	Х	х	6905h ¹	STOP vom CP auf dem 5. SPEED-Bus-Slot (Userslot = 105)
		-	Х	X	6A01h ¹	SF (Sammelfehler) vom CP auf dem 6. SPEED-Bus-Slot (Userslot = 106)
		-	Х	X	6A04h ¹	RUN vom CP auf dem 6. SPEED-Bus-Slot (Userslot = 106)
		-	Х	Х	6A05h ¹	STOP vom CP auf dem 6. SPEED-Bus-Slot (Userslot = 106)
		-	Х	X	6B01h ¹	SF (Sammelfehler) vom CP auf dem 7. SPEED-Bus-Slot (Userslot = 107)
		-	Х	X	6B04h ¹	RUN vom CP auf dem 7. SPEED-Bus-Slot (Userslot = 107)
		-	Х	Х	6B05h ¹	STOP vom CP auf dem 7. SPEED-Bus-Slot (Userslot = 107)
		-	Х	Х	6C01h ¹	SF (Sammelfehler) vom CP auf dem 8. SPEED-Bus-Slot (Userslot = 108)
		-	Х	Х	6C04h ¹	RUN vom CP auf dem 8. SPEED-Bus-Slot (Userslot = 108)
		-	Х	Х	6C05h ¹	STOP vom CP auf dem 8. SPEED-Bus-Slot (Userslot = 108)
		-	Х	х	6D01h ¹	SF (Sammelfehler) vom CP auf dem 9. SPEED-Bus-Slot (Userslot = 109)
		-	Х	х	6D04h ¹	RUN vom CP auf dem 9. SPEED-Bus-Slot (Userslot = 109)
		-	Х	х	6D05h ¹	STOP vom CP auf dem 9. SPEED-Bus-Slot (Userslot = 109)

INDEX Offset	Länge	0074h	0174h	0E74h	Wert	Bedeutung LED
		-	X	Х	6E01h ¹	SF (Sammelfehler) vom CP auf dem 10. SPEED-Bus-Slot (Userslot = 110)
		-	X	х	6E04h ¹	RUN vom CP auf dem 10. SPEED-Bus-Slot (Userslot = 110)
		-	Х	Х	6E05h ¹	STOP vom CP auf dem 10. SPEED-Bus-Slot (Userslot = 110)
		-	Х	Х	CE01h ¹	SF (Sammelfehler) vom CP in der CPU (Userslot = 206)
		-	X	Х	CE04h ¹	RUN vom CP in der CPU (Userslot = 206)
		-	Х	Х	CE05h ¹	STOP vom CP in der CPU (Userslot = 206)
2	1Byte	1Byte	1Byte	1Byte		Zustand der LED: 0: aus 1: an
3	1Byte	1Byte	1Byte	1Byte		 Blinkzustand der LED: (dezimal) 0: blinkt nicht 1: blinkt normal (2Hz) 2: blinkt langsam (0,5Hz) Hinweis: Bei EtherCat systembedingt Blinkfrequenz: 1Hz 3: blinkt mit 1Hz ((produktspezifisch)) 4: blinkt mit 4Hz ((produktspezifisch)) 5: blinkt mit 2,5Hz ((produktspezifisch)) 6: blinkt mit 10Hz ((produktspezifisch)) 7: zyklisch: blinkt einmal kurz auf (200ms) dann 1000ms aus. ((produktspezifisch)) 8: zyklisch: blinkt zweimal kurz auf (200ms) dann 1000ms aus. ((produktspezifisch)) 9: zyklisch: blinkt dreimal kurz auf (200ms) dann 1000ms aus. ((produktspezifisch)) 10: zyklisch: bleibt 4 Sekunden an, dann 2 Sekunden aus. 11: blinkt mit 1,5Hz. ((produktspezifisch)) 12: blinkt alternierend mit 1Hz mit einer zweiten LED. ((produktspezifisch)) 13: blinkt mit 10Hz für 500ms, dann für 500ms aus. ((produktspezifisch))

HB00 | OPL_SP7 | Operationsliste | de | 24-02

Zustandsinfo CPU - SZL-ID: xy91h

17.17 Zustandsinfo CPU - SZL-ID: xy91h

Beschreibung

Über diese Teilliste erhalten sie die Zustandsinformation über alle der CPU zugeordneten Baugruppen. In diesem Dokument sind derzeit nur die für EtherCAT-CPUs verfügbaren SZL-Teillistenauszüge beschrieben.

Nicht beschrieben sind die SZL-Teillistenauszüge: 0191h, 0291h, 0391h, 0591h, 0991h.

Header

Inhalt	Wert	Beschreibung					
SZL_ID	0091h	Baugruppenzustandsinformationen aller gesteckten und projektierten Baugruppen / Submodule der CPU					
0A91h	Baugruppenzustandsinformation einer Baugruppe im zentralen Aufbau oder an einer integrierten Busanschaltung (PROFIBUS, PROFINET oder EtherCAT) über die logische Basisadresse.						
	0C91h	Baugruppenzustandsinformation einer Baugruppe einer externen Bus-Anschaltung (PROFIBUS, PROFINET oder EtherCAT) über die logische Basisadresse.					
	4C91h	Zustandsinformation aller Baugruppen im angegebenen Baugruppenträger / in der angegebenen Station (DP, PROFINET oder EtherCAT).					
	0D91h	Zustandsinformation aller projektierten Baugruppen (zentral, dezentral PROFIBUS-DP, PROFINET-IO oder EtherCAT)					
	0E91h	Zustandsinformation aller zugeordneten Baugruppen.					
	0F91h	SZL-Teillistenkopfinformation					
INDEX	xxxxh	SZL_ID 0091h, 0A91h, 0E91h: INDEX irrelevant					
		SZL_ID 0C91h und 4C91h:					
		 Bits 014: logische Adresse der Baugruppe Bit 15: 0 = Eingang 1 = Ausgang 					
		SZL_ID 0D91:					
		 00xxh: alle Baugruppen und Submodule eines Baugruppenträgers (xx enthält die Nummer des Baugruppenträgers) xxyyh: alle Module einer DP-Station, einer PROFINET-IO-Station oder einer EtherCAT-Station PROFIBUS DP: xx enthält die DP-Mastersystem-ID yy die Stationsnummer PROFINET-IO: Bit 0 10: Device-Nummer Bit 11 14: die letzten beiden Stellen der PN-IO-Subsystem-ID Bit 15: 1 EtherCAT: Bit 0 10: Slave-Nummer Bit 11 14: die letzten beiden Stellen der EtherCAT-Subsystem-ID Bit 15: 1 					
LENTHDR	0010h	Ein Datensatz ist 8Worte lang (16Byte).					

Zustandsinfo CPU - SZL-ID: xy91h

Inhalt	Wert	Beschreibung
N_DR	xxxxh	Anzahl der Datensätze; produktspezifisch kann die Anzahl der übergebenen Datensätze geringer sein.

Zusätzliche Datensätze

Bei der *SZL_ID* 0091h und 0F91h werden pro Baugruppenträger 2 zusätzliche Datensätze geliefert:

- Datensatz für die Stromversorgung (PS), soweit vorhanden
- Datensatz für den Baugruppenträger

Die Reihenfolge der Datensätze bei zentralem Aufbau ist:

Stromversorgung, Steckplatz 1 ... n, Baugruppenträger.

Die Daten werden immer von der ersten zugeordneten logischen E/A-Adresse (Basisadresse) geliefert.

Datensatz SZL_ID: xy91h

INDEX Offset	Name	Länge	Beschreibung
0	adr1	1Wort	→ "adr1"Seite 1091
2	adr2	1Wort	→ "adr2"Seite 1092
4	logadr	1Wort	Erste zugeordnete logische E/A-Adresse (Basisadresse)
6	solltyp	1Wort	Solltyp: Bei PROFINET oder EtherCAT (sonst reserviert)
8	isttyp	1Wort	Isttyp: Bei PROFINET oder EtherCAT (sonst reserviert)
10	reserviert	1Wort	 Bei PROFINET-IO oder EtherCAT (sonst reserviert): SZL_ID = 0C91h: Anzahl der real existierenden Submodule (ohne Submodul 0) SZL_ID = 0D91h: Anzahl der Submodule (ohne Submodul 0) SZL_ID = 4C91h: Anzahl der real existierenden Submodule (ohne Submodul 0) SZL_ID = 4D91h: Anzahl der real existierenden Submodule (ohne Submodul 0)
12	eastat	1Wort	 E/A-Status: Bit 0: 1: Baugruppe gestört (über Diagnosealarm erkannt) Bit 1: 1: Baugruppe vorhanden Bit 2: 1: Baugruppe nicht verfügbar Bit 3: 1: Baugruppe deaktiviert Bit 4: 1: Störung der Station Bit 5: 1: Ein CiR-Vorgang für diese Baugruppe/Station ist gerade aktiv oder noch nicht abgeschlossen. Bit 6: 1: reserviert Bit 7: 1: Baugruppe im Lokalbussegment Bit 8 15: Datenkennung für logische Adresse (Eingang: B4h, Ausgang: B5h, DP-Anschaltung: FFh)

Zustandsinfo CPU - SZL-ID: xy91h

INDEX Offset	Name	Länge	Beschreibun	g					
14	ber_bgbr	1Wort	 Bereichskennung / Baugruppenbreite Bit 0 2: Baugruppenbreite Bit 3: reserviert Bit 4 6: Bereichskennung 						
			0: Siemens S7-400						
			1: Siemens S7-300						
			2:	ET-Bereich (PROFIBUS / PROFINET / EtherCAT-dezentral)					
			3:	P-Bereich					
			4:	Q-Bereich					
			5: IM3-Bereich						
			6: IM4-Bereich						
			7: Konsistenter Bereich (PROFIBUS Slave)						
			Bit 7 15: reserviert						

adr1

■ Bei zentralem Aufbau

- Nummer Baugruppenträger

								ad	lr1							
				High-	-Byte				Low-Byte							
Bitnummer	15	15 14 13 12 11 10 9 8								6	5	4	3	2	1	0
				()					Num	mer Ba	augrup	penträg	ger (0 .	31)	

■ Bei dezentralem Aufbau mit PROFIBUS-DP

- DP-Mastersystem-ID
- Stationsnummer
- Bit 15: "0" Kennung für PROFIBUS

								ad	lr1							
				High-	-Byte				Low-Byte							
Bitnummer	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0		DP-N	/lasters	ystem	-ID (1 .	32)				Station	nsnumr	ner (0 .	127)		

■ Bei dezentralem Aufbau mit PROFINET-IO oder EtherCAT

- Stationsnummer
- Um die vollständige PROFINET-IO-System-ID zu erhalten, müssen Sie 100 (dezimal) zu Bit 12 ... 14 dazu addieren.
- Bit 15: "1" Kennung für PROFINET oder EtherCAT

		adr1														
		High-Byte										Low-	Byte			
Bitnummer	15 14 13 12 11 10 9 8								7	6	5	4	3	2	1	0

Stationszustandsinformation (DPM) - SZL-ID: xy92h

		adr1
1	PROFINET IO- System-ID (015)	Stationsnummer (0 2047)

adr2

- Bei zentralem bzw. dezentralem Aufbau mit PROFIBUS-DP
 - Steckplatznummer und Submodulsteckplatznummer
- bei dezentralem Aufbau mit PROFINET-IO oder EtherCAT
 - Steckplatznummer

		adr2														
				High-	-Byte				Low-Byte							
Bitnummer	15	15 14 13 12 11 10 9 8							7	6	5	4	3	2	1	0
			Ste	eckplat	znumn	ner				5	Submo	dulstec	kplatzr	numme	r	

17.18 Stationszustandsinformation (DPM) - SZL-ID: xy92h

Beschreibung

Über diese Teilliste erhalten Sie Informationen über den Soll- und den Ist-Ausbau von Baugruppenträgern bei zentralem Aufbau und Stationen eines DP-Mastersystems, das über eine DP-Anschaltung angebunden ist.

Header

Inhalt	Wert	Beschreibung
SZL_ID	0092h	Sollzustand der Baugruppenträger im zentralen Aufbau der Stationen eines DP-Mastersystems.
	0292h	Istzustand der Baugruppenträger im zentralen Aufbau der Stationen eines DP-Mastersystems.
	0692h	Diagnose-Zustand der Erweiterungsgeräte im zentralen Aufbau der Stationen eines DP-Mastersystems.
	4092h	Sollzustand der Baugruppenträger eines DP-Mastersystems, das über eine externe DP-Anschaltung angeschlossen ist.
	4192h	Aktivierungsstatus der Stationen eines DP-Mastersystems, das über eine externe DP-Anschaltung angeschlossen ist.
	4292h	Istzustand der Baugruppenträger eines DP-Mastersystems, das über eine externe DP-Anschaltung angeschlossen ist.
	4692h	Diagnose-Zustand der Erweiterungsgeräte eines DP-Mastersystems, das über eine externe DP-Anschaltung angeschlossen ist.
	4F92	SZL-Teillistenkopfinformation der Teilliste 4x92h
INDEX	xxxxh	DP-Mastersystem-ID
LENTHDR	0010h	Ein Datensatz ist 8Worte lang (16Byte).
N_DR	xxxxh	Anzahl der Datensätze

Stationszustandsinformation (DPM) - SZL-ID: xy92h

Datensatz SZL_ID: xy92h

INDEX Offset	Name	Länge	Beschreibung		
0	status_0 status_15	16Byte			atus, Pufferstatus oder Aktivierungsstatus (der Aktifür DP-Baugruppen relevant).
	σιαιασ_1σ		0092h:	0:	Baugruppenträger/-Station nicht projektiert
				1:	Baugruppenträger/-Station projektiert
			0292h:	0:	Baugruppenträger/-Station ausgefallen, deaktiviert oder nicht projektiert
				1:	Baugruppenträger/-Station vorhanden, aktiviert und nicht ausgefallen
			0692h:	0:	Alle Baugruppen des Erweiterungsgerätes / einer Station sind vorhanden, verfügbar und nicht gestört, und die Station ist aktiviert.
				1:	Mindestens eine Baugruppe des Erweiterungsgerätes einer Station ist nicht in Ordnung oder die Station ist deaktiviert.
			4092h:	0:	Station nicht projektiert
				1:	Station projektiert
			4692h:	0:	Alle Baugruppen einer Station sind vorhanden, verfügbar, nicht gestört und aktiviert.
				1:	Mindestens eine Baugruppe einer Station ist gestört oder deaktiviert.
0	status_0	1Byte	Bit 0:		Zentralgerät (INDEX = 0) bzw. Station 1 (INDEX > 0)
			Bit 1:		1. Erweiterungsgerät bzw. Station 2
			Bit 7:		7. Erweiterungsgerät bzw. Station 8
1	status_1	1Byte	Bit 0:		8. Erweiterungsgerät bzw. Station 9
			Bit 7:		15. Erweiterungsgerät bzw. Station 16
2	status_2	1Byte	Bit 0:		16. Erweiterungsgerät bzw. Station 17
			Bit 5:		21. Erweiterungsgerät bzw. Station 22
			Bit 6:		0 bzw. Station 23
			Bit 7:		0 bzw. Station 24
3	status_3	1Byte	Bit 0:		0 bzw. Station 25
			Bit 5:		0 bzw. Station 30
			Bit 6:		Erweiterungsgerät im Siemens S5-Bereich bzw. Station 31
			Bit 7:		0 bzw. Station 32
4	status_4	1Byte	Bit 0:		0 bzw. Station 33

Stationszustandsinformation (DPM) - SZL-ID: xy92h

INDEX Offset	Name	Länge	Beschreibung	
			Bit 7:	0 bzw. Station 40
15	status_15	1Byte	Bit 0:	0 bzw. Station 121
			Bit 7:	0 bzw. Station 128

Stationszustandsinformation (DPM, PROFINET-IO, EtherCAT) - SZL-ID: xy94h

17.19 Stationszustandsinformation (DPM, PROFINET-IO, EtherCAT) - SZL-ID: xy94h

Beschreibung

Über diese Teilliste erhalten Sie Informationen über den Soll- und den Ist-Ausbau von Baugruppenträgern bei zentralem Aufbau und Stationen eines PROFIBUS-DP-Mastersystems / PROFINET-IO-Controllersystems bzw. EtherCAT-Mastersystems.

Header

Inhalt	Wert	Beschreibung
SZL_ID	0094h	Sollzustand der Baugruppenträger im zentralen Aufbau der Stationen eines IO-Controllersystems / PN IO-Subsystem-ID.
		Bei EtherCAT werden nur die als <i>mandatory</i> projektierten Stationen eingetragen.
		Status-Bit = 1:Rack/Station projektiert
	0194h	Aktivierungsstatus einer Station eines IO-Controllersystems, die projektiert und deaktiviert ist.
		■ Status-Bit =1
	0294h	Istzustand der Baugruppenträger im zentralen Aufbau der Stationen eines IO-Controller- systems
		Status-Bit = 1:Rack/Station vorhanden, aktiviert und nicht ausgefallen
	0694h	Diagnose-Zustand der Erweiterungsgeräte im zentralen Aufbau der Stationen eines IO-Controllersystems / PN IO-Subsystem-ID
		■ Status-Bit = 1:
		 mindestens eine Baugruppe des Rack/Station ist gestört oder deaktiviert: kom- mender Diagnosealarm, Nachbarschaftsalarm, Ziehen-/Steckenalarm, Ausfall Mandatory Station
	0794h	Diagnose- / Wartungszustand des zentralen Racks / der Stationen eines IO-Controller- systems / PN IO-Subsystem-ID
		■ (Status-Bit = 0:
		 keine Störung und keine Wartung notwendig
		■ Status-Bit = 1:
		 Rack/Station ist gestört oder Wartungsbedarf oder Wartungsanforderung)
	0994h	Soll-Istdifferenz der Stationen eines IO-Controllersystems
		Status-Bit = 1:
		 Soll-Istdifferenz in der Station vorhanden: ModDiffBlock, EC-State ungleich Master-State
	0A94h	Sollzustand der Stationen eines EtherCAT-IO-Controllersystems.
		In dieser Teilliste werden neben den <i>mandatory</i> Stationen auch zusätzlich die <i>optional</i> projektierten Stationen eingetragen.
		■ (Status-Bit = 1:
		Rack/Station projektiert)
	0F94h	SZL-Teillistenkopfinformation
INDEX	xxxxh	■ 0: Zentrale Baugruppe
		1 32: Dezentrale Baugruppe an PROFIBUS-DP
LENTUS	04001	■ 100 115: Dezentrale Baugruppe an PROFINET-IO / EtherCAT-IO
LENTHDR	0102h	Ein Datensatz ist 129 Worte lang (258 Bytes).

Stationszustandsinformation (DPM, PROFINET-IO, EtherCAT) - SZL-ID: xy94h

Inhalt	Wert	Beschreibung
N_DR	xxxxh	Anzahl der Datensätze

Datensatz SZL_ID: xy94h

INDEX Offset	Inhalt	Länge	Beschreibung	
0	INDEX	1Wort	 0: Zentrale Baugruppe 1 32: Dezentrale Baugruppe an PROFIBUS-DP 100 115: Dezentrale Baugruppe an PROFINET-IO / EtherCAT-IO 	
2	status_0	BOOL	 Sammelinformation: 1: mindestens eines der nachfolgenden Statusbits hat den Wert 1 0: alle nachfolgenden Statusbits haben den Wert 0 	
	status_1	BOOL	Zustand Station 1	
	status_2	BOOL	Zustand Station 2	
	status_2047	BOOL	Zustand Station 2047	
Ein Statusbit von nicht projektierten Racks/Stationen/Devices enthält den Wert 0.				

Wichtiger Unterschied zur SZL_ID xy92h

Die Daten sind gegenüber der SZL ID xy92h um ein Bit verschoben, da das Bit status_0 als Sammelinformation dient.

Lokaler SLIO-Bus

- Für die SLIO-CPU wird der lokale SLIO-Bus als virtuelles PN-Device am PROFINET-Netzwerk projektiert. Mit dieser projektierten Stationsnummer werden die entsprechenden SZLs xy94h befüllt.
- Ist kein virtuelles PN-Device für den SLIO-Bus projektiert, dann wird systemintern dafür die Stationsnummer 2047 verwendet.

EtherCAT-Bus

- Das EtherCAT-Netzwerk wird als virtuelles PN-Device am PROFINET-Netzwerk projektiert. Mit der projektierten Stationsnummer der EtherCAT-Slaves wird die entsprechende SZL xy94h befüllt.
- Der EtherCAT-Master (Controller) hat normalerweise die Stationsnummer 0. Diese kann in der SZL xy94h nicht dargestellt werden, weil das Bit 0 als Sammelbit verwendet wird. Daher wird bei Topologie-Mismatch in der SZL xy94h das Bit für die Station 512 (maximale Stationsnummer bei EtherCAT) gesetzt.

Stationszustandsinformation (DPM, PROFINET-IO, EtherCAT) - SZL-ID: xy94h

Lokaler SLIO-Bus an EtherCAT-CPU

Bitte beachten Sie bei Einsatz einer EtherCAT-CPU, dass bei der Adressierung im virtuellen PROFINET-System keine Stationsadressen doppelt belegt werden. Ansonsten führt dies zu einer Doppelbelegung des entsprechenden Bits in der SZL ID xy94h.

Zustandsinfo DPM-, PROFINET-IO-Systeme - SZL-ID: xy95h

17.20 Zustandsinfo DPM-, PROFINET-IO-Systeme - SZL-ID: xy95h

Beschreibung

Über diese Teilliste erhalten Sie erweiterte Zustandsinformationen über alle in der CPU vorhandenen PROFIBUS-DP-Master- / PROFINET-IO-Systeme. Ergänzend enthält diese Teilliste Angaben zur Taktsynchronität eines PROFIBUS-DP-Mastersystems.

Header

Inhalt	Wert	Beschreibung
SZL_ID	0095h	Erweiterte Informationen über alle konfigurierten PROFIBUS-DP-Mastersysteme / PROFINET-IO-Systeme
	0195h	Erweiterte Informationen über ein konfiguriertes PROFIBUS-DP-Mastersystem / PROFINET-IO-System. Spezifiziert über den INDEX.
0F95h		SZL-Teillistenkopfinformation
INDEX	xxxxh	 Für den Teillistenauszug mit der SZL-ID 0195h: Low Byte: PROFIBUS-DP-Mastersystem-ID (1 32) PROFINET-IO-System-ID (100 115) High Byte: 00h Für den Teillistenauszug mit der SZL-ID 0F95h: 0000h
LENTHDR	0028h	Ein Datensatz ist 20Worte lang (40Byte).
N_DR	xxxxh	Anzahl der Datensätze: SZL-ID 0095h: 0 2 SZL-ID 0195h: 0, 1

Datensatz SZL_ID: xy95h

INDEX Offset	Inhalt	Länge	Beschreibung		
0	dp_m_id	1Byte	PROFIBUS-DP-N	Mastersystem-ID / PROFINET-IO-System-ID	
1	rack_dp_m	1Byte	Baugruppenträger-Nr. des PROFIBUS-DP-Masters 0: bei einer Standard-CPU		
2	steckpl_dp_m	1Byte	 Steckplatz des PROFIBUS-DP-Masters Steckplatz der CPU (bei integrierter PROFIBUS-DP-Anschaltung) 		
3	subm_dp_m	1Byte	0:	Bei externer PROFIBUS-DP-Anschaltung	
			Bei integrierter P	ROFIBUS-DP-Anschaltung:	
			1:	PROFIBUS-DP-Interface	
			2:	PROFINET-Interface	
4	logadr	1Wort	logische Anfangsadresse des PROFIBUS-DP-Masters		
6	dp_m_sys_cpu	1Wort	0000h: reserviert		
8	dp_m_sys_dpm	1Wort	0000h: reserviert		

Zustandsinfo DPM-, PROFINET-IO-Systeme - SZL-ID: xy95h

INDEX Offset	Inhalt	Länge	Beschreibung
10	dp_m_state	1Byte	Weitere Eigenschaften des PROFIBUS-DP-Mastersystems: ■ Bit 0: DP-Mode (nur bei PROFIBUS-DP) - 0: Siemens S7-kompatibel - 1: DP-V1 ■ Bit 1: PROFIBUS-DP-Zyklus bzw. PN-Zyklus - 0: nicht äquidistant - 1: äquidistant ■ Bit 6 2: reserviert ■ Bit 7: PROFIBUS-DP-Master / PROFINET-IO-Controller-Typ - 0: integrierter PROFIBUS-DP-Master / PROFINET-IO-Controller - 1: externer PROFIBUS-DP-Master / PROFINET-IO-Controller
11	dp_address	1Byte	PROFIBUS-DP Teilnehmernummer (PROFIBUS-Adresse)
12	reserve	1Wort	0000h: reserviert
14	tsal_ob	1Byte	 Zugeordneter Taktsynchronalarm-OB (nur relevant, falls PROFIBUS-DP-Zyklus bzw. PROFINET-Zyklus äquidistant)
15	reserve	1Byte	reserviert
16	baudrate	4Byte	Baudrate des PROFIBUS-DP-Masters bzw. PROFINET-IO-Systems als Hex-Wert
19	dp_iso_takt	4Byte	Zeitdauer des äquidistanten PROFIBUS-DP- bzw. PROFINET-IO-Zyklus (Zyklus in μ s)
2338	reserve	16Byte	reserviert

Zustandsinfo PROFINET/EtherCAT/PB-DP - SZL-ID: xy96h

17.21 Zustandsinfo PROFINET/EtherCAT/PB-DP - SZL-ID: xy96h

Beschreibung

Über diese Teilliste erhalten sie die Zustandsinformation über alle der CPU zugeordneten Baugruppen. Sie erhalten dabei sowohl PROFINET-IO-spezifische Informationen als auch Informationen zu PROFIBUS-DP- oder EtherCAT-Baugruppen und Zentrale Baugruppen. Ergänzend zu SZL_ID xy91 erhalten Sie über die Teilliste mit der SZL_ID xy96 zusätzliche Zustandsdaten von Modulen und Submodulen.

Header

Inhalt	Wert	Beschreibung
SZL_ID	0696h	Baugruppenzustandsinformation aller Submodule einer angegebenen Baugruppe (nur bei PROFINET-IO an einer integrierten Anschaltung) Adresse mit E/A-Kennung.
	0C96h	Baugruppenzustandsinformation einer Baugruppe zentral oder an einer PROFIBUS-DP-Anschaltung, PROFINET-Anschaltung oder EtherCAT-Anschaltung Anfangsadresse mit E/A-Kennung.
INDEX	xxxxh	 Bit 0 bis 14: Adresse der Baugruppe Bit 15: 0 = Eingang 1 = Ausgang
LENTHDR	0030h	Ein Datensatz ist 24Worte lang (48Byte).
N_DR	xxxxh	Anzahl der Datensätze

Datensatz SZL_ID: xy96h

INDEX Offset	Länge	Beschreibung			
0	1Wort	 Bit 0 bis 14: Adresse der Baugruppe Bit 15: 0 = Eingang 1 = Ausgang 			
2	1Wort	Kennung für zentrale Baugruppe / DP-Mastersystem-ID / PIEtherCAT-System ID: 0: Zentrale Baugruppe 1 31: Dezentrale Baugruppe am PROFIBUS-DP 100 115: Dezentrale Baugruppe am PROFINET-IO / E	·		
4	2 Worte	Irrelevant			
8	1Wort	Baugruppenträger-Nr./Stationsnummer/Gerätenummer	Baugruppenträger-Nr./Stationsnummer/Gerätenummer		
10	1Wort	Steckplatz-Nr.			
12	1Wort	Submodulsteckplatz (falls kein Submodul gesteckt werden kann, ist hier 0 anzug	jeben)		
14	1Wort	Irrelevant			
16	7Worte	Solltyp: Der Solltyp ist bei PROFINET-IO hierarchisch aufgebaut PROFINET-IO / EtherCAT-IO	PROFIBUS-DP		

Zustandsinfo PROFINET/EtherCAT/PB-DP - SZL-ID: xy96h

INDEX Offset	Länge	Beschreibung	
	1. Wort:	Herstellernummer oder Profilidentifikation	0000
	2. Wort:	Produktcode (High Word)	0000
	3. Wort:	Produktcode (Low Word)	0000
	4. Wort:	1. Wort des Doppelwortes Modul Identifikation	Typkennung
	5. Wort:	2. Wort des Doppelwortes Modul Identifikation	0000
	6. Wort:	Wort des Doppelwortes Submodul Identifikation bei EtherCAT-IO: reserviert	0000
	7. Wort:	2. Wort des Doppelwortes Submodul Identifikation bei EtherCAT-IO: reserviert	0000
30	1Wort	 Kennung Soll / Ist Bit 0 = 0: Soll entspricht Ist Bit 0 = 1: Soll ungleich Ist Bit 1 15: reserviert 	
32	1Wort	reserviert	
34	1Wort	 E/A-Status: Bit 0: 1: Baugruppe gestört (über Diagnosealarm erkan) Bit 1: 1: Baugruppe vorhanden Bit 2: 1: Baugruppe nicht verfügbar Bit 3: 1: Baugruppe deaktiviert Bit 4: 1: Störung der Station Bit 5, 6: reserviert Bit 7: 1: Baugruppe im Lokalbussegment Bit 8: 1: Baugruppe Wartungsbedarf Bit 9: 1: Baugruppe Wartungsanforderung Bit 10 15: reserviert 	nt)
36	1Wort	Bereichskennung/Baugruppenbreite ■ Bit 0 2: Baugruppenbreite ■ Bit 3: reserviert ■ Bit 4 6: Bereichskennung - 0: Siemens S7-400 - 1: Siemens S7-300 - 2: PROFINET-IO (dezentral) - 3: P-Bereich - 4: Q-Bereich - 5: IM3-Bereich - 6: IM4-Bereich - 7: EtherCAT (dezentral) ■ Bit 7 15: reserviert	
38	5Worte	reserviert	

Diagnosepuffer der CPU/CP - SZL-ID: xyA0h

Hinweis!

Teilliste mit der SZL_ID 0696h für Baugruppen mit PROFIBUS-DP: Hierbei kommt es zur Fehlermeldung "Submodulebene nicht vorhanden".

17.22 Diagnosepuffer der CPU/CP - SZL-ID: xyA0h

Beschreibung

Über diese Teilliste erhalten Sie die Einträge im Diagnosepuffer Ihrer CPU oder des CPs.

Header

Inhalt	Wert	Beschreibung
SZL_ID	00A0h	Zeigt alle im aktuellen Betriebszustand verfügbaren Einträge des Diagnosepuffers.
	01A0h	Zeigt die neuesten Einträge des Diagnosepuffers.
	0FA0h	SZL-TeillistenkopfinformationLänge eines Eintrags und wie viele Einträge es maximal geben kann.
INDEX	xxxxh	SZL_ID: 01A0h: Anzahl der aktuellsten Einträge, die geliefert werden sollen.
LENTHDR	0014h	Ein Datensatz ist 10Worte lang (20Byte).
N_DR	xxxxh	Anzahl der Datensätze

Datensatz SZL_ID: 00A0h und 01A0h

INDEX Offset	Länge	Beschreibung
0	1Wort	Ereignis-ID
2	1Byte	Abhängig vom Diagnosepuffereintrag
3	1Byte	Abhängig vom Diagnosepuffereintrag
4	1Wort	Abhängig vom Diagnosepuffereintrag
6	1Wort	Informationen zum Ereignis
8	1Wort	Informationen zum Ereignis
10	1Wort	Informationen zum Ereignis
12	4Worte	Zeitstempel des Ereignisses (DATE_AND_TIME)

DATE_AND_TIME

DATE_AND_TIME im BCD-Format

INDEX Offset	Beschreibung	Bereich
0	Jahr	1990 2089
1	Monat	01 12
2	Tag	1 31
3	Stunde	0 23
4	Minute	0 59
5	Sekunde	0 59

Diagnosepuffer der CPU/CP - SZL-ID: xyA0h

INDEX Offset	Beschreibung	Bereich
6	2 MSD von msMSD: Most Significant Decade	00 99
7 (4 MSB)	LSD von msLSD: Least Significant Decade	0 9
7 (4 LSB)	Wochentag	1 7 (1 = Sonntag)

Diagnosepuffer

Weitere Informationen zu Ereignissen im Diagnosepuffer Ihrer CPU finden Sie im Handbuch zu Ihrer CPU bzw. im Handbuch zu Ihrer Programmiersoftware.

Baugruppen-Diagnoseinfo - SZL-ID: 00B1h

17.23 Baugruppen-Diagnoseinfo - SZL-ID: 00B1h

Beschreibung

Über diese Teilliste erhalten Sie die ersten 4 Diagnosebytes einer diagnosefähigen Baugruppe.

Header

Inhalt	Wert	Beschreibung	
SZL_ID	00B1h	Zeigt die ersten 4 Diagnosebytes der Baugruppe.	
INDEX	xxxxh	Hierbei geben Sie über INDEX folgendes vor:	
		■ Bit 0 14: Logische Basisadresse der Baugruppe	
		■ Bit 15:	
		- 0: Eingang	
		- 1: Ausgang	
LENTHDR	0004h	Ein Datensatz ist 2Worte lang (4Byte).	
N_DR	0001h	Anzahl der Datensätze (1)	

Datensatz SZL_ID: 00B1h

INDEX Offset	Länge	Beschreibung
0	1Byte	 Bit 0: Baugruppenstörung (Sammelfehlermeldung) Bit 1: Fehler intern Bit 2: Fehler extern Bit 3: Kanalfehler vorhanden Bit 4: Externe Versorgungsspannung fehlt Bit 5: Frontstecker fehlt Bit 6: Baugruppe nicht parametriert Bit 7: Falsche Parameter in Baugruppe
1	1Byte	 Bit 0 3: Baugruppenklasse 0000: CPU 0101: Analogbaugruppe 1000: FM 1100: CP 1111: Digitalbaugruppe 0011: DP-Normslave 0100: IM Bit 4: Kanalinformation vorhanden Bit 5: Anwenderinformation vorhanden Bit 6: Diagnosealarm Bit 7: Wartungsbedarf (nur bei PROFINET-IO)

Baugruppen-Diagnoseinfo - SZL-ID: 00B1h

INDEX Offset	Länge	Beschreibung
2	1Byte	 Bit 0: Anwendermodul falsch / fehlt Bit 1: Kommunikationsstörung Bit 2: Betriebszustand 0: RUN 1: STOP Bit 3: Zeitüberwachung angesprochen (Watchdog) Bit 4: Interne Versorgungsspannung ausgefallen Bit 5: Batterie leer Bit 6: Gesamte Pufferung ausgefallen Bit 7: Wartungsanforderung (nur bei PROFINET-IO)
3	1Byte	 Bit 0: Erweiterungsgeräteausfall (von IM erkannt) Bit 1: Prozessorausfall Bit 2: EPROM-Fehler Bit 3: RAM-Fehler Bit 4: ADU/DAU-Fehler Bit 5: Sicherungsausfall Bit 6: Prozessalarm verloren Bit 7: reserviert (fix 0)

Diagnosedatensatz 1 - SZL-ID: 00B2h

17.24 Diagnosedatensatz 1 - SZL-ID: 00B2h

Beschreibung

Über diese Teilliste erhalten Sie den Diagnosedatensatz 1 einer zentral gesteckten Baugruppe (nicht für PROFIBUS-DP und Submodule). Der Diagnosedatensatz 1 enthält die 4 Bytes Diagnosedaten, die auch im Datensatz 0 stehen und zusätzlich baugruppenspezifische Diagnosedaten, die den Zustand eines Kanals bzw. einer Kanalgruppe beschreiben. Der Zugriff auf die Baugruppe erfolgt durch Angabe von Baugruppenträger und Steckplatznummer.

Header

Inhalt	Wert	Beschreibung
SZL_ID	00B2h	Zeigt den Diagnosedatensatz 1 einer Baugruppe.
INDEX	xxyyh	Hierbei geben Sie über INDEX folgendes vor:
		xx: Nummer des Baugruppenträgers
		yy: Steckplatznummer der Baugruppe
LENTHDR	xxxxh	Die Länge des Datensatzes hängt von der Baugruppe ab.
N_DR	0001h	Anzahl der Datensätze (1)

Datensatz

Informationen zu Länge und Aufbau des Diagnosedatensatz 1 finden Sie im entsprechenden Handbuch zu Ihrer diagnosefähigen Baugruppe. Die ersten 4Byte entsprechen dem Datensatz 0 der Baugruppe. → "Baugruppen-Diagnoseinfo - SZL-ID: 00B1h"...Seite 1104

Diagnoseinfo - SZL-ID: 00B3h

17.25 Diagnoseinfo - SZL-ID: 00B3h

Beschreibung

Über diese Teilliste erhalten Sie alle Diagnosedaten einer Baugruppe. Diese Auskunft ist auch für PROFIBUS-DP und Submodule möglich. Der Diagnosedatensatz 1 enthält die 4 Bytes Diagnosedaten, die auch im Datensatz 0 stehen und zusätzlich baugruppenspezifische Diagnosedaten, die den Zustand eines Kanals bzw. einer Kanalgruppe beschreiben. Der Zugriff auf die Baugruppe erfolgt durch Angabe der logischen Basisadresse.

Header

Inhalt	Wert	Beschreibung	
SZL_ID	00B3h	Zeigt alle Diagnosedaten einer Baugruppe.	
INDEX	xxxxh	Hierbei geben Sie über INDEX folgendes vor:	
		■ Bit 0 14: Logische Basisadresse der Baugruppe	
		■ Bit 15:	
		- 0: Eingang	
		- 1: Ausgang	
LENTHDR	xxxxh	Die Länge des Datensatzes hängt von der Baugruppe ab.	
N_DR	0001h	Anzahl der Datensätze (1)	

Datensatz

Informationen zu Länge und Aufbau der Diagnosedaten finden Sie im entsprechenden Handbuch zu Ihrer diagnosefähigen Baugruppe.

Diagnoseinfo DP-Slave - SZL-ID: 00B4h

17.26 Diagnoseinfo DP-Slave - SZL-ID: 00B4h

Beschreibung

Über diese Teilliste erhalten Sie die Diagnosedaten eines PROFIBUS-DP-Slaves. Die Diagnosedaten sind nach der DIN Norm EN50 170 Volume 2, PROFIBUS aufgebaut. Der Zugriff auf die Baugruppe erfolgt über die projektierte Diagnoseadresse.

Header

Inhalt	Wert	Beschreibung
SZL_ID	00B4h	Zeigt alle Diagnosedaten eines PROFIBUS-DP-Slave.
INDEX	xxxxh	Hierbei geben Sie über INDEX die projektierte Diagnoseadresse des DP-Slave an.
LENTHDR	xxxxh	Länge eines Datensatzes
		Die Maximallänge beträgt 240Bytes. Bei Normslaves, bei denen die Anzahl der Normdiagnosedaten größer als 240Byte ist und maximal 244Byte beträgt, werden die ersten 240Byte gelesen und das entsprechende Overflow-Bit in den Daten gesetzt.
N_DR	0001h	Anzahl der Datensätze (1)

Datensatz SZL_ID: 00B4h

INDEX Offset	Länge	Beschreibung
0	1Byte	Stationsstatus 1
1	1Byte	Stationsstatus 2
2	1Byte	Stationsstatus 3
3	1Byte	Master-Stationsnummer
4	1Byte	Herstellungskennung (High-Byte)
5	1Byte	Herstellungskennung (Low-Byte)
		weitere Slave-spezifische Diagnose

Information EtherCAT Master/Slave - SZL-ID: xyE0h

17.27 Information EtherCAT Master/Slave - SZL-ID: xyE0h

Beschreibung

Diese SZL-Teilliste ist eine produktspezifische SZL um EtherCAT-Zustände von Master/Slave über logische und geographische Adressen abzufragen.

Header

Inhalt	Wert	Beschreibung
SZL_ID	x0E0h	Zustandsinfo eines Masters + aller projektierten Slaves über System ID des EtherCAT Netzwerks Bit 0 10: irrelevant (alle Devices, max. 512+1) Bit 11 14: System-ID¹ des EtherCAT Netzwerks - 100 Bit 15: 1: Kennbit für EtherCAT (PROFINET "look and feel")
xCE0h		Zustandsinfo eines EtherCAT Masters über geografische Adresse ■ Bits 0 14: - logische Basisadresse des EtherCAT Devices ■ Bit 15: - 0 = Eingang - 1 = Ausgang
	xDE0h	Zustandsinfo eines EtherCAT Masters / Slaves über geografische Adresse ■ Bit 0 10: - Master/Slave-ID ■ Bit 11 14: - System-ID¹ des EtherCAT Netzwerks - 100 ■ Bit 15: - 1: Kennbit für EtherCAT (PROFINET "look and feel")
	xFE0h	SZL-Teillistenkopfinformation
INDEX	xxxxh	irrelevant
LENTHDR	0001h	Ein Datensatz ist 1Byte lang.
N_DR		 x0E0h: Anzahl der Datensätze (512 Slaves + 1 Master) xCE0h, xDE0h: Anzahl der Datensätze
1) Siehe PROFINET IO-System-ID, da EtherCAT im Siemens SIMATIC Manager über PROFINET projektiert wird.		

Information EtherCAT Master/Slave - SZL-ID: xyE0h

Datensatz SZL_ID: xyE0h

INDEX Offset	Länge	Wert	Beschreibung
0	1Byte	00h	Undefined/Unknown
		01h	Init
		02h	PreOp
		03h	BootStrap
		04h	SafeOp
		08h	Ор
		FFh	NotProjected (für nicht projektierte EtherCAT Peripherie)

EtherCAT Bussystem - SZL-ID: xyE1h

17.28 EtherCAT Bussystem - SZL-ID: xyE1h

Beschreibung

Diese SZL-Teilliste ist eine produktspezifische SZL um Informationen über ein EtherCAT-Bussystem abzufragen.

Header

Inhalt	Wert	Beschreibung		
SZL_ID	0CE1h	 Zustandsinfo eines EtherCAT Masters über logische Basisadresse ■ Bits 0 14: logische Basisadresse des EtherCAT Masters (Diagnoseadresse der Schnittstelle) ■ Bit 15: 0 = Eingang 1 = Ausgang 		
	0DE1h	Zustandsinfo eines EtherCAT Masters über geografische Adresse ■ Bit 0 10:		
	0FE1h	SZL-Teillistenkopfinformation		
INDEX	xxxxh	irrelevant		
LENTHDR	0004h	Ein Datensatz ist 2Worte lang (4Bytes).		
N_DR	0001h	Anzahl der Datensätze (1)		
1) Siehe PROFINET-IO-System-ID, da EtherCAT im Siemens SIMATIC Manager als PROFINET projektiert wird.				

Datensatz SZL_ID: xyE1h

INDEX Offset	Länge	Beschreibung
0	2Worte	Informationen über ein EtherCAT Bussystem
		■ Bit 0:
		 0: Topology OK
		- 1: Topology Mismatch
		■ Bit 1:
		- 0: DC Master nicht "sync"
		1: DC Master ist "sync"
		■ Bit 2:
		0 = DC Slaves sind nicht "sync"
		1 = DC Slaves sind "sync"
		■ Bit 3 31: reserviert

Informationen SBUS-Module - SZL-ID: xyF4h

17.29 Informationen SBUS-Module - SZL-ID: xyF4h

Beschreibung Über die Teilliste erhalten Sie Informationen über die SBUS-Module.

Header

Inhalt	Wert	Beschreibung
SZL_ID		Teillisten Nummer: SZL Sub ID
	00F4h	Verzeichnis von allen SBUS-Modulen
	01F4h	Verzeichnis eines SBUS-Moduls
		Auswahl über den Parameter Index
	02F4h	Verzeichnis der CPU
	0FF4h	SZL-Teillistenkopfinformation
INDEX	xxxxh	Steckplatz
		Nur relevant bei SZL 0x01F4
LENTHDR	001Ch	Ein Datensatz ist 14Worte lang (28Byte)
N_DR	xxxxh	Anzahl der Datensätze

Datensatz SZL-ID: xyF4h

INDEX Offset	Länge	Bedeutung
0	2Worte	Steckplatz (100: CPU, 201: DPM, 206: CP)
4	8Worte	Dateiname
20	2Worte	Größe der Datei (0xFFFFFFF: Größe ist irrelevant)
24	2Worte	Version der Datei

17.30 Statistik Informationen zu OBs - SZL-ID: xyFAh

Beschreibung

Über die Teilliste erhalten Sie statistische Informationen über die OBs (zusätzlich OB 60 und OB 61).

Header

Inhalt	Wert	Beschreibung
SZL_ID	00FAh	Alle statistischen Informationen für OB xx
		(5 Datensätze je 24Bytes)
	01FAh	Reaktionszeit: Zeit zwischen der Anforderung und dem Start der Ausführung
	02FAh	Prozessabbild der Eingänge (nur relevant für OB`s denen ein Prozessabbild zugeordnet ist)
	03FAh	OB Ausführungszeit: inklusiv Alarmunterbrechungen
	04FAh	Prozessabbild der Ausgänge (nur relevant für OB's denen ein Prozessabbild zugeordnet ist)
	05FAh	Bearbeitungszeit: Zeit für einen Ausführungszyklus von Anforderung bis zum Abschluss der Nachbereitung
	0FFAh	SZL-Teillistenkopfinformation
INDEX	xx00h	Statistische Informationen für alle unterstützen OBs (zusätzlich OB 60 und OB 61)
	xx3Ch	Statistische Informationen für OB 60
	xx3Dh	Statistische Informationen für OB 61
LENTHDR	0018h	Ein Datensatz ist 12Worte lang (24Byte)
N_DR	xxxxh	Anzahl der Datensätze

- Die Zeiten sind in μs angegeben.
- Im Anlauf werden die Zeiten bis auf die minimalen Zeiten auf Null zurückgesetzt.
- Die minimalen Zeiten werden mit dem Wert FFFFh vorbelegt.

Datensatz SZL-ID: 01FAh

Der Datensatz beinhaltet die Reaktionszeit. Dies ist die Zeit zwischen der Anforderung und dem Start der Ausführung. Diese Zeit beinhaltet auch ein eventuelles Prozessabbild der Eingänge.

INDEX Offset	Länge	Wert	Bedeutung
0	1Byte	01h	Teillisten Nummer: SZL Sub ID
1	1Byte	xxh	OB Nummer: Statistische Informationen für OB xx
			(INDEX siehe oben)
2	1Wort	xxxxh	reserviert
4	2Worte	xxxxxxxxh	Minimale Ausführungszeit: Kleinste gemessene Zeit
8	2Worte	xxxxxxxxh	Maximale Ausführungszeit: Größte gemessene Zeit
12	2Worte	xxxxxxxxh	Letzte Ausführungszeit: Letzte gemessene Zeit
16	2Worte	xxxxxxxxh	Mittlere Ausführungszeit: Die Zeit wird über die letzten 1000 erfassten Zeiten ermittelt.
20	2Worte	xxxxxxxxh	reserviert

- Die Zeiten sind in µs angegeben.
- Die Messung der Zeiten beginnt mit dem ersten Übergang von Anlauf nach RUN.

Datensatz SZL_ID: 02FAh

Der Datensatz beinhaltet die Zeit für das Erstellen des Prozessabbilds der Eingänge. Nur relevant für OB's denen ein Prozessabbild zugeordnet ist.

INDEX Offset	Länge	Wert	Bedeutung
0	1Byte	02h	Teillisten Nummer: SZL Sub ID
1	1Byte	xxh	OB Nummer: Statistische Informationen für OB xx
			(INDEX siehe oben)
2	1Wort	xxxxh	reserviert
4	2Worte	xxxxxxxxh	Minimale Ausführungszeit: Kleinste gemessene Zeit
8	2Worte	xxxxxxxxh	Maximale Ausführungszeit: Größte gemessene Zeit
12	2Worte	xxxxxxxxh	Letzte Ausführungszeit: Letzte gemessene Zeit
16	2Worte	xxxxxxxxh	Mittlere Ausführungszeit: Die Zeit wird über die letzten 1000 erfassten Zeiten ermittelt.
20	2Worte	xxxxxxxxh	reserviert

- Die Zeiten sind in μs angegeben.
- Die Messung der Zeiten beginnt mit dem ersten Übergang von Anlauf nach RUN.

Datensatz

SZL_ID: 03FAh

Der Datensatz beinhaltet die Ausführungszeit des OBs. Dies ist die Zeit zwischen dem Start der OBs bis zum Verlassen des OBs inklusiv aller Alarmunterbrechungen und SFC Bearbeitungen. Die Zeit in der ein höher priorer OB durch einen Synchron- oder Asynchronfehler ausgeführt wird, wird mit gezählt.

INDEX Offset	Länge	Wert	Bedeutung
0	1Byte	03h	Teillisten Nummer: SZL Sub ID
1	1Byte	xxh	OB Nummer: Statistische Informationen für OB xx
			(INDEX siehe oben)
2	1Wort	xxxxh	reserviert
4	2Worte	xxxxxxxxh	Minimale Ausführungszeit: Kleinste gemessene Zeit
8	2Worte	xxxxxxxxh	Maximale Ausführungszeit: Größte gemessene Zeit
12	2Worte	xxxxxxxxh	Letzte Ausführungszeit: Letzte gemessene Zeit
16	2Worte	xxxxxxxxh	Mittlere Ausführungszeit: Die Zeit wird über die letzten 1000 erfassten Zeiten ermittelt.
20	2Worte	xxxxxxxxh	reserviert

- Die Zeiten sind in μs angegeben.
- Die Messung der Zeiten beginnt mit dem ersten Übergang von Anlauf nach RUN.

Datensatz

SZL ID: 04FAh

Der Datensatz beinhaltet die Zeit für das Erstellen des Prozessabbilds der Ausgänge. Nur relevant für OB's denen ein Prozessabbild zugeordnet ist.

INDEX Offset	Länge	Wert	Bedeutung
0	1Byte	04h	Teillisten Nummer: SZL Sub ID
1	1Byte	xxh	OB Nummer: Statistische Informationen für OB xx
			(INDEX siehe oben)
2	1Wort	xxxxh	reserviert
4	2Worte	xxxxxxxxh	Minimale Ausführungszeit: Kleinste gemessene Zeit
8	2Worte	xxxxxxxxh	Maximale Ausführungszeit: Größte gemessene Zeit
12	2Worte	xxxxxxxxh	Letzte Ausführungszeit: Letzte gemessene Zeit
16	2Worte	xxxxxxxxh	Mittlere Ausführungszeit: Die Zeit wird über die letzten 1000 erfassten Zeiten ermittelt.
20	2Worte	xxxxxxxxh	reserviert

- Die Zeiten sind in μs angegeben.
- Die Messung der Zeiten beginnt mit dem ersten Übergang von Anlauf nach RUN.

Datensatz

SZL_ID: 05FAh

Der Datensatz beinhaltet die ermittelten Zeiten für einen Ausführungszyklus. Dies ist die Zeit zwischen der Anforderung und dem vollständigen Abschluss der Bearbeitung.

INDEX Offset	Länge	Wert	Bedeutung
0	1Byte	05h	Teillisten Nummer: SZL Sub ID
1	1Byte	xxh	OB Nummer: Statistische Informationen für OB xx (INDEX siehe oben)
2	1Wort	xxxxh	reserviert
4	2Worte	xxxxxxxxh	Minimale Ausführungszeit: Kleinste gemessene Zeit
8	2Worte	xxxxxxxxh	Maximale Ausführungszeit: Größte gemessene Zeit
12	2Worte	xxxxxxxxh	Letzte Ausführungszeit: Letzte gemessene Zeit
16	2Worte	xxxxxxxxh	Mittlere Ausführungszeit: Die Zeit wird über die letzten 1000 erfassten Zeiten ermittelt.
20	2Worte	xxxxxxxxh	Fehler Zähler: Der Zähler wird jedes mal erhöht, wenn der Ausführungszyklus länger als 60% des projektierten Sync-Taktes ist.

 $\int_{-\infty}^{\infty}$

- Die Zeiten sind in μs angegeben.
- Die Messung der Zeiten beginnt mit dem ersten Übergang von Anlauf nach RUN.
- Die Taktdauer des Sync-Signals wird über die CPU-Eigenschaften (HW-Konfiguration) eingestellt.

VSC-Features - SZL-ID: xyFCh

17.31 VSC-Features - SZL-ID: xyFCh

Beschreibung

Über diese Teilliste erhalten Sie den aktuellen Status der VSC-Features der System SLIO CPU. Auf der VSC-Speicherkarte befinden sich Features zum Freischalten von z.B. Speichererweiterung oder PROFIBUS Funktionalität.

Header

Inhalt	Wert	Beschreibung
SZL_ID 00FCh	00FCh	Status aller VSC-Features (INDEX irrelevant)
	01FCh	Status eines VSC-Features
INDEX		Spezifiziert das VSC-Feature, für das der Zustand ausgelesen wird
	0001h	VSC-Feature PROFIBUS
	0002h	VSC-Feature Speichererweiterung
0003h	0003h	VSC-Feature Timeout
	0004h	VSC-Feature CP Feldbus
	0005h	VSC-Feature Motion
LENTHDR	xxx4h	Länge des nachfolgenden Datensatzes in Bytes
N_DR	xxxxh	Anzahl der Datensätze

Datensatz SZL_ID: 00FCh

INDEX Offset	Länge	Beschreibung
0	0 2Worte	VSC_Feature PROFIBUS
		■ 0 = PROFIBUS_NO
		1 = PROFIBUS_MASTER
		■ 2 = PROFIBUS_SLAVE
4	2Worte	VSC_Feature MemKeySize
		■ Größe der Speichererweiterung durch VSC-Karte in Byte
8	2Worte	VSC TimeOut
		■ Restlaufzeit der CPU bei gezogener VSC-Karte in ms (für S7-Datentyp Time)
12	2Worte	VSC_Feature CpFieldbus
		■ 0 = FEATURE_SET_CP_FIELDBUS_NO
		■ 1 = FEATURE_SET_CP_FIELDBUS_ETHERCAT
16	2Worte	VSC_Feature Motion
		■ 0 = FEATURE_SET_MOTION_NO
		■ 1 = FEATURE_SET_MOTION_8AXIS
		2 = FEATURE_SET_MOTION_20AXIS
20	2Worte	VSC_Feature HMI
		■ 0 = FEATURE_SET_HMI_NO
		■ 1 = FEATURE_SET_HMI_ACTIVATED

VSC-Features - SZL-ID: xyFCh

Datensatz SZL_ID: 01FCh INDEX: 0001h

INDEX Offset	Länge	Beschreibung
0	2Worte	VSC_Feature PROFIBUS
		0 = PROFIBUS_NO1 = PROFIBUS_MASTER2 = PROFIBUS_SLAVE

Datensatz SZL_ID: 01FCh INDEX: 0002h

INDEX Offset	Länge	Beschreibung
0	2Worte	VSC_Feature MemKeySize
		■ Größe der Speichererweiterung durch VSC-Karte in Byte

Datensatz SZL_ID: 01FCh INDEX: 0003h

INDEX Offset	Länge	Beschreibung	
0	2Worte	VSC TimeOut	
		Restlaufzeit der CPU bei gezogener VSC-Karte in ms (für S7-Datentyp Time)	

Datensatz SZL_ID: 01FCh INDEX: 0004h

INDEX Offset	Länge	Beschreibung
0	2Worte	VSC_Feature CpFieldbus
		■ 0 = FEATURE_SET_CP_FIELDBUS_NO
		■ 1 = FEATURE_SET_CP_FIELDBUS_ETHERCAT

Datensatz SZL_ID: 01FCh INDEX: 0005h

INDEX Offset	Länge	Beschreibung
0	2Worte	VSC_Feature Motion
		■ 0 = FEATURE_SET_MOTION_NO
		■ 1 = FEATURE_SET_MOTION_8AXIS
		■ 2 = FEATURE_SET_MOTION_20AXIS

Datensatz SZL_ID: 01FCh INDEX: 0006h

INDEX Offset	Länge	Beschreibung
0	2Worte	VSC_Feature HMI
		■ 0 = FEATURE_SET_HMI_NO
		■ 1 = FEATURE_SET_HMI_ACTIVATED