

System SLIO

FM | 054-1CB00 | Handbuch

HB300 | FM | 054-1CB00 | de | 18-07

Motion Modul - 2xDC - FM 054

YASKAWA Europe GmbH Philipp-Reis-Str. 6 65795 Hattersheim Deutschland

Tel.: +49 6196 569-300 Fax: +49 6196 569-398 E-Mail: info@yaskawa.eu Internet: www.yaskawa.eu.com

Inhaltsverzeichnis

1	Allgemein		
	1.1 Copyright © YASKAWA Europe GmbH	. 5	
	1.2 Über dieses Handbuch	. 6	
	1.3 Sicherheitshinweise	7	
2	Grundlagen und Montage	. 8	
_	2.1 Sicherheitshinweise für den Benutzer		
	2.2 Systemvorstellung		
	2.2.1 Übersicht		
	2.2.2 Komponenten		
	2.2.3 Zubehör		
	2.2.4 Hardware-Ausgabestand		
	2.3 Abmessungen		
	2.4 Montage 8x-Peripherie-Module		
	2.5 Montage 16x-Peripherie-Module		
	2.6 Verdrahtung 8x-Peripherie-Module		
	2.7 Verdrahtung 16x-Peripherie-Module		
	2.8 Verdrahtung Power-Module		
	2.9 Demontage 8x-Peripherie-Module		
	2.10 Demontage 16x-Peripherie-Module		
	2.11 Easy Maintenance		
	2.12 Hilfe zur Fehlersuche - LEDs		
	2.13 Industrielle Sicherheit und Aufbaurichtlinien		
	2.13.1 Industrielle Sicherheit in der Informationstechnologie		
	2.13.2 Aufbaurichtlinien		
	2.14 Allgemeine Daten für das System SLIO		
	2.14.1 Einsatz unter erschwerten Betriebsbedingungen		
_			
3	Hardwarebeschreibung		
	3.1 Leistungsmerkmale		
	3.2 Aufbau		
	3.3 Blockschaltbild		
	3.4 Technische Daten	52	
4	Einsatz	56	
	4.1 Grundlagen	56	
	4.1.1 DC-Motor-Modul	57	
	4.1.2 Aufbau einer Positioniersteuerung	57	
	4.1.3 Encoder - Signalauswertung	59	
	4.2 Inbetriebnahme		
	4.2.1 Montage	60	
	4.2.2 Inspektionen und Prüfungen vor dem Testbetrieb	60	
	4.2.3 Inbetriebnahme des System SLIO Motion-Moduls	60	
	4.3 Anschluss eines Motors	62	
	4.3.1 Anschlussmöglichkeiten	62	
	4.4 Antriebsprofil		
	4.4.1 Übersicht	63	
	4.4.2 Zustände		
	4.4.3 Betriebsarten	65	
	4.5 Referenzfahrt (Homing)		
	· • • • • • • • • • • • • • • • • • • •		

	4.5.1 Referenzierung mittels Referenzierschalter	67
	4.5.2 Referenzierung auf aktuelle Position	70
	4.5.3 Referenzierung mittels Strombegrenzung	71
	4.6 PtP-Positionsprofil	73
	4.6.1 Beispiele	79
	4.7 Geschwindigkeitsprofil	85
	4.8 Drehmomentregelung	89
	4.9 Einsatz I/O1I/O4	93
	4.9.1 Objekte	94
	4.9.2 Verwendung als Eingang für Encoder	94
	4.10 Bremskontrolle	96
	4.11 Ein-/Ausgabe-Bereich	96
	4.12 Azyklischer Kanal	99
	4.13 Parametrierdaten	100
	4.13.1 Parameter	100
	4.14 Skalierung und Einheiten	102
	4.15 Überwachung und Fehlerreaktion	102
	4.15.1 Übersicht	102
	4.15.2 Überwachung	104
	4.16 Diagnose und Alarm	107
5	Objektverzeichnis	109
	5.1 Anwendung	109
	5.2 Objekte	110
	5.2.1 Übersicht	110
	5.2.2 Informationen über das Produkt - 0x10000x1018	114
	5.2.3 Passwort und Sicherheit - 0x1100	115
	5.2.4 Systemkommando - 0x6100	116
	5.2.5 Digitale Eingänge I/O1I/O4 - 0x7100	116
	5.2.6 Digitale Ausgänge I/O1I/O4 - 0x7200	118
	5.2.7 Antrieb steuern - 0x8100	121
	5.2.8 Antrieb konfigurieren - 0x8180	128
	5.2.9 Optionen - 0x8200	129
	5.2.10 Betriebsarten - 0x8280	130
	5.2.11 Referenzfahrt - 0x8300	131
	5.2.12 Parameter für das PtP-Positionsprofil - 0x8400	135
	5.2.13 Positionen und Grenzwerte - 0x8480	137
	5.2.14 Geschwindigkeiten und Grenzwerte - 0x8500	141
	5.2.15 Beschleunigung und Verzögerung - 0x8580	144
	5.2.16 Ströme - 0x8600	145
	5.2.17 Spannungen - 0x8680	149
	5.2.18 Temperaturen - 0x8780	152
	5.2.19 Motordaten - 0x8C00	154
	5.2.20 Encoder-Auflösung - 0x8F00	155

System SLIO Allgemein

Copyright © YASKAWA Europe GmbH

1 Allgemein

1.1 Copyright © YASKAWA Europe GmbH

All Rights Reserved

Dieses Dokument enthält geschützte Informationen von Yaskawa und darf außer in Übereinstimmung mit anwendbaren Vereinbarungen weder offengelegt noch benutzt werden.

Dieses Material ist durch Urheberrechtsgesetze geschützt. Ohne schriftliches Einverständnis von Yaskawa und dem Besitzer dieses Materials darf dieses Material weder reproduziert, verteilt, noch in keiner Form von keiner Einheit (sowohl Yaskawa-intern als auch -extern) geändert werden, es sei denn in Übereinstimmung mit anwendbaren Vereinbarungen, Verträgen oder Lizenzen.

Zur Genehmigung von Vervielfältigung oder Verteilung wenden Sie sich bitte an: YASKAWA Europe GmbH, European Headquarters, Philipp-Reis-Str. 6, 65795 Hattersheim, Deutschland

Tel.: +49 6196 569 300 Fax.: +49 6196 569 398 E-Mail: info@yaskawa.eu Internet: www.yaskawa.eu.com

EG-Konformitätserklärung

Hiermit erklärt YASKAWA Europe GmbH, dass die Produkte und Systeme mit den grundlegenden Anforderungen und den anderen relevanten Vorschriften übereinstimmen. Die Übereinstimmung ist durch CE-Zeichen gekennzeichnet.

Informationen zur Konformitätserklärung

Für weitere Informationen zur CE-Kennzeichnung und Konformitätserklärung wenden Sie sich bitte an Ihre Landesvertretung der YASKAWA Europe GmbH.

Warenzeichen

SLIO und SPEED7 sind eingetragene Warenzeichen der YASKAWA Europe GmbH.

SIMATIC ist ein eingetragenes Warenzeichen der Siemens AG.

Alle anderen erwähnten Firmennamen und Logos sowie Marken- oder Produktnamen sind Warenzeichen oder eingetragene Warenzeichen ihrer jeweiligen Eigentümer.

Allgemeine Nutzungsbedingungen

Es wurden alle Anstrengungen unternommen, um sicherzustellen, dass die in diesem Dokument enthaltenen Informationen zum Zeitpunkt der Veröffentlichung vollständig und richtig sind. Fehlerfreiheit kann nicht garantiert werden, das Recht auf Änderungen der Informationen bleibt jederzeit vorbehalten. Eine Informationspflicht gegenüber dem Kunden über etwaige Änderungen besteht nicht. Der Kunde ist aufgefordert, seine Dokumente aktiv aktuell zu halten. Der Einsatz der Produkte mit zugehöriger Dokumentation hat immer in Eigenverantwortung des Kunden unter Berücksichtigung der geltenden Richtlinien und Normen zu erfolgen.

Die vorliegende Dokumentation beschreibt alle heute bekannten Hard- und Software-Einheiten und Funktionen. Es ist möglich, dass Einheiten beschrieben sind, die beim Kunden nicht vorhanden sind. Der genaue Lieferumfang ist im jeweiligen Kaufvertrag

beschrieben.

Dokument-Support

Wenden Sie sich an Ihre Landesvertretung der YASKAWA Europe GmbH, wenn Sie Fehler anzeigen oder inhaltliche Fragen zu diesem Dokument stellen möchten. Sie können YASKAWA Europe GmbH über folgenden Kontakt erreichen:

E-Mail: Documentation.HER@yaskawa.eu

Allgemein System SLIO

Über dieses Handbuch

Technischer Support

Wenden Sie sich an Ihre Landesvertretung der YASKAWA Europe GmbH, wenn Sie Probleme mit dem Produkt haben oder Fragen zum Produkt stellen möchten. Ist eine solche Stelle nicht erreichbar, können Sie den Yaskawa Kundenservice über folgenden Kontakt erreichen:

YASKAWA Europe GmbH,

European Headquarters, Philipp-Reis-Str. 6, 65795 Hattersheim, Deutschland

Tel.: +49 6196 569 500 (Hotline) E-Mail: support@yaskawa.eu

1.2 Über dieses Handbuch

Zielsetzung und Inhalt

Das Handbuch beschreibt das FM 054-1CB00 aus dem System SLIO.

- Beschrieben wird Aufbau, Projektierung und Anwendung.
- Das Handbuch ist geschrieben für Anwender mit Grundkenntnissen in der Automatisierungstechnik.
- Das Handbuch ist in Kapitel gegliedert. Jedes Kapitel beschreibt eine abgeschlossene Thematik.
- Als Orientierungshilfe stehen im Handbuch zur Verfügung:
 - Gesamt-Inhaltsverzeichnis am Anfang des Handbuchs.
 - Verweise mit Seitenangabe.

Damit Sie im PDF von einem Verweis zur vorherigen Ansicht wieder zurückkehren können, sollten Sie die Seitennavigation in Ihrem PDF-Viewer aktivieren.

Gültigkeit der Dokumentation

Produkt	BestNr.	ab Stand:	
FM 054 2xDC	054-1CB00	HW: 01	FW: V1.1.2

Piktogramme Signalwörter

Wichtige Textteile sind mit folgenden Piktogrammen und Signalworten hervorgehoben:

GEFAHR!

Unmittelbare oder drohende Gefahr. Personenschäden sind möglich.

VORSICHT!

Bei Nichtbefolgen sind Sachschäden möglich.

Zusätzliche Informationen und nützliche Tipps.

System SLIO Allgemein

Sicherheitshinweise

1.3 Sicherheitshinweise

Bestimmungsgemäße Verwendung

Das System ist konstruiert und gefertigt für:

- Kommunikation und Prozesskontrolle
- Allgemeine Steuerungs- und Automatisierungsaufgaben
- den industriellen Einsatz
- den Betrieb innerhalb der in den technischen Daten spezifizierten Umgebungsbedingungen
- den Einbau in einen Schaltschrank

GEFAHR!

Das Gerät ist nicht zugelassen für den Einsatz

in explosionsgefährdeten Umgebungen (EX-Zone)

Dokumentation

Handbuch zugänglich machen für alle Mitarbeiter in

- Projektierung
- Installation
- Inbetriebnahme
- Betrieb

VORSICHT!

Vor Inbetriebnahme und Betrieb der in diesem Handbuch beschriebenen Komponenten unbedingt beachten:

- Änderungen am Automatisierungssystem nur im spannungslosen Zustand vornehmen!
- Anschluss und Änderung nur durch ausgebildetes Elektro-Fachpersonal
- Nationale Vorschriften und Richtlinien im jeweiligen Verwenderland beachten und einhalten (Installation, Schutzmaßnahmen, EMV ...)

Entsorgung

Zur Entsorgung des Geräts nationale Vorschriften beachten!

Sicherheitshinweise für den Benutzer

2 Grundlagen und Montage

2.1 Sicherheitshinweise für den Benutzer

GEFAHR!

Schutz vor gefährlichen Spannungen

- Beim Einsatz von System SLIO Baugruppen muss der Anwender vor dem Berühren von gefährlichen Spannung geschützt werden.
- Sie müssen daher ein Isolationskonzept für Ihre Anlage erstellen, das eine sichere Trennung der Potentialbereiche von ELV und von gefährlichen Spannung umfasst.
- Beachten Sie dabei, die bei den System SLIO Baugruppen angegebenen Isolationsspannungen zwischen den Potentialbereichen und treffen Sie geeignete Maßnahmen, wie z.B. die Verwendung von PELV/SELV Stromversorgungen für System SLIO Baugruppen.

Handhabung elektrostatisch gefährdeter Baugruppen

Die Baugruppen sind mit hochintegrierten Bauelementen in MOS-Technik bestückt. Diese Bauelemente sind hoch empfindlich gegenüber Überspannungen, die z.B. bei elektrostatischer Entladung entstehen. Zur Kennzeichnung dieser gefährdeten Baugruppen wird nachfolgendes Symbol verwendet:

Das Symbol befindet sich auf Baugruppen, Baugruppenträgern oder auf Verpackungen und weist so auf elektrostatisch gefährdete Baugruppen hin. Elektrostatisch gefährdete Baugruppen können durch Energien und Spannungen zerstört werden, die weit unterhalb der Wahrnehmungsgrenze des Menschen liegen. Hantiert eine Person, die nicht elektrisch entladen ist, mit elektrostatisch gefährdeten Baugruppen, können Spannungen auftreten und zur Beschädigung von Bauelementen führen und so die Funktionsweise der Baugruppen beeinträchtigen oder die Baugruppen unbrauchbar machen. Auf diese Weise beschädigte Baugruppen werden in den wenigsten Fällen sofort als fehlerhaft erkannt. Der Fehler kann sich erst nach längerem Betrieb einstellen. Durch statische Entladung beschädigte Bauelemente können bei Temperaturänderungen, Erschütterungen oder Lastwechseln zeitweilige Fehler zeigen. Nur durch konsequente Anwendung von Schutzeinrichtungen und verantwortungsbewusste Beachtung der Handhabungsregeln lassen sich Funktionsstörungen und Ausfälle an elektrostatisch gefährdeten Baugruppen wirksam vermeiden.

Versenden von Baugruppen

Verwenden Sie für den Versand immer die Originalverpackung.

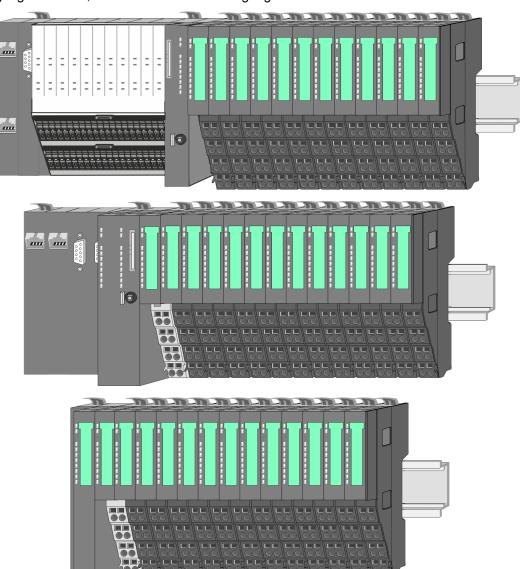
Messen und Ändern von elektrostatisch gefährdeten Baugruppen

Bei Messungen an elektrostatisch gefährdeten Baugruppen sind folgende Dinge zu beachten:

- Potenzialfreie Messgeräte sind kurzzeitig zu entladen.
- Verwendete Messgeräte sind zu erden.

Bei Änderungen an elektrostatisch gefährdeten Baugruppen ist darauf zu achten, dass ein geerdeter Lötkolben verwendet wird.

VORSICHT!


Bei Arbeiten mit und an elektrostatisch gefährdeten Baugruppen ist auf ausreichende Erdung des Menschen und der Arbeitsmittel zu achten.

Systemvorstellung > Übersicht

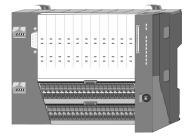
2.2 Systemvorstellung

2.2.1 Übersicht

Das System SLIO ist ein modular aufgebautes Automatisierungssystem für die Montage auf einer 35mm Tragschiene. Mittels der Peripherie-Module in 2-, 4-, 8- und 16-Kanalausführung können Sie dieses System passgenau an Ihre Automatisierungsaufgaben adaptieren. Der Verdrahtungsaufwand ist gering gehalten, da die DC 24V Leistungsversorgung im Rückwandbus integriert ist und defekte Elektronik bei stehender Verdrahtung getauscht werden kann. Durch Einsatz der farblich abgesetzten Power-Module können Sie innerhalb des Systems weitere Potenzialbereiche für die DC 24V Leistungsversorgung definieren, bzw. die Elektronikversorgung um 2A erweitern.

Systemvorstellung > Komponenten

2.2.2 Komponenten


- CPU (Kopf-Modul)
- Bus-Koppler (Kopf-Modul)
- Zeilenanschaltung
- 8x-Peripherie-Module
- 16x-Peripherie-Module
- Power-Module
- Zubehör

VORSICHT!

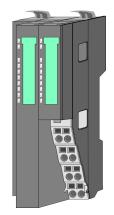
Beim Einsatz dürfen nur Yaskawa-Module kombiniert werden. Ein Mischbetrieb mit Modulen von Fremdherstellern ist nicht zulässig!

CPU 01xC

Bei der CPU 01xC sind CPU-Elektronik, Ein-/Ausgabe-Komponenten und Spannungsversorgung in ein Gehäuse integriert. Zusätzlich können am Rückwandbus bis zu 64 Peripherie-Module aus dem System SLIO angebunden werden. Als Kopf-Modul werden über die integrierte Spannungsversorgung sowohl die CPU-Elektronik, die Ein-/Ausgabe-Komponenten als auch die Elektronik der über den Rückwandbus angebunden Peripherie-Module versorgt. Zum Anschluss der Spannungsversorgung, der Ein-/Ausgabe-Komponenten und zur DC 24V Leistungsversorgung der über Rückwandbus angebunden Peripherie-Module besitzt die CPU abnehmbare Steckverbinder. Durch Montage von bis zu 64 Peripherie-Modulen am Rückwandbus der CPU werden diese elektrisch verbunden, d.h. sie sind am Rückwandbus eingebunden, die Elektronik-Module werden versorgt und jedes Peripherie-Modul ist an die DC 24V Leistungsversorgung angeschlossen.

CPU 01x

Bei der CPU 01x sind CPU-Elektronik und Power-Modul in ein Gehäuse integriert. Als Kopf-Modul werden über das integrierte Power-Modul zur Spannungsversorgung sowohl die CPU-Elektronik als auch die Elektronik der angebunden Peripherie-Module versorgt. Die DC 24V Leistungsversorgung für die angebunden Peripherie-Module erfolgt über einen weiteren Anschluss am Power-Modul. Durch Montage von bis zu 64 Peripherie-Modulen an der CPU werden diese elektrisch verbunden, d.h. sie sind am Rückwandbus eingebunden, die Elektronik-Module werden versorgt und jedes Peripherie-Modul ist an die DC 24V Leistungsversorgung angeschlossen.


VORSICHT!

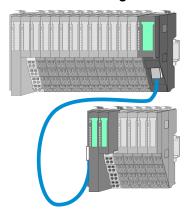
CPU-Teil und Power-Modul der CPU dürfen nicht voneinander getrennt werden!

Hier dürfen Sie lediglich das Elektronik-Modul tauschen!

Systemvorstellung > Komponenten

Bus-Koppler

Beim Bus-Koppler sind Bus-Interface und Power-Modul in ein Gehäuse integriert. Das Bus-Interface bietet Anschluss an ein übergeordnetes Bus-System. Als Kopf-Modul werden über das integrierte Power-Modul zur Spannungsversorgung sowohl das Bus-Interface als auch die Elektronik der angebunden Peripherie-Module versorgt. Die DC 24V Leistungsversorgung für die angebunden Peripherie-Module erfolgt über einen weiteren Anschluss am Power-Modul. Durch Montage von bis zu 64 Peripherie-Modulen am Bus-Koppler werden diese elektrisch verbunden, d.h. sie sind am Rückwandbus eingebunden, die Elektronik-Module werden versorgt und jedes Peripherie-Modul ist an die DC 24V Leistungsversorgung angeschlossen.



VORSICHT!

Bus-Interface und Power-Modul des Bus-Kopplers dürfen nicht voneinander getrennt werden!

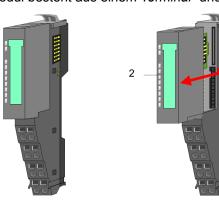
Hier dürfen Sie lediglich das Elektronik-Modul tauschen!

Zeilenanschaltung

Im System SLIO haben Sie die Möglichkeit bis zu 64 Module in einer Zeile zu stecken. Mit dem Einsatz der Zeilenanschaltung können Sie diese Zeile in mehrere Zeilen aufteilen. Hierbei ist am jeweiligen Zeilenende ein Zeilenanschaltung-Master-Modul zu setzen und die nachfolgende Zeile muss mit einem Zeilenanschaltung-Slave-Modul beginnen. Master und Slave sind über ein spezielles Verbindungskabel miteinander zu verbinden. Auf diese Weise können Sie eine Zeile auf bis zu 5 Zeilen aufteilen. Je Zeilenanschaltung vermindert sich die maximal Anzahl steckbarer Module am System SLIO Bus um 1. Für die Verwendung der Zeilenanschaltung ist keine gesonderte Projektierung erforderlich.

Bitte beachten Sie, dass von manchen Modulen Zeilenanschaltungen systembedingt nicht unterstützt werden. Nähere Informationen hierzu finden Sie in der "System SLIO - Kompatibilitätsliste" unter www.yaskawa.eu.com

Peripherie-Module

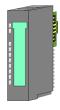

Die Peripherie-Module gibt es in folgenden 2 Ausführungen, wobei jedes der Elektronik-Teile bei stehender Verdrahtung getauscht werden kann:

- 8x-Peripherie-Modul für maximal 8 Kanäle.
- 16x-Peripherie-Modul für maximal 16 Kanäle.

Systemvorstellung > Komponenten

8x-Peripherie-Module

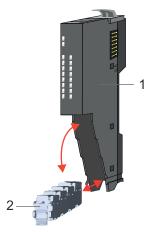
Jedes 8x-Peripherie-Modul besteht aus einem Terminal- und einem Elektronik-Modul.


- 1 Terminal-Modul
- 2 Elektronik-Modul

Terminal-Modul

Das *Terminal-Modul* bietet die Aufnahme für das Elektronik-Modul, beinhaltet den Rückwandbus mit Spannungsversorgung für die Elektronik, die Anbindung an die DC 24V Leistungsversorgung und den treppenförmigen Klemmblock für die Verdrahtung. Zusätzlich besitzt das Terminal-Modul ein Verriegelungssystem zur Fixierung auf einer Tragschiene. Mittels dieser Verriegelung können Sie Ihr System außerhalb Ihres Schaltschranks aufbauen und später als Gesamtsystem im Schaltschrank montieren.

Elektronik-Modul



Über das *Elektronik-Modul*, welches durch einen sicheren Schiebemechanismus mit dem Terminal-Modul verbunden ist, wird die Funktionalität eines Peripherie-Moduls definiert. Im Fehlerfall können Sie das defekte Elektronik-Modul gegen ein funktionsfähiges Modul tauschen. Hierbei bleibt die Verdrahtung bestehen. Auf der Frontseite befinden sich LEDs zur Statusanzeige. Für die einfache Verdrahtung finden Sie bei jedem Elektronik-Modul auf der Front und an der Seite entsprechende Anschlussinformationen.

16x-Peripherie-Module

Jedes 16x-Peripherie-Modul besteht aus einer *Elektronik-Einheit* und einem *Terminal-Block*.

- 1 Elektronik-Einheit
- 2 Terminal-Block

Systemvorstellung > Zubehör

Elektronik-Einheit

Über den Terminal-Block, welcher durch einen sicheren Klappmechanismus mit der *Elektronik-Einheit* verbunden ist, wird die Funktionalität eines 16x-Peripherie-Moduls definiert. Im Fehlerfall können Sie bei stehender Verdrahtung die defekte Elektronik-Einheit gegen eine funktionsfähige Einheit tauschen. Auf der Frontseite befinden sich LEDs zur Statusanzeige. Für die einfache Verdrahtung finden Sie bei jeder Elektronik-Einheit an der Seite entsprechende Anschlussinformationen. Die Elektronik-Einheit bietet die Aufnahme für den Terminal-Block für die Verdrahtung und beinhaltet den Rückwandbus mit Spannungsversorgung für die Elektronik und die Anbindung an die DC 24V Leistungsversorgung. Zusätzlich besitzt die Elektronik-Einheit ein Verriegelungssystem zur Fixierung auf einer Tragschiene. Mittels dieser Verriegelung können Sie Ihr System außerhalb Ihres Schaltschranks aufbauen und später als Gesamtsystem im Schaltschrank montieren.

Terminal-Block

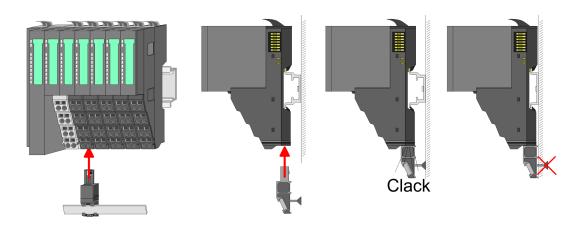
Über den *Terminal-Block* werden Signal- und Versorgungsleitungen mit dem Modul verbunden. Bei der Montage des Terminal-Block wird dieser an der Unterseite der Elektronik-Einheit eingehängt und zur Elektronik-Einheit geklappt, bis dieser einrastet. Bei der Verdrahtung kommt eine "push-in"-Federklemmtechnik zum Einsatz. Diese ermöglicht einen werkzeuglosen und schnellen Anschluss Ihrer Signal- und Versorgungsleitungen. Das Abklemmen erfolgt mittels eines Schraubendrehers.

Power-Module

Die Spannungsversorgung erfolgt im System SLIO über Power-Module. Diese sind entweder im Kopf-Modul integriert oder können zwischen die Peripherie-Module gesteckt werden. Je nach Power-Modul können Sie Potenzialgruppen der DC 24V Leistungsversorgung definieren bzw. die Elektronikversorgung um 2A erweitern. Zur besseren Erkennung sind die Power-Module farblich von den Peripherie-Modulen abgesetzt.

2.2.3 Zubehör

Schirmschienen-Träger



Bitte beachten sie, dass an einem 16x-Peripherie-Modul kein Schirmschienen-Träger montiert werden kann!

Der Schirmschienen-Träger (Best.-Nr.: 000-0AB00) dient zur Aufnahme von Schirmschienen (10mm x 3mm) für den Anschluss von Kabelschirmen. Schirmschienen-Träger, Schirmschiene und Kabelschirmbefestigungen sind nicht im Lieferumfang enthalten, sondern ausschließlich als Zubehör erhältlich. Der Schirmschienen-Träger wird unterhalb des Klemmblocks in das Terminal-Modul gesteckt. Bei flacher Tragschiene können Sie zur Adaption die Abstandshalter am Schirmschienen-Träger abbrechen.

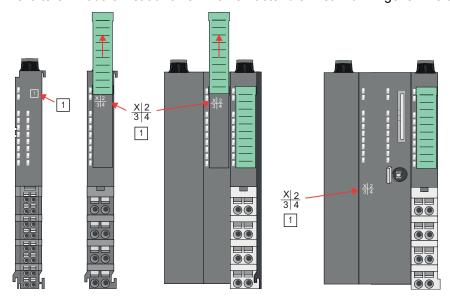
Systemvorstellung > Zubehör

Bus-Blende

Bei jedem Kopf-Modul gehört zum Schutz der Bus-Kontakte eine Bus-Blende zum Lieferumfang. Vor der Montage von System SLIO Modulen ist die Bus-Blende am Kopf-Modul zu entfernen. Zum Schutz der Bus-Kontakte müssen Sie die Bus-Blende immer am äußersten Modul montieren. Die Bus-Blende hat die Best.-Nr. 000-0AA00.

Kodier-Stecker

Bitte beachten Sie, dass an einem 16x-Peripherie-Modul kein Kodier-Stecker montiert werden kann! Hier müssen Sie selbst dafür Sorge tragen, dass bei einem Tausch der Elektronik-Einheit der zugehörige Terminal-Block wieder gesteckt wird.

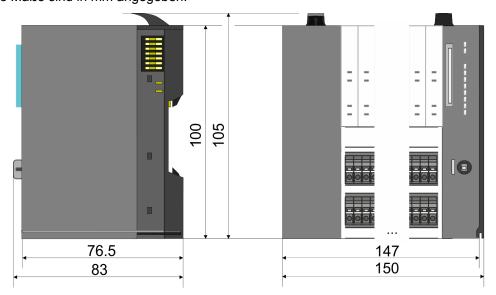

Sie haben die Möglichkeit die Zuordnung von Terminal- und Elektronik-Modul zu fixieren. Hierbei kommen Kodier-Stecker (Best-Nr.: 000-0AC00) zum Einsatz. Die Kodier-Stecker bestehen aus einem Kodierstift-Stift und einer Kodier-Buchse, wobei durch Zusammenfügen von Elektronik- und Terminal-Modul der Kodier-Stift am Terminal-Modul und die Kodier-Buchse im Elektronik-Modul verbleiben. Dies gewährleistet, dass nach Austausch des Elektronik-Moduls nur wieder ein Elektronik-Modul mit der gleichen Kodierung gesteckt werden kann.

Abmessungen

2.2.4 Hardware-Ausgabestand

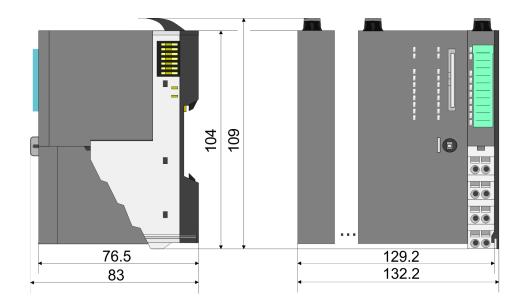
Hardware-Ausgabestand auf der Front

- Auf jedem System SLIO Modul ist der Hardware-Ausgabestand aufgedruckt.
- Da sich ein System SLIO 8x-Peripherie-Modul aus Terminal- und Elektronik-Modul zusammensetzt, finden Sie auf diesen jeweils einen Hardware-Ausgabestand aufgedruckt.
- Maßgebend für den Hardware-Ausgabestand eines System SLIO Moduls ist der Hardware-Ausgabestand des Elektronik-Moduls. Dieser befindet sich unter dem Beschriftungsstreifen des entsprechenden Elektronik-Moduls.
- Abhängig vom Modultyp gibt es folgende 2 Varianten für die Darstellung beispielsweise von Hardware Ausgabestand 1:
 - Bei aktuellen Modulen befindet sich eine 1 auf der Front.
 - Bei älteren Modulen ist auf einem Zahlenraster die 1 ist mit "X" gekennzeichnet.

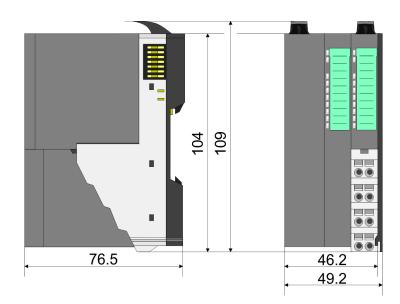

Hardware-Ausgabestand über Webserver

Bei den CPUs und bei manchen Bus-Kopplern können Sie den Hardware-Ausgabestand "HW Revision" über den integrierten Webserver ausgeben.

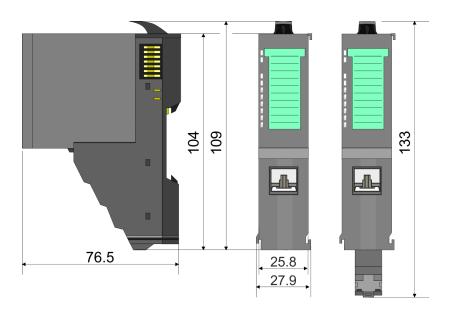
2.3 Abmessungen


CPU 01xC

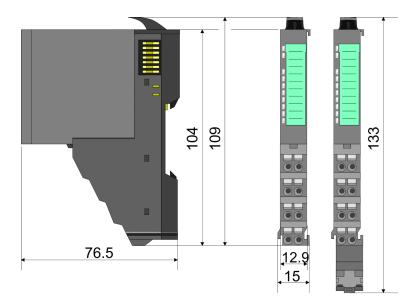
Alle Maße sind in mm angegeben.



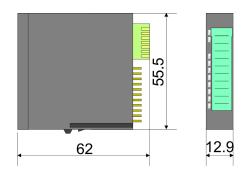
Abmessungen


CPU 01x

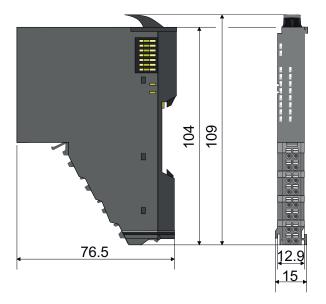
Bus-Koppler und Zeilenanschaltung Slave



Zeilenanschaltung Master

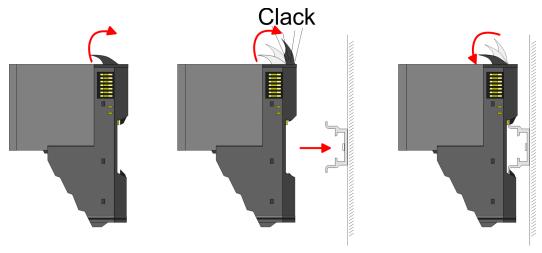


Abmessungen


8x-Peripherie-Modul

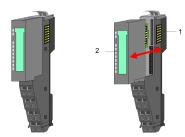
Elektronik-Modul

16x-Peripherie-Modul

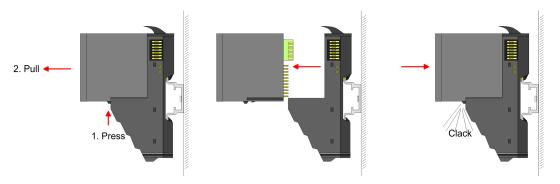

2.4 Montage 8x-Peripherie-Module

VORSICHT!

Voraussetzungen für den UL-konformen Betrieb

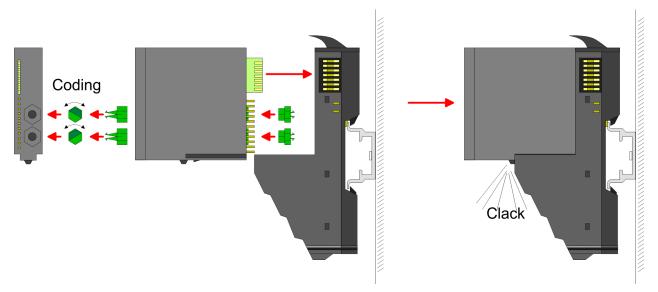

- Verwenden Sie für die Spannungsversorgung ausschließlich SELV/ PELV-Netzteile.
- Das System SLIO darf nur in einem Gehäuse gemäß IEC61010-1
 9.3.2 c) eingebaut und betrieben werden.

Das Modul besitzt einen Verriegelungshebel an der Oberseite. Zur Montage und Demontage ist dieser Hebel nach oben zu drücken, bis er einrastet. Stecken Sie das zu montierende Modul an das zuvor gesteckte Modul und schieben Sie das Modul, geführt durch die Führungsleisten an der Ober- und Unterseite, auf die Tragschiene. Durch Klappen des Verriegelungshebels nach unten wird das Modul auf der Tragschiene fixiert. Sie können entweder die Module einzeln auf der Tragschiene montieren oder als Block. Hierbei ist zu beachten, dass jeder Verriegelungshebel geöffnet ist. Die einzelnen Module werden direkt auf eine Tragschiene montiert. Über die Verbindung mit dem Rückwandbus werden Elektronik- und Leistungsversorgung angebunden. Sie können bis zu 64 Module stecken. Bitte beachten Sie hierbei, dass der Summenstrom der Elektronikversorgung den Maximalwert von 3A nicht überschreitet. Durch Einsatz des Power-Moduls 007-1AB10 können Sie den Strom für die Elektronikversorgung entsprechend erweitern.


Terminal- und Elektronik-Modul

- 1 Terminal-Modul
- 2 Elektronik-Modul

Zum Austausch eines Elektronik-Moduls können Sie das Elektronik-Modul, nach Betätigung der Entriegelung an der Unterseite, nach vorne abziehen. Für die Montage schieben Sie das Elektronik-Modul in die Führungsschiene, bis dieses an der Unterseite hörbar am Terminal-Modul einrastet.



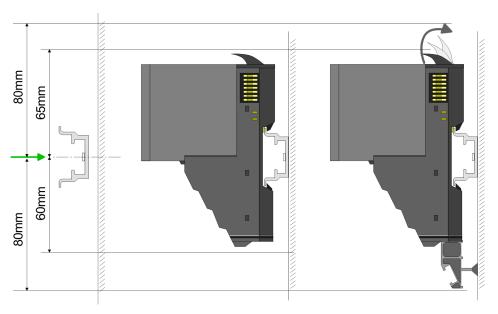
Montage 8x-Peripherie-Module

Kodierung

Sie haben die Möglichkeit die Zuordnung von Terminal- und Elektronik-Modul zu fixieren. Hierbei kommen Kodier-Stecker (Best-Nr.: 000-0AC00) zum Einsatz. Die Kodier-Stecker bestehen aus einem Kodierstift-Stift und einer Kodier-Buchse, wobei durch Zusammenfügen von Elektronik- und Terminal-Modul der Kodier-Stift am Terminal-Modul und die Kodier-Buchse im Elektronik-Modul verbleiben. Dies gewährleistet, dass nach Austausch des Elektronik-Moduls nur wieder ein Elektronik-Modul mit der gleichen Kodierung gesteckt werden kann.

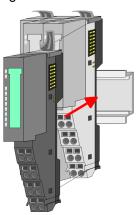
Jedes Elektronik-Modul besitzt an der Rückseite 2 Kodier-Aufnehmer für Kodier-Buchsen. Durch ihre Ausprägung sind 6 unterschiedliche Positionen pro Kodier-Buchse steckbar. Somit haben sie bei Verwendung beider Kodier-Aufnehmer 36 Kombinationsmöglichkeiten für die Kodierung.

- 1. Stecken Sie gemäß Ihrer Kodierung 2 Kodier-Buchsen in die Aufnehmer am Elektronik-Modul, bis diese einrasten.
- 2. Stecken Sie nun den entsprechenden Kodier-Stift in die Kodier-Buchse.
- **3.** Zur Fixierung der Kodierung führen Sie Elektronik- und Terminal-Modul zusammen, bis diese hörbar einrasten.

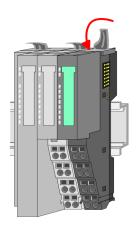

VORSICHT!

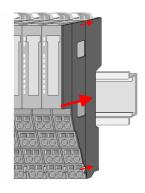
Bitte beachten Sie, dass bei Austausch eines bereits kodierten Elektronik-Moduls dieses immer durch ein Elektronik-Modul mit gleicher Kodierung ersetzt wird.

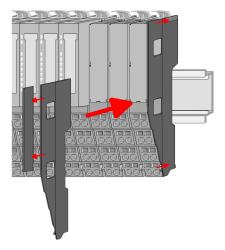
Auch bei vorhandener Kodierung am Terminal-Modul können Sie ein Elektronik-Modul ohne Kodierung stecken. Die Verantwortung bei der Verwendung von Kodierstiften liegt beim Anwender. Yaskawa übernimmt keinerlei Haftung für falsch gesteckte Elektronik-Module oder für Schäden, welche aufgrund fehlerhafter Kodierung entstehen!


Montage 8x-Peripherie-Module

Montage Peripherie-Modul


- Montieren Sie die Tragschiene! Bitte beachten Sie, dass Sie von der Mitte der Tragschiene nach oben einen Montageabstand von mindestens 80mm und nach unten von 60mm bzw. 80mm bei Verwendung von Schirmschienen-Trägern einhalten.
- 2. Montieren Sie Ihr Kopf-Modul wie z.B. CPU oder Feldbus-Koppler.
- **3.** Entfernen Sie vor der Montage der Peripherie-Module die Bus-Blende auf der rechten Seite des Kopf-Moduls, indem Sie diese nach vorn abziehen. Bewahren Sie die Blende für spätere Montage auf.



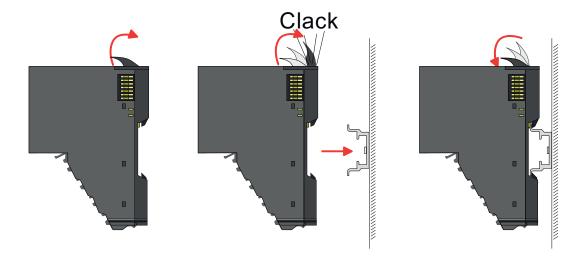


- **4.** Klappen Sie zur Montage den Verriegelungshebel des Peripherie-Moduls nach oben, bis dieser einrastet.
- 5. Stecken Sie das zu montierende Modul an das zuvor gesteckte Modul und schieben Sie das Modul, geführt durch die Führungsleisten an der Ober- und Unterseite, auf die Tragschiene.
- **6.** Klappen Sie den Verriegelungshebel des Peripherie-Moduls wieder nach unten.

Montage 16x-Peripherie-Module

7. Nachdem Sie Ihr Gesamt-System montiert haben, müssen Sie zum Schutz der Bus-Kontakte die Bus-Blende am äußersten Modul wieder stecken. Handelt es sich bei dem äußersten Modul um ein Klemmen-Modul, so ist zur Adaption der obere Teil der Bus-Blende abzubrechen.

2.5 Montage 16x-Peripherie-Module


VORSICHT!

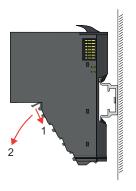
Voraussetzungen für den UL-konformen Betrieb

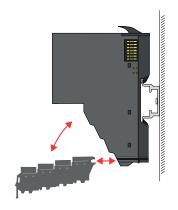
- Verwenden Sie für die Spannungsversorgung ausschließlich SELV/ PELV-Netzteile.
- Das System SLIO darf nur in einem Gehäuse gemäß IEC61010-1
 9.3.2 c) eingebaut und betrieben werden.

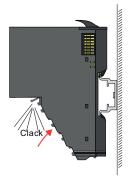
Das Modul besitzt einen Verriegelungshebel an der Oberseite. Zur Montage und Demontage ist dieser Hebel nach oben zu drücken, bis er einrastet. Stecken Sie das zu montierende Modul an das zuvor gesteckte Modul und schieben Sie das Modul, geführt durch die Führungsleisten an der Ober- und Unterseite, auf die Tragschiene. Durch Klappen des Verriegelungshebels nach unten wird das Modul auf der Tragschiene fixiert. Sie können entweder die Module einzeln auf der Tragschiene montieren oder als Block. Hierbei ist zu beachten, dass jeder Verriegelungshebel geöffnet ist. Die einzelnen Module werden direkt auf eine Tragschiene montiert. Über die Verbindung mit dem Rückwandbus werden Elektronik- und Leistungsversorgung angebunden. Sie können bis zu 64 Module stecken. Bitte beachten Sie hierbei, dass der Summenstrom der Elektronikversorgung den Maximalwert von 3A nicht überschreitet. Durch Einsatz des Power-Moduls 007-1AB10 können Sie den Strom für die Elektronikversorgung entsprechend erweitern.

Montage 16x-Peripherie-Module

Elektronik-Einheit und Terminal-Block

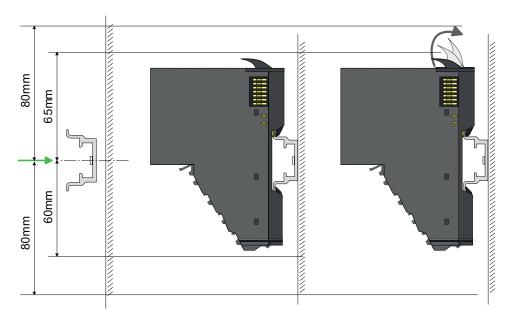





Jedes 16x-Peripherie-Modul besteht aus einer *Elektronik-Einheit* und einem *Terminal-Block*.

- 1 Elektronik-Einheit
- 2 Terminal-Block

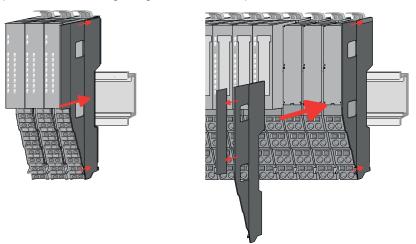
Zum Austausch einer Elektronik-Einheit können Sie den Terminal-Block nach Betätigung der Entriegelung nach unten klappen und abziehen. Für die Montage des Terminal-Block wird dieser horizontal an der Unterseite der Elektronik-Einheit eingehängt und zur Elektronik-Einheit geklappt, bis dieser einrastet.



Montage 16x-Peripherie-Module

Montage Peripherie-Modul

- 1. Montieren Sie die Tragschiene! Bitte beachten Sie, dass Sie von der Mitte der Tragschiene nach oben einen Montageabstand von mindestens 80mm und nach unten 80mm einhalten.
- 2. Montieren Sie Ihr Kopf-Modul wie z.B. CPU oder Feldbus-Koppler.
- **3.** Entfernen Sie vor der Montage der Peripherie-Module die Bus-Blende auf der rechten Seite des Kopf-Moduls, indem Sie diese nach vorn abziehen. Bewahren Sie die Blende für spätere Montage auf.



- **4.** Klappen Sie zur Montage den Verriegelungshebel des Peripherie-Moduls nach oben, bis dieser einrastet.
- 5. Stecken Sie das zu montierende Modul an das zuvor gesteckte Modul und schieben Sie das Modul, geführt durch die Führungsleisten an der Ober- und Unterseite, auf die Tragschiene.

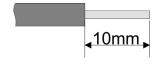
Verdrahtung 8x-Peripherie-Module

6. Klappen Sie den Verriegelungshebel des Peripherie-Moduls wieder nach unten.

7. Nachdem Sie Ihr Gesamt-System montiert haben, müssen Sie zum Schutz der Bus-Kontakte die Bus-Blende am äußersten Modul wieder stecken. Handelt es sich bei dem äußersten Modul um ein Klemmen-Modul, so ist zur Adaption der obere Teil der Bus-Blende abzubrechen.

2.6 Verdrahtung 8x-Peripherie-Module

Terminal-Modul Anschlussklemmen


VORSICHT!

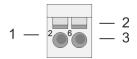
Keine gefährliche Spannungen anschließen!

Sofern dies nicht ausdrücklich bei der entsprechenden Modulbeschreibung vermerkt ist, dürfen Sie an dem entsprechenden Terminal-Modul keine gefährlichen Spannungen anschließen!

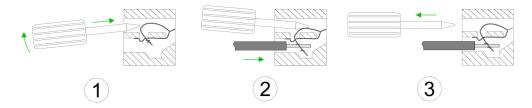
■ Bei der Verdrahtung von Terminal-Modulen kommen Anschlussklemmen mit Federklemmtechnik zum Einsatz. Die Verdrahtung mit Federklemmtechnik ermöglicht einen schnellen und einfachen Anschluss Ihrer Signal- und Versorgungsleitungen. Im Gegensatz zur Schraubverbindung ist diese Verbindungsart erschütterungssicher.

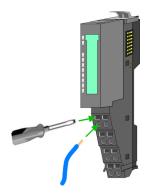
Daten

U_{max} 240V AC / 30V DC

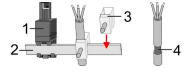

 I_{max} 10A

Querschnitt 0,08 ... 1,5mm² (AWG 28 ... 16)


Abisolierlänge 10mm

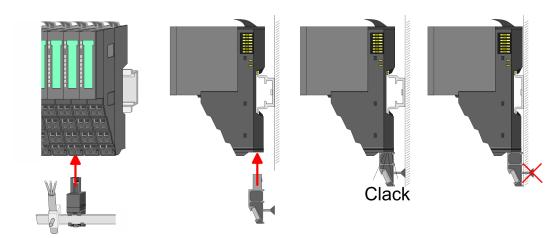

Verdrahtung 8x-Peripherie-Module

Verdrahtung Vorgehensweise


- 1 Pin-Nr. am Steckverbinder
- 2 Entriegelung für Schraubendreher
- 3 Anschlussöffnung für Draht

- Zum Verdrahten stecken Sie, wie in der Abbildung gezeigt, einen passenden Schraubendreher leicht schräg in die rechteckige Öffnung. Zum Öffnen der Kontaktfeder müssen Sie den Schraubendreher in die entgegengesetzte Richtung drücken und halten.
- **2.** Führen Sie durch die runde Öffnung Ihren abisolierten Draht ein. Sie können Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm² anschließen.
- **3.** Durch Entfernen des Schraubendrehers wird der Draht über einen Federkontakt sicher mit der Anschlussklemme verbunden.

Schirm auflegen



- 1 Schirmschienen-Träger
- 2 Schirmschiene (10mm x 3mm)
- 3 Schirmanschlussklemme
- 4 Kabelschirm

Zur Schirmauflage ist die Montage von Schirmschienen-Trägern erforderlich. Der Schirmschienen-Träger (als Zubehör erhältlich) dient zur Aufnahme der Schirmschiene für den Anschluss von Kabelschirmen.

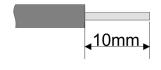
- Jedes System SLIO 8x-Peripherie-Modul besitzt an der Unterseite Aufnehmer für Schirmschienen-Träger. Stecken Sie Ihre Schirmschienenträger, bis diese am Modul einrasten. Bei flacher Tragschiene können Sie zur Adaption den Abstandshalter am Schirmschienen-Träger abbrechen.
- **2.** Legen Sie Ihre Schirmschiene in den Schirmschienen-Träger ein.

Verdrahtung 16x-Peripherie-Module

3. Legen Sie ihre Kabel mit dem entsprechend abisolierten Kabelschirm auf und verbinden Sie diese über die Schirmanschlussklemme mit der Schirmschiene.

2.7 Verdrahtung 16x-Peripherie-Module

Terminal-Block Anschlussklemmen


VORSICHT!

Keine gefährliche Spannungen anschließen!

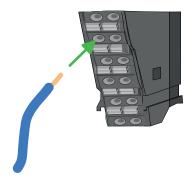
Sofern dies nicht ausdrücklich bei der entsprechenden Modulbeschreibung vermerkt ist, dürfen Sie an dem entsprechenden Terminal-Block keine gefährlichen Spannungen anschließen!

- Für die Verdrahtung besitzt das 16x-Peripherie-Modul einen abnehmbaren Terminal-Block.
- Bei der Verdrahtung des Terminal-Blocks kommt eine "push-in"-Federklemmtechnik zum Einsatz. Diese ermöglicht einen werkzeuglosen und schnellen Anschluss Ihrer Signal- und Versorgungsleitungen.
- Das Abklemmen erfolgt mittels eines Schraubendrehers.
- Bitte verwenden Sie ausschließlich Kupferdraht!

Daten

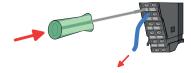
U_{max} 30V DC I_{max} 10A

Querschnitt fester Draht 0,25 ... 0,75mm² Querschnitt mit Aderendhülse 0,14 ... 0,75mm²


Drahttyp CU
AWG 24 ... 16
Abisolierlänge 10mm

Verdrahtung Vorgehensweise

- 1 Entriegelung
- 2 Anschlussöffnung für Draht

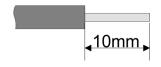

Draht stecken

Die Verdrahtung erfolgt werkzeuglos.

- **1.** Frmitteln Sie gemäß der Gehäusebeschriftung die Anschlussposition.
- **2.** Führen Sie durch die runde Anschlussöffnung des entsprechenden Kontakts Ihren vorbereiteten Draht bis zum Anschlag ein, so dass dieser fixiert wird.
 - ⇒ Durch das Einschieben öffnet die Kontaktfeder und sorgt somit für die erforderliche Anpresskraft.

Draht entfernen

Das Entfernen eines Drahtes erfolgt mittels eines Schraubendrehers mit 2,5mm Klingenbreite.

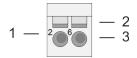

- 1. Drücken Sie mit dem Schraubendreher senkrecht auf die Entriegelung.
 - ⇒ Die Kontaktfeder gibt den Draht frei.
- **2.** Ziehen Sie den Draht aus der runden Öffnung heraus.

2.8 Verdrahtung Power-Module

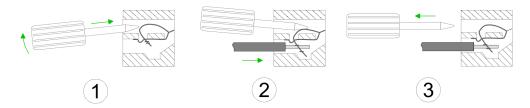
Terminal-Modul Anschlussklemmen

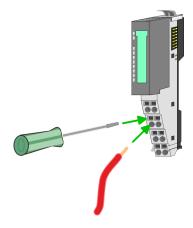
Power-Module sind entweder im Kopf-Modul integriert oder können zwischen die Peripherie-Module gesteckt werden. Bei der Verdrahtung von Power-Modulen kommen Anschlussklemmen mit Federklemmtechnik zum Einsatz. Die Verdrahtung mit Federklemmtechnik ermöglicht einen schnellen und einfachen Anschluss Ihrer Signal- und Versorgungsleitungen. Im Gegensatz zur Schraubverbindung ist diese Verbindungsart erschütterungssicher.

Daten

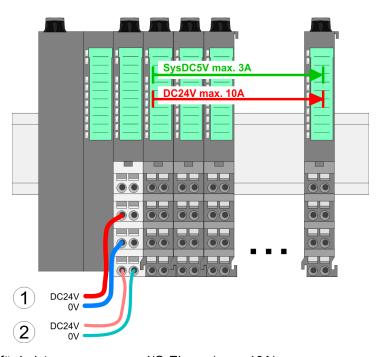


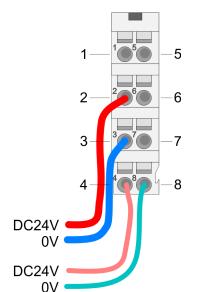
 U_{max} 30V DC I_{max} 10A


Querschnitt 0,08 ... 1,5mm² (AWG 28 ... 16)


Abisolierlänge 10mm

Verdrahtung Vorgehensweise


- Pin-Nr. am Steckverbinder
- Entriegelung für Schraubendreher
- Anschlussöffnung für Draht


- Zum Verdrahten stecken Sie, wie in der Abbildung gezeigt, einen passenden Schraubendreher leicht schräg in die rechteckige Öffnung. Zum Öffnen der Kontaktfeder müssen Sie den Schraubendreher in die entgegengesetzte Richtung drücken und halten.
- 2. Führen Sie durch die runde Öffnung Ihren abisolierten Draht ein. Sie können Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm² anschließen.
- Durch Entfernen des Schraubendrehers wird der Draht über einen Federkontakt sicher mit der Anschlussklemme verbunden.

Standard-Verdrahtung

- (1) DC 24V für Leistungsversorgung I/O-Ebene (max. 10A)(2) DC 24V für Elektronikversorgung Bus-Koppler und I/O-Ebene

PM - Power Modul

Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².

Pos.	Funktion	Тур	Beschreibung
1			nicht belegt
2	DC 24V	E	DC 24V für Leistungsversorgung
3	0V	E	GND für Leistungsversorgung
4	Sys DC 24V	E	DC 24V für Elektronikversorgung
5			nicht belegt
6	DC 24V	E	DC 24V für Leistungsversorgung
7	0V	E	GND für Leistungsversorgung
8	Sys 0V	Е	GND für Elektronikversorgung

E: Eingang

VORSICHT!

Da die Leistungsversorgung keine interne Absicherung besitzt, ist diese extern mit einer Sicherung entsprechend dem Maximalstrom abzusichern, d.h. max. 10A mit einer 10A-Sicherung (flink) bzw. einem Leitungsschutzschalter 10A Charakteristik Z!

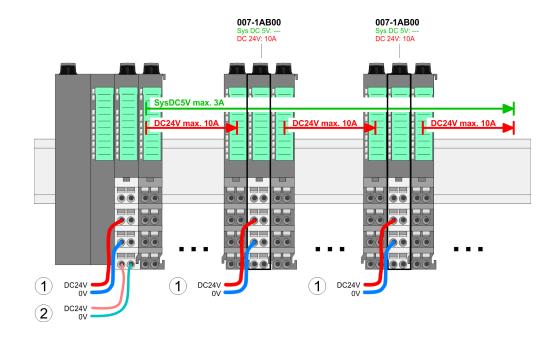
Die Elektronikversorgung ist intern gegen zu hohe Spannung durch eine Sicherung geschützt. Die Sicherung befindet sich innerhalb des Power-Moduls. Wenn die Sicherung ausgelöst hat, muss das Elektronik-Modul getauscht werden!

Absicherung

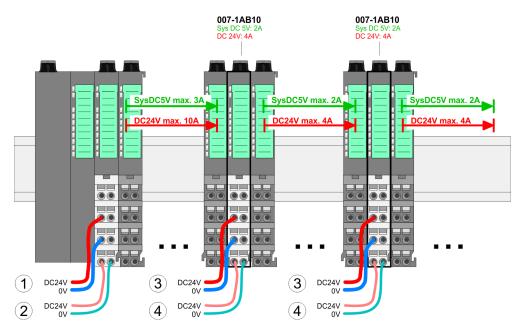
- Die Leistungsversorgung ist extern mit einer Sicherung entsprechend dem Maximalstrom abzusichern, d.h. max. 10A mit einer 10A-Sicherung (flink) bzw. einem Leitungsschutzschalter 10A Charakteristik Z.
- Es wird empfohlen die Elektronikversorgung für Kopf-Modul und I/O-Ebene extern mit einer 2A-Sicherung (flink) bzw. einem Leitungsschutzschalter 2A Charakteristik Z abzusichern.
- Die Elektronikversorgung für die I/O-Ebene des Power-Moduls 007-1AB10 sollte ebenfalls extern mit einer 1A-Sicherung (flink) bzw. einem Leitungsschutzschalter 1A Charakteristik Z abgesichert werden.

Zustand der Elektronikversorgung über LEDs

Nach PowerON des System SLIO leuchtet an jedem Modul die RUN- bzw. MF-LED, sofern der Summenstrom für die Elektronikversorgung 3A nicht übersteigt. Ist der Summenstrom größer als 3A, werden die LEDs nicht mehr angesteuert. Hier müssen Sie zwischen Ihre Peripherie-Module das Power-Modul mit der Best.-Nr. 007-1AB10 platzieren.

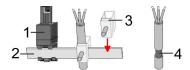

Grundlagen und Montage System SLIO

Verdrahtung Power-Module


Einsatz von Power-Modulen

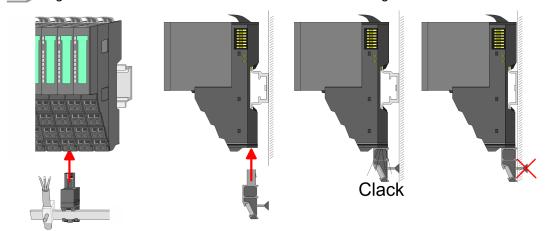
- Das Power-Modul mit der Best.-Nr. 007-1AB00 setzen Sie ein, wenn die 10A für die Leistungsversorgung nicht mehr ausreichen. Sie haben so auch die Möglichkeit, Potenzialgruppen zu bilden.
- Das Power-Modul mit der Best.-Nr. 007-1AB10 setzen Sie ein, wenn die 3A für die Elektronikversorgung am Rückwandbus nicht mehr ausreichen. Zusätzlich erhalten Sie eine neue Potenzialgruppe für die DC 24V Leistungsversorgung mit max. 4A.
- Durch Stecken des Power-Moduls 007-1AB10 können am nachfolgenden Rückwandbus Module gesteckt werden mit einem maximalen Summenstrom von 2A. Danach ist wieder ein Power-Modul zu stecken. Zur Sicherstellung der Spannungsversorgung dürfen die Power-Module beliebig gemischt eingesetzt werden.

Power-Modul 007-1AB00



Power-Modul 007-1AB10

- (1) DC 24V für Leistungsversorgung I/O-Ebene (max. 10A)
- (2) DC 24V für Elektronikversorgung Bus-Koppler und I/O-Ebene
- (3) DC 24V für Leistungsversorgung I/O-Ebene (max. 4A)
- (4) DC 24V für Elektronikversorgung I/O-Ebene

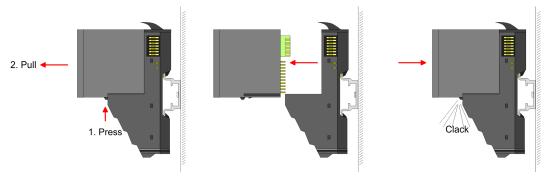

Schirm auflegen

- 1 Schirmschienen-Träger
- 2 Schirmschiene (10mm x 3mm)
- 3 Schirmanschlussklemme
- 4 Kabelschirm

Zur Schirmauflage ist die Montage von Schirmschienen-Trägern erforderlich. Der Schirmschienen-Träger (als Zubehör erhältlich) dient zur Aufnahme der Schirmschiene für den Anschluss von Kabelschirmen.

- 1. Jedes System SLIO 8x-Peripherie-Modul besitzt an der Unterseite Aufnehmer für Schirmschienen-Träger. Stecken Sie Ihre Schirmschienenträger, bis diese am Modul einrasten. Bei flacher Tragschiene können Sie zur Adaption den Abstandshalter am Schirmschienen-Träger abbrechen.
- 2. Legen Sie Ihre Schirmschiene in den Schirmschienen-Träger ein.

3. Legen Sie ihre Kabel mit dem entsprechend abisolierten Kabelschirm auf und verbinden Sie diese über die Schirmanschlussklemme mit der Schirmschiene.


Demontage 8x-Peripherie-Module

2.9 Demontage 8x-Peripherie-Module

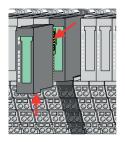
Vorgehensweise

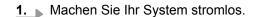
Austausch eines Elektronik-Moduls

1. Machen Sie Ihr System stromlos.

- Zum Austausch eines Elektronik-Moduls können Sie das Elektronik-Modul, nach Betätigung der Entriegelung an der Unterseite, nach vorne abziehen.
- **3.** Für die Montage schieben Sie das neue Elektronik-Modul in die Führungsschiene, bis dieses an der Unterseite am Terminal-Modul einrastet.
 - ⇒ Jetzt können Sie Ihr System wieder in Betrieb nehmen.

Easy Maintenance

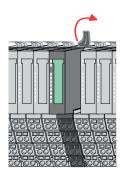


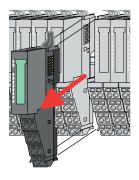

Als "Easy Maintenance" wird die Unterstützung für das Hinzufügen und Entfernen von Elektronik-Modulen während des Betriebs bezeichnet, ohne das System neu starten zu müssen. Sofern dies von Ihrem Kopf-Modul unterstützt wird, finden Sie hierzu nähere Informationen im Kapitel "Einsatz".

Kap. 2.11 "Easy Maintenance" Seite 38

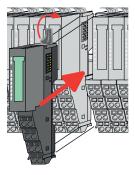
Demontage 8x-Peripherie-Module

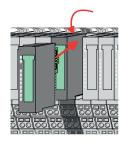
Austausch eines Peripherie-Moduls


2. Dentfernen Sie falls vorhanden die Verdrahtung am Modul.

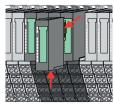


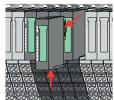
Bei der Demontage und beim Austausch eines (Kopf)-Moduls oder einer Modulgruppe müssen Sie aus montagetechnischen Gründen immer das <u>rechts</u> daneben befindliche Elektronik-Modul entfernen! Nach der Montage kann es wieder gesteckt werden.

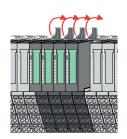

Betätigen Sie die Entriegelung an der Unterseite des rechts daneben befindlichen Elektronik-Moduls und ziehen Sie dieses nach vorne ab.


4. Klappen Sie den Verriegelungshebel des zu tauschenden Moduls nach oben.

- **5.** Diehen Sie das Modul nach vorne ab.
- **6.** Zur Montage klappen Sie den Verriegelungshebel des zu montierenden Moduls nach oben.

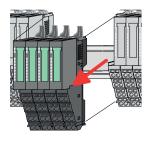

- 7. Stecken Sie das zu montierende Modul in die Lücke zwischen die beiden Module und schieben Sie das Modul, geführt durch die Führungsleisten auf beiden Seiten, auf die Tragschiene.
- 8. Klappen Sie den Verriegelungshebel wieder nach unten.

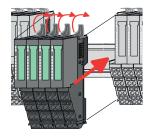



- **9.** Stecken Sie wieder das zuvor entnommene Elektronik-Modul.
- 10. Verdrahten Sie Ihr Modul.
 - ⇒ Jetzt können Sie Ihr System wieder in Betrieb nehmen.

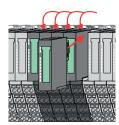
Demontage 8x-Peripherie-Module

Austausch einer Modulgruppe


2. Entfernen Sie falls vorhanden die Verdrahtung an der Modulgruppe.


Bei der Demontage und beim Austausch eines (Kopf)-Moduls oder einer Modulgruppe müssen Sie aus montagetechnischen Gründen immer das rechts daneben befindliche Elektronik-Modul entfernen! Nach der Montage kann es wieder gesteckt werden.

Betätigen Sie die Entriegelung an der Unterseite des rechts neben der Modulgruppe befindlichen Elektronik-Moduls und ziehen Sie dieses nach vorne ab.


4. Klappen Sie alle Verriegelungshebel der zu tauschenden Modulgruppe nach oben.

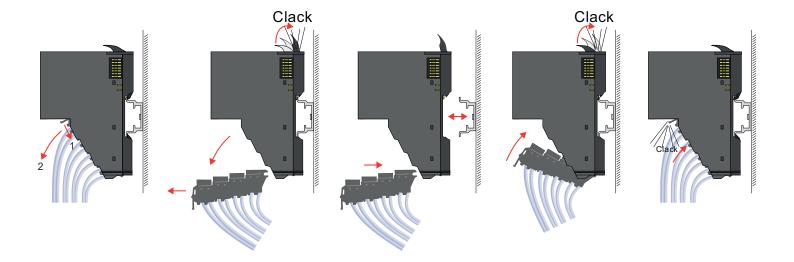
- **5.** Ziehen Sie die Modulgruppe nach vorne ab.
- 6. De Zur Montage klappen Sie alle Verriegelungshebel der zu montierenden Modulgruppe nach oben.

- 7. Stecken Sie die zu montierende Modulgruppe in die Lücke zwischen die beiden Module und schieben Sie die Modulgruppe, geführt durch die Führungsleisten auf beiden Seiten, auf die Tragschiene.
- **8.** Nlappen Sie alle Verriegelungshebel wieder nach unten.

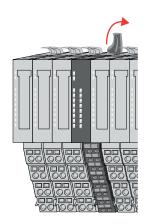
- 9. Stecken Sie wieder das zuvor entnommene Elektronik-Modul.
- **10.** ▶ Verdrahten Sie Ihre Modulgruppe.
 - ⇒ Jetzt können Sie Ihr System wieder in Betrieb nehmen.

Demontage 16x-Peripherie-Module

2.10 Demontage 16x-Peripherie-Module


Vorgehensweise

Austausch einer Elektronik-Einheit


- 1. Machen Sie Ihr System stromlos.
- Zum Austausch einer Elektronik-Einheit können Sie den Terminal-Block nach Betätigung der Entriegelung nach unten klappen und abziehen.

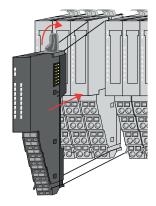
Für die Montage des Terminal-Blocks wird dieser horizontal an der Unterseite der Elektronik-Einheit eingehängt und zur Elektronik-Einheit geklappt, bis dieser einrastet.

⇒ Jetzt können Sie Ihr System wieder in Betrieb nehmen.

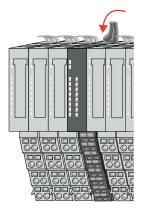
Austausch eines 16x-Peripherie-Moduls

- 1. Machen Sie Ihr System stromlos.
- **2.** Entfernen Sie falls vorhanden die Verdrahtung am Modul bzw. den verdrahteten Terminal-Block.

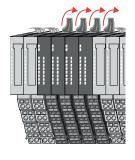
3.


Im Gegensatz zu 8x-Peripherie-Modulen können Sie 16x-Peripherie-Module direkt demontieren und montieren.

Klappen Sie den Verriegelungshebel des zu tauschenden Moduls nach oben.


Demontage 16x-Peripherie-Module

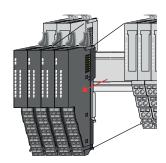
- **4.** Ziehen Sie das Modul nach vorne ab.
- **5.** Zur Montage klappen Sie den Verriegelungshebel des zu montierenden Moduls nach oben.

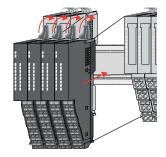


Stecken Sie das zu montierende Modul in die Lücke zwischen die beiden Module und schieben Sie das Modul, geführt durch die Führungsleisten auf beiden Seiten, auf die Tragschiene.

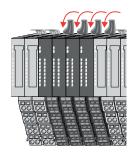
- 7. Klappen Sie den Verriegelungshebel wieder nach unten.
- 8. Verdrahten Sie Ihr Modul bzw. stecken Sie wieder den verdrahteten Terminal-Block.
 - ⇒ Jetzt können Sie Ihr System wieder in Betrieb nehmen.

- 1. Machen Sie Ihr System stromlos.
- 2. Entfernen Sie falls vorhanden die Verdrahtung an der Modulgruppe bzw. die verdrahteten Terminal-Blocks.


3.


Im Gegensatz zu 8x-Peripherie-Modulen können Sie 16x-Peripherie-Module direkt demontieren und montieren.

Klappen Sie alle Verriegelungshebel der zu tauschenden Modulgruppe nach oben.


Demontage 16x-Peripherie-Module

- **4.** Ziehen Sie die Modulgruppe nach vorne ab.
- **5.** Zur Montage klappen Sie alle Verriegelungshebel der zu montierenden Modulgruppe nach oben.

Stecken Sie die zu montierende Modulgruppe in die Lücke zwischen die beiden Module und schieben Sie die Modulgruppe, geführt durch die Führungsleisten auf beiden Seiten, auf die Tragschiene.

- 7. Klappen Sie alle Verriegelungshebel wieder nach unten.
- **8.** Verdrahten Sie Ihre Modulgruppe bzw. stecken Sie wieder die verdrahteten Terminal-Blocks.
 - ⇒ Jetzt können Sie Ihr System wieder in Betrieb nehmen.

Grundlagen und Montage System SLIO

Easy Maintenance

2.11 Easy Maintenance

Übersicht

Als *Easy Maintenance* wird die Unterstützung des Tauschs eines Elektronik-Moduls während des Betriebs bezeichnet, ohne das System neu starten zu müssen. Hierbei gibt es folgendes Verhalten am Beispiel einer CPU:

- Elektronik-Modul wird entfernt
 - Die CPU erkennt einen Modulausfall am Rückwandbus.
 - Diagnosemeldung "System SLIO Bus-Ausfall" (0x39D0) wird ausgegeben.
 - Der OB 86 wird aufgerufen. Ist dieser nicht vorhanden geht die CPU in STOP ansonsten bleibt sie in RUN.
 - Die SF-LED der CPU leuchtet.
 - Die E/A-Daten aller Module werden ungültig.
- Identisches Elektronik-Modul wird gesteckt
 - Die CPU erkennt die Modulwiederkehr am Rückwandbus.
 - Die SF-LED der CPU geht aus.
 - Alle RUN-LEDs an den Modulen leuchten und die MF-LEDs gehen aus.
 - Diagnosemeldung "System SLIO Bus-Wiederkehr" (0x38D0) wird ausgegeben.
 - Der OB 86 wird aufgerufen. Ist dieser nicht vorhanden geht die CPU in STOP ansonsten bleibt sie in RUN.
 - Die E/A-Daten aller Module werden wieder gültig.
- Falsches Elektronik-Modul wird gesteckt
 - Die CPU erkennt das falsche Modul.
 - Diagnosemeldung "System SLIO Bus-Wiederkehr, Sollausbau weicht von Istausbau ab" (0x38D1) wird ausgegeben.
 - Die SF-LED der CPU leuchtet weiter.
 - Die MF-LED des falschen Moduls blinkt.
 - Der OB 86 wird aufgerufen. Ist dieser nicht vorhanden geht die CPU in STOP ansonsten bleibt sie in RUN.
 - Mit Ausnahme des falschen Moduls werden die E/A-Daten aller Module wieder gültig.

VORSICHT!

Bitte beachten, Sie, dass ausschließlich Elektronik-Module während des Betriebs getauscht werden dürfen! Das Tauschen eines 8x- bzw. 16x-Peripherie-Moduls während des Betriebs kann zu Beschädigungen des Moduls und des Systems führen!

Bitte beachten Sie, dass die CPU in STOP geht, sofern beim Hinzufügen bzw. Entfernen von System SLIO Modulen kein OB 86 projektiert ist!

Hilfe zur Fehlersuche - LEDs

2.12 Hilfe zur Fehlersuche - LEDs

Allgemein

Jedes Modul besitzt auf der Frontseite die LEDs RUN und MF. Mittels dieser LEDs können Sie Fehler in Ihrem System bzw. fehlerhafte Module ermitteln.

In den nachfolgenden Abbildungen werden blinkende LEDs mit ☼ gekennzeichnet.

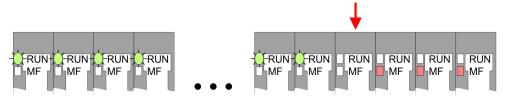
Summenstrom der Elektronik-Versorgung überschritten

Verhalten: Nach dem Einschalten bleibt an jedem Modul die RUN-LED aus und es leuchtet sporadisch die MF-LED.

Ursache: Der maximale Strom für die Elektronikversorgung ist überschritten.

Abhilfe: Platzieren Sie immer, sobald der Summenstrom für die Elektronikversorgung den maximalen Strom übersteigt, das Power-Modul 007-1AB10. Skap. 2.8 "Verdrahtung Power-Module" Seite 27

Konfigurationsfehler



Verhalten: Nach dem Einschalten blinkt an einem Modul bzw. an mehreren Modulen die MF-LED. Die RUN-LED bleibt ausgeschaltet.

Ursache: An dieser Stelle ist ein Modul gesteckt, welches nicht dem aktuell konfigurierten Modul entspricht.

Abhilfe: Stimmen Sie Konfiguration und Hardware-Aufbau aufeinander ab.

Modul-Ausfall

Verhalten: Nach dem Einschalten blinken alle RUN-LEDs bis zum fehlerhaften Modul. Bei allen nachfolgenden Modulen leuchtet die MF LED und die RUN-LED ist aus.

Ursache: Das Modul rechts der blinkenden Module ist defekt.

Abhilfe: Ersetzen Sie das defekte Modul.

Grundlagen und Montage System SLIO

Industrielle Sicherheit und Aufbaurichtlinien > Industrielle Sicherheit in der Informationstechnologie

2.13 Industrielle Sicherheit und Aufbaurichtlinien

2.13.1 Industrielle Sicherheit in der Informationstechnologie

Aktuellste Version

Dieses Kapitel finden Sie auch als Leitfaden "Industrielle IT-Sicherheit" unter www.yaskawa.eu.com

Gefahren

Datensicherheit und Zugriffsschutz wird auch im industriellen Umfeld immer wichtiger. Die fortschreitende Vernetzung ganzer Industrieanlagen mit den Unternehmensebenen und die Funktionen zur Fernwartung führen zu höheren Anforderungen zum Schutz der Industrieanlagen. Gefährdungen können entstehen durch:

- Innere Manipulation wie technische Fehler, Bedien- und Programmfehler und vorsätzliche Programm- bzw. Datenmanipulation.
- Äußere Manipulation wie Software-Viren, -Würmer und Trojaner.
- Menschliche Unachtsamkeit wie z.B. Passwort-Phishing.

Schutzmaßnahmen

Die wichtigsten Schutzmaßnahmen vor Manipulation und Verlust der Datensicherheit im industriellen Umfeld sind:

- Verschlüsselung des Datenverkehrs mittels Zertifikate.
- Filterung und Kontrolle des Datenverkehrs durch VPN "Virtual Private Networks".
- Identifizierung der Teilnehmer durch "Authentifizierung" über sicheren Kanal.
- Segmentierung in geschützte Automatisierungszellen, so dass nur Geräte in der gleichen Gruppe Daten austauschen können.
- Deaktivierung überflüssiger Hard- und Software.

Weiterführende Informationen

Nähere Informationen zu den Maßnahmen finden Sie auf den folgenden Webseiten:

- Bundesamt für Informationstechnik www.bsi.bund.de
- Cybersecurity & Infrastructure Security Agency <u>us-cert.cisa.gov</u>
- VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik www.vdi.de

Industrielle Sicherheit und Aufbaurichtlinien > Industrielle Sicherheit in der Informationstechnologie

2.13.1.1 Absicherung von Hardware und Applikationen

Maßnahmen

- Integrieren Sie keine Komponenten bzw. Systeme in öffentliche Netzwerke.
 - Setzen Sie bei Einsatz in öffentlichen Netzwerken VPN "Virtual Private Networks" ein. Hiermit können Sie den Datenverkehr entsprechend kontrollieren und filtern.
- Halten Sie Ihre Systeme immer auf dem neuesten Stand.
 - Verwenden Sie immer den neuesten Firmwarestand für alle Geräte.
 - Führen Sie regelmäßige Updates Ihrer Bedien-Software durch.
- Schützen Sie Ihre Systeme durch eine Firewall.
 - Die Firewall schützt Ihre Infrastruktur nach innen und nach außen.
 - Hiermit können Sie Ihr Netzwerk segmentieren und ganze Bereiche isolieren.
- Sichern Sie den Zugriff auf Ihre Anlagen über Benutzerkonten ab.
 - Verwenden Sie nach Möglichkeit ein zentrales Benutzerverwaltungssystem.
 - Legen Sie für jeden Benutzer, für den eine Autorisierung unbedingt erforderlich ist, ein Benutzerkonto an.
 - Halten Sie die Benutzerkonten immer aktuell und deaktivieren Sie nicht verwendete Benutzerkonten.
- Schützen Sie den Zugriff auf Ihre Anlagen durch sichere Passwörter.
 - Ändern Sie das Passwort einer Standard-Anmeldung nach dem ersten Start.
 - Verwenden Sie sichere Passwörter bestehend aus Groß-/Kleinschreibung, Zahlen und Sonderzeichen. Der Einsatz eines Passwort-Generators bzw. -Managers wird empfohlen.
 - Ändern Sie die Passwörter gemäß den für Ihre Anwendung geltenden Regeln und Vorgaben.
- Deaktivieren Sie inaktive Kommunikations-Ports bzw. Protokolle.
 - Es sollten immer nur die Kommunikations-Ports aktiviert sein, über die auch kommuniziert wird.
 - Es sollten immer nur die Kommunikations-Protokolle aktiviert sein, über die auch kommuniziert wird.
- Berücksichtigen Sie bei der Anlagenplanung und Absicherung mögliche Verteidigungsstrategien.
 - Die alleinige Isolation von Komponenten ist nicht ausreichend für einen umfassenden Schutz. Hier ist ein Gesamt-Konzept zu entwerfen, welches auch Verteidigungsmaßnahmen im Falle eines Cyper-Angriffs vorsieht.
 - Führen Sie in regelmäßigen Abständen Bedrohungsanalysen durch. Unter anderem erfolgt hier eine Gegenüberstellung zwischen den getroffenen zu den erforderlichen Schutzmaßnahmen.
- Beschränken Sie den Einsatz von externen Datenträgern.
 - Über externe Datenträger wie USB-Speichersticks oder SD-Speicherkarten kann Schadsoftware unter Umgehung einer Firewall direkt in eine Anlage gelangen.
 - Externe Datenträger bzw. deren Steckplätze müssen z.B. unter Verwendung eines abschließbaren Schaltschranks vor unbefugtem physischem Zugriff geschützt werden.
 - Stellen Sie sicher, dass nur befugte Personen Zugriff haben.
 - Stellen Sie bei der Entsorgung von Datenträgern sicher, dass diese sicher zerstört werden.
- Verwenden Sie sichere Zugriffspfade wie HTTPS bzw. VPN für den Remote-Zugriff auf Ihre Anlage.
- Aktivieren Sie die sicherheitsrelevante Ereignisprotokollierung gemäß der gültigen Sicherheitsrichtlinie und den gesetzlichen Anforderungen zum Datenschutz.

Industrielle Sicherheit und Aufbaurichtlinien > Aufbaurichtlinien

2.13.1.2 Absicherung von PC-basierter Software

Maßnahmen

Da PC-basierte Software zur Programmierung, Konfiguration und Überwachung verwendet wird, können hiermit auch ganze Anlagen oder einzelne Komponenten manipuliert werden. Hier ist besondere Vorsicht geboten!

- Verwenden Sie Benutzerkonten auf Ihren PC-Systemen.
 - Verwenden Sie nach Möglichkeit ein zentrales Benutzerverwaltungssystem.
 - Legen Sie für jeden Benutzer, für den eine Autorisierung unbedingt erforderlich ist, ein Benutzerkonto an.
 - Halten Sie die Benutzerkonten immer aktuell und deaktivieren Sie nicht verwendete Benutzerkonten.
- Schützen Sie Ihre PC-Systeme durch sichere Passwörter.
 - Ändern Sie das Passwort einer Standard-Anmeldung nach dem ersten Start.
 - Verwenden Sie sichere Passwörter bestehend aus Groß-/Kleinschreibung, Zahlen und Sonderzeichen. Der Einsatz eines Passwort-Generators bzw. -Managers wird empfohlen.
 - Ändern Sie die Passwörter gemäß den für Ihre Anwendung geltenden Regeln und Vorgaben.
- Aktivieren Sie die sicherheitsrelevante Ereignisprotokollierung gemäß der gültigen Sicherheitsrichtlinie und den gesetzlichen Anforderungen zum Datenschutz.
- Schützen Sie Ihre PC-Systeme durch Sicherheitssoftware.
 - Installieren Sie auf Ihren PC-Systemen Virenscanner zur Identifikation von Viren, Trojanern und anderer Malware.
 - Installieren Sie Software, die Phishing-Attacken erkennen und aktiv verhindern kann.
- Halten Sie Ihre Software immer auf dem neuesten Stand.
 - Führen Sie regelmäßige Updates Ihres Betriebssystems durch.
 - Führen Sie regelmäßige Updates Ihrer Software durch.
- Führen Sie regelmäßige Datensicherungen durch und lagern Sie die Datenträger an einem sicheren Ort.
- Führen Sie regelmäßige Neustarts Ihrer PC-Systeme durch. Starten Sie nur von Datenträgern, welche gegen Manipulation geschützt sind.
- Setzen Sie Verschlüsselungssysteme auf Ihren Datenträgern ein.
- Führen Sie regelmäßig Sicherheitsbewertungen durch, um das Manipulationsrisiko zu verringern.
- Verwenden Sie nur Daten und Software aus zugelassenen Quellen.
- Deinstallieren Sie Software, welche nicht verwendet wird.
- Deaktivieren Sie nicht verwendete Dienste.
- Aktivieren Sie an Ihrem PC-System eine passwortgeschützte Bildschirmsperre.
- Sperren Sie Ihre PC-Systeme immer, sobald Sie den PC-Arbeitsplatz verlassen.
- Klicken Sie auf keine Links, welche von unbekannten Quellen stammen. Fragen Sie ggf. nach, z.B. bei E-Mails.
- Verwenden Sie sichere Zugriffspfade wie HTTPS bzw. VPN für den Remote-Zugriff auf Ihr PC-System.

2.13.2 Aufbaurichtlinien

Allgemeines

Die Aufbaurichtlinien enthalten Informationen über den störsicheren Aufbau eines SPS-Systems. Es werden die Wege beschrieben, wie Störungen in Ihre Steuerung gelangen können, wie die elektromagnetische Verträglichkeit (EMV) sicher gestellt werden kann und wie bei der Schirmung vorzugehen ist.

Industrielle Sicherheit und Aufbaurichtlinien > Aufbaurichtlinien

Was bedeutet EMV?

Unter Elektromagnetischer Verträglichkeit (EMV) versteht man die Fähigkeit eines elektrischen Gerätes, in einer vorgegebenen elektromagnetischen Umgebung fehlerfrei zu funktionieren, ohne vom Umfeld beeinflusst zu werden bzw. das Umfeld in unzulässiger Weise zu beeinflussen.

Die Komponenten sind für den Einsatz in Industrieumgebungen entwickelt und erfüllen hohe Anforderungen an die EMV. Trotzdem sollten Sie vor der Installation der Komponenten eine EMV-Planung durchführen und mögliche Störquellen in die Betrachtung einbeziehen.

Mögliche Störeinwirkungen

Elektromagnetische Störungen können sich auf unterschiedlichen Pfaden in Ihre Steuerung einkoppeln:

- Elektromagnetische Felder (HF-Einkopplung)
- Magnetische Felder mit energietechnischer Frequenz
- Bus-System
- Stromversorgung
- Schutzleiter

Je nach Ausbreitungsmedium (leitungsgebunden oder -ungebunden) und Entfernung zur Störquelle gelangen Störungen über unterschiedliche Kopplungsmechanismen in Ihre Steuerung.

Man unterscheidet:

- galvanische Kopplung
- kapazitive Kopplung
- induktive Kopplung
- Strahlungskopplung

Grundregeln zur Sicherstellung der EMV

Häufig genügt zur Sicherstellung der EMV das Einhalten einiger elementarer Regeln. Beachten Sie beim Aufbau der Steuerung deshalb die folgenden Grundregeln.

- Achten Sie bei der Montage Ihrer Komponenten auf eine gut ausgeführte flächenhafte Massung der inaktiven Metallteile.
 - Stellen Sie eine zentrale Verbindung zwischen der Masse und dem Erde/Schutzleitersystem her.
 - Verbinden Sie alle inaktiven Metallteile großflächig und impedanzarm.
 - Verwenden Sie nach Möglichkeit keine Aluminiumteile. Aluminium oxidiert leicht und ist für die Massung deshalb weniger gut geeignet.
- Achten Sie bei der Verdrahtung auf eine ordnungsgemäße Leitungsführung.
 - Teilen Sie die Verkabelung in Leitungsgruppen ein. (Starkstrom, Stromversorgungs-, Signal- und Datenleitungen).
 - Verlegen Sie Starkstromleitungen und Signal- bzw. Datenleitungen immer in getrennten Kanälen oder Bündeln.
 - Führen Sie Signal- und Datenleitungen möglichst eng an Masseflächen (z.B. Tragholme, Metallschienen, Schrankbleche).
- Achten Sie auf die einwandfreie Befestigung der Leitungsschirme.
 - Datenleitungen sind geschirmt zu verlegen.
 - Analogleitungen sind geschirmt zu verlegen. Bei der Übertragung von Signalen mit kleinen Amplituden kann das einseitige Auflegen des Schirms vorteilhaft sein.
 - Leitungen für Frequenzumrichter, Servo- und Schrittmotore sind geschirmt zu verlegen.
 - Legen Sie die Leitungsschirme direkt nach dem Schrankeintritt großflächig auf eine Schirm-/Schutzleiterschiene auf, und befestigen Sie die Schirme mit Kabelschellen.
 - Achten Sie darauf, dass die Schirm-/Schutzleiterschiene impedanzarm mit dem Schrank verbunden ist.
 - Verwenden Sie für geschirmte Datenleitungen metallische oder metallisierte Steckergehäuse.

Grundlagen und Montage System SLIO

Industrielle Sicherheit und Aufbaurichtlinien > Aufbaurichtlinien

- Setzen Sie in besonderen Anwendungsfällen spezielle EMV-Maßnahmen ein.
 - Erwägen Sie bei Induktivitäten den Einsatz von Löschgliedern.
 - Beachten Sie, dass bei Einsatz von Leuchtstofflampen sich diese negativ auf Signalleitungen auswirken können.
- Schaffen Sie ein einheitliches Bezugspotenzial und erden Sie nach Möglichkeit alle elektrischen Betriebsmittel.
 - Achten Sie auf den gezielten Einsatz der Erdungsmaßnahmen. Das Erden der Steuerung dient als Schutz- und Funktionsmaßnahme.
 - Verbinden Sie Anlagenteile und Schränke mit Ihrer SPS sternförmig mit dem Erde/Schutzleitersystem. Sie vermeiden so die Bildung von Erdschleifen.
 - Verlegen Sie bei Potenzialdifferenzen zwischen Anlagenteilen und Schränken ausreichend dimensionierte Potenzialausgleichsleitungen.

Schirmung von Leitungen

Elektrische, magnetische oder elektromagnetische Störfelder werden durch eine Schirmung geschwächt; man spricht hier von einer Dämpfung. Über die mit dem Gehäuse leitend verbundene Schirmschiene werden Störströme auf Kabelschirme zur Erde hin abgeleitet. Hierbei ist darauf zu achten, dass die Verbindung zum Schutzleiter impedanzarm ist, da sonst die Störströme selbst zur Störguelle werden.

Bei der Schirmung von Leitungen ist folgendes zu beachten:

- Verwenden Sie möglichst nur Leitungen mit Schirmgeflecht.
- Die Deckungsdichte des Schirmes sollte mehr als 80% betragen.
- In der Regel sollten Sie die Schirme von Leitungen immer beidseitig auflegen. Nur durch den beidseitigen Anschluss der Schirme erreichen Sie eine gute Störunterdrückung im höheren Frequenzbereich. Nur im Ausnahmefall kann der Schirm auch einseitig aufgelegt werden. Dann erreichen Sie jedoch nur eine Dämpfung der niedrigen Frequenzen. Eine einseitige Schirmanbindung kann günstiger sein, wenn:
 - die Verlegung einer Potenzialausgleichsleitung nicht durchgeführt werden kann.
 - Analogsignale (einige mV bzw. μA) übertragen werden.
 - Folienschirme (statische Schirme) verwendet werden.
- Benutzen Sie bei Datenleitungen für serielle Kopplungen immer metallische oder metallisierte Stecker. Befestigen Sie den Schirm der Datenleitung am Steckergehäuse. Schirm nicht auf den PIN 1 der Steckerleiste auflegen!
- Bei stationärem Betrieb ist es empfehlenswert, das geschirmte Kabel unterbrechungsfrei abzuisolieren und auf die Schirm-/Schutzleiterschiene aufzulegen.
- Benutzen Sie zur Befestigung der Schirmgeflechte Kabelschellen aus Metall. Die Schellen müssen den Schirm großflächig umschließen und guten Kontakt ausüben.
- Legen Sie den Schirm direkt nach Eintritt der Leitung in den Schrank auf eine Schirmschiene auf. Führen Sie den Schirm bis zu Ihrer SPS weiter, legen Sie ihn dort jedoch nicht erneut auf!

VORSICHT!

Bitte bei der Montage beachten!

Bei Potenzialdifferenzen zwischen den Erdungspunkten kann über den beidseitig angeschlossenen Schirm ein Ausgleichsstrom fließen.

Abhilfe: Potenzialausgleichsleitung.

Allgemeine Daten für das System SLIO

2.14 Allgemeine Daten für das System SLIO

Konformität und Approbation		
Konformität		
CE	2014/35/EU	Niederspannungsrichtlinie
	2014/30/EU	EMV-Richtlinie
Approbation		
UL	-	Siehe Technische Daten
Sonstiges		
RoHS	2011/65/EU	Richtlinie zur Beschränkung der Verwendung bestimmter gefährlicher Stoffe in Elektro- und Elektronikgeräten

Personenschutz und Geräteschutz			
Schutzart	-	IP20	
Potenzialtrennung			
Zum Feldbus	-	Galvanisch entkoppelt	
Zur Prozessebene	-	Galvanisch entkoppelt	
Isolationsfestigkeit	-	-	
Isolationsspannung gegen Bezugserde)		
Eingänge / Ausgänge	-	AC / DC 50V, bei Prüfspannung AC 500V	
Schutzmaßnahmen	-	gegen Kurzschluss	

Umgebungsbedingungen gemäß EN 61131-2				
Klimatisch				
Lagerung /Transport	EN 60068-2-14	-25+70°C		
Betrieb				
Horizontaler Einbau hängend	EN 61131-2	0+60°C		
Horizontaler Einbau liegend	EN 61131-2	0+55°C		
Vertikaler Einbau	EN 61131-2	0+50°C		
Luftfeuchtigkeit	EN 60068-2-30	RH1 (ohne Betauung, relative Feuchte 10 95%)		
Verschmutzung	EN 61131-2	Verschmutzungsgrad 2		
Aufstellhöhe max.	-	2000m		
Mechanisch				
Schwingung	EN 60068-2-6	1g, 9Hz 150Hz		
Schock	EN 60068-2-27	15g, 11ms		

Grundlagen und Montage System SLIO

Allgemeine Daten für das System SLIO > Einsatz unter erschwerten Betriebsbedingungen

Montagebedingungen		
Einbauort	-	Im Schaltschrank
Einbaulage	-	Horizontal und vertikal

EMV	Norm		Bemerkungen
Störaussendung	EN 61000-6-4		Class A (Industriebereich)
Störfestigkeit	EN 61000-6-2		Industriebereich
Zone B		EN 61000-4-2	ESD
			8kV bei Luftentladung (Schärfegrad 3),
			4kV bei Kontaktentladung (Schärfegrad 2)
		EN 61000-4-3	HF-Einstrahlung (Gehäuse)
			80MHz 1000MHz, 10V/m, 80% AM (1kHz)
			1,4GHz 2,0GHz, 3V/m, 80% AM (1kHz)
			2GHz 2,7GHz, 1V/m, 80% AM (1kHz)
		EN 61000-4-6	HF-Leitungsgeführt
			150kHz 80MHz, 10V, 80% AM (1kHz)
		EN 61000-4-4	Burst, Schärfegrad 3
		EN 61000-4-5	Surge, Schärfegrad 3 ¹

¹⁾ Aufgrund der energiereichen Einzelimpulse ist bei Surge eine angemessene externe Beschaltung mit Blitzschutzelementen wie z.B. Blitzstromableitern und Überspannungsableitern erforderlich.

2.14.1 Einsatz unter erschwerten Betriebsbedingungen

Ohne zusätzlich schützende Maßnahmen dürfen die Produkte nicht an Orten mit erschwerten Betriebsbedingungen; z.B. durch:

- Staubentwicklung
- chemisch aktive Substanzen (ätzende Dämpfe oder Gase)
- starke elektrische oder magnetische Felder

eingesetzt werden!

System SLIO Hardwarebeschreibung

Leistungsmerkmale

3 Hardwarebeschreibung

3.1 Leistungsmerkmale

054-1CB00

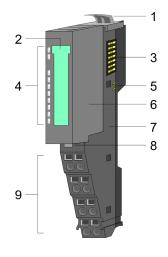
Das FM 054-1CB00 ist ein Motion-Modul zur Ansteuerung von 2 DC-Motoren. Es ist einsetzbar für Punkt-zu-Punkt-Positionierungen und für komplexe Verfahrprofile mit höchsten Ansprüchen an Genauigkeit, Dynamik und Geschwindigkeit.

- Motion-Modul zur Ansteuerung von 2 DC-Antrieben
- 4 Ein-/Ausgänge DC 24V, als Encodereingänge nutzbar
- PWM-Taktfrequenz 32kHz

Kompatibilitätsliste

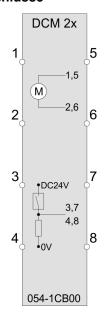
Eine Übersicht der CPUs und Bus-Koppler, welche das 054-1CB00 unterstützen, finden Sie unter <u>www.yaskawa.eu.com</u> im Downloadbereich der System SLIO Handbücher.

Bestelldaten


Тур	Bestellnummer	Beschreibung
FM 054 2xDC	054-1CB00	System SLIO 2xDC-Motor-Modul, DC 24V, 1,5A
		2 Kanäle mit Rückmeldung, 4 Ein-/Ausgänge DC 24V

Hardwarebeschreibung System SLIO

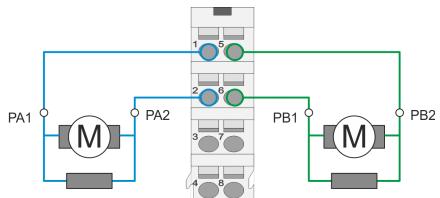
Aufbau


3.2 Aufbau

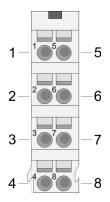
054-1CB00

- 1 Verriegelungshebel Terminal-Modul
- 2 Beschriftungsstreifen
- 3 Rückwandbus
- 4 LED-Statusanzeige
- 5 DC 24V Leistungsversorgung
- 6 Elektronik-Modul
- 7 Terminal-Modul
- 8 Verriegelungshebel Elektronik-Modul
- 9 Anschlussklemmen

Anschlüsse


VORSICHT!

Verletzungsgefahr durch Stromschlag und Beschädigung des Gerätes möglich!

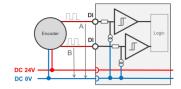

Setzen Sie das System SLIO in einen sicheren, spannungslosen Zustand, bevor Sie mit der Montage, Demontage oder Verdrahtung der System SLIO Module beginnen!

Sie können Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm² anschließen. Für die Anschlussleitungen gelten folgende Anforderungen:

- Für die digitalen E/A-Anschlüsse können bei DIO-Betrieb Einzeladern verwendet werden. Im Encoder-Betrieb sind geschirmte Leitungen zu verwenden.
- Ein Motor ist über geschirmte Leitungen anzuschließen.
- Generell sind Power- und Signalleitungen getrennt voneinander zu verlegen.

Aufbau

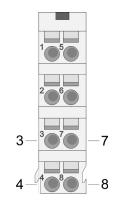
Pos.	Funktion	Тур	Beschreibung
1	PA1	Α	DC-Motor 1 - Anschluss 1
2	PA2	Α	DC-Motor 1 - Anschluss 2
3	I/O1	E/A	Digitaler Ein-/Ausgang 1
4	I/O3	E/A	Digitaler Ein-/Ausgang 3
5	PB1	Α	DC-Motor 2 - Anschluss 1
6	PB2	Α	DC-Motor 2 - Anschluss 2
7	I/O2	E/A	Digitaler Ein-/Ausgang 2
8	I/O4	E/A	Digitaler Ein-/Ausgang 4



Spannungsversorgung

Das Modul ist über den Rückwandbus mit den beiden DC 24V Spannungen Leistungsversorgung für die I/O-Ebene und Elektronikversorgung zu versorgen. Bei der Inbetriebnahme können diese gleichzeitig bzw. muss die Leistungsversorgung für die I/O-Ebene zuerst eingeschaltet werden. § "Standard-Verdrahtung" Seite 28

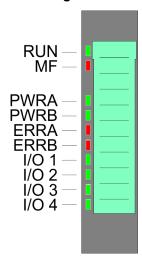
Anschluss eines Encoders


Sie haben die Möglichkeit über I/O1 und I/O3 bzw. I/O2 und I/O4 einen Encoder anzuschließen. Das Modul ermittelt, sofern konfiguriert, aus der Encoder-Rückmeldung die Istwerte von Position, Geschwindigkeit, Beschleunigung und Verzögerung. Ist nur ein Encoder angeschlossen, stehen die nicht benutzten digitalen Ein-/Ausgänge zur freien Verfügung.

Encoder-Modus: 24V HTL-Signal

Phase A und B 100 kHz

4-fach-Auswertung

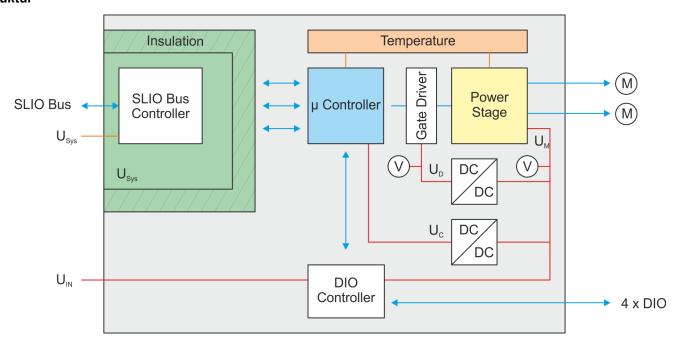


Pos.	Funktion	Тур	Beschreibung
3	I/O1	E	Encoder-Funktionalität Antrieb 1
4	I/O3	E	Encoder-Funktionalität Antrieb 1
7	I/O2	E	Encoder-Funktionalität Antrieb 2
8	I/O4	Е	Encoder-Funktionalität Antrieb 2
E: Einga	ang, A: Ausgang		

Hardwarebeschreibung System SLIO

Aufbau

Statusanzeige


RUN	MF	Beschre	eibung		
grün	rot				
			Bus-Kommunikation ist OK		
_			tatus ist OK		
			nmunikation ist OK		
			tatus meldet Fehler		
			nmunikation nicht möglich tatus meldet Fehler		
			usversorgungsspannung		
			rationsfehler Stap. 2.12 "Hilfe zur Fehlersuche - LEDs"		
X		Seite 39			
	grün		Antrieb 1 befindet sich außerhalb der Zustände "Eingeschaltet" und "Betrieb freigegeben" Kap. 4.4.2 "Zustände" Seite 64		
PWRA			Antrieb 1 befindet sich im Zustand "Eingeschaltet"		
			Antrieb 1 befindet sich im Zustand "Betrieb freigegeben"		
	grün		Antrieb 2 befindet sich außerhalb der Zustände "Eingeschaltet" und "Betrieb freigegeben" Kap. 4.4.2 "Zustände" Seite 64		
PWRB			Antrieb 2 befindet sich im Zustand "Eingeschaltet"		
			Antrieb 2 befindet sich im Zustand "Betrieb freigegeben"		
			Kein Fehler Antrieb 1		
ERRA	rot		Warnung Antrieb 1: 0x80 in <i>∜</i> "0x8100-02 - Statuswort" Seite 123		
	-		Fehler Antrieb 1: 0x08 in $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		
			Kein Fehler Antrieb 2		
ERRB	rot		Warnung Antrieb 2: 0x80 in <i>♥ "0x8100-02 - Statuswort" Seite 123</i>		
	•		Fehler Antrieb 2: 0x08 in $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		
I/O1	grün		Digitaler Ein-/Ausgang 1 hat "0"-Signal		
1/01			Digitaler Ein-/Ausgang 1 hat "1"-Signal		
1/02	grün		Digitaler Ein-/Ausgang 2 hat "0"-Signal		
1/02			Digitaler Ein-/Ausgang 2 hat "1"-Signal		
I/O3	grün		Digitaler Ein-/Ausgang 3 hat "0"-Signal		
1/00			Digitaler Ein-/Ausgang 3 hat "1"-Signal		

Blockschaltbild

RUN	MF	Beschreibung	
I/O4	grün		Digitaler Ein-/Ausgang 4 hat "0"-Signal
1/04			Digitaler Ein-/Ausgang 4 hat "1"-Signal
nicht relevan	it: X		

3.3 Blockschaltbild

Struktur

Spannungen

U_{Svs} - DC 24V Elektronikversorgung

Spannungsversorgung für Elektronik und Rückwandbus-Kommunikation

U_{IN} - DC 24V Leistungsversorgung

Spannungsversorgung für die I/O-Ebene

Bereich: DC 20,4 ... 28,8V

U_D - DC 10V Treiberversorgung

Die Spannungsversorgung wird gebildet aus U_{IN} über einen DC-DC-Konverter und über den μ -Controller aktiviert.

U_C - DC 3,3V μ-Controller-Versorgung

Die Spannungsversorgung wird gebildet aus U_{IN} über einen DC-DC-Konverter.

AN: Flanke 0-1 auf 16V von U_{IN}

AUS: Flanke 1-0 auf DC 14V von UIN

U_M - Motor Spannungsversorgung

AN: Flanke 0-1 auf DC 19,2V von \mathbf{U}_{IN}

AUS: Flanke 1-0 auf 18,5V von UIN

Hardwarebeschreibung System SLIO

Technische Daten

Temperaturüberwachung

Das Motion-Modul besitzt eine interne Temperaturüberwachung des μ -Controllers und der Endstufe. Über das Objektverzeichnis können Sie Grenztemperaturen definieren. Bei Über- oder Unterschreiten eines Grenzwerts erfolgt eine Fehlerreaktion des Motion-Moduls, welche Sie konfigurieren können. $\mbox{\ensuremath{\ensu$

3.4 Technische Daten

Artikelnr.	054-1CB00
Bezeichnung	FM054
Modulkennung	0982 6800
Stromaufnahme/Verlustleistung	
Stromaufnahme aus Rückwandbus	50 mA
Verlustleistung	1 W
Technische Daten digitale Eingänge	
Anzahl Eingänge	4
Leitungslänge geschirmt	1000 m
Leitungslänge ungeschirmt	600 m
Lastnennspannung	-
Stromaufnahme aus Lastspannung L+ (ohne Last)	-
Nennwert	DC 20,428,8 V
Eingangsspannung für Signal "0"	DC 05 V
Eingangsspannung für Signal "1"	DC 1128,8 V
Eingangsspannung Hysterese	-
Frequenzbereich	-
Eingangswiderstand	-
Eingangsstrom für Signal "1"	3 mA
Anschluss von 2-Draht-BERO möglich	✓
max. zulässiger BERO-Ruhestrom	1,5 mA
Eingangsverzögerung von "0" nach "1"	1,5 ms
Eingangsverzögerung von "1" nach "0"	1,5 ms
Anzahl gleichzeitig nutzbarer Eingänge waagrechter Aufbau	4
Anzahl gleichzeitig nutzbarer Eingänge senkrechter Aufbau	4
Eingangskennlinie	IEC 61131-2, Typ 3
Eingangsdatengröße	4 Bit
Technische Daten digitale Ausgänge	
Anzahl Ausgänge	4
Leitungslänge geschirmt	1000 m

Technische Daten

Artikelnr.	054-1CB00
Leitungslänge ungeschirmt	600 m
Lastnennspannung	DC 20,428,8 V
Verpolschutz der Lastnennspannung	-
Stromaufnahme aus Lastspannung L+ (ohne Last)	-
Ausgangsstrom bei "1"-Signal, Nennwert	500 mA
Ausgangsverzögerung von "0" nach "1"	1,5 ms
Ausgangsverzögerung von "1" nach "0"	1,5 ms
Mindestlaststrom	-
Lampenlast	10 W
Parallelschalten von Ausgängen zur redundanten Ansteuerung	nicht möglich
Parallelschalten von Ausgängen zur Leistungserhöhung	nicht möglich
Ansteuern eines Digitaleingangs	✓
Schaltfrequenz bei ohmscher Last	max. 300 Hz
Schaltfrequenz bei induktiver Last	max. 0,5 Hz
Schaltfrequenz bei Lampenlast	max. 10 Hz
Begrenzung (intern) der induktiven Abschaltspannung	L+ (-45 V)
Kurzschlussschutz des Ausgangs	ja, elektronisch
Ansprechschwelle des Schutzes	1 A
Anzahl Schaltspiele der Relaisausgänge	-
Schaltvermögen der Relaiskontakte	-
Ausgangsdatengröße	-
Status, Alarm, Diagnosen	
Statusanzeige	grüne LED pro Kanal
Alarme	ja, parametrierbar
Prozessalarm	nein
Diagnosealarm	ja, parametrierbar
Diagnosefunktion	ja
Diagnoseinformation auslesbar	möglich
Versorgungsspannungsanzeige	grüne LED
Sammelfehleranzeige	rote LED
Kanalfehleranzeige	rote LED pro Kanal
Potenzialtrennung	
zwischen den Kanälen	-
zwischen den Kanälen in Gruppen zu	-
zwischen Kanälen und Rückwandbus	✓

Hardwarebeschreibung System SLIO

Technische Daten

Artikelnr.	054-1CB00
Isolierung geprüft mit	AC 500 V
Technische Daten Positioniermodul	
Anzahl Kanäle	2
Eingangsspannung (Nennwert)	DC 24 V
Eingangsspannung (zulässiger Bereich)	DC 20,428,8 V
Motorstrom	1,5 A
Ausgangsstufe	2x Vollbrücke PWM
Kurzschlussschutz	✓
Brems-Chopper benötigt	-
PWM Frequenz	32 kHz
Pulse Train Frequenz	-
Microschritte	-
Schritte pro Umdrehung	-
Encodertyp	A/B-Spur 24V single ended
Encoderfrequenz	100 kHz
Encoderauflösung	24 Bit
Regelungstyp	closed loop
Temperatursensor	✓
Betriebsmodi Positionierfunktionen	
Referenzierung auf Referenzschalter	✓
Referenzierung Drehmoment	✓
Positionierung ohne Encoder	✓
Positionierung mit Encoder	✓
Drehzahlregelung	✓
Drehmomentregelung	✓
Gehäuse	
Material	PPE / PPE GF10
Befestigung	Profilschiene 35mm
Mechanische Daten	
Abmessungen (BxHxT)	12,9 mm x 109 mm x 76,5 mm
Gewicht Netto	65 g
Gewicht inklusive Zubehör	65 g
Gewicht Brutto	79 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C

System SLIO Hardwarebeschreibung

Technische Daten

Artikelnr.	054-1CB00
Zertifizierungen	
Zertifizierung nach UL	ja
Zertifizierung nach KC	in Vorbereitung

Grundlagen

4 Einsatz

4.1 Grundlagen

Adressierung

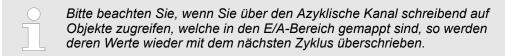
Das System SLIO Motion-Modul stellt seine Daten wie z.B. "Profilgeschwindigkeit" über ein Objektverzeichnis zur Verfügung. In diesem Objektverzeichnis sind die Objekte organisiert und durch eine eindeutige Nummer, bestehend aus *Index* und *Subindex* adressierbar. Die Nummer wird wie folgt angegeben:

0x	Index (hexadezimal)	-	Subindex (dezimal)		
Beispiel	: 0x8400-03				
Zur besseren Strukturierung und Erweiterung wurde beim System SLIO Motion-Modul eine andere Objektnummerierung (Index-Vergabe) gegenüber dem Standard CiA 402 gewählt.					

Index-Bereiche

Durch die Aufteilung in Index und Subindex ist eine Gruppierung möglich. Die einzelnen Bereiche sind in Gruppen zusammengehöriger Objekte gegliedert. Dieses Objektverzeichnis ist beim System SLIO Motion Modul wie folgt strukturiert:

Index-Bereich	Inhalt
0x1000 0x6FFF	Allgemeine Daten und Systemdaten
0x7000 0x7FFF	Daten der digitalen Ein- und Ausgabeeinheit
0x8000 0x8FFF	Daten Antrieb 1
0x9000 0x9FFF	Daten Antrieb 2



Jedes Objekt verfügt über einen Subindex 0. Durch Aufruf eines Objekts mit Subindex 0 bekommen Sie die Anzahl der verfügbaren Subindizes des entsprechenden Objekts zurückgeliefert.

Zugriff auf das Objektverzeichnis

Sie haben folgende Möglichkeiten für den Zugriff auf die Objekte im Objektverzeichnis:

- Zugriff über Azyklischen Kanal
 - Jeder Zugriff auf das Objektverzeichnis wird vom Motion-Modul quittiert.
- Zugriff über E/A-Bereich
 - Die wichtigsten Objekte sind in den E/A-Bereich gemappt.
 - Das Mapping kann nicht geändert werden.
 - ♥ Kap. 4.11 "Ein-/Ausgabe-Bereich" Seite 96

System SLIO Einsatz

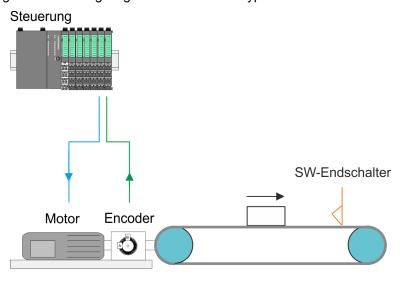
Grundlagen > Aufbau einer Positioniersteuerung

Übersicht

Das Motion-Modul belegt 60Byte Eingabe-Daten und 60Byte Ausgabe-Daten.

Kopfmodul	Rückwandbus	Motion-Modul		
CPU bzw. Buskoppler	\rightarrow	Prozessdaten	Azyklischer Kanal	
	←	60Byte		

Der Datenaustausch mit dem Motion-Modul muss über die 60 Byte konsistent sein! Es wird daher die Ansteuerung über das Prozessabbild empfohlen.


4.1.1 DC-Motor-Modul

Das FM 054-1CB00 integriert eine kompakte Motion-Control-Lösung für die direkte Ansteuerung von zwei DC-Motoren in kleinster Bauform. DC-Motoren sind gut regelbar, da sich die Drehzahl proportional zur Spannung verhält. Die Stromregelung erfolgt in Form einer PWM-Taktfrequenz von 32kHz. Durch den Anschluss eines Encoders pro Antrieb und Einbindung in den Regelkreis ist die Realisierung von einfachen Achsen möglich. Die Ausgangsstufe ist überlast- und kurzschlusssicher.

4.1.2 Aufbau einer Positioniersteuerung

Aufbau

Die nachfolgende Abbildung zeigt den Aufbau einer typischen Positioniersteuerung

Steuerung

Die Steuerung besteht aus der SPS mit dem Anwenderprogramm für die Ablaufsteuerung und dem Motion-Modul zur Ansteuerung des Antriebs. Das Motion-Modul hat eine integrierte Leistungsendstufe. Diese erzeugt aus den Modulsignalen die für den jeweiligen Antrieb erforderlichen Antriebsströme. Sie können im Motion-Modul einen Software-Endschalter definieren und in Ihrem Anwenderprogramm auf das Überfahren reagieren.

Grundlagen > Aufbau einer Positioniersteuerung

VORSICHT!

Bitte sehen Sie zur Streckenbegrenzung (Allgemeines Positions-Limit) bzw. zur Vermeidung von Schäden neben Software-Endschalter auch Hardware-Endschalter vor und berücksichtigen Sie diese in Ihrem Sicherheitskonzept.

Motor

Ein Gleichstrommotor (DC-Motor) ist ein Antrieb für hochgenaue Positionieraufgaben. Dieser besteht aus einem feststehenden Stator mit Permanentmagneten und einem rotierenden Anker. Die Stromzufuhr in die Ankerwicklung erfolgt mittels Kohlebürsten über den Kommutator als Schleifkontakt. Die einzelnen Ankerwicklungen sind über den Kommutator angeschlossen, welcher als Polwender dient. Sobald die Ankerwicklung mit Strom versorgt wird, baut sich im Anker ein Magnetfeld auf. Dies resultiert, beeinflusst durch die Permanentmagnete, in einer Drehbewegung des Ankers. Durch die Drehung erfolgt mittels des Kommutators eine Umpolung im Anker. Hierdurch wird die Drehbewegung stetig fortgesetzt. Die Ansteuerung eines DC-Motors mittels Pulsweitenmodulation (PWM) ist verlustarm und besitzt einen hohen Wirkungsgrad. Bei der PWM wird die Einund Ausschaltzeit eines Rechtecksignals bei fester Grundfrequenz von 32kHz variiert. Hierdurch resultieren unterschiedliche mittlere Spannungen. Bei der Motorauswahl sind folgende Faktoren zu berücksichtigen:

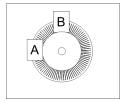
- Drehmomentverlauf über die Drehzahl
- Motorstrom über die Drehzahl
- Wicklungswiderstand bzw. Motorinduktivität

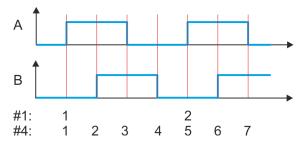
Encoder

- Der Encoder bzw. Drehgeber liefert in Form von digitalen Signalen die Position des Antriebs an die Steuerung zurück. Diese können in der Steuerung entsprechend ausgewertet werden.
- Der Encoder bzw. Drehgeber liefert eine bestimmte Anzahl an Impulsen pro Umdrehung.
- Die Wertbildung erfolgt durch Zählen der Impulse.

Mechanik

Aus den Anforderungen der zu bewegenden Last und der Berücksichtigung zusätzlicher Lasten wie z.B. Lager und Getriebe, können Sie die erforderlichen Motordaten ermitteln. Wichtige Parameter sind hierbei:


- Masseträgheit
- Taktzeiten der Positionierung
- Anlauf-, Halte- und Drehmoment bei der maximal benötigten Drehzahl
- Beschleunigung und Drehmoment beim Durchlaufen mechanischen Resonanzen z.B. beim Einsatz mechanische Speicher wie Federelemente, Schwingungspuffer oder lange Antriebsbänder.


Zur Vermeidung von Schrittverlusten sollte, unter Beachtung der Eigenträgheit, das abgegebene Moment des Motors größer sein als das ermittelte mechanische Drehmoment.

4.1.3 Encoder - Signalauswertung

Auswertung

- Encoder oder auch Inkrementalgeber sind Sensoren zur Erfassung von Winkel- bzw. Lageänderungen.
- Je nach Sensortyp und gewünschter Auflösung kann die Abtastung über Schleifkontakt, photoelektrisch oder magnetisch erfolgen.
 - Die Abtastung über Schleifkontakt arbeitet prinzipiell wie ein Schalter, welcher mechanisch bedient wird.
 - Bei der optischen Abtastung wird eine Scheibe, welche eine feine Rasterung besitzt, optisch abgetastet.
 - Bei der magnetischen Abtastung erfolgt die Abtastung eines Polrads bzw. Magnetbands, welche durch Magnetisierung mit einer Teilung beschrieben wurden.
- Der Encoder besitzt zwei Sensoren *Spur A* und *Spur B* für die Abtastung.
- Die Sensoren sind in einem Winkel von 90 Grad zueinander am abzutastenden System angeordnet.
- Bei einer Drehbewegung des Systems geben die Sensoren eine definierte Anzahl von Impulsen aus. Diese sind ein Maß für den zurückgelegten Winkel bzw. Weg. Anhand der elektrischen Phasenverschiebung der beiden Signale lässt sich die Drehrichtung ermitteln.
 - Dreht sich die Welle nach rechts, so ist das Signal von Spur A um 90° voreilend gegenüber dem Signal von Spur B.
 - Dreht sich die Welle nach links, so ist das Signal von Spur A um 90° nacheilend gegenüber dem Signal von Spur B.
- Bei der Sensorauswertung kann aus der Differenz zweier Zählerstände die Geschwindigkeit und die Richtung bestimmt werden.
- Bei *1-facher* Auswertung entspricht eine Flanke 0-1 von *Spur A* einem Zählimpuls bzw. eine Teilung des abzutastenden Systems einem Zähler-Impuls.
- Bei *4-facher* Auswertung entspricht eine Signal-Flanke von *Spur A* und *Spur B* einem Zähler-Impuls. Die 4-fache Auswertung kommt sehr oft zum Einsatz.

#1 1-fache Auswertung #4 4-fache Auswertung

Inbetriebnahme > Inbetriebnahme des System SLIO Motion-Moduls

4.2 Inbetriebnahme

4.2.1 Montage

- 2. Schließen Sie Ihren Antrieb an. 5 Kap. 4.3 "Anschluss eines Motors" Seite 62

4.2.2 Inspektionen und Prüfungen vor dem Testbetrieb

Vorbereitung

Bitte prüfen Sie folgende Punkte, und ergreifen Sie im Falle eines Fehlers geeignete Maßnahmen, bevor Sie mit dem Testbetrieb beginnen.

- Sind alle Verdrahtungen und Anschlüsse richtig?
- Sind alle Muttern und Bolzen am Antrieb fest angezogen?
- Bei einem Motor mit Öldichtung: Ist die Dichtung unbeschädigt und ist der Motor geschmiert? Bitte beachten Sie immer die Inbetriebnahme-Hinweise Ihres Motors!

4.2.3 Inbetriebnahme des System SLIO Motion-Moduls

Vorbereitung

Bitte prüfen Sie folgende Punkte, und ergreifen Sie im Falle eines Fehlers geeignete Maßnahmen, bevor Sie mit dem Testbetrieb beginnen.

- Prüfen Sie die richtige Einstellung der Sollwertvorgaben für den Antrieb sowie der E/A-Signale aus der übergeordnete Steuerung.
- Prüfen Sie die Leitungen zwischen der übergeordneten Steuerung und Ihrem Antrieb sowie die Polarität der Leitungen.
- Prüfen Sie alle Betriebseinstellungen Ihres Antriebs.

Festlegen der Grenzwerte

Stellen Sie die jeweiligen Systemgrenzen, das Systemverhalten und Kennwerte im Objektverzeichnis über den *Azyklischen Kanal* § 99 ein. Dies sind z.B.:

- Verhalten bei Schnellhalt und im Fehlerfall
- Motor Maximalstrom
 - ♥ "0x8C00-04 Motor Strom max." Seite 154
- Stromgrenzen
 - ♥ "0x8600-04 Stromgrenze positiv" Seite 146
 - 🖔 "0x8600-05 Stromgrenze negativ " Seite 146
- Geschwindigkeitsgrenzwerte
- Streckenbegrenzungen
- Belegung der digitalen Ein-/Ausgänge

System SLIO Einsatz

Inbetriebnahme > Inbetriebnahme des System SLIO Motion-Moduls

Schritte der Inbetriebnahme

Immer Parameter der Betriebsart anpassen!

Bitte sorgen Sie dafür, dass das Modul immer entsprechend der ausgewählten Betriebsart mit den passenden Parametern versorgt ist! Beachten Sie hierbei insbesondere die Verwendung der Stromwerte im Ausgabe-Bereich! § Kap. 4.11 "Ein-/Ausgabe-Bereich" Seite 96

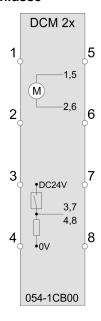
Startparameter

- Start Startparameter Referenzfahrt" Seite 67
- − ♥ "Start Startparameter PtP-Positionsprofil" Seite 74
- − ∜ "Start Startparameter Geschwindigkeitsprofil" Seite 86
- → "Start Startparameter der Drehmomentregelung" Seite 90
- Führen Sie für Ihr System SLIO und Ihr Motion-Modul eine Hardware-Konfiguration durch und erstellen Sie Ihr Applikationsprogramm. Übertragen Sie beides in Ihre CPU. Ein gesonderte Parametrierung des Motion-Moduls ist nicht erforderlich.
- 2.

Spannungsversorgung

Das Modul ist über den Rückwandbus mit den beiden DC 24V Spannungen Leistungsversorgung für die I/O-Ebene und Elektronikversorgung zu versorgen. Bei der Inbetriebnahme können diese gleichzeitig bzw. muss die Leistungsversorgung für die I/O-Ebene zuerst eingeschaltet werden. § "Standard-Verdrahtung" Seite 28

Bringen Sie Ihre CPU in RUN.

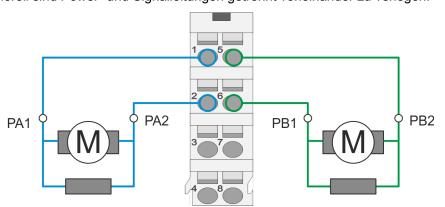

- 3. Schalten Sie den Motor ein.
 - ⇒ Ihr System ist nun bereit für die Kommunikation und Sie können über den Azyklischen Kanal Parametrierungen vornehmen.
- 4. Senden Sie das Kommando "Ausschalten".
 - ♥ "0x8100-01 Steuerwort" Seite 122 Bit 3...0: x110
 - ⇒ Das Motion-Modul zeigt den Zustand "Einschaltbereit".
- **5.** Senden Sie das Kommando "Einschalten".
 - ♥ "0x8100-01 Steuerwort" Seite 122 Bit 3...0: 0111
 - ⇒ Das Motion-Modul zeigt den Zustand "Eingeschaltet".
- **6.** Senden Sie das Kommando "Betrieb freigeben".
 - ♥ "0x8100-01 Steuerwort" Seite 122 Bit 3...0: 1111
 - ⇒ Das Motion-Modul zeigt den Zustand "Betrieb freigegeben". Der Antrieb ist jetzt bereit für Ihre Fahrbefehle.

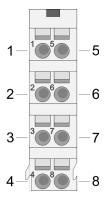
Anschluss eines Motors > Anschlussmöglichkeiten

4.3 Anschluss eines Motors

4.3.1 Anschlussmöglichkeiten

Anschlüsse


VORSICHT!


Verletzungsgefahr durch Stromschlag und Beschädigung des Gerätes möglich!

Setzen Sie das System SLIO in einen sicheren, spannungslosen Zustand, bevor Sie mit der Montage, Demontage oder Verdrahtung der System SLIO Module beginnen!

Sie können Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm² anschließen. Für die Anschlussleitungen gelten folgende Anforderungen:

- Für die digitalen E/A-Anschlüsse können bei DIO-Betrieb Einzeladern verwendet werden. Im Encoder-Betrieb sind geschirmte Leitungen zu verwenden.
- Ein Motor ist über geschirmte Leitungen anzuschließen.
- Generell sind Power- und Signalleitungen getrennt voneinander zu verlegen.

Pos.	Funktion	Тур	Beschreibung
1	PA1	Α	DC-Motor 1 - Anschluss 1
2	PA2	Α	DC-Motor 1 - Anschluss 2
3	I/O1	E/A	Digitaler Ein-/Ausgang 1
4	I/O3	E/A	Digitaler Ein-/Ausgang 3
5	PB1	Α	DC-Motor 2 - Anschluss 1
6	PB2	Α	DC-Motor 2 - Anschluss 2
7	I/O2	E/A	Digitaler Ein-/Ausgang 2
8	I/O4	E/A	Digitaler Ein-/Ausgang 4

Spannungsversorgung

Das Modul ist über den Rückwandbus mit den beiden DC 24V Spannungen Leistungsversorgung für die I/O-Ebene und Elektronikversorgung zu versorgen. Bei der Inbetriebnahme können diese gleichzeitig bzw. muss die Leistungsversorgung für die I/O-Ebene zuerst eingeschaltet werden.

Standard-Verdrahtung" Seite 28

System SLIO **Einsatz**

Antriebsprofil > Übersicht

4.4 Antriebsprofil

4.4.1 Übersicht

Antriebsprofil CiA 402

- Das System SLIO Motion-Modul FM 054-1CB00 orientiert sich in der Funktionsweise weitgehend am Antriebsprofil CiA 402.
- Das Antriebsprofil CiA 402 definiert Zustandsmaschine, Betriebsarten und Objekte (Parameter) von Baugruppen für die Antriebstechnik.
- Wesentliche Objekte zur Steuerung und Auswertung der Zustandsmaschine sind hierbei Steuerwort, Statuswort und die Betriebsart.
- Weitere Objekte dienen zur Konfiguration und Diagnose des Motion-Moduls.
- Alle Objekte sind im ♥ Kap. 5 "Objektverzeichnis" Seite 109 zusammengefasst.
- Die wichtigsten Objekte finden Sie im 5 Kap. 4.11 "Ein-/Ausgabe-Bereich" Seite 96.
- Der Zugriff auf die Objekte zur Laufzeit erfolgt mittels 🖔 Kap. 4.12 "Azyklischer Kanal" Seite 99.

Begriffserklärung

schine

Zustandsma- - Das Motion-Modul hat eine Zustandsmaschine implementiert. Den Status der Zustandsmaschine können Sie mit Hilfe von Kommandos steuern

Zustandswechsel

- Das entsprechende Kommando oder eventuelle Fehler führen zu einem

Zustandswechsel.

Zustand

Der Zustand gibt den aktuellen Status der Zustandsmaschine aus. Über das Statuswort ♥ "0x8100-02 - Statuswort" Seite 123 haben Sie Zugriff auf den Zustand. Hier wird der Zustand über entsprechende Kombinationen der Bits ausgegeben.

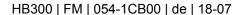
Kommando

Zum Auslösen von Zustandsübergängen müssen bestimmte Kombinationen von Bits im Steuerwort ♥ "0x8100-01 - Steuerwort" Seite 122 gesetzt werden. Eine solche Kombination wird als Kommando bezeichnet.

Adressierung

Das System SLIO Motion-Modul stellt seine Daten wie z.B. "Profilgeschwindigkeit" über ein Objektverzeichnis zur Verfügung. In diesem Objektverzeichnis sind die Objekte organisiert und durch eine eindeutige Nummer, bestehend aus Index und Subindex adressierbar. Die Nummer wird wie folgt angegeben:

0x Index (hexadezimal) Subindex (dezimal)


Beispiel: 0x8400-03

Zur besseren Strukturierung und Erweiterung wurde beim System SLIO Motion-Modul eine andere Objektnummerierung (Index-Vergabe) gegenüber dem Standard CiA 402 gewählt.

Zugriff auf 2 Antriebe

Für jeden Antrieb gibt es je ein Objektverzeichnis, deren Strukturen identisch sind. Bitte beachten Sie, dass die Beschreibungen sich immer auf Antrieb 1 beziehen, sofern nichts anderes erwähnt wird. Für die Anwendung auf Antrieb 2 müssen Sie zum entsprechenden Objekt 0x1000 hinzuaddieren.

- Objektverzeichnis Antrieb 1: 0x8000 ... 0x8FFF
- Objektverzeichnis Antrieb 2: 0x9000 ... 0x9FFF

Antriebsprofil > Zustände

4.4.2 Zustände

Zustandsmaschine gemäß CiA 402

System SLIO Einsatz

Antriebsprofil > Betriebsarten

11 Bit 3...0: x01x: Kommando "Schnellhalt"

7,8,9,12 Bit 3...0: xx0x: Kommando "Spannung abschalten" 15 Bit 7: Flanke 0-1: Kommando "Fehlerrücksetzung"

Zugriff auf die Zustandsmaschine

Unter CiA 402 ist die gesamte Steuerung über folgende zwei Objekte realisiert. Beide Objekte sind in den zyklischen Datenaustausch gemappt:

∜ "0x8100-01 - Steuerwort" Seite 122

Zustandsmaschine

♥ "0x8100-02 - Statuswort" Seite 123

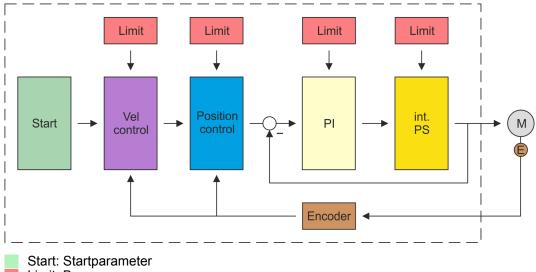
4.4.3 Betriebsarten

4.4.3.1 Übersicht

Betriebsarten

Die Kommunikation erfolgt über den E/A-Bereich. Die wichtigsten Daten aus dem Objektverzeichnis sind in den E/A-Bereich gemappt.

Auf die nicht gemappten Objekte können Sie über den Azyklischen Kanal zugreifen.


⋄ Kap. 4.12 "Azyklischer Kanal" Seite 99

Folgende Betriebsarten gemäß Geräteprofil CiA 402 stehen Ihnen zur Verfügung:

- ∜ Kap. 4.5 "Referenzfahrt (Homing)" Seite 67
- \[
 \begin{align*}
 \int \text{Kap. 4.6 "PtP-Positionsprofil" Seite 73.}
 \end{align*}
 \]
- \(\begin{align*}
 \begin{align*}
 & Kap. 4.7 "Geschwindigkeitsprofil" Seite 85
 \)

Reglerstruktur und Reglerparameter

Basis der einzelnen Betriebsarten ist die kaskadierte Reglerstruktur des System SLIO Motion-Moduls. Hiermit erhalten Sie eine hohe Dynamik und Positionsgenauigkeit. Der Sollwert für den übergeordneten Lageregler wird von den Profilgeneratoren der einzelnen Betriebsarten erzeugt. Lage- und Drehzahlregelkreis können geschlossen werden, d.h. sofern parametriert, wird das Encodersignal für die Regelung herangezogen. Die Struktur besteht aus folgenden Bestandteilen:

Limit: Begrenzungen

Vel control: Drehzahlregelung - 8kHz Takt Position control: Lageregler - 8kHz Takt

Antriebsprofil > Betriebsarten

PI: PI-Stromregler - 32kHz Takt int. PS: Interne Leistungsendstufe (power stage) Encoder: Encoder Istwert

Applikationsdaten

Zusätzlich zu den Reglerparametern ist es erforderlich die Daten Ihrer Applikation, bestehend aus den Nenndaten des Antriebs und einer Normierung, anzugeben.

∜ "0x8180-02 - Getriebefaktor" Seite 128		
∜ "0x8C00-04 - Motor Strom max." Seite 154	\rightarrow	Applikationsdaten
∜ "0x8C00-06 - Motor Nenndrehzahl" Seite 154		

System SLIO Einsatz

Referenzfahrt (Homing) > Referenzierung mittels Referenzierschalter

4.5 Referenzfahrt (Homing)

Übersicht

Hier finden Sie Informationen, wie das System SLIO Motion-Modul die *Referenzposition* sucht. Die Referenzposition wird auch "Grundstellung", "Anfangs-Position" oder "Home-Position" genannt. Als *Referenzfahrt* bezeichnet man eine Initialisierungsfahrt eines Antriebs, bei der die korrekte Istposition anhand eines Referenzsignals ermittelt wird. Dieser Vorgang wird als "Referenzieren", "Referenzfahrt" oder "Homing" bezeichnet.

Beim Referenzieren können Sie Geschwindigkeit, Beschleunigung, Verzögerung und Art des Referenzierens bestimmen. Das FM 054-1CB00 unterstützt folgende Referenzierarten:

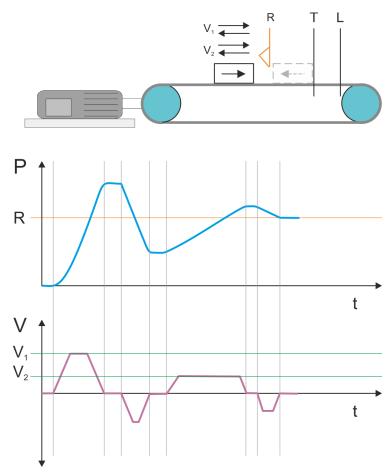
- 以 Kap. 4.5.1 "Referenzierung mittels Referenzierschalter" Seite 67
- 以 Kap. 4.5.2 "Referenzierung auf aktuelle Position" Seite 70

Start - Startparameter Referenzfahrt

Bitte beachten Sie:

- ♥ Kap. 4.2 "Inbetriebnahme" Seite 60
- − ♥ "Applikationsdaten" Seite 66

♥ "0x8280-01 - Sollbetriebsart" Seite 130				
6: Homing Mode (Referenzfahrt)				
(🤄 "0x8280-02 - Istbetriebsart" Seite 131)				
\(\psi \) "0x8300-02 - Referenzfahrt-Methode" \(\text{Seite 132} \)				\$ 0.00000 CE Character Conc. 720
\[\operatorname{\pi}\] "0x8300-03 - Referenzfahrt digitaler \[\text{Eingang I/O1I/O4" Seite 132} \]	→ Referenzfahrt	→		
∜ "0x8300-04 - Referenzfahrt digitaler Eingang Polarität I/O1…I/O4" Seite 133			∜ "0x8280-02 - Istbetriebsart" Seite 131	
\[\overline{\pi}\] "0x8300-05 - Referenzfahrt Zielposition" Seite 133 \]				
\(\operatorname{0}\) "0x8300-06 - Referenzfahrt Geschwindigkeit V1" Seite 134 \)				
\[\operatorname{\top} "0x8300-07 - Referenzfahrt Geschwindigkeit V2" Seite 134 \]				
♥ "0x8300-08 - Referenzfahrt Beschleuni- gung" Seite 134				
∜ "0x8300-09 - Referenzfahrt Verzöge- rung" Seite 134				
∜ "0x8300-10 - Referenzfahrt Offset" Seite 135				


4.5.1 Referenzierung mittels Referenzierschalter

Referenzierung mittels Referenzierschalter

- Referenzieren kann ausschließlich aus der Betriebsart *PtP-Positionsprofil* aufgerufen werden.
- Die Zielposition T ist die Referenzposition die maximal angefahren wird. Diese ist vorzeichenbehaftet anzugeben.

Referenzfahrt (Homing) > Referenzierung mittels Referenzierschalter

- Die Referenzierung erfolgt nach folgenden Schritten:
 - Es wird mit der höheren Geschwindigkeit V1 soweit in Richtung Zielposition T gefahren, bis der Referenzschalter R überfahren wird.
 - Danach wird verzögert und in entgegengesetzte Richtung mit Geschwindigkeit V1 gefahren.
 - Wird der Referenzschalter R wieder überfahren, wird wieder verzögert und in entgegengesetzter Richtung mit langsamer Geschwindigkeit V2 gefahren.
 - Beim nächsten Überfahren des Referenzschalters wird die Referenzposition R gesetzt und diese mit Geschwindigkeit V2 angefahren.
- Verwenden Sie zur Anbindung des Referenzschalters einen der digitalen Eingänge des Motion-Moduls und geben Sie bei der Parametrierung die Polarität des Schalters an.

- V₁ Hohe Geschwindigkeit
- V₂ Langsame Geschwindigkeit
- R Referenzschalter bzw. Referenzwert
- T Zielposition
- L Allgemeines Positionslimit

Referenzfahrt (Homing) > Referenzierung mittels Referenzierschalter

Vorgehensweise

- 2ur Inbetriebnahme ♥ Kap. 4.2 "Inbetriebnahme" Seite 60
 Objekte der Referenzfahrt ♥ Kap. 5.2.11 "Referenzfahrt 0x8300" Seite 131
- **2.** Bringen Sie die Zustandsmaschine in den Zustand *"Einschalten gesperrt"* ∜ *Kap. 4.4.2 "Zustände"* Seite 64

 - ⇒ Das Motion-Modul zeigt den Zustand "Einschalten gesperrt".
- 3. Stellen Sie folgende Parameter ein:
 - \(\phi \) "0x8300-02 Referenzfahrt-Methode" Seite 132
 - Geben Sie den Wert 17 vor.
 - \[
 \begin{align*}
 - Wählen Sie den Eingang, an den der Referenzschalter angeschlossen ist.
 - "0x8300-04 Referenzfahrt digitaler Eingang Polarität I/O1...I/O4" Seite 133
 - Bestimmen Sie die Polarität des Schalters
 - \$\overline{\psi}\ "0x8300-05 Referenzfahrt Zielposition" Seite 133
 - Legen Sie durch Vorgabe einer Zielposition den maximalen Verfahrweg fest, bei dessen Anfahrt der Referenzschalter überfahren wird.
 - \(\psi \) "0x8300-06 Referenzfahrt Geschwindigkeit V1" Seite 134
 - Geben Sie eine hohe Geschwindigkeit für die Anfahrt des Referenzschalters an
 - ♥ "0x8300-07 Referenzfahrt Geschwindigkeit V2" Seite 134
 - Geben Sie eine niedrige Geschwindigkeit für die Anfahrt des Referenzschalters an.
 - \(\psi \) "0x8300-08 Referenzfahrt Beschleunigung" Seite 134
 - Geben Sie eine Beschleunigung für die Referenzfahrt vor.
 - \(\phi \) "0x8300-09 Referenzfahrt Verzögerung" Seite 134
 - Geben Sie eine Verzögerung für die Referenzfahrt vor.
 - \$\overline{\psi}\$ "0x8300-10 Referenzfahrt Offset" Seite 135
 - Stellen Sie ggf. einen Offset für den Referenzpunkt ein.
- 4. ▶ ७ "0x8400-03 Positionsprofil Zielgeschwindigkeit" Seite 136
 - Geben Sie den Wert 0 vor.
- **5.** Bringen Sie Ihr Motion-Modul in den *Positionier*-Modus. *♦ "0x8280-01 Sollbetriebsart" Seite 130*
 - Geben Sie den Wert 1 vor.
- 6. Senden Sie das Kommando "Ausschalten"
 - ♥ "0x8100-01 Steuerwort" Seite 122 Bit 3...0: x110
 - ⇒ Das Motion-Modul zeigt den Zustand "Einschaltbereit".
- 7. Senden Sie das Kommando "Einschalten".
 - ♥ "0x8100-01 Steuerwort" Seite 122 Bit 3...0: 0111
 - ⇒ Das Motion-Modul zeigt den Zustand "Eingeschaltet".
- 8. Senden Sie das Kommando "Betrieb freigeben".
 - ♥ "0x8100-01 Steuerwort" Seite 122 Bit 3...0: 1111
 - ⇒ Das Motion-Modul zeigt den Zustand *"Betrieb freigegeben"*. Der Antrieb ist jetzt bereit für Ihre Fahrbefehle.
- 9. Bringen Sie Ihr Motion-Modul in den *Homing*-Modus. ♦ "0x8280-01 Sollbetriebsart" Seite 130
 - Geben Sie den Wert 6 vor.
 - Der Antrieb startet die Referenzfahrt. Nach Abschluss der Referenzfahrt wird die Position des Referenzschalters als Referenzpunkt übernommen.

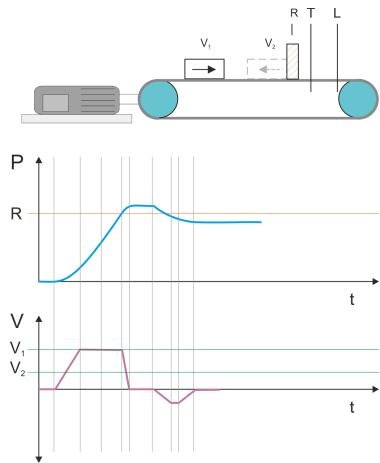
Referenzfahrt (Homing) > Referenzierung auf aktuelle Position

4.5.2 Referenzierung auf aktuelle Position

Vorgehensweise

1. Dur Inbetriebnahme & Kap. 4.2 "Inbetriebnahme" Seite 60

Objekte der Referenzfahrt & Kap. 5.2.11 "Referenzfahrt - 0x8300" Seite 131


- **2.** Bringen Sie die Zustandsmaschine in den Zustand "Einschalten gesperrt" ∜ Kap. 4.4.2 "Zustände" Seite 64
 - Senden Sie das Kommando "Spannung abschalten"

 ⊕ "0x8100-01 Steuerwort" Seite 122 Bit 3...0: xx0x
 - ⇒ Das Motion-Modul zeigt den Zustand "Einschalten gesperrt".
- 3. Stellen Sie folgende Parameter ein:
 - \[
 \begin{align*}
 - Geben Sie den Wert 37 vor.
 - \[
 \bigsir \bigsir \text{"0x8300-10 Referenzfahrt Offset" Seite 135}
 \]
 - Stellen Sie ggf. einen Offset für den Referenzpunkt ein.
- **4.** ▶ **©** "0x8400-03 Positionsprofil Zielgeschwindigkeit" Seite 136
 - Geben Sie den Wert 0 vor.
- 5. Bringen Sie Ihr Motion-Modul in den *Positionier*-Modus. ♦ "0x8280-01 Sollbetriebsart" Seite 130
 - Geben Sie den Wert 1 vor.
- 6. Senden Sie das Kommando "Ausschalten"
 - ♥ "0x8100-01 Steuerwort" Seite 122 Bit 3...0: x110
 - ⇒ Das Motion-Modul zeigt den Zustand "Einschaltbereit".
- 7. Senden Sie das Kommando "Einschalten".
 - ♥ "0x8100-01 Steuerwort" Seite 122 Bit 3...0: 0111
 - ⇒ Das Motion-Modul zeigt den Zustand "Eingeschaltet".
- 8. Senden Sie das Kommando "Betrieb freigeben".
 - ♥ "0x8100-01 Steuerwort" Seite 122 Bit 3...0: 1111
 - ⇒ Das Motion-Modul zeigt den Zustand *"Betrieb freigegeben"*. Der Antrieb ist jetzt bereit für Ihre Fahrbefehle.
- **9.** Bringen Sie Ihr Motion-Modul in den *Homing-*Modus.
 - ♥ "0x8280-01 Sollbetriebsart" Seite 130
 - Geben Sie den Wert 6 vor.
 - ⇒ Die aktuelle Position wird direkt als Referenzpunkt übernommen unter Berücksichtigung des Offsets.
 - ♥ "0x8300-10 Referenzfahrt Offset" Seite 135

4.5.3 Referenzierung mittels Strombegrenzung

Referenzierung mittels Strombegrenzung

- Referenzieren kann ausschließlich aus der Betriebsart *PtP-Positionsprofil* aufgerufen werden.
- Nach Abschluss der Referenzierung erfolgt wieder ein Rücksprung in die Betriebsart PtP-Positionsprofil.
- Die *Zielposition T* ist die Referenzposition die maximal angefahren wird. Diese ist vorzeichenbehaftet anzugeben.
- Die Referenzierung erfolgt nach folgenden Schritten:
 - Es wird mit der Geschwindigkeit V1 soweit in Richtung Zielposition T gefahren, bis der Antrieb durch einen weichen Anschlag gestoppt wird.
 - Überschreitet der aktuelle Strom einen zuvor definierten Grenzstrom, wird die aktuelle Position als Referenzposition R gesetzt.
 - Damit der Motor frei gefahren wird, können Sie zusätzlich einen Offset angeben.

- V₁ Hohe Geschwindigkeit
- V₂ Langsame Geschwindigkeit
- R Referenzschalter bzw. Referenzwert
- T Zielposition
- L Allgemeines Positionslimit

Referenzfahrt (Homing) > Referenzierung mittels Strombegrenzung

Vorgehensweise

1. Zur Inbetriebnahme & Kap. 4.2 "Inbetriebnahme" Seite 60

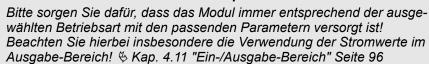
Objekte der Referenzfahrt & Kap. 5.2.11 "Referenzfahrt - 0x8300" Seite 131

- **2.** Bringen Sie die Zustandsmaschine in den Zustand *"Einschalten gesperrt"* ∜ *Kap. 4.4.2 "Zustände"* Seite 64
 - Senden Sie das Kommando "Spannung abschalten"
 "0x8100-01 Steuerwort" Seite 122 Bit 3...0: xx0x
 - ⇒ Das Motion-Modul zeigt den Zustand "Einschalten gesperrt".
- 3. "0x8400-03 Positionsprofil Zielgeschwindigkeit" Seite 136
 - Geben Sie den Wert 0 vor.
- **4.** Bringen Sie Ihr Motion-Modul in den *Positionier*-Modus. ♦ "0x8280-01 Sollbetriebsart" Seite 130
 - Geben Sie den Wert 1 vor.
- 5. Stellen Sie folgende Parameter ein:
 - "0x8300-02 Referenzfahrt-Methode" Seite 132
 - Geben Sie den Wert -1 f

 ür Referenzierung mittels Strombegrenzung vor.
 - 🔖 "0x8600-04 Stromgrenze positiv" Seite 146 bzw. 🔄 "0x8600-05 Stromgrenze negativ " Seite 146
 - Geben Sie die Grenzströme vor.
 - ♥ "0x8300-05 Referenzfahrt Zielposition" Seite 133
 - Legen Sie durch Vorgabe einer Zielposition den maximalen Verfahrweg fest, bei dessen Anfahrt der weiche Anschlag angefahren wird.
 - ♥ "0x8300-06 Referenzfahrt Geschwindigkeit V1" Seite 134
 - Geben Sie eine hohe Geschwindigkeit für die Anfahrt des weichen Anschlags an.
 - \[
 \bigsir \text{"0x8300-07 Referenzfahrt Geschwindigkeit V2" Seite 134
 \]
 - Geben Sie eine niedrige Geschwindigkeit für das Freifahren des Antrieb um den Offsetwert an.
 - \(\phi \) "0x8300-08 Referenzfahrt Beschleunigung" Seite 134
 - Geben Sie eine Beschleunigung für die Referenzfahrt vor.
 - 🤟 🤄 "0x8300-09 Referenzfahrt Verzögerung" Seite 134
 - Geben Sie eine Verzögerung für die Referenzfahrt vor.
 - \[
 \bigsir \bigsir \text{"0x8300-10 Referenzfahrt Offset" Seite 135
 \]
 - Stellen Sie ggf. einen Offset für den Referenzpunkt ein.
- 6. Senden Sie das Kommando "Ausschalten"
 - ♥ "0x8100-01 Steuerwort" Seite 122 Bit 3...0: x110
 - ⇒ Das Motion-Modul zeigt den Zustand "Einschaltbereit".
- 7. Senden Sie das Kommando "Einschalten".

 - ⇒ Das Motion-Modul zeigt den Zustand "Eingeschaltet".
- 8. Senden Sie das Kommando "Betrieb freigeben".
 - ♥ "0x8100-01 Steuerwort" Seite 122 Bit 3...0: 1111
 - ⇒ Das Motion-Modul zeigt den Zustand "Betrieb freigegeben". Der Antrieb ist jetzt bereit für Ihre Fahrbefehle.
- 9. Bringen Sie Ihr Motion-Modul in den *Homing*-Modus. § "0x8280-01 Sollbetriebsart" Seite 130
 - Geben Sie den Wert 6 vor.

PtP-Positionsprofil


⇒ Der Antrieb startet die Referenzfahrt. Nach Abschluss der Referenzfahrt wird die Position des weichen Anschlags unter Berücksichtigung eines eventuell vorhandenen Offsets als Referenzpunkt übernommen. Das Motion-Modul wechselt nun automatisch wieder zurück in den *Positionier*-Modus.

4.6 PtP-Positionsprofil

Übersicht

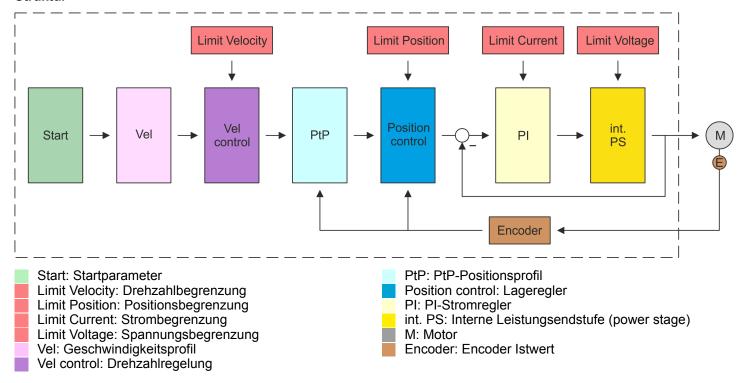
Immer Parameter der Betriebsart anpassen!

Startparameter

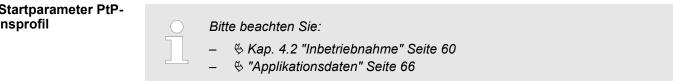
- Start Startparameter Referenzfahrt" Seite 67
- 🖔 "Start Startparameter PtP-Positionsprofil" Seite 74
- Start Startparameter Geschwindigkeitsprofil" Seite 86
- Start Startparameter der Drehmomentregelung" Seite 90

Mit dem PTP-Positionsprofil können Sie Zielpositionen durch Vorgabe von Profilgeschwindigkeit, Profilbeschleunigung und Profilverzögerung anfahren. Hierbei werden immer die Grenzwerte für die Geschwindigkeit und maximale Verfahrposition berücksichtigt. Da Änderungen von Vorgabenwerten immer übernommen und aktiv geschaltet werden, sind "on the fly"-Änderungen des Verfahrvorgangs möglich.

- Änderungen von Beschleunigungs- bzw. Verzögerungs-Vorgaben werden direkt in die Profilgenerierung übernommen.
- Verzögern und Richtungsumkehr wird automatisch ausgeführt, wenn eine neue Zielposition eine Richtungsumkehr erfordert. Eine gesonderte Aktivierung der Übernahme mit Start des Auftrags im Steuerwort ist nicht erforderlich.
- Ist eine vorgegebene Zielposition erreicht oder wird während des Verfahrauftrags eine Begrenzung aktiv, so wird dies in ∜ "0x8100-02 Statuswort" Seite 123 angezeigt.
- Istwerte von Position, Geschwindigkeit, Beschleunigung und Verzögerung werden durch das System SLIO Motion-Modul selbst errechnet.


Für die Auswertung des Encoder-Signals haben Sie folgende Möglichkeiten

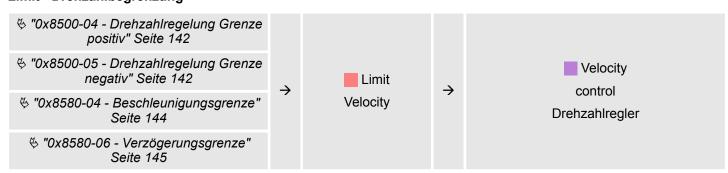
∜ "0x8F00-01 - Encoder Rückführung Konfiguration" Seite 156:


- gesteuerter Betrieb
 - Das System SLIO Motion-Modul arbeitet im gesteuerten Betrieb
 - Lage- und Drehzahlregelkreis sind offen
 - Es erfolgt keine Auswertung des Encoder-Signals
 - Das Modul ermittelt intern die Istwerte von Position, Geschwindigkeit, Beschleunigung und Verzögerung
- geregelter Betrieb
 - Das System SLIO Motion-Modul arbeitet im geregelten Betrieb
 - Lage- und Drehzahlregelkreis sind geschlossen
 - Das Encoder-Signal wird ausgewertet und hieraus werden die Istwerte von Position, Geschwindigkeit, Beschleunigung und Verzögerung ermittelt.

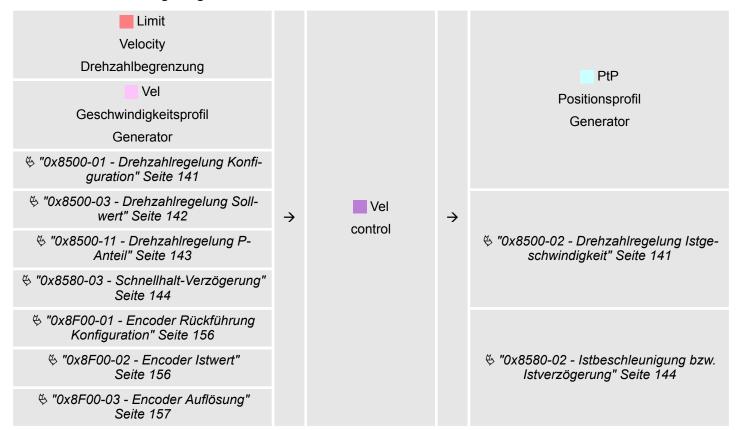
PtP-Positionsprofil

Struktur

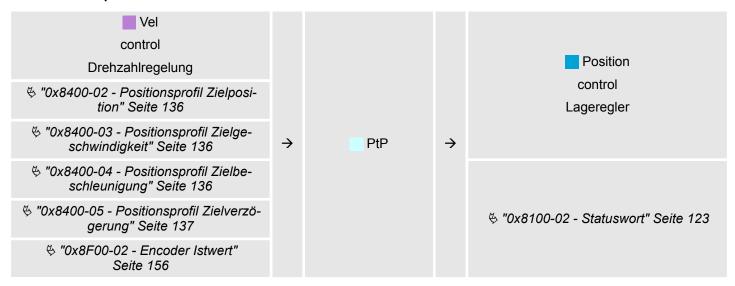
Start - Startparameter PtP-**Positionsprofil**



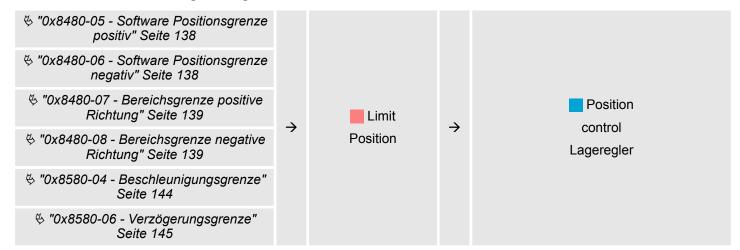
PtP-Positionsprofil


Vel - Geschwindigkeitsprofil

Limit - Drehzahlbegrenzung

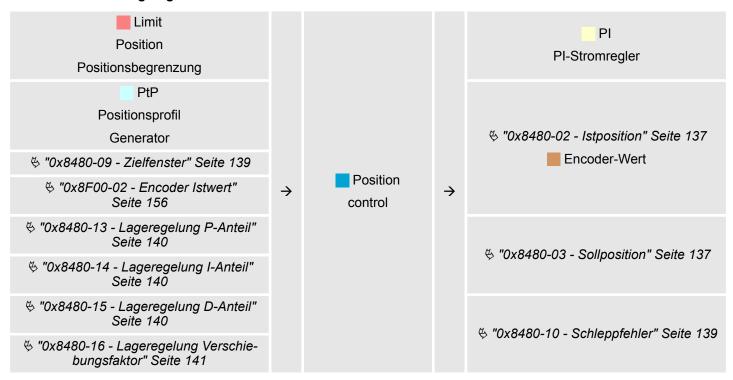


Vel control - Drehzahlregelung



PtP-Positionsprofil

PtP - Positionsprofil Generator

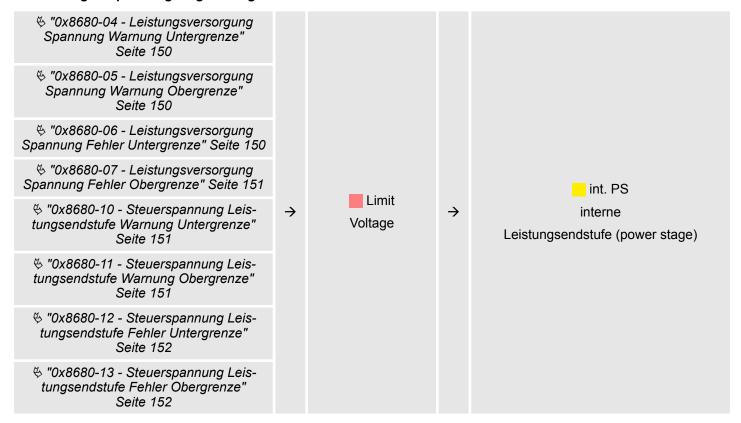


Limit Position - Positionsbegrenzung

PtP-Positionsprofil

Position control - Lageregler

Limit Current - Strombegrenzung



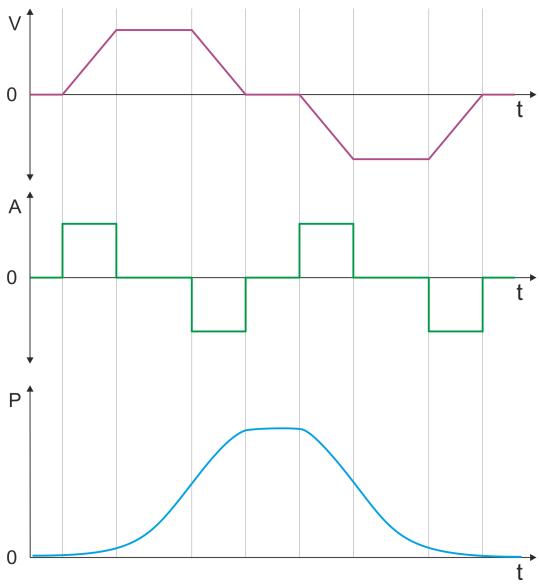
PI - PI-Stromregler

PtP-Positionsprofil

Limit Voltage - Spannungsbegrenzung

int. PS - Interne Leistungsendstufe, Motor, Encoder

System SLIO

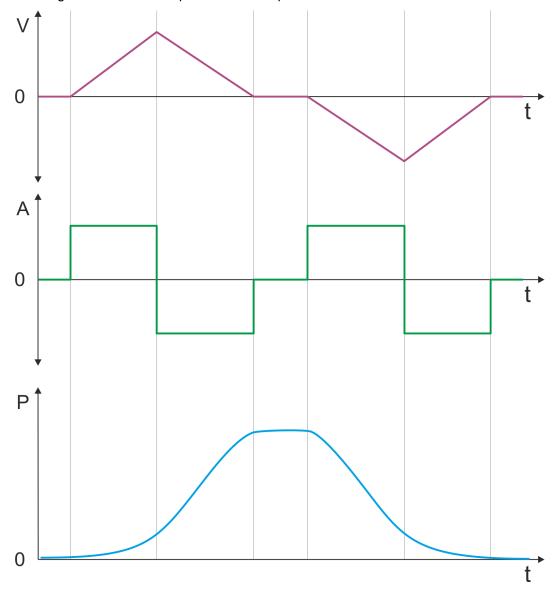

PtP-Positionsprofil > Beispiele

Einsatz

4.6.1 Beispiele

Symmetrisches Beschleunigen und Bremsen mit Erreichen der Zielgeschwindigkeit

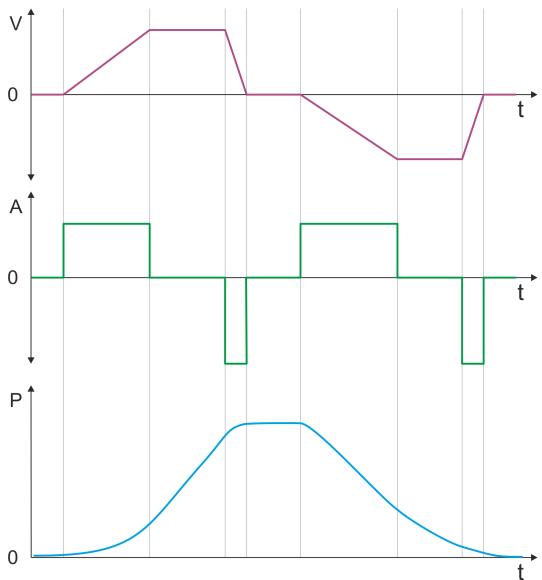
- Vorgabe
 - Zielposition
 - Profilgeschwindigkeit
 - Profilbeschleunigung
 - Profilverzögerung
- Zielgeschwindigkeit wird erreicht.
- Vorgabe einer neue Zielposition als Startposition.



- V Geschwindigkeit
- A Beschleunigung
- P Position
- t Zeitachse

PtP-Positionsprofil > Beispiele

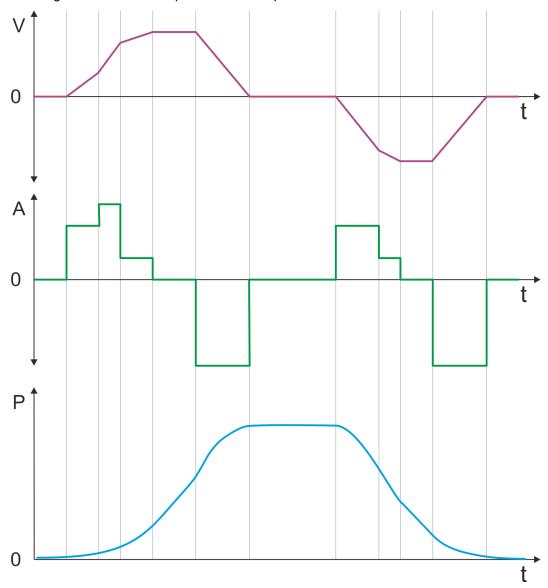
Symmetrisches Beschleunigen und Bremsen ohne Erreichen der Zielgeschwindigkeit


- Vorgabe
 - Zielposition
 - Profilgeschwindigkeit
 - Profilbeschleunigung
 - Profilverzögerung
- Zielgeschwindigkeit wird nicht erreicht, da vorher Bremsvorgang zum Erreichen der Zielposition eingeleitet wird.
- Vorgabe einer neue Zielposition als Startposition.

- Geschwindigkeit Beschleunigung
- Α
- Ρ Position
- Zeitachse

Asymmetrisches Beschleunigen und Bremsen mit Erreichen der Zielgeschwindigkeit

- Vorgabe
 - Zielposition
 - Profilgeschwindigkeit
 - Profilbeschleunigung
 - Profilverzögerung
- Zielgeschwindigkeit wird erreicht.
- Vorgabe einer neue Zielposition als Startposition.

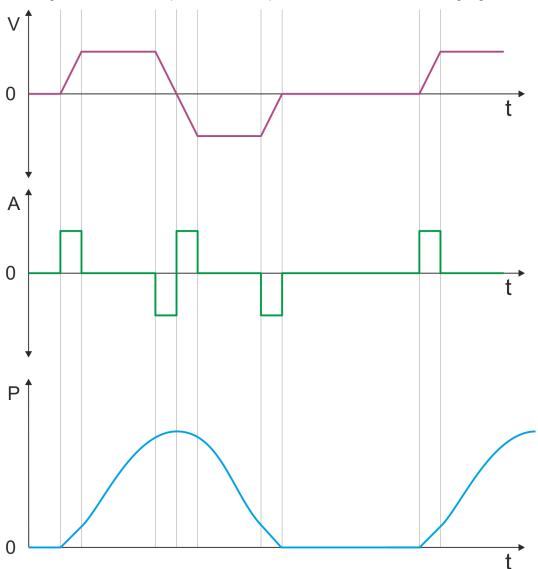


- ٧
- Geschwindigkeit Beschleunigung
- Position
- Zeitachse

PtP-Positionsprofil > Beispiele

Asymmetrisches Beschleunigen und Bremsen mit Reduzierung der Beschleunigung während des Verfahrvorgangs

- Vorgabe
 - Zielposition
 - Profilgeschwindigkeit
 - Profilbeschleunigung
 - Profilverzögerung
- Zielgeschwindigkeit wird erreicht.
- Vorgabe einer neue Zielposition als Startposition.

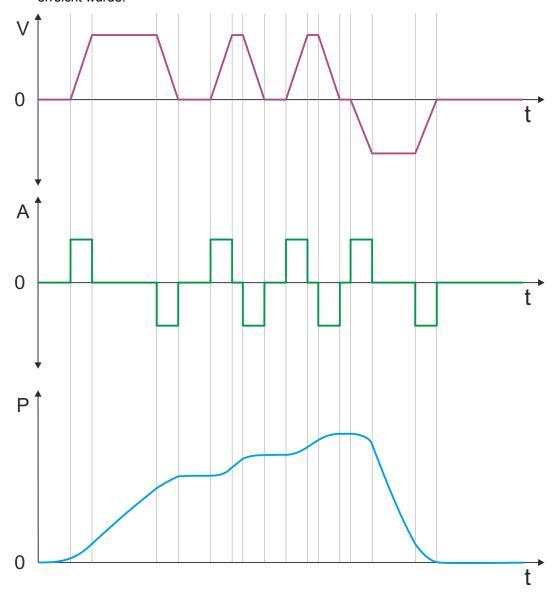


- V Geschwindigkeit
- A Beschleunigung
- P Position
- t Zeitachse

PtP-Positionsprofil > Beispiele

Symmetrisches Beschleunigen und Bremsen mit Erreichen der Zielgeschwindigkeit

- Vorgabe
 - Zielposition
 - Profilgeschwindigkeit
 - Profilbeschleunigung
 - Profilverzögerung
- Zielgeschwindigkeit wird erreicht.
- Vorgabe einer neue Zielposition als Startposition während des Bremsvorgangs.



- V Geschwindigkeit
- A Beschleunigung
- P Position
- t Zeitachse

PtP-Positionsprofil > Beispiele

Symmetrisches Beschleunigen und Bremsen mit zweimaliger Vorgabe einer Zielposition

- Vorgabe
 - Zielposition
 - Profilgeschwindigkeit
 - Profilbeschleunigung
 - Profilverzögerung
- Zielgeschwindigkeit wird erreicht.
- Zweimalige Vorgabe einer neue Zielposition nachdem die vorhergehende Zielposition erreicht wurde.

- Geschwindigkeit Beschleunigung
- Α
- Ρ Position
- Zeitachse

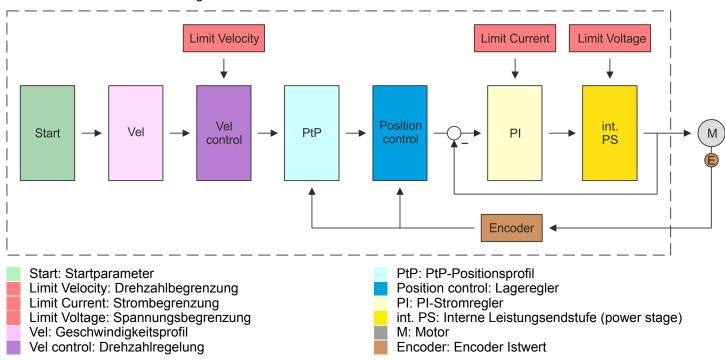
Geschwindiakeitsprofil

4.7 Geschwindigkeitsprofil

Struktur

Ĭ

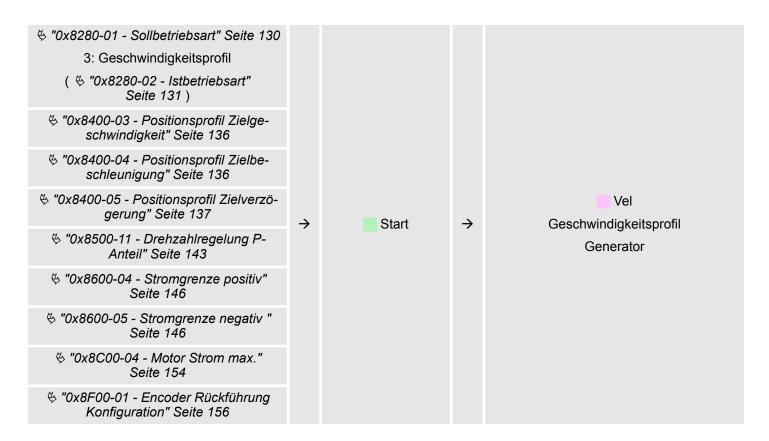
Immer Parameter der Betriebsart anpassen!


Bitte sorgen Sie dafür, dass das Modul immer entsprechend der ausgewählten Betriebsart mit den passenden Parametern versorgt ist!

Beachten Sie hierbei insbesondere die Verwendung der Stromwerte im Ausgabe-Bereich!
Kap. 4.11 "Ein-/Ausgabe-Bereich" Seite 96

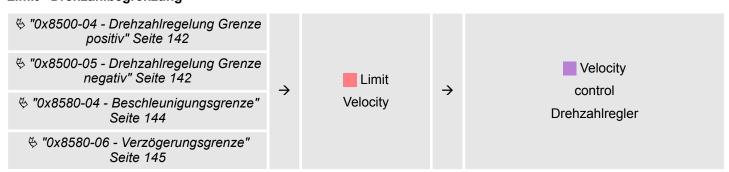
Startparameter

- − ♥ "Start Startparameter Referenzfahrt" Seite 67
- − ♥ "Start Startparameter PtP-Positionsprofil" Seite 74
- — ♥ "Start Startparameter Geschwindigkeitsprofil" Seite 86
- Start Startparameter der Drehmomentregelung" Seite 90

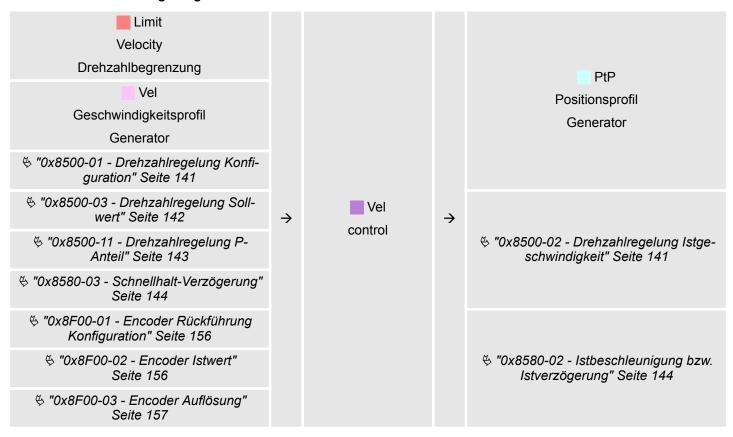

In der Betriebsart *Geschwindigkeitsprofil* wird die Geschwindigkeit gemäß Profilbeschleunigung und Profilverzögerung ausgegeben, bis die Zielgeschwindigkeit erreicht ist. Diese Betriebsart basiert auf der Betriebsart *PtP-Positionsprofil*, mit der Ausnahme, dass Positionsvorgaben wie Ziel- und Grenzwerte keine Auswirkung haben. Mit dem Objekt *"0x8500-01 - Drehzahlregelung Konfiguration" Seite 141* können Sie das Drehzahlregelverhalten beeinflussen.

Geschwindigkeitsprofil

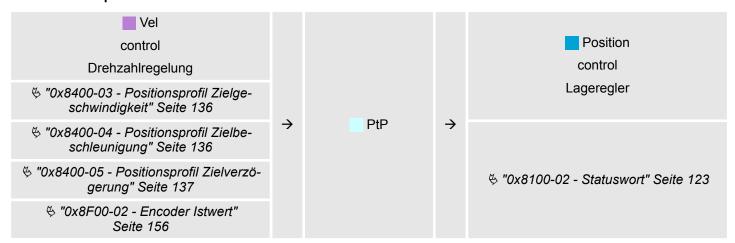
Start - Startparameter Geschwindigkeitsprofil



Vel - Geschwindigkeitsprofil

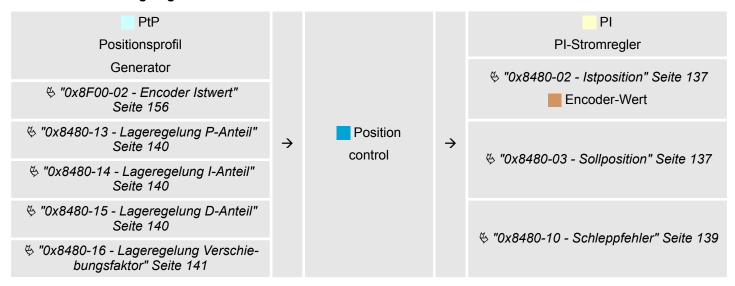


Limit - Drehzahlbegrenzung

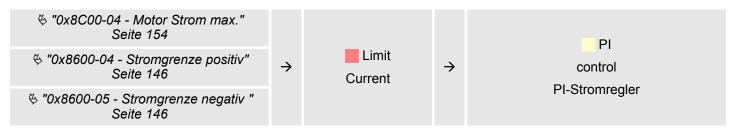


Geschwindigkeitsprofil

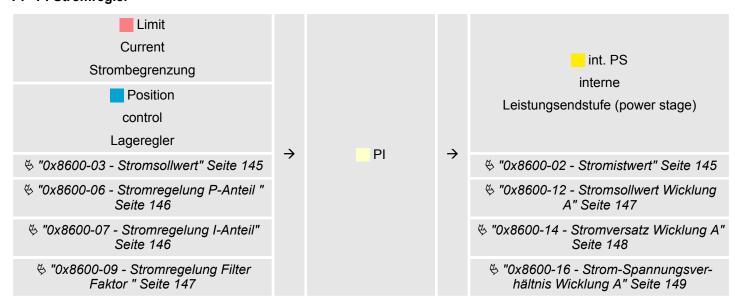
Vel control - Drehzahlregelung



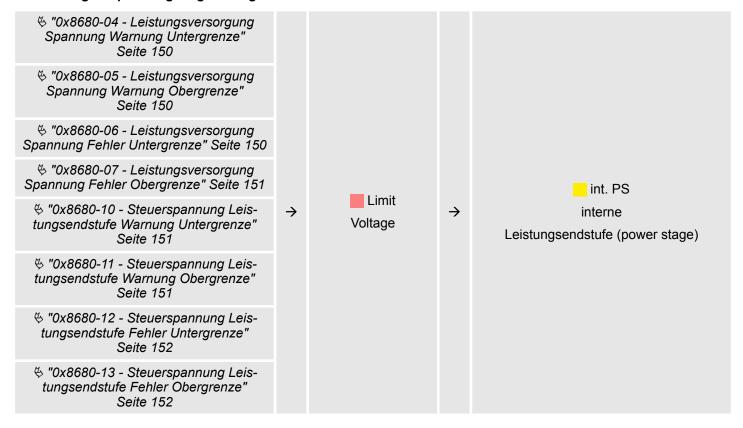
PtP - Positionsprofil Generator



Geschwindigkeitsprofil


Position control - Lageregler

Limit Current - Strombegrenzung

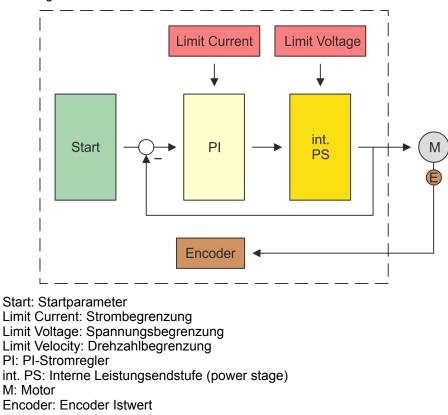


PI - PI-Stromregler

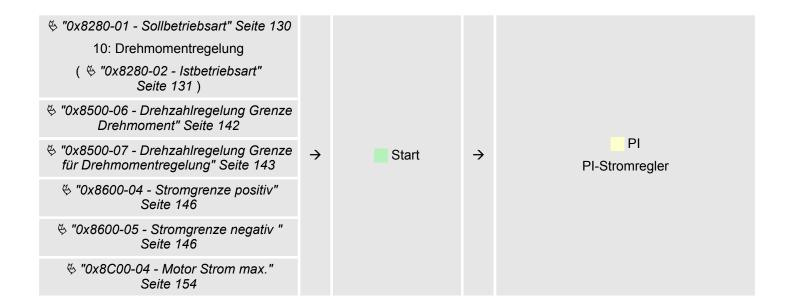
Drehmomentreaelung

Limit Voltage - Spannungsbegrenzung

int. PS - Interne Leistungsendstufe, Motor, Encoder

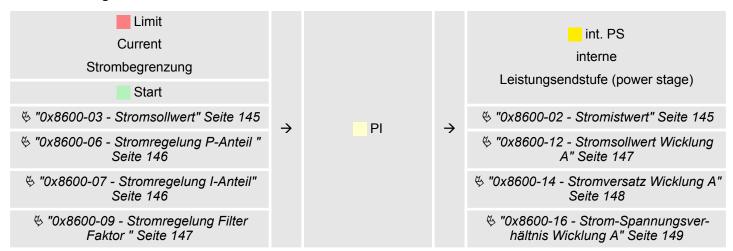

4.8 Drehmomentregelung

Struktur

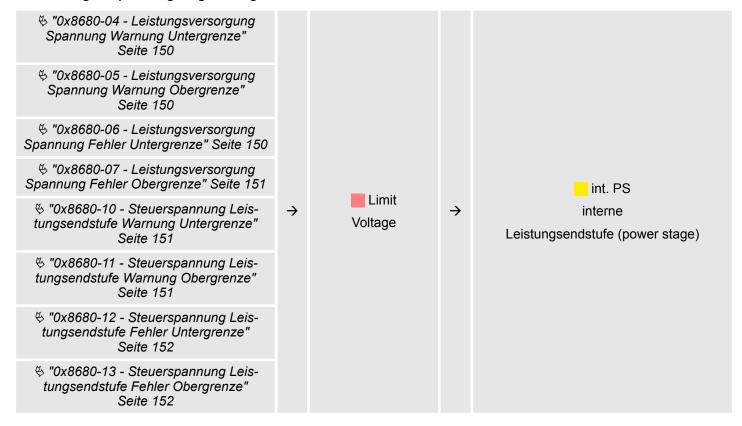

Drehmomentregelung

In der Betriebsart *Drehmomentregelung* wird ein Sollstrom an den Antrieb ausgegeben. Überschreitet der Iststrom den zulässigen Motorstrom, erfolgt eine Fehlerreaktion des Motion-Moduls, welche Sie konfigurieren können. Auch können Sie mit § "0x8500-01 - Drehzahlregelung Konfiguration" Seite 141 einstellen, wie sich der Motor bei Erreichen des zulässigen Motorstroms verhalten soll.

Start - Startparameter der Drehmomentregelung



Drehmomentregelung


Limit Current - Strombegrenzung

PI - PI-Stromregler

Limit Voltage - Spannungsbegrenzung

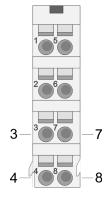
Drehmomentregelung

int. PS - Interne Leistungsendstufe, Motor, Encoder

Einsatz I/O1...I/O4

4.9 Einsatz I/O1...I/O4

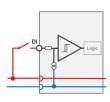
Übersicht


Das Modul besitzt 4 digitale Anschlüsse I/O1...I/O4. Die Anschlüsse können mit folgenden frei konfigurierbaren Modi betrieben werden:

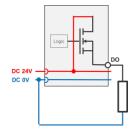
- Verwendung als digitaler Eingang
- Verwendung als digitaler Ausgang
- Paarweise Verwendung als Encoder-Eingang für 24V HTL-Signal

Defaulteinstellungen

Die 4 digitalen Anschlüsse des Motion-Moduls haben folgende Defaulteinstellungen:

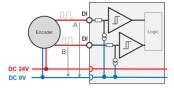

Defaulteinstellungen

Pos.	Funktion	Тур	Beschreibung			
3	I/O1	Е	Digitaler Eingang			
4	I/O3	Е	Digitaler Eingang			
7	I/O2	Е	Digitaler Eingang			
8	I/O4	E	Digitaler Eingang			
E: Eino	F: Fingang, A: Ausgang					


Über ∜ Kap. 5.2.5 "Digitale Eingänge I/O1...I/O4 - 0x7100" Seite 116 bzw. ∜ Kap. 5.2.6 "Digitale Ausgänge I/O1...I/O4 - 0x7200" Seite 118 können Sie die 4 digitalen Anschlüsse des Motion-Moduls konfigurieren.

Anschlüsse

Digitale Eingabe: DC 24V


IEC 61131-2 Typ 3 High-side (sink)

Digitale Ausgabe: DC 24V

500 mA

High-side (source)

Encoder-Modus: 24V HTL-Signal

Phase A und B 100 kHz

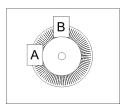
4-fach-Auswertung

⋄ Kap. 4.9.2.2 "Encoder - Einsatz" Seite 95

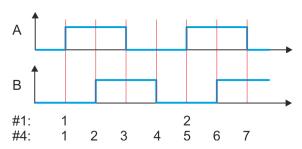
Einsatz I/O1...I/O4 > Verwendung als Eingang für Encoder

4.9.1 Objekte

Struktur


DIO Steuerung

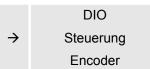
4.9.2 Verwendung als Eingang für Encoder


4.9.2.1 Encoder - Signalauswertung

Auswertung

- Encoder oder auch Inkrementalgeber sind Sensoren zur Erfassung von Winkel- bzw. Lageänderungen.
- Je nach Sensortyp und gewünschter Auflösung kann die Abtastung über Schleifkontakt, photoelektrisch oder magnetisch erfolgen.
 - Die Abtastung über Schleifkontakt arbeitet prinzipiell wie ein Schalter, welcher mechanisch bedient wird.
 - Bei der optischen Abtastung wird eine Scheibe, welche eine feine Rasterung besitzt, optisch abgetastet.
 - Bei der magnetischen Abtastung erfolgt die Abtastung eines Polrads bzw. Magnetbands, welche durch Magnetisierung mit einer Teilung beschrieben wurden.
- Der Encoder besitzt zwei Sensoren *Spur A* und *Spur B* für die Abtastung.
- Die Sensoren sind in einem Winkel von 90 Grad zueinander am abzutastenden System angeordnet.
- Bei einer Drehbewegung des Systems geben die Sensoren eine definierte Anzahl von Impulsen aus. Diese sind ein Maß für den zurückgelegten Winkel bzw. Weg. Anhand der elektrischen Phasenverschiebung der beiden Signale lässt sich die Drehrichtung ermitteln.
 - Dreht sich die Welle nach rechts, so ist das Signal von Spur A um 90° voreilend gegenüber dem Signal von Spur B.
 - Dreht sich die Welle nach links, so ist das Signal von Spur A um 90° nacheilend gegenüber dem Signal von Spur B.
- Bei der Sensorauswertung kann aus der Differenz zweier Zählerstände die Geschwindigkeit und die Richtung bestimmt werden.
- Bei 1-facher Auswertung entspricht eine Flanke 0-1 von Spur A einem Zählimpuls bzw. eine Teilung des abzutastenden Systems einem Zähler-Impuls.
- Bei *4-facher* Auswertung entspricht eine Signal-Flanke von *Spur A* und *Spur B* einem Zähler-Impuls. Die 4-fache Auswertung kommt sehr oft zum Einsatz.

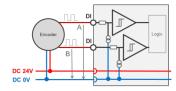
Einsatz I/O1...I/O4 > Verwendung als Eingang für Encoder


#1 1-fache Auswertung #4 4-fache Auswertung

4.9.2.2 Encoder - Einsatz

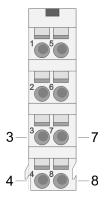
Anschlüsse

Objekte



*) Für jeden Antrieb gibt es je ein Objektverzeichnis, deren Strukturen identisch sind. Bitte beachten Sie, dass die Beschreibungen sich immer auf Antrieb 1 beziehen, sofern nichts anderes erwähnt wird. Für die Anwendung auf Antrieb 2 müssen Sie zum entsprechenden Objekt 0x1000 hinzuaddieren.

- Objektverzeichnis Antrieb 1 (I/O1 und I/O3): 0x8000 ... 0x8FFF
- Objektverzeichnis Antrieb 2 (I/O2 und I/O4): 0x9000 ... 0x9FFF


Anschlüsse

Encoder-Modus: 24V HTL-Signal

Phase A und B 100 kHz

4-fach-Auswertung

Pos.	Funktion	Тур	Beschreibung			
3	I/O1	Е	Encoder-Funktionalität Antrieb 1			
4	I/O3	Е	Encoder-Funktionalität Antrieb 1			
7	I/O2	Е	Encoder-Funktionalität Antrieb 2			
8	I/O4	E	Encoder-Funktionalität Antrieb 2			
E: Eingang						

Ein-/Ausgabe-Bereich

Über ∜ Kap. 5.2.5 "Digitale Eingänge I/O1...I/O4 - 0x7100" Seite 116 bzw. ∜ Kap. 5.2.6 "Digitale Ausgänge I/O1...I/O4 - 0x7200" Seite 118 können Sie die 4 digitalen Anschlüsse des Motion-Moduls konfigurieren.

4.10 Bremskontrolle

Übersicht

Sie können eine Haltebremse über einen der digitalen Ein-/Ausgabe-Kanäle ansteuern. Zur Bremskontrolle haben Sie folgende Möglichkeit:

- Bremsung über externe Haltebremse
- Schnellhalt durch Rampenfunktion

Bremsung über externe Haltebremse

Sie können eine externe Haltebremse über einen der digitalen Ein-/Ausgabe-Kanäle anschließen. Durch Einbindung in ihr Anwenderprogramm können Sie diese bei Bedarf ansteuern.

Schnellhalt

Der Schnellhalt ist eine Rampenfunktion mit welcher der angeschlossene Motor abgebremst und zum Stillstand gebracht werden kann. Während des normalen Betriebs ist es nicht erforderlich diese Bremsfunktionen manuell zu aktivieren, da normale Bremsvorgänge durch den Profilgenerator durchgeführt werden. Der Schnellhalt kommt zum Einsatz, wenn die Betriebsbedingungen ein schnelles Stillsetzen erfordern.

Für den Schnellhalt gibt es folgende Möglichkeiten:

- Sofortiger Wechsel in den Zustand "Einschalten gesperrt".
- Abbremsen des Motors mit Schnellhaltverzögerung und Zustandswechsel in "Einschalten gesperrt".

Schnellhalt - Objekte

4.11 Ein-/Ausgabe-Bereich

Übersicht

Das Motion-Modul belegt 60Byte Eingabe-Daten und 60Byte Ausgabe-Daten.

Kopfmodul	Rückwandbus	Motion	-Modul	
CPU bzw. Buskoppler	\rightarrow	Prozessdaten Azyklischer Kanal		
	←	60E	Byte	

Der Datenaustausch mit dem Motion-Modul muss über die 60 Byte konsistent sein! Es wird daher die Ansteuerung über das Prozessabbild empfohlen.

Ein-/Ausgabe-Bereich

Eingabe-Bereich

Offset	Größe	Bereich	Beschreibung
0	2	Antrieb 1	∜ "0x8100-02 - Statuswort" Seite 123
2	2	Antrieb 1	∜ "0x8280-02 - Istbetriebsart" Seite 131
4	4	Antrieb 1	∜ "0x8480-02 - Istposition" Seite 137
8	4	Antrieb 1	∜ "0x8500-02 - Drehzahlregelung Istgeschwindigkeit" Seite 141
12	4	Antrieb 1	∜ "0x8580-02 - Istbeschleunigung bzw. Istverzögerung" Seite 144
16	4	Antrieb 1	🖔 "0x8480-10 - Schleppfehler" Seite 139
20	2	Antrieb 1	∜ "0x8600-02 - Stromistwert" Seite 145
22	2	-	reserviert
24	2	Antrieb 2	* 🖔 "0x8100-02 - Statuswort" Seite 123
26	2	Antrieb 2	* 🖔 "0x8280-02 - Istbetriebsart" Seite 131
28	4	Antrieb 2	* 🖔 "0x8480-02 - Istposition" Seite 137
32	4	Antrieb 2	* 🖔 "0x8500-02 - Drehzahlregelung Istgeschwindigkeit" Seite 141
36	4	Antrieb 2	* 🖔 "0x8580-02 - Istbeschleunigung bzw. Istverzögerung" Seite 144
40	4	Antrieb 2	* 🖔 "0x8480-10 - Schleppfehler" Seite 139
44	2	Antrieb 2	* 🖔 "0x8600-02 - Stromistwert" Seite 145
46	2	-	reserviert
48	1	DIOs	∜ "0x7100-05 - Status Digitale Eingabe I/O1…I/O4" Seite 118
49	1	DIOs	∜ "0x7200-05 - Status Digitale Ausgabe I/O1I/O4 Istwert" Seite 120
50	1	Azyklisch	Azyklischer Kommunikationskanal:
			Status
51	1	Azyklisch	Azyklischer Kommunikationskanal: Subindex im Objektverzeichnis
52	2	Azyklisch	Azyklischer Kommunikationskanal:
52	_	Azykiisori	Index im Objektverzeichnis
54	4	Azyklisch	Azyklischer Kommunikationskanal:
			Daten
58	1	-	reserviert
59	1	-	reserviert

^{*)} Für jeden Antrieb gibt es je ein Objektverzeichnis, deren Strukturen identisch sind. Bitte beachten Sie, dass die Beschreibungen sich immer auf Antrieb 1 beziehen, sofern nichts anderes erwähnt wird. Für die Anwendung auf Antrieb 2 müssen Sie zum entsprechenden Objekt 0x1000 hinzuaddieren.

- Objektverzeichnis Antrieb 1: 0x8000 ... 0x8FFF
- Objektverzeichnis Antrieb 2: 0x9000 ... 0x9FFF

Bitte beachten Sie, wenn Sie über den Azyklische Kanal schreibend auf Objekte zugreifen, welche in den E/A-Bereich gemappt sind, so werden deren Werte wieder mit dem nächsten Zyklus überschrieben.

Ein-/Ausgabe-Bereich

Ausgabe-Bereich

Offset	Größe	Bereich	Beschreibung
0	2	Antrieb 1	♥ "0x8100-01 - Steuerwort" Seite 122
2	2	Antrieb 1	∜ "0x8280-01 - Sollbetriebsart" Seite 130
4	4	Antrieb 1	♥ "0x8400-02 - Positionsprofil Zielposition" Seite 136
8	4	Antrieb 1	♥ "0x8400-03 - Positionsprofil Zielgeschwindigkeit" Seite 136
12	4	Antrieb 1	♥ "0x8400-04 - Positionsprofil Zielbeschleunigung" Seite 136
16	4	Antrieb 1	♥ "0x8400-05 - Positionsprofil Zielverzögerung" Seite 137
20	2	Antrieb 1	Die Belegung ist abhängig von der gewählten Betriebsart:
			 □ Drehmomentregelung aktiviert - ∜ "0x8600-03 - Stromsollwert" Seite 145 □ Drehmomentregelung deaktiviert - ∜ "0x8600-04 - Stromgrenze positiv" Seite 146 bzw. ∜ "0x8600-05 - Stromgrenze negativ " Seite 146
22	2	-	reserviert
24	2	Antrieb 2	∜ "0x8100-01 - Steuerwort" Seite 122*
26	2	Antrieb 2	∜ "0x8280-01 - Sollbetriebsart" Seite 130*
28	4	Antrieb 2	♥ "0x8400-02 - Positionsprofil Zielposition" Seite 136*
32	4	Antrieb 2	♥ "0x8400-03 - Positionsprofil Zielgeschwindigkeit" Seite 136*
36	4	Antrieb 2	♥ "0x8400-04 - Positionsprofil Zielbeschleunigung" Seite 136*
40	4	Antrieb 2	♥ "0x8400-05 - Positionsprofil Zielverzögerung" Seite 137*
44	2	Antrieb 2	Die Belegung ist abhängig von der gewählten Betriebsart: ■ Drehmomentregelung aktiviert − ∜ "0x8600-03 - Stromsollwert" Seite 145* ■ Drehmomentregelung deaktiviert − ∜ "0x8600-04 - Stromgrenze positiv" Seite 146* bzw. ∜ "0x8600-05 - Stromgrenze negativ " Seite 146*
46	2	-	reserviert
48	1	-	reserviert
49	1	Antrieb	∜ "0x7200-06 - Status Digitale Ausgabe I/O1I/O4 Sollwert" Seite 121
50	1	Azyklisch	Azyklischer Kommunikationskanal: Kommando
51	1	Azyklisch	Azyklischer Kommunikationskanal: Subindex im Objektverzeichnis
52	2	Azyklisch	Azyklischer Kommunikationskanal: Index im Objektverzeichnis
54	4	Azyklisch	Azyklischer Kommunikationskanal: Daten
58	1	-	reserviert

Azyklischer Kanal

Offset	Größe	Bereich	Beschreibung					
59	1	-	reserviert					
	*) Für jeden Antrieb gibt es je ein Objektverzeichnis, deren Strukturen identisch sind. Bitte beachten Sie, dass die Beschreibungen sich immer auf Antrieb 1 beziehen, sofern nichts anderes erwähnt wird. Für die Anwendung auf Antrieb 2 müssen Sie zum entsprechenden Objekt 0x1000 hinzuaddieren.							
Objektverzeichnis Antrieb 1: 0x8000 0x8FFF								
Objek	Objektverzeichnis Antrieb 2: 0x9000 0x9FFF							

4.12 Azyklischer Kanal

Übersicht

Bitte beachten Sie, wenn Sie über den Azyklische Kanal schreibend auf Objekte zugreifen, welche in den E/A-Bereich gemappt sind, so werden deren Werte wieder mit dem nächsten Zyklus überschrieben.

Über den *Azyklischen Kanal* können Sie azyklisch Schreib- und Lesebefehle ausführen. Hierzu wurden in den Ein-/Ausgabe-Bereich des Motion-Moduls Datenbereiche für die azyklische Kommunikation implementiert. Dieser Bereich umfasst 8 Byte Ausgabe- und 8 Byte Eingabe-Daten. Diese haben folgende Belegung:

Anfrage		Antwort		
Ausgabe-Daten		Eingabe-Daten		
 Byte 0: CMD - Kommando Byte 1: SUBIDX - Subindex Byte 2: IDX0 - Index (Low-Byte) Byte 3: IDX1 - Index (High-Byte) Byte 4: DATA0 - Data (Low-Byte) Byte 5: DATA1 - Data Byte 6: DATA2 - Data Byte 7: DATA3 - Data (High-Byte) 	→ ←	 Byte 0: STATUS - Status Byte 1: SUBIDX - Subindex Byte 2: IDX0 - Index (Low-Byte) Byte 3: IDX1 - Index (High-Byte) Byte 4: DATA0 - Data (Low-Byte) Byte 5: DATA1 - Data Byte 6: DATA2 - Data Byte 7: DATA3 - Data (High-Byte) 		
IDLE → Anfrage → Antwort → IDLE				

CMD - Kommando

Code	Name	Beschreibung
0x11	READ_ONCE	Lesen eines Datenobjekts
		Mit diesem Befehl können sie die Daten einmalig anfordern, nachdem der Befehl erkannt wurde.
0x21	WRITE_ONCE	Schreiben eines Datenobjekts
		Mit diesem Befehl werden Daten nur einmalig geschrieben, nachdem der Befehl erkannt wurde.

SUBIDX - Subindex Subindex im Objektverzeichnis

IDX0/IDX1 - Index Index im Objektverzeichnis

Parametrierdaten > Parameter

DATA0 ... DATA3 - Daten

Daten, welche zu übertragen sind.

STATUS - Status

Code	Name	Beschreibung
0x00	IDLE	Leerlauf - wartet auf Befehle
0x14	READ_ONCE	Befehl READ_ONCE wurde erkannt, Daten sind gültig.
0x24	WRITE_ONCE	Befehl WRITE_ONCE wurde erkannt, Daten wurden angenommen.
0x81	READ_NOT_EXIST	Fehler - Lesezugriff - Daten nicht vorhanden
		Befehl wurde nicht ausgeführt!
0x91	WRITE_NOT_EXIST	Fehler - Schreibzugriff - Daten nicht vorhanden
		Befehl wurde nicht ausgeführt!
0x92	WRITE_RNG_ERR	Fehler - Schreibzugriff - Datenbereich überschritten
		Befehl wurde nicht ausgeführt!
0x93	WRITE_RDO_ERR	Fehler - Schreibzugriff - Daten können nur gelesen werden
		Befehl wurde nicht ausgeführt!
0x94	WRITE_WPR_ERR	Fehler - Schreibzugriff - Daten sind schreibgeschützt
		Befehl wurde nicht ausgeführt!
0x99	ACYC_COM_ERR	Fehler während der azyklischen Kommunikation
		Befehl wurde nicht ausgeführt!

Für das VIPA *SPEED7 Studio* bzw. für den Siemens SIMATIC Manager steht Ihnen für vereinfachten Zugriff der Baustein FB 320 ACYC_RW zur Verfügung.

Näheres zum Einsatz dieses Bausteins finden Sie im Handbuch "SPEED7 Operationsliste" von Yaskawa.

4.13 Parametrierdaten

Über die Parameter definieren Sie unter anderem:

- Alarmverhalten
- Universal-Parameter

4.13.1 Parameter

DS - Datensatz für Zugriff über CPU, PROFIBUS und PROFINET

IX - Index für Zugriff über CANopen

SX - Subindex für Zugriff über EtherCAT mit Index 3100h + EtherCAT-Slot

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Parametrierdaten > Parameter

Name	Bytes	Funktion	Default	DS	IX	SX
DIAG_EN	1	Diagnosealarm *	00h	00h	3100h	01h
IDX_1	2	Universalparameter 1: Index	00h	80h	3101h31 02h	02h
SUBIDX_1	2	Universalparameter 1: Sub-index	00h	80h	3103h31 04h	03h
DATA_1	4	Universalparameter 1: Wert	00h	80h	3105h31 08h	04h
IDX_2	2	Universalparameter 2: Index	00h	81h	3109h31 0Ah	05h
SUBIDX_2	2	Universalparameter 2: Sub-index	00h	81h	310Bh31 0Ch	06h
DATA_2	4	Universalparameter 2: Wert	00h	81h	310Dh31 10h	07h
IDX_3	2	Universalparameter 3: Index	00h	82h	3111h311 2h	08h
SUBIDX_3	2	Universalparameter 3: Subindex	00h	82h	3113h311 4h	09h
DATA_3	4	Universalparameter 3: Wert	00h	82h	3115h311 8h	0Ah
IDX_4	2	Universalparameter 4: Index	00h	83h	3119h311 Ah	0Bh
SUBIDX_4	2	Universalparameter 4: Sub-index	00h	83h	311Bh31 1Ch	0Ch
DATA_4	4	Universalparameter 4: Wert	00h	83h	311Dh31 20h	0Dh
IDX_5	2	Universalparameter 5: Index	00h	84h	3121h31 22h	0Eh
SUBIDX_5	2	Universalparameter 5: Subindex	00h	84h	3123h31 24h	0Fh
DATA_5	4	Universalparameter 5: Wert	00h	84h	3125h31 28h	10h
IDX_6	2	Universalparameter 6: Index	00h	85h	3129h31 2Ah	11h
SUBIDX_6	2	Universalparameter 6: Sub-index	00h	85h	312Bh31 2Ch	12h
DATA_6	4	Universalparameter 6: Wert	00h	85h	312Dh31 30h	13h
IDX_7	2	Universalparameter 7: Index	00h	86h	3131h31 32h	14h
SUBIDX_7	2	Universalparameter 7: Sub-index	00h	86h	3133h31 34h	15h
DATA_7	4	Universalparameter 7: Wert	00h	86h	3135h31 38h	16h
*) Diesen Datensatz dürfer	Sie ausschließlich im S	STOP-Zustand übertragen.				

Überwachung und Fehlerreaktion > Übersicht

Für das VIPA *SPEED7 Studio* bzw. für den Siemens SIMATIC Manager steht Ihnen für vereinfachten Zugriff der Baustein FB 321 - ACYC DS zur Verfügung.

Näheres zum Einsatz dieses Bausteins finden Sie im Handbuch "SPEED7 Operationsliste" von Yaskawa.

4.14 Skalierung und Einheiten

Skalierung und Einheiten

■ Als "Normierung" für Position, Geschwindigkeit und Beschleunigung können Sie im Objektverzeichnis einen Getriebefaktor ∜ "0x8180-02 - Getriebefaktor" Seite 128 vorgeben. Dieser Getriebefaktor stellt Einheiten in tausend dar, mit dem eine rotative Achse genau eine Umdrehung macht.

Drehrichtung

Es gilt positive Drehrichtung ist Drehung nach rechts (im Uhrzeigersinn) mit Blickrichtung auf den Motorflansch.

Stromeinheit

- Alle Ströme sind auf die Einheit [mA] normiert.
- [User] ist ein benutzerdefinierte Einheit (Unit), welche vom *Getriebefaktor* abhängt. ∜ "0x8180-02 - Getriebefaktor" Seite 128

4.15 Überwachung und Fehlerreaktion

4.15.1 Übersicht

Allgemeines

Das System SLIO Motion-Modul ist mit Überwachungsfunktionen ausgestattet. Die Überwachung arbeiten in 3 Stufen:

- 1. Begrenzung
 - Status: ♥ "0x8100-04 Bitleiste Begrenzungen" Seite 125
 - Begrenzungen innerhalb des regulären Betriebsbereichs, angepasst auf die jeweilige Applikation.
- 2. Warnung
 - Status: ♦ "0x8100-05 Bitleiste Warnungen" Seite 126
 - Der zulässige Betriebsbereich ist nahezu ausgeschöpft und das System steht kurz vor Einleitung einer Fehlerreaktion.
- 3. Fehler
 - Status: ♥ "0x8100-06 Bitleiste Fehler" Seite 127
 - Der zulässige Betriebsbereich ist überschritten und eine konfigurierbare Fehlerreaktion wird automatisch eingeleitet.
 - Fehlermeldungen werden auch über ♥ "0x8100-02 Statuswort" Seite 123 angezeigt.

VORSICHT!

Bitte beachten Sie, dass durch falsch eingestellte Überwachungsfunktionen Schäden an Mensch und Material entstehen können!

Überwachung und Fehlerreaktion > Übersicht

Spannungsüberwachung

Die Spannung DC 24V der Modulversorgung und die interne Steuerspannung der Endstufen werden überwacht. Bei einer Spannung größer oder kleiner den Grenzwerten wird eine Warnung oder ein Fehler über 9 "0x8100-02 - Statuswort" Seite 123 gemeldet. Im Fehlerfall erfolgt eine Fehlerreaktion des Motion-Moduls, welche konfiguriert werden kann.

Temperaturüberwachung

Das Motion-Modul besitzt eine interne Temperaturüberwachung des μ -Controllers und der Endstufe. Über das Objektverzeichnis können Sie Grenztemperaturen definieren. Bei Über- oder Unterschreiten eines Grenzwerts erfolgt eine Fehlerreaktion des Motion-Moduls, welche Sie konfigurieren können. $\mbox{\ensuremath{\ensu$

Stromüberwachung

Der von den Endstufen getriebene Strom in den Wicklungen des Motors wird überwacht. Der Sollstrom § "0x8600-03 - Stromsollwert" Seite 145 wird auf einen konfigurierbaren Wert begrenzt § "0x8600-04 - Stromgrenze positiv" Seite 146 bzw. § "0x8600-05 - Stromgrenze negativ" Seite 146 und über § "0x8100-02 - Statuswort" Seite 123 bei aktiver Begrenzung gemeldet. Überschreitet der Iststrom den zulässigen Motorstrom § "0x8C00-04 - Motor Strom max." Seite 154, erfolgt eine Fehlerreaktion des Motion-Moduls, welche konfiguriert werden kann.

Positionsüberwachung

Das Motion-Modul überwacht bei einem Positioniervorgang den Verfahrweg. Bei der Vorgabe einer Zielposition wird diese bei Überschreiten eines konfigurierbaren Grenzwerts in positiver und negativer Bewegungsrichtung begrenzt und nicht übernommen. Eine Rückmeldung über eine aktive Begrenzung erhalten Sie über § "0x8100-02 - Statuswort" Seite 123. Überschreitet die Istposition einen der konfigurierbaren Werte in positiver bzw. negativer Bewegungsrichtung, wird dies auch über § "0x8100-02 - Statuswort" Seite 123 gemeldet. Das Modul überwacht den intern generierten Positions-Sollwert und -Istwert. Diese Differenz bezeichnet man als "Schleppfehler". Überschreitet der Schleppfehler den konfigurierbaren Grenzwert, erfolgt eine Fehlerreaktion des Motion-Moduls, welche konfiguriert werden kann.

Geschwindigkeitsüberwachung

Das Motion-Modul überwacht die Geschwindigkeit. Die Sollgeschwindigkeit wird auf einen konfigurierbaren Wert begrenzt und über $\mbox{\ensuremath{,}}\mbox{\$

Überwachung und Fehlerreaktion > Überwachung

Fehlerreaktion

Folgende Fehler können eine Fehlerreaktion auslösen:

- Maximal Drehzahl überschritten

 § "0x8500-02 Drehzahlregelung Istgeschwindigkeit" Seite 141 > § "0x8C00-07 Motor Geschwindigkeit max." Seite 155
- Fehler Schleppfehlergrenze

 ∜ "0x8480-10 Schleppfehler" Seite 139 > ∜ "0x8480-12 Schleppfehlergrenze
 Fehler" Seite 140
- Temperaturfehler μ-Controller ∜ "0x8780-02 - Temperatur μ-Controller Istwert" Seite 152 > ∜ "0x8780-04 - Temperatur μ-Controller Fehler Obergrenze" Seite 153
- Temperaturfehler Leistungsendstufe im Motion Modul

 § "0x8780-07 Temperatur Leistungsendstufe Istwert" Seite 153 > § "0x8780-09 Temperatur Leistungsendstufe Fehler Obergrenze" Seite 154
- Fehler Systemkommunikation Zeitüberschreitung

 ∜ "0x6100-10 Systemkommunikation Ausfallzeit Maximum" Seite 116
- Fehler Befehlsausgabesperre (BASP)

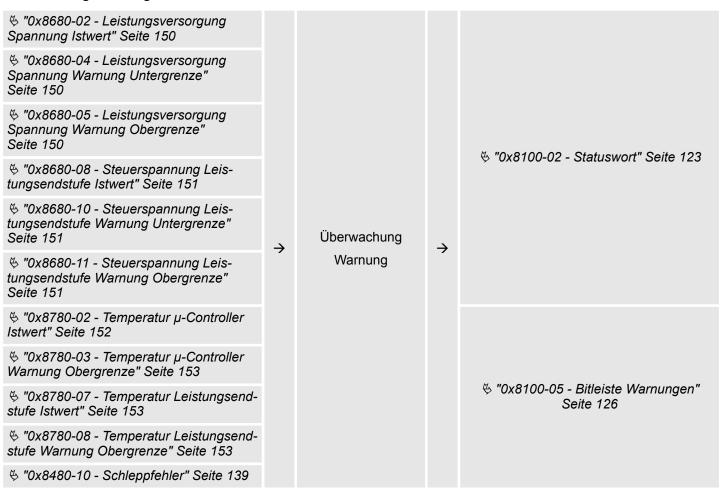
Im Fehlerfall führt das Motion-Modul eine Fehlereaktion aus. Die Fehlerreaktion können Sie konfigurieren. Hierbei haben Sie folgende Möglichkeiten:

- Sofortiger Wechsel in den Zustand "Einschalten gesperrt".
- Abbremsen mit ∜ "0x8580-03 Schnellhalt-Verzögerung" Seite 144 und anschließendem Zustandswechsel zu "Einschalten gesperrt".

4.15.2 Überwachung

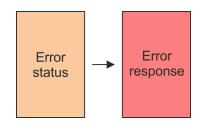
Zugriff auf 2 Antriebe

Für jeden Antrieb gibt es je ein Objektverzeichnis, deren Strukturen identisch sind. Bitte beachten Sie, dass die Beschreibungen sich immer auf Antrieb 1 beziehen, sofern nichts anderes erwähnt wird. Für die Anwendung auf Antrieb 2 müssen Sie zum entsprechenden Objekt 0x1000 hinzuaddieren.

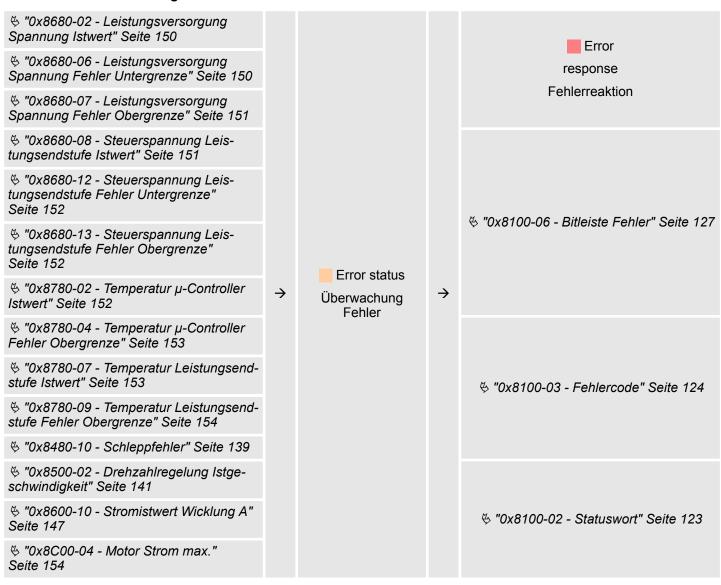

- Objektverzeichnis Antrieb 1: 0x8000 ... 0x8FFF
- Objektverzeichnis Antrieb 2: 0x9000 ... 0x9FFF

Überwachung und Fehlerreaktion > Überwachung

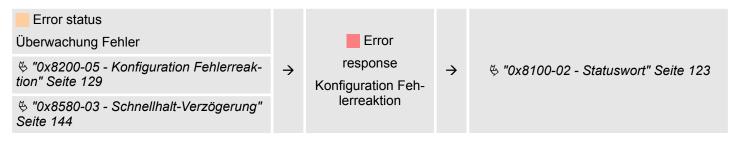
Überwachung Begrenzung


♦ "0x8400-02 - Positionsprofil Zielposition" Seite 136				
∜ "0x8480-02 - Istposition" Seite 137				
♥ "0x8480-05 - Software Positionsgrenze positiv" Seite 138				
♥ "0x8480-06 - Software Positionsgrenze negativ" Seite 138				
♥ "0x8400-03 - Positionsprofil Zielge- schwindigkeit" Seite 136	\rightarrow	Überwachung	→	
♥ "0x8500-04 - Drehzahlregelung Grenze positiv" Seite 142		Begrenzung		
∜ "0x8500-05 - Drehzahlregelung Grenze negativ" Seite 142				
5 "0x8600-03 - Stromsollwert" Seite 145				♥ "0x8100-04 - Bitleiste Begrenzungen" Seite 125
∜ "0x8600-04 - Stromgrenze positiv" Seite 146				
∜ "0x8600-05 - Stromgrenze negativ " Seite 146				

Überwachung Warnung



Überwachung und Fehlerreaktion > Überwachung


Überwachung Fehler

Error status - Überwachung Fehler

Error response - Konfiguration Fehlerreaktion

Diagnose und Alarm

4.16 Diagnose und Alarm

Diagnosedaten

Sie haben die Möglichkeit über die Parametrierung einen Diagnosealarm für das Modul zu aktivieren. Mit dem Auslösen eines Diagnosealarms werden vom Modul Diagnosedaten für Diagnose_{kommend} bereitgestellt. Sobald die Gründe für das Auslösen eines Diagnosealarms nicht mehr gegeben sind, erhalten Sie automatisch einen Diagnosealarm_{gehend}. Innerhalb dieses Zeitraums (1. Diagnosealarm_{kommend} bis letzter Diagnosealarm_{gehend}) leuchtet die MF-LED des Moduls.

- DS Datensatz für Zugriff über CPU, PROFIBUS und PROFINET. Der Zugriff erfolgt über DS 01h. Zusätzlich können Sie über DS 00h auf die ersten 4 Byte zugreifen.
- IX Index für Zugriff über CANopen. Der Zugriff erfolgt über IX 2F01h. Zusätzlich können Sie über IX 2F00h auf die ersten 4 Byte zugreifen.
- SX Subindex für Zugriff über EtherCAT mit Index 5005h.

Näheres hierzu finden Sie im Handbuch zu Ihrem Bus-Koppler.

Name	Bytes	Funktion	Default	DS	IX	SX
ERR_A	1	Diagnose	00h	01h	2F01h	02h
MODTYP	1	Modulinformation	18h			03h
ERR_C	1	reserviert	00h			04h
ERR_D	1	reserviert	00h			05h
CHTYP	1	Kanaltyp	72h			06h
NUMBIT	1	Anzahl Diagnosebits pro Kanal	08h			07h
NUMCH	1	Anzahl Kanäle des Moduls	04h			08h
CHERR	1	Kanalfehler	00h			09h
CH0ERR	1	Kanalspezifischer Fehler	00h			0Ah
CH1ERR	1	Kanalspezifischer Fehler	00h			0Bh
CH2ERR	1	Kanalspezifischer Fehler	00h			0Ch
CH3ERR	1	Kanalspezifischer Fehler	00h			0Dh
CH4ERR CH7ERR	4	reserviert	00h			0Eh 11h
DIAG_US	4	μs-Ticker (32Bit)	00h			13h

ERR A Diagnose

Byte	Bit 7 0
0	 Bit 0: gesetzt, wenn Baugruppenstörung Bit 1: gesetzt, bei Fehler intern Bit 2: gesetzt, bei Fehler extern Bit 3: gesetzt, bei Kanalfehler vorhanden Bit 6 4: reserviert Bit 7: gesetzt bei Parametrierfehler

Diagnose und Alarm

MODTYP	Modulinforma-
tion	

Byte	Bit 7 0
0	 Bit 3 0: Modulklasse 1000b: Funktionsmodul Bit 4: gesetzt bei Kanalinformation vorhanden
	■ Bit 7 5: reserviert

CHTYP Kanaltyp

Byte	Bit 7 0
0	■ Bit 6 0: Kanaltyp – 72h: Digitale Ausgabe ■ Bit 7: 0 (fix)

NUMBIT Diagnosebits

Byte	Bit 7 0
0	Anzahl der Diagnosebits des Moduls pro Kanal (hier 08h)

NUMCH Kanäle

Byte	Bit 7 0
0	Anzahl der Kanäle eines Moduls (hier 04h)

CHERR Kanalfehler

Byte	Bit 7 0
0	 Bit 0: gesetzt bei Fehler Ausgang I/O1 Bit 1: gesetzt bei Fehler Ausgang I/O2 Bit 2: gesetzt bei Fehler Ausgang I/O3 Bit 3: gesetzt bei Fehler Ausgang I/O4 Bit 7 4: reserviert

CH0ERR...CH3ERR kanalspezifisch

Byte	Bit 7 0
0	Diagnosealarm wegen
	■ Bit 2 0: reserviert ■ Bit 3: Kurzschluss ■ Bit 7 4: reserviert

DIAG_US µs-Ticker

Byte	Bit 7 0
0 3	Wert des µs-Tickers bei Generierung der Diagnosedaten

ERR_C/D, CH4ERR ... CH7ERR reserviert

108

Byte	Bit 7 0
0	reserviert

Anwendung

5 Objektverzeichnis

5.1 Anwendung

Adressierung

Das System SLIO Motion-Modul stellt seine Daten wie z.B. "Profilgeschwindigkeit" über ein Objektverzeichnis zur Verfügung. In diesem Objektverzeichnis sind die Objekte organisiert und durch eine eindeutige Nummer, bestehend aus *Index* und *Subindex* adressierbar. Die Nummer wird wie folgt angegeben:

0x	Index (hexadezimal)	-	Subindex (dezimal)
Beispiel	: 0x8400-03		
	Zur besseren Strukturierung und Motion-Modul eine andere Objekt über dem Standard CiA 402 gewä	nummeri	

Index-Bereiche

Durch die Aufteilung in Index und Subindex ist eine Gruppierung möglich. Die einzelnen Bereiche sind in Gruppen zusammengehöriger Objekte gegliedert. Dieses Objektverzeichnis ist beim System SLIO Motion Modul wie folgt strukturiert:

Index-Bereich	Inhalt
0x1000 0x6FFF	Allgemeine Daten und Systemdaten
0x7000 0x7FFF	Daten der digitalen Ein- und Ausgabeeinheit
0x8000 0x8FFF	Daten Antrieb 1
0x9000 0x9FFF	Daten Antrieb 2

Jedes Objekt verfügt über einen Subindex 0. Durch Aufruf eines Objekts mit Subindex 0 bekommen Sie die Anzahl der verfügbaren Subindizes des entsprechenden Objekts zurückgeliefert.

Im Handbuch werden die Index-Bereiche der von Antrieb 1 (0x8000 ... 0x8FFF) beschrieben. Für die Antrieb 2 entspricht das dem Index-Bereich 0x9000 ... 0x9FFF.

Objekte > Übersicht

Zugriff auf das Objektverzeichnis

Die Kommunikation erfolgt über den E/A-Bereich. Die wichtigsten Daten aus dem Objektverzeichnis sind in den E/A-Bereich gemappt. 🌣 Kap. 4.11 "Ein-/Ausgabe-Bereich" Seite 96

Im Mapping enthalten ist auch der Azyklische Kanal, über welchen sie azyklisch auf die Objekte des Motion-Moduls zugreifen können. Beim azyklischen Zugriff wird jeder Zugriff auf das Objektverzeichnis vom Motion-Modul guittiert. 🤄 Kap. 4.12 "Azyklischer Kanal" Seite 99

Das Mapping kann nicht geändert werden.

Bitte beachten Sie, wenn Sie über den Azyklische Kanal schreibend auf Objekte zugreifen, welche in den E/A-Bereich gemappt sind, so werden deren Werte wieder mit dem nächsten Zyklus überschrieben.

5.2 Objekte

5.2.1 Übersicht

Zugriff auf 2 Antriebe

Für jeden Antrieb gibt es je ein Objektverzeichnis, deren Strukturen identisch sind. Bitte beachten Sie, dass die Beschreibungen sich immer auf Antrieb 1 beziehen, sofern nichts anderes erwähnt wird. Für die Anwendung auf Antrieb 2 müssen Sie zum entsprechenden Objekt 0x1000 hinzuaddieren.

- Objektverzeichnis Antrieb 1: 0x8000 ... 0x8FFF
- Objektverzeichnis Antrieb 2: 0x9000 ... 0x9FFF

Erläuterung der Elemente

Index-Sub - Index und Subindex

Sx - Datentyp SIGNEDx

Ux - Datentyp UNSIGNEDx

STG - Datentyp STRING

RW - Lese-, Schreibzugriff

[degC] - Temperatur in degrees Celsius (°C)

- Inkrement - Impulse eines Encoders [inc]

[User] - Die Einheit [User] ist eine benutzerdefinierte Einheit (Unit), welche Sie über ♥ "0x8180-02 - Getriebefaktor" Seite 128 einstellen können.

> - Objekt, welches in & Kap. 4.11 "Ein-/Ausgabe-Bereich" Seite 96 gemappt ist. Wenn Sie über den Azyklische Kanal schreibend auf dieses Objekte zugreifen, so wird mit dem nächsten Zyklus der Wert überschrieben.

- Objekt, welches passwortgesichert in allen Zuständen der Zustandsmaschine geschrieben werden kann. Ansonsten können Objekte nur im Zustand "Einschalten gesperrt" geschrieben werden. 🤄 "Zugriff auf die Zustandsmaschine" Seite 65

⋄ Kap. 5.2.3 "Passwort und Sicherheit - 0x1100" Seite 115

Objekte > Übersicht

Verfügbare Objekte

```
∜ "0x1000-00 - Gerätetyp" Seite 114

♥ "0x1008-00 - Hersteller Gerätename" Seite 114
♥ "0x100A-00 - Hersteller Software-Version" Seite 114
🖔 "0x1018-00 - Produkt - Anzahl der Einträge" Seite 114
♥ "0x1018-02 - Produkt-ID" Seite 115
♥ "0x1018-03 - Revisionsnummer" Seite 115

⋄ "0x1018-04 - Seriennummer" Seite 115

⋄ "0x1018-05 - Modulkategorie" Seite 115

\( \begin{aligned}
\text{ "0x1100-00 - Passwort und Sicherheit - Anzahl der Eintr\( \text{age} \) Seite 115
\end{aligned}
\)

"0x1100-01 - Passwort" Seite 116
🤟 "0x6100-00 - Systemkommando - Anzahl der Einträge" Seite 116
"0x6100-10 - Systemkommunikation Ausfallzeit Maximum" Seite 116
♥ "0x7100-00 - Digitale Eingänge - Anzahl der Einträge" Seite 116
"0x7100-01...04 - Konfiguration Digitale Eingabe I/O1...I/O4" Seite 117
♥ "0x7100-05 - Status Digitale Eingabe I/O1...I/O4" Seite 118
🤟 "0x7200-00 - Digitale Ausgänge - Anzahl der Einträge" Seite 118
♥ "0x7200-01...04 - Konfiguration Digitale Ausgabe I/O1...I/O4" Seite 119
♥ "0x7200-05 - Status Digitale Ausgabe I/O1...I/O4 Istwert" Seite 120
"0x7200-06 - Status Digitale Ausgabe I/O1...I/O4 Sollwert" Seite 121

\( \begin{aligned}
\begin{
♥ "0x8100-02 - Statuswort" Seite 123
"0x8100-03 - Fehlercode" Seite 124

⋄ "0x8100-04 - Bitleiste Begrenzungen" Seite 125

⋄ "0x8100-05 - Bitleiste Warnungen" Seite 126

♥ "0x8100-06 - Bitleiste Fehler" Seite 127

🤄 "0x8180-00 - Antrieb konfigurieren - Anzahl der Einträge" Seite 128

♥ "0x8180-02 - Getriebefaktor" Seite 128

🖔 "0x8200-00 - Optionen - Anzahl der Einträge" Seite 129

⋄ "0x8200-01 - Konfiguration Schnellhalt" Seite 129

♥ "0x8200-05 - Konfiguration Fehlerreaktion" Seite 129
🖔 "0x8280-00 - Betriebsart - Anzahl der Einträge" Seite 130

♦ "0x8280-01 - Sollbetriebsart" Seite 130

∜ "0x8280-02 - Istbetriebsart" Seite 131

🖔 "0x8300-00 - Referenzfahrt - Anzahl der Einträge" Seite 131
♥ "0x8300-02 - Referenzfahrt-Methode" Seite 132
"0x8300-03 - Referenzfahrt digitaler Eingang I/O1...I/O4" Seite 132
♥ "0x8300-04 - Referenzfahrt digitaler Eingang Polarität I/O1...I/O4" Seite 133
♥ "0x8300-05 - Referenzfahrt Zielposition" Seite 133

\[
\begin{align*}
```

Obiekte > Übersicht

```
"0x8300-07 - Referenzfahrt Geschwindigkeit V2" Seite 134

\[
\begin{align*}
♥ "0x8300-09 - Referenzfahrt Verzögerung" Seite 134
♥ "0x8300-10 - Referenzfahrt Offset" Seite 135
♥ "0x8300-12 - Referenzfahrt Grenzstrom" Seite 135
♥ "0x8300-13 - Referenzfahrt Entfernung" Seite 135
♥ "0x8400-00 - Positionsprofil - Anzahl der Einträge" Seite 135
♥ "0x8400-02 - Positionsprofil Zielposition" Seite 136
♥ "0x8400-03 - Positionsprofil Zielgeschwindigkeit" Seite 136
"0x8400-04 - Positionsprofil Zielbeschleunigung" Seite 136
♥ "0x8400-05 - Positionsprofil Zielverzögerung" Seite 137
🔖 "0x8480-00 - Positionen und Grenzwerte - Anzahl der Einträge" Seite 137
♥ "0x8480-02 - Istposition" Seite 137

♥ "0x8480-03 - Sollposition" Seite 137

♥ "0x8480-05 - Software Positionsgrenze positiv" Seite 138
♥ "0x8480-06 - Software Positionsgrenze negativ" Seite 138
♥ "0x8480-07 - Bereichsgrenze positive Richtung" Seite 139
♥ "0x8480-08 - Bereichsgrenze negative Richtung" Seite 139
"0x8480-09 - Zielfenster" Seite 139

⋄ "0x8480-10 - Schleppfehler" Seite 139

♥ "0x8480-11 - Schleppfehlergrenze Warnung" Seite 140
♥ "0x8480-12 - Schleppfehlergrenze Fehler" Seite 140

⋄ "0x8480-13 - Lageregelung P-Anteil" Seite 140

♥ "0x8480-14 - Lageregelung I-Anteil" Seite 140
♥ "0x8480-15 - Lageregelung D-Anteil" Seite 140
"0x8480-16 - Lageregelung Verschiebungsfaktor" Seite 141
🔖 "0x8500-00 - Drehzahlregelung - Anzahl der Einträge" Seite 141
♥ "0x8500-01 - Drehzahlregelung Konfiguration" Seite 141
♥ "0x8500-02 - Drehzahlregelung Istgeschwindigkeit" Seite 141

⋄ "0x8500-03 - Drehzahlregelung Sollwert" Seite 142

♥ "0x8500-04 - Drehzahlregelung Grenze positiv" Seite 142
♥ "0x8500-05 - Drehzahlregelung Grenze negativ" Seite 142
♥ "0x8500-06 - Drehzahlregelung Grenze Drehmoment" Seite 142
"0x8500-07 - Drehzahlregelung Grenze für Drehmomentregelung" Seite 143

⋄ "0x8500-11 - Drehzahlregelung P-Anteil" Seite 143

♥ "0x8500-12 - Drehzahlregelung I-Anteil" Seite 143
"0x8500-13 - Drehzahlregelung D-Anteil" Seite 143
🌣 "0x8580-00 - Beschleunigung und Verzögerung - Anzahl der Einträge" Seite 144
🤄 "0x8580-02 - Istbeschleunigung bzw. Istverzögerung" Seite 144
♥ "0x8580-03 - Schnellhalt-Verzögerung" Seite 144
```

112

♥ "0x8580-04 - Beschleunigungsgrenze" Seite 144

Objekte > Übersicht

🖔 "0x8580-06 - Verzögerungsgrenze" Seite 145 🖔 "0x8600-00 - Ströme - Anzahl der Einträge" Seite 145 ∜ "0x8600-02 - Stromistwert" Seite 145 ♥ "0x8600-03 - Stromsollwert" Seite 145 ⋄ "0x8600-04 - Stromgrenze positiv" Seite 146 ⋄ "0x8600-05 - Stromgrenze negativ " Seite 146 ♥ "0x8600-06 - Stromregelung P-Anteil " Seite 146 ⋄ "0x8600-07 - Stromregelung I-Anteil" Seite 146 ♥ "0x8600-09 - Stromregelung Filter Faktor " Seite 147 ♥ "0x8600-10 - Stromistwert Wicklung A" Seite 147 ♥ "0x8600-12 - Stromsollwert Wicklung A" Seite 147 ⋄ "0x8600-14 - Stromversatz Wicklung A" Seite 148 \(\begin{aligned}
\text{ "0x8600-16 - Strom-Spannungsverh\(\aligned \) ltnis Wicklung A" Seite 149
\end{aligned}
\) 🔖 "0x8680-00 - Spannungen - Anzahl der Einträge" Seite 149 ♥ "0x8680-02 - Leistungsversorgung Spannung Istwert" Seite 150 "0x8680-04 - Leistungsversorgung Spannung Warnung Untergrenze" Seite 150 "0x8680-05 - Leistungsversorgung Spannung Warnung Obergrenze" Seite 150 "0x8680-06 - Leistungsversorgung Spannung Fehler Untergrenze" Seite 150 "0x8680-07 - Leistungsversorgung Spannung Fehler Obergrenze" Seite 151 "0x8680-08 - Steuerspannung Leistungsendstufe Istwert" Seite 151 "0x8680-10 - Steuerspannung Leistungsendstufe Warnung Untergrenze" Seite 151 🤄 "0x8680-11 - Steuerspannung Leistungsendstufe Warnung Obergrenze" Seite 151 "0x8680-12 - Steuerspannung Leistungsendstufe Fehler Untergrenze" Seite 152 🌣 "0x8680-13 - Steuerspannung Leistungsendstufe Fehler Obergrenze" Seite 152 ♥ "0x8780-00 - Temperaturen - Anzahl der Einträge" Seite 152 \[
\begin{align*}
\begin{align* \[
\begin{align*}
\begin{align* \[
\begin{align*}
\begin{align* ♥ "0x8780-07 - Temperatur Leistungsendstufe Istwert" Seite 153 ♥ "0x8780-08 - Temperatur Leistungsendstufe Warnung Obergrenze" Seite 153 \[
\begin{align*}
\begin{align*} ♥ "0x8C00-00 - Motorparameter - Anzahl der Einträge" Seite 154 ♥ "0x8C00-04 - Motor Strom max." Seite 154 ⋄ "0x8C00-06 - Motor Nenndrehzahl" Seite 154 ♥ "0x8C00-07 - Motor Geschwindigkeit max." Seite 155 ♥ "0x8C00-09 - Motor Geschwindigkeitskonstante" Seite 155 ⋄ "0x8C00-10 - Motor Phasenwiderstand" Seite 155 ♥ "0x8F00-00 - Encoder - Anzahl der Einträge" Seite 155 ♥ "0x8F00-01 - Encoder Rückführung Konfiguration" Seite 156 ⋄ "0x8F00-02 - Encoder Istwert" Seite 156

♥ "0x8F00-03 - Encoder Auflösung" Seite 157

Objekte > Informationen über das Produkt - 0x1000...0x1018

5.2.2 Informationen über das Produkt - 0x1000...0x1018

0x1000-00 - Gerätetyp

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung				
0x1000-00	U32	R	0	0 0xFFFFFFF		Gerätetyp				
♥ "Erläuterur	∜ "Erläuterung der Elemente" Seite 110									

Hier bekommen Sie den Gerätetyp gemäß CiA 402 angezeigt.

MSB			LSB
31	24 23	16 15	0
Additional information		Device profile number	
Mode bit = $0x00$	Type = 0x40	0x0192	

0x1008-00 - Hersteller Gerätename

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung				
0x1008-00	U32	R	0	0 0xFFFFFFF		Hersteller Gerätename				
∜ "Erläuterun	∜ "Erläuterung der Elemente" Seite 110									

Hier finden Sie den Namen des Motion-Moduls ASCII codiert: 0x44434D31: "DCM1"

0x100A-00 - Hersteller Software-Version

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung
0x100A-00	U32	R	aktuelle Version	0 0xFFFFFFF		Hersteller Software-Version
∜ "Erläuterun	g der Ele	mente" S	eite 110			

Hier finden Sie die Software-Version des Motion-Moduls 8Bit codiert z.B. 0x01050300: V1.5.3.0

0x1018-00 - Produkt - Anzahl der Einträge

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung			
0x1018-00	U08	R	5	5		Produkt - Anzahl der Einträge			
∜ "Erläuterun	∜ "Erläuterung der Elemente" Seite 110								

Objekte > Passwort und Sicherheit - 0x1100

0x1018-02 - Produkt-ID

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung				
0x1018-02	U32	R	0x534C49 4F	0 0xFFFFFFF		Produkt-ID				
♥ "Erläuterun	∜ "Erläuterung der Elemente" Seite 110									

Hier finden Sie gemäß CiA 402 die Produkt-ID des Motion-Moduls: 0x534C494F

0x1018-03 - Revisionsnummer

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung				
0x1018-03	U32	R	0	0 0xFFFFFFF		Revisionsnummer				
♥ "Frläuterun	∜ "Erläuterung der Elemente" Seite 110									

Hier finden Sie gemäß CiA 402 die Revisionsnummer des Motion-Moduls. Aktuell wird dieses Objekt nicht verwendet und liefert 0 zurück.

0x1018-04 - Seriennummer

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung			
0x1018-04	U32	R	0	0 0xFFFFFFF		Seriennummer			
∜ "Erläuterung der Elemente" Seite 110									

Hier finden Sie gemäß CiA 402 die Seriennummer des Motion-Moduls. Aktuell wird dieses Objekt nicht verwendet und liefert 0 zurück.

0x1018-05 - Modulkategorie

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung				
0x1018-05	U32	R	0	0 200		Modulkategorie				
🧇 "Erläuterun	∜ "Erläuterung der Elemente" Seite 110									

Hier finden Sie gemäß CiA 402 die Modulkategorie des Motion-Moduls: 0x31: DCM

5.2.3 Passwort und Sicherheit - 0x1100

0x1100-00 - Passwort und Sicherheit - Anzahl der Einträge

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung
0x1100-00	U08	R	2	2		Passwort und Sicherheit - Anzahl der Einträge
∜ "Erläuterur	na der Ele	mente" S	eite 110			

Objekte > Digitale Eingänge I/O1...I/O4 - 0x7100

0x1100-01 - Passwort

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung
0x1100-01	U32	R/W**	0	0 0xFFFFFFF		Passwort
♥ "Erläuterun	ng der Ele	mente" S	eite 110			

Mit diesem Objekt können Sie das Passwort aktivieren, welches das Beschreiben von Objekten in allen Zuständen der Zustandsmaschine erlaubt. Ansonsten können Objekte, wenn nichts anderes erwähnt, nur im Zustand "Einschalten gesperrt" geschrieben werden. Das Passwort lautet: 0xABCDABCD und kann nicht geändert werden. \$\mathcal{E}\$ "Zugriff auf die Zustandsmaschine" Seite 65

5.2.4 Systemkommando - 0x6100

0x6100-00 - Systemkommando - Anzahl der Einträge

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x6100-00	U08	R	17	17		Systemkommando - Anzahl der Einträge		
🧇 "Erläuterur	∜ "Erläuterung der Elemente" Seite 110							

0x6100-10 - Systemkommunikation Ausfallzeit Maximum

0x6100-10 U32 F	R/W C	-	0 0xFFFFFFF	[mS]	Systemkommunikation Ausfallzeit Maximum

♥ "Erläuterung der Elemente" Seite 110

Mit diesem Objekt können Sie die Überwachung der zyklischen Kommunikation zum System SLIO Bus und damit zum Feldbus aktivieren. Erfolgt innerhalb der angegebenen Zeit in ms keine Kommunikation, geht das Motion-Modul in den Fehlerzustand über. Erfordert die Applikation eine zyklische Kommunikation mit dem Motion-Modul und kann die Überwachung des Zyklus auf Seite des Feldbuskopplers oder der CPU nicht sichergestellt werden, sollte in diesem Objekt eine Überwachungszeit eingetragen werden. Voreingestellt ist keine Überwachung aktiv.

5.2.5 Digitale Eingänge I/O1...I/O4 - 0x7100

⟨ Kap. 4.9 "Einsatz I/O1...I/O4" Seite 93

0x7100-00 - Digitale Eingänge - Anzahl der Einträge

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung	
0x7100-00	U08	R	5	5		Digitale Eingänge - Anzahl der Einträge	
♥ "Erläuterung der Elemente" Seite 110							

Objekte > Digitale Eingänge I/O1...I/O4 - 0x7100

0x7100-01...04 - Konfiguration Digitale Eingabe I/O1...I/O4

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung
0x7100-01	U08	R/W**	1	0 1		Konfiguration Digitale Eingabe I/O1
0x7100-02	U08	R/W**	1	0 1		Konfiguration Digitale Eingabe I/O2
0x7100-03	U08	R/W**	1	0 1		Konfiguration Digitale Eingabe I/O3
0x7100-04	80U	R/W**	1	0 1		Konfiguration Digitale Eingabe I/O4
∜ "Erläuterur	na der Ele	mente" S	eite 110			

Mit diesen Objekten werden die vier digitalen Ein-/Ausgänge I/O1...I/O4 physikalisch konfiguriert.

- 0: Der I/Ox wird als digitaler Ausgang benutzt
 - DC 24V
 - 500 mA
 - High-side (source)
- 1: Der I/Ox wird als digitaler Eingang benutzt
 - DC 24V
 - IEC 61131-2 Typ 3
 - High-side (sink)
 - Die Konfiguration als Encoder erfolgt über ♥ "0x8F00-01 Encoder Rückführung Konfiguration" Seite 156
- Die Eingänge können immer gelesen werden, daher ist deren Konfiguration unabhängig von der Konfiguration als Ausgänge (Objekt 0x7200-01 ... -04).
- Ist ein digitaler Ein-/Ausgang durch Objekt 0x7200 als Ausgang konfiguriert, kann dieser über die zyklischen Daten *Status DO* zurückgelesen werden. Es ist der tatsächlich an den digitalen Treiberstufen anliegende Wert und nicht der durch die zyklischen Daten *Status DI* oder das System generierte Sollwert.

Objekte > Digitale Ausgänge I/O1...I/O4 - 0x7200

0x7100-05 - Status Digitale Eingabe I/O1...I/O4

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung	
0x7100-05*	U08	R	0	0 0xFF		Status Digitale Eingabe I/O1I/O4	
♥ "Erläuterun	♥ "Erläuterung der Elemente" Seite 110						

Dieses Objekt enthält die Istwerte der digitalen Eingänge I/O1...I/O4. Sie finden dieses auch im Ein-/Ausgabe-Bereich.

Bitte beachten Sie, wenn Sie über den Azyklische Kanal schreibend auf Objekte zugreifen, welche in den E/A-Bereich gemappt sind, so werden deren Werte wieder mit dem nächsten Zyklus überschrieben.

Bit 3 ... 0

3	2	1	0	Beschreibung
X	X	X	0	Eingang I/O1 hat Signal "0"
X	X	X	1	Eingang I/O1 hat Signal "1"
X	X	0	X	Eingang I/O2 hat Signal "0"
X	X	1	X	Eingang I/O2 hat Signal "1"
X	0	x	X	Eingang I/O3 hat Signal "0"
X	1	X	X	Eingang I/O3 hat Signal "1"
0	X	X	X	Eingang I/O4 hat Signal "0"
1	X	X	X	Eingang I/O4 hat Signal "1"

5.2.6 Digitale Ausgänge I/O1...I/O4 - 0x7200

0x7200-00 - Digitale Ausgänge - Anzahl der Einträge

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung	
0x7200-00	U08	R	8	8		Digitale Ausgänge - Anzahl der Einträge	
♥ "Erläuterur	ng der Ele	g der Elemente" Seite 110					
∜ Kap. 4.9 "E	∜ Kap. 4.9 "Einsatz I/O1I/O4" Seite 93						

Objekte > Digitale Ausgänge I/O1...I/O4 - 0x7200

0x7200-01...04 - Konfiguration Digitale Ausgabe I/O1...I/O4

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung
0x7200-01	U08	R/W**	0	0 1		Konfiguration Digitale Ausgabe I/O1
0x7200-02	U08	R/W**	0	0 1		Konfiguration Digitale Ausgabe I/O2
0x7200-03	U08	R/W**	0	0 1		Konfiguration Digitale Ausgabe I/O3
0x7200-04	U08	R/W**	0	0 1		Konfiguration Digitale Ausgabe I/O4
∜ "Frläuterur	na der Fle	mente" S	eite 110			

Mit diesen Objekten werden die vier digitalen Ein-/Ausgänge I/O1...I/O4 als Ausgänge konfiguriert. Ist ein digitaler Ein-/Ausgang als Ausgang konfiguriert, so können Sie diesen über die zyklischen Daten zurücklesen. Dies ist der tatsächlich an den digitalen Treiberstufen anliegende Wert.

Wert	Beschreibung
0	Der Ausgang ist deaktiviert.
1	Der Ausgang ist aktiviert und kann über die zyklischen Daten ∜ "0x7200-06 - Status Digitale Ausgabe I/O1I/O4 Sollwert" Seite 121 gesteuert werden.

Objekte > Digitale Ausgänge I/O1...I/O4 - 0x7200

0x7200-05 - Status Digitale Ausgabe I/O1...I/O4 Istwert

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung
0x7200-05*	U08	R	0	0 0xFF		Status Digitale Ausgabe I/O1I/O4 Istwert
♥ "Frläuterur	na der Fle	mente" S	Seite 110			

Dieses Objekt enthält die Istwerte der digitalen Ausgänge. Sie finden dieses auch im Ein-/Ausgabe-Bereich.

Bitte beachten Sie, wenn Sie über den Azyklische Kanal schreibend auf Objekte zugreifen, welche in den E/A-Bereich gemappt sind, so werden deren Werte wieder mit dem nächsten Zyklus überschrieben.

Bit 3 ... 0

3	2	1	0	Beschreibung
X	X	x	0	I/O1 hat Signal "0"
X	X	x	1	I/O1 hat Signal "1"
X	X	0	X	I/O2 hat Signal "0"
X	X	1	X	I/O2 hat Signal "1"
X	0	x	X	I/O3 hat Signal "0"
X	1	X	x	I/O3 hat Signal "1"
0	X	Х	X	I/O4 hat Signal "0"
1	X	X	X	I/O4 hat Signal "1"

Objekte > Antrieb steuern - 0x8100

0x7200-06 - Status Digitale Ausgabe I/O1...I/O4 Soll-

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung			
0x7200-06*	U08	R/W**	0	0 0xFF		Status Digitale Ausgabe I/O1I/O4 Sollwert			
☼ "Erläuterung der Elemente" Seite 110									

Dieses Objekt enthält die Sollwerte der digitalen Ausgänge I/O1...I/O4. Sie finden diese auch in den zyklischen Daten im Ein-/Ausgabe-Bereich.

Bitte beachten Sie, wenn Sie über den Azyklische Kanal schreibend auf Objekte zugreifen, welche in den E/A-Bereich gemappt sind, so werden deren Werte wieder mit dem nächsten Zyklus überschrieben.

Bit 3 ... 0

3	2	1	0	Beschreibung
X	X	X	0	Ausgang I/O1 hat Signal "0"
X	X	X	1	Ausgang I/O1 hat Signal "1"
X	X	0	X	Ausgang I/O2 hat Signal "0"
X	X	1	X	Ausgang I/O2 hat Signal "1"
X	0	X	X	Ausgang I/O3 hat Signal "0"
X	1	X	X	Ausgang I/O3 hat Signal "1"
0	Х	X	X	Ausgang I/O4 hat Signal "0"
1	X	Х	Х	Ausgang I/O4 hat Signal "1"

5.2.7 Antrieb steuern - 0x8100

0x8100-00 - Antrieb steuern - Anzahl der Einträge

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung	
0x8100-00	U08	R	6	6		Antrieb steuern - Anzahl der Einträge	
∜ "Erläuterung der Elemente" Seite 110							

Objekte > Antrieb steuern - 0x8100

0x8100-01 - Steuerwort

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung
0x8100-01*	U16	R/W**	0	0 65535		Steuerwort
♥ "Erläuterun	g der Ele	mente" S	eite 110			
∜ Kap. 4.4.2	"Zustände	e" Seite 6	4			

Mit dem *Steuerwort* können Sie den aktuelle Zustand des Motorcontrollers ändern bzw. alle Fehlerbits zurücksetzen.

Bit 3 ... 0 - Antriebstatus steuern

3	2	1	0	Beschreibung
Х	1	1	0	Ausschalten
0	1	1	1	Einschalten
1	1	1	1	Einschalten und Betrieb freigeben
X	X	0	Х	Spannung abschalten
0	1	1	1	Betrieb sperren
1	1	1	1	Betrieb freigeben
X	0	1	Х	Schnellhalt

Bit 15 ... 4 - Fehlerbits zurücksetzen

158	7	64	Beschreibung
reserviert	0→1	reserviert	Flanke 0-1 setzt alle Fehler-Bits in $\mbox{\ensuremath{,}}\ensure$

Objekte > Antrieb steuern - 0x8100

0x8100-02 - Statuswort

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8100-02*	U16	R	0	0 65535		Statuswort		
♥ "Erläuterung der Elemente" Seite 110								

∜ Kap. 4.4.2 "Zustände" Seite 64

Bitte beachten Sie, dass die Datenbits nicht dauerhaft anstehen und ggf. für weitere Bearbeitung zwischengespeichert werden müssen!

Bit 7 ... 0 - Antriebstatus Zustandsmaschine

7	6	5	4	3	2	1	0	hex	Beschreibung
X	0	Х	Х	0	0	0	0	0x00	Zustand "Nicht einschaltbereit"
X	1	Х	Х	0	0	0	0	0x40	Zustand "Einschalten gesperrt"
X	0	1	Х	0	0	0	1	0x21	Zustand "Einschaltbereit"
X	0	1	X	0	0	1	1	0x23	Zustand "Eingeschaltet"
X	0	1	Х	0	1	1	1	0x27	Zustand "Betrieb freigegeben"
X	0	0	Х	0	1	1	1	0x07	Zustand "Schnellhalt aktiv"
X	0	Х	X	1	1	1	1	0x0F	Zustand "Fehlerreaktion aktiv"
X	0	Х	X	1	0	0	0	0x08	Zustand "Fehler" ∜ "0x8100-03 - Fehlercode" Seite 124
1	X	X	X	X	X	Х	X	0x80	Eine Warnung ist aufgetreten & "0x8100-05 - Bit- leiste Warnungen" Seite 126

Bit 15 ... 8 - Betriebsartenstatus

15	14	13	12	11	10	9	8	Beschreibung
X	X	Х	X	X	0	X	Х	Zielposition nicht erreicht (Achse wird gebremst)
X	X	Х	X	Х	1	Х	Х	Zielposition erreicht (Achsgeschwindigkeit = 0)
X	X	Х	X	0	X	Х	Х	Es ist keine interne Begrenzung aktiv
X	х	X	Х	1	X	X	X	Es ist eine interne Begrenzung aktiv. Die Art der Begrenzung ist abhängig von der Betriebsart.

Objekte > Antrieb steuern - 0x8100

0x8100-03 - Fehlercode

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung
0x8100-03	U16	R	0	0 65535		Fehlercode
♥ "Erläuterui	ng der Ele	mente" S	eite 110			
∜ Kap. 4.15	"Überwac	hung una	Fehlerreakt	ion" Seite 102		

Dieses Objekt gibt den letzten aufgetretenen Fehlercode an, der im System SLIO Motion-Modul aufgetreten ist. Eine Sammelmeldung erhalten Sie über Bit 3 in % "0x8100-02 - Statuswort" Seite 123.

Es gibt folgende Fehlermeldungen:

Fehler

Code	Beschreibung
0x2310	Dauerhafter interner Kurzschluss
	∜ "0x8600-10 - Stromistwert Wicklung A" Seite 147 ist größer als ∜ "0x8C00-04 - Motor Strom max." Seite 154
	∜ "0x8100-06 - Bitleiste Fehler" Seite 127 Bit: 0
0x2340	Kurzschluss im Motor
	∜ "Anschlüsse" Seite 48
	∜ "0x8100-06 - Bitleiste Fehler" Seite 127 Bit: 1
0x3210	Leistungsversorgung Überspannung
	☼ "0x8680-07 - Leistungsversorgung Spannung Fehler Obergrenze" Seite 151
	∜ "0x8100-06 - Bitleiste Fehler" Seite 127 Bit: 17
0x3220	Leistungsversorgung Unterspannung
	☼ "0x8680-12 - Steuerspannung Leistungsendstufe Fehler Untergrenze" Seite 152
	∜ "0x8100-06 - Bitleiste Fehler" Seite 127 Bit: 16
0x4310	Temperatur μ-Controller überschritten
	∜ "0x8780-04 - Temperatur μ-Controller Fehler Obergrenze" Seite 153
	∜ "0x8100-06 - Bitleiste Fehler" Seite 127 Bit: 12, 13
0x5115	Steuerspannung Leistungsendstufe außerhalb des Bereichs.
	☼ "0x8680-12 - Steuerspannung Leistungsendstufe Fehler Untergrenze" Seite 152
	∜ "0x8680-13 - Steuerspannung Leistungsendstufe Fehler Obergrenze" Seite 152
	∜ "0x8100-06 - Bitleiste Fehler" Seite 127 Bit: 18, 19
0x8400	Fehler bei der Geschwindigkeitsregelung - überprüfen Sie Ihre Parameter.
	∜ "0x8100-06 - Bitleiste Fehler" Seite 127 Bit: 4
0x8611	Fehler bei der Positionsregelung - überprüfen Sie Ihre Parameter
	∜ "0x8100-06 - Bitleiste Fehler" Seite 127 Bit: 8
0xF001	Fehler in der Encoderrückführung - überprüfen Sie Ihre Parameter
	∜ Kap. 4.9.2.2 "Encoder - Einsatz" Seite 95
	∜ "0x8100-06 - Bitleiste Fehler" Seite 127 Bit: 20

Objekte > Antrieb steuern - 0x8100

Code	Beschreibung
0xF010	Systemkommunikation Zeitüberschreitung
	♥ "0x6100-10 - Systemkommunikation Ausfallzeit Maximum" Seite 116
	∜ "0x8100-06 - Bitleiste Fehler" Seite 127 Bit: 22
0xF011	Die Befehlsausgabesperre (BASP) ist aktiv.
	♥ "0x8100-06 - Bitleiste Fehler" Seite 127 Bit: 23
0xF020	Die gewählte Betriebsart wird nicht unterstützt.
	∜ "0x8280-01 - Sollbetriebsart" Seite 130
	∜ "0x8100-06 - Bitleiste Fehler" Seite 127 Bit: 24
0xF080	Es ist ein interner Fehler aufgetreten - bitte kontaktieren Sie den Support!
	∜ "0x8100-06 - Bitleiste Fehler" Seite 127 Bit: 28

0x8100-04 - Bitleiste Begrenzungen

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung
0x8100-04	U32	R	0	0 0xFFFFFFF		Bitleiste Begrenzungen

0: nicht aktiv, 1: aktiv

- Bit 0: Strombegrenzung
 - ♥ "0x8600-03 Stromsollwert" Seite 145 > ♥ "0x8600-04 Stromgrenze positiv" Seite 146
 - ♦ "0x8600-03 Stromsollwert" Seite 145 < ♦ "0x8600-05 Stromgrenze negativ " Seite 146
- Bit 3 ... 1: reserviert
- Bit 4: Drehzahlbegrenzung
 - — ♥ "0x8500-03 Drehzahlregelung Sollwert" Seite 142 > ♥ "0x8500-04 Drehzahlregelung Grenze positiv"

 Seite 142
 - ♦ "0x8500-03 Drehzahlregelung Sollwert" Seite 142 < ♦ "0x8500-05 Drehzahlregelung Grenze negativ"
 Seite 142
- Bit 7 ... 5: reserviert
- Bit 8: Lage der Sollposition
 - 0: Position liegt außerhalb der zulässigen Grenzen
 - 1: Position liegt innerhalb der zulässigen Grenzen
 - ♦ "0x8400-02 Positionsprofil Zielposition" Seite 136 > ♦ "0x8480-05 Software Positionsgrenze positiv" Seite 138
 - ♦ "0x8400-02 Positionsprofil Zielposition" Seite 136 < ♦ "0x8480-06 Software Positionsgrenze negativ" Seite 138
 - ♦ "0x8480-03 Sollposition" Seite 137 > ♦ "0x8480-05 Software Positionsgrenze positiv" Seite 138
 - ♥ "0x8480-03 Sollposition" Seite 137 < ♥ "0x8480-06 Software Positionsgrenze negativ" Seite 138</p>
- Bit 9: Lage der Istposition
 - 0: Position liegt außerhalb der zulässigen Grenzen
 - 1: Position liegt innerhalb der zulässigen Grenzen
 - ♥ "0x8480-02 Istposition" Seite 137 > ♥ "0x8480-05 Software Positionsgrenze positiv" Seite 138
 - ♥ "0x8480-02 Istposition" Seite 137 < ♥ "0x8480-06 Software Positionsgrenze negativ" Seite 138
- Bit 31 ... 10: reserviert
- ⋄ "Erläuterung der Elemente" Seite 110

Objekte > Antrieb steuern - 0x8100

0x8100-05 - Bitleiste Warnungen

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung
0x8100-05	U32	R	0	0 0xFFFFFFF		Bitleiste Warnungen

0: nicht aktiv, 1: aktiv

- Bit 7...0: reserviert
- Bit 8: Warnung Schleppfehlergrenze
 - 🛮 👙 "0x8480-10 Schleppfehler" Seite 139 > 🔖 "0x8480-11 Schleppfehlergrenze Warnung" Seite 140
- Bit 11...9: reserviert
- Bit 12: Temperaturwarnung µ-Controller
 - − ♥ "0x8780-02 Temperatur μ-Controller Istwert" Seite 152 > ♥ "0x8780-03 Temperatur μ-Controller Warnung Obergrenze" Seite 153
- Bit 13: Temperaturwarnung Leistungsstufe im Motion-Modul
 - ♥ "0x8780-07 Temperatur Leistungsendstufe Istwert" Seite 153 > ♥ "0x8780-08 Temperatur Leistungsendstufe Ustwert" Seite 153 > ♥ "0x8780-08 Temperatur Leistungsendstufe Istwert" Seite 153 > ♥ "0x8780-08 -
- Bit 15, 14: reserviert
- Bit 16: Warnung Unterspannung U_{IN} 24V_{DC}
 - − ♥ "0x8680-02 Leistungsversorgung Spannung Istwert" Seite 150 < ♥ "0x8680-04 Leistungsversorgung Spannung Warnung Untergrenze" Seite 150
- Bit 17: Warnung Überspannung U_{IN} 24V_{DC}
 - — ♥ "0x8680-02 Leistungsversorgung Spannung Istwert" Seite 150 > ♥ "0x8680-05 Leistungsversorgung Spannung Warnung Obergrenze" Seite 150
- Bit 18: Warnung Unterspannung Ansteuerung Leistungsstufe im Motion-Modul
 - — ♥ "0x8680-08 Steuerspannung Leistungsendstufe Istwert" Seite 151 < ♥ "0x8680-10 Steuerspannung Leistungsendstufe Warnung Untergrenze" Seite 151

- Bit 19: Warnung Überspannung Ansteuerung Leistungsstufe im Motion-Modul
 - ♥ "0x8680-08 Steuerspannung Leistungsendstufe Istwert" Seite 151 > ♥ "0x8680-11 Steuerspannung Leistungsendstufe Warnung Obergrenze" Seite 151
- Bit 31...20: reserviert
- "Erläuterung der Elemente" Seite 110
- ⋄ Kap. 4.15 "Überwachung und Fehlerreaktion" Seite 102

Objekte > Antrieb steuern - 0x8100

0x8100-06 - Bitleiste Fehler

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung
0x8100-06	U32	R	0	0 0xFFFFFFF		Bitleiste Fehler

0: nicht aktiv, 1: aktiv

- Bit 0: Fehler Strombegrenzung
- Bit 1: Fehler Kurzschluss im Motor (Phasen-Strom > 4A)
- Bit 3, 2: reserviert
- Bit 4: Maximale Drehzahl überschritten 1)
 - ७ "0x8500-02 Drehzahlregelung Istgeschwindigkeit" Seite 141 > ७ "0x8C00-07 Motor Geschwindigkeit max."
 Seite 155
- Bit 7 ... 5: reserviert
- Bit 8: Fehler Schleppfehlergrenze 1)
 - ♥ "0x8480-10 Schleppfehler" Seite 139 > ♥ "0x8480-12 Schleppfehlergrenze Fehler" Seite 140
- Bit 11...9: reserviert
- Bit 12: Temperaturfehler μ-Controller ¹)
 - \$ "0x8780-02 Temperatur μ-Controller Istwert" Seite 152 > \$ "0x8780-04 Temperatur μ-Controller Fehler Obergrenze" Seite 153
- Bit 13: Temperaturfehler Leistungsstufe im Motion-Modul ¹⁾
 - ♥ "0x8780-07 Temperatur Leistungsendstufe Istwert" Seite 153 > ♥ "0x8780-09 Temperatur Leistungsendstufe Fehler Obergrenze" Seite 154
- Bit 15, 14: reserviert
- Bit 16: Fehler Unterspannung U_{IN} 24V_{DC}
 - ─ \$ "0x8680-02 Leistungsversorgung Spannung Istwert" Seite 150 < \$ "0x8680-06 Leistungsversorgung Spannung Fehler Untergrenze" Seite 150
- Bit 17: Fehler Überspannung U_{IN} 24V_{DC}
 - − ♥ "0x8680-02 Leistungsversorgung Spannung Istwert" Seite 150 > ♥ "0x8680-07 Leistungsversorgung Spannung Fehler Obergrenze" Seite 151
- Bit 18: Fehler Unterspannung Ansteuerung Leistungsstufe im Motion-Modul
 - − ♥ "0x8680-08 Steuerspannung Leistungsendstufe Istwert" Seite 151 < ♥ "0x8680-12 Steuerspannung Leistungsendstufe Fehler Untergrenze" Seite 152
- Bit 19: Fehler Überspannung Ansteuerung Leistungsstufe im Motion-Modul
 - — ♥ "0x8680-08 Steuerspannung Leistungsendstufe Istwert" Seite 151 > ♥ "0x8680-13 Steuerspannung Leistungsendstufe Fehler Obergrenze" Seite 152
- Bit 20: Encodersystem ist nicht konfiguriert oder fehlerhaft
 - § "0x8F00-01 Encoder Rückführung Konfiguration" Seite 156 ist nicht auf Encoder (0x01) eingestellt
- Bit 21: reserviert
- Bit 22: Fehler Systemkommunikation Zeitüberschreitung 1)
 - ♥ "0x6100-10 Systemkommunikation Ausfallzeit Maximum" Seite 116
- Bit 23: Befehlsausgabesperre (BASP) ist aktiv ¹⁾
- Bit 27 ... 24: reserviert
- Bit 28: Systemfehler
 - Es ist ein interner Fehler aufgetreten bitte kontaktieren Sie den Yaskawa Support!
- Bit 31 ... 29: reserviert
- 🖔 "Erläuterung der Elemente" Seite 110
- 1) Löst eine Fehlerreaktion aus 🤄 Kap. 4.15 "Überwachung und Fehlerreaktion" Seite 102

Objekte > Antrieb konfigurieren - 0x8180

5.2.8 Antrieb konfigurieren - 0x8180

0x8180-00 - Antrieb konfigurieren - Anzahl der Einträge

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung			
0x8180-00	U08	R	3	3		Antrieb konfigurieren - Anzahl der Einträge			
♥ "Erläuterung der Elemente" Seite 110									

0x8180-02 - Getriebefaktor

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung				
0x8180-02	U32	R/W	10000000	800000 16000000		Getriebefaktor				
♥ "Erläuterun	♥ "Erläuterung der Elemente" Seite 110									

Getriebefaktor zur Normierung von Positions-, Geschwindigkeits- und Beschleunigungswerten. Der Wert stellt "Units" in tausend dar mit dem eine rotative Achse genau eine Umdrehung macht. "Units" können damit als Benutzereinheiten angesehen werden wie z.B. µm, mm, inch, Winkelgrad und Umdrehungen.

- Position
 - Eine zu verfahrende Position ergibt sich damit direkt aus der Zahl angegebenen Units
- Geschwindigkeit
 - Die Geschwindigkeit ist normiert auf Unit/s
- Beschleunigung und Verzögerung
 - Beschleunigung und Verzögerung sind normiert auf Unit/s²

Beispiel 1:

Ein Motor treibt direkt eine Zahnscheibe an. Über einen Zahnriemen ist 1:1 ein Bohrwerk gekoppelt. Es soll mit einer Auflösung von 0,0001 U (= 1 Unit) gearbeitet werden. Um eine Drehzahl von 900 U/min zu fahren ist demnach ein Wert von 150000 anzugeben.

$$Units = \frac{1U/U}{0.0001U} = 10000 \ 1/U$$

Getriebefaktor = 10000 · 1000 = 10000000

Beispiel 2:

Ein Motor treibt direkt eine Spindel mit einer Steigung von 20 mm/U an. Es soll mit einer Auflösung von 10µm (= 1 Unit) gearbeitet werden. Um eine Positionsdifferenz von 7000µm zu verfahren kann direkt der Wert 7000 (relativ zum vorhergehenden) vorgegeben werden.

$$Units = \frac{20mm/U}{10\mu m} = 20000 \ 1/U$$

Getriebefaktor = 20000 · 1000 = 20000000

Objekte > Optionen - 0x8200

5.2.9 Optionen - 0x8200

0x8200-00 - Optionen - Anzahl der Einträge

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung			
0x8200-00	U08	R	5	5		Optionen - Anzahl der Einträge			
♥ "Erläuterung der Elemente" Seite 110									

0x8200-01 - Konfiguration Schnellhalt

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung
0x8200-01	S16	R/W**	2	-32768 32767		Konfiguration Schnellhalt
♥ "Erläuterun	g der Ele	mente" S	eite 110			

Das Objekt enthält die auszuführende Aktion bei einem Schnellhalt.

Mode	Beschreibung
0	Sofortiger Wechsel in den Zustand "Einschalten gesperrt"
1	reserviert
2	Abbremsen mit Schnellhalt-Verzögerung 0x8580-03 und anschließendem Zustandswechsel zu "Einschalten gesperrt"
4	reserviert

0x8200-05 - Konfiguration Fehlerreaktion

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung			
0x8200-05	S16	R/W**	2	0 2		Konfiguration Fehlerreaktion			
♥ "Erläuterung der Elemente" Seite 110									

Das Objekt enthält die auszuführende Aktion bei einem Fehler des System SLIO Motion-Moduls.

Mode	Beschreibung
0	Sofortiger Wechsel in den Zustand "Einschalten gesperrt"
1	reserviert
2	Abbremsen mit 0x8580-03 und anschließendem Zustandswechsel zu "Einschalten gesperrt"
4	reserviert

Objekte > Betriebsarten - 0x8280

5.2.10 Betriebsarten - 0x8280

0x8280-00 - Betriebsart -Anzahl der Einträge

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8280-00	U08	R	2	2		Betriebsart - Anzahl der Einträge		
∜ "Erläuterung der Elemente" Seite 110								

0x8280-01 - Sollbetriebsart

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8280-01*	S16	R/W	0	-128 127		Sollbetriebsart		
⟨⇒ "Erläuterung der Elemente" Seite 110								

Mit dem Objekt 0x8280-01 können Sie die Betriebsart des Motorcontrollers einstellen. Folgende Betriebsarten werden unterstützt:

Wert	Beschreibung
0	Keine Betriebsart
1	
	 Den Homing Mode können Sie aus dem laufenden Betrieb aufrufen, sofern Sie zuvor über % "0x8300-02 - Referenzfahrt-Methode" Seite 132 eine Referenzfahrt-Methode eingestellt haben. Ein Wechsel in das Geschwindigkeitsprofil ist nur möglich, wenn sich die Zustandsmaschine im Zustand "Einschalten gesperrt" befindet.
3	∜ Kap. 4.7 "Geschwindigkeitsprofil" Seite 85
4	reserviert
6	∜ Kap. 4.5 "Referenzfahrt (Homing)" Seite 67
10	

Objekte > Referenzfahrt - 0x8300

0x8280-02 - Istbetriebsart

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung	
0x8280-02*	S16	R	0	-128 127		Istbetriebsart	
♥ "Erläuterung der Elemente" Seite 110							

Im Objekt 0x8280-02 kann die aktuelle Betriebsart des Motorcontrollers gelesen werden. Folgende Werte werde unterstützt:

Wert	Beschreibung
0	Keine Betriebsart ausgewählt
-1	Ungültige Betriebsart oder Betriebsartenwechsel
1	∜ Kap. 4.6 "PtP-Positionsprofil" Seite 73
3	∜ Kap. 4.7 "Geschwindigkeitsprofil" Seite 85
4	reserviert
6	∜ Kap. 4.5 "Referenzfahrt (Homing)" Seite 67
10	∜ Kap. 4.8 "Drehmomentregelung" Seite 89

5.2.11 Referenzfahrt - 0x8300

0x8300-00 - Referenzfahrt -Anzahl der Einträge

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung	
0x8300-00	U08	R	13	13		Referenzfahrt - Anzahl der Einträge	
% "Erläuterung der Elemente" Seite 110							

^{♥ &}quot;Erläuterung der Elemente" Seite 110

Objekte > Referenzfahrt - 0x8300

0x8300-02 - Referenzfahrt-Methode

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8300-02	S08	R/W**	0	-128 127		Referenzfahrt-Methode		
□ "Frläuterung der Flemente" Seite 110								

Erlauterung der Elemente" Seite 110

Kap. 4.5 "Referenzfahrt (Homing)" Seite 67

Dieses Objekt dient zur Auswahl der Referenzfahrt-Methode. Als Referenzfahrt bezeichnet man eine Initialisierungsfahrt eines Antriebs, bei der die korrekte Istposition anhand eines Referenzsignals ermittelt wird. Zur vollständigen Konfiguration einer Referenzfahrt sind alle zum Index 0x8300 zugehörigen Objekte erforderlich.

Unterstützte Referenzfahrt-Methode

Mode	Beschreibung
-1	Es wird auf Ansprechen der Strombegrenzung referenziert. $\%$ "0x8300-12 - Referenzfahrt Grenzstrom" Seite 135
17	Es wird auf einen Schalter am Ende des Positionierbereiches referenziert (= Referenzschalter). Zur Auswertung des Referenzschalters wird ein digitaler Eingang des SLIO Motion-Moduls verwendet. Es wird ein Puls Signal erwartet.
37	Die aktuelle Position wird als Referenzposition verwendet und der Positionswert auf null gesetzt.

Bitte beachten Sie, dass weder die Referenzfahrt noch andere Betriebsarten des System SLIO Motion-Moduls im Verfahrweg durch Endschalter überwacht und bei Erreichen dieser zur Abschaltung oder Stillsetzung führen. Sollte eine Überwachung und Reaktion diesbezüglich erforderlich sein, müssen Sie dies durch gesonderte Maßnahmen sicherstellen.

0x8300-03 - Referenzfahrt digitaler Eingang 1/01...1/04

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8300-03	U08	R/W**	0	0 4		Referenzfahrt digitaler Eingang I/O1I/O4		
♥ "Erläuterung der Elemente" Seite 110								

Dieses Objekt legt für die Referenzfahrt Mode 17 den Digitaler Eingang I/O1...I/O4 fest, an den der Referenzschalter angeschlossen ist.

Geben Sie hier eine Zahl vor:

- 0: inaktiv
- 1: Eingang von DIO1
- 2: Eingang von DIO2
- 3: Eingang von DIO3
- 4: Eingang von DIO4

Objekte > Referenzfahrt - 0x8300

0x8300-04 - Referenzfahrt digitaler Eingang Polarität I/O1...I/O4

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung	
0x8300-04	U08	R/W**	1	0 1		Referenzfahrt digitaler Eingang Polarität I/O1I/O4	
☼ "Erläuterung der Elemente" Seite 110							

Dieses Objekt legt für die Referenzfahrt *Mode 17* die Polarität des Referenzschalter für den verwendenden digitalen Eingang I/O1...I/O4 des System SLIO Motion-Moduls fest. Die interne Logik des System SLIO Motion-Moduls wertet ein Puls-Signal des Referenzschalter aus. Beachten Sie bitte in diesem Fall die richtige elektrische Verschaltung!

Wert	Beschreibung
0	Der Referenzschalter löst einen Zustandswechsel beim Erreichen der Endposition aus.
1	Der Referenzschalter löst einen Zustandswechsel beim Erreichen der Endposition aus.

0x8300-05 - Referenzfahrt Zielposition

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8300-05	S32	R/W**	0	-8388608 8388607	[user]	Referenzfahrt Zielposition		
♥ "Erläuterung der Elemente" Seite 110								

Dieses Objekt legt die Zielposition für die Referenzfahrt fest und ist Vorzeichen behaftet. Ist die Referenzfahrt und der mechanische Aufbau richtig konfiguriert, sollte diese Position bei der Referenzfahrt nicht erreicht werden. Sie dient damit dazu:

- eine maximale Verfahrposition festzulegen, falls die Grundstellung nicht erreicht wird
- durch das Vorzeichen die Verfahrrichtung der Referenzfahrt festzulegen

Obiekte > Referenzfahrt - 0x8300

0x8300-06 - Referenzfahrt Geschwindigkeit V1

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung
0x8300-06	S32	R/W**	0	-8388608 8388607	[user]	Referenzfahrt Geschwindigkeit V1
× "						

♥ "Erläuterung der Elemente" Seite 110

Dieses Objekt legt die Referenzfahrt Geschwindigkeit V1 zum Anfahren der Grundstellung fest. Bei Referenzfahrt *Mode 17* handelt es sich um ein zweistufiges Verfahren.

- Mit Referenzfahrt Geschwindigkeit V1 (0x8300-06) wird soweit in Richtung Zielposition (0x8300-05) gefahren bis der Referenzschalter überfahren wird.
- 2. Danach auf Geschwindigkeit 0 abgebremst und wieder beschleunigt (0x8300-08 und 09) und in negativer Richtung mit Geschwindigkeit V1 gefahren.
- Wird der Referenzschalter wieder überfahren wird wieder gebremst und in positive Richtung auf Geschwindigkeit V2 (0x8300-07) beschleunigt.
- Beim dritten Überfahren des Referenzschalters wird die Grundstellung (Offset: 0x8300-10) gesetzt und diese angefahren.

0x8300-07 - Referenzfahrt Geschwindigkeit V2

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung	
0x8300-07	S32	R/W**	0	-8388608 8388607	[user]	Referenzfahrt Geschwindigkeit V2	
∜ "Erläuterung der Elemente" Seite 110							

Dieses Objekt legt die Referenzfahrt Geschwindigkeit V2 zum Anfahren der Grundstellung fest. Die Geschwindigkeit V2 (0x8300-07) wird in der letzten Phase der Referenzfahrt beim Anfahren der Grundstellung (Offset: 0x8300-10) verwendet.

0x8300-08 - Referenzfahrt Beschleunigung

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung			
0x8300-08	S32	R/W**	0	1000 10000000	[user]	Referenzfahrt Beschleunigung			
♥ "Erläuterun	∜ "Erläuterung der Elemente" Seite 110								

Dieses Objekt legt den Wert für die Beschleunigungsrampe beim Anfahren der Grundstellung fest.

0x8300-09 - Referenzfahrt Verzögerung

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung			
0x8300-09	S32	R/W**	0	1000 10000000	[user]	Referenzfahrt Verzögerung			
♥ "Erläuterun	♥ "Erläuterung der Elemente" Seite 110								

Dieses Objekt legt den Wert für die Bremsrampe beim Anfahren der Grundstellung fest.

Objekte > Parameter für das PtP-Positionsprofil - 0x8400

0x8300-10 - Referenzfahrt Offset

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung			
0x8300-10	S32	R/W**	0	-8388608 8388607	[user]	Referenzfahrt Offset			
♥ "Erläuterun	∜ "Erläuterung der Elemente" Seite 110								

Dieses Objekt gibt den Offset zwischen der Null-Position der Applikation und dem Referenzpunkt (durch Referenzfahrt ermittelt) des Antriebs an. Der Wert ist Vorzeichen behaftet anzugeben. Ist die Referenzfahrt abgeschlossen und die Grundstellung erreicht, wird der Offset zur Grundstellung addiert.

0x8300-12 - Referenzfahrt Grenzstrom

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung	
0x8300-12	S16	R/W**	500	0 15000	[mA]	Referenzfahrt Grenzstrom	
♥ "Erläuterung der Elemente" Seite 110							

Dieses Objekt gibt den Grenzstrom bei der Referenzfahrt Methode -1 an % "0x8300-02 - Referenzfahrt-Methode" Seite 132. Sobald diese Stromgrenze erreicht wird, wird die aktuelle Position als Grundstellung verwendet.

0x8300-13 - Referenzfahrt Entfernung

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8300-13	S32	R/W**	1000	0 100000	[user]	Referenzfahrt Entfernung		
∜ "Erläuterung der Elemente" Seite 110								

Dieses Objekt gibt einen Positionsoffset an, um den der Motor frei gefahren wird, sobald bei der Referenzfahrt Methode -1 die Stromgrenze erreicht wird *§ "0x8300-02 - Referenzfahrt-Methode" Seite 132.*

5.2.12 Parameter für das PtP-Positionsprofil - 0x8400

0x8400-00 - Positionsprofil

- Anzahl der Einträge

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung			
0x8400-00	U08	R	5	5		Positionsprofil - Anzahl der Einträge			
♥ "Erläuterur	♥ "Erläuterung der Elemente" Seite 110								
	© Kan 4.6 "PtP-Positionsprofil" Seite 73								

Objekte > Parameter für das PtP-Positionsprofil - 0x8400

0x8400-02 - Positionsprofil Zielposition

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung
0x8400-02*	S32	R/W**	0	-8388608 8388607	[user]	Positionsprofil Zielposition

♥ "Erläuterung der Elemente" Seite 110

Für die Betriebsart "PtP-Positionsprofil" wird in diesem Objekt die neue Zielposition in Benutzereinheiten angegeben. § "0x8180-02 - Getriebefaktor" Seite 128 Dieses Objekt finden Sie auch im Ein-/Ausgabe-Bereich und darf nicht über den azyklischen Kanal beschrieben werden. Die Positionierung ist aktiv, wenn:

- die Betriebsart "PtP-Positionsprofil" gewählt ist
- sich das System SLIO Motion-Modul im Zustand "Betrieb freigegeben" befindet

Die Positionierung muss nicht über \heartsuit "0x8100-01 - Steuerwort" Seite 122 gezielt gestartet werden. Während einer laufenden Positionierung oder nach Erreichen der Zielposition kann 0x8400-02 geändert werden und es beginnt die Positionierung auf den neuen Zielwert. Zur vollständigen Konfiguration einer Positionierung und zur Ausführung sind weitere Objekte der Indexgruppe 0x8400 erforderlich.

0x8400-03 - Positionsprofil Zielgeschwindigkeit

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung			
0x8400-03*	S32	R/W**	0	-8388608 8388607	[user]	Positionsprofil Zielgeschwindigkeit			
♥ "Erläuterun	∜ "Erläuterung der Elemente" Seite 110								

Dieses Objekt legt die Geschwindigkeit zum Anfahren der Zielposition fest und wird als Betrag verrechnet. Dieses Objekt finden Sie auch im Ein-/Ausgabe-Bereich und darf nicht über den azyklischen Kanal beschrieben werden. Während einer laufenden Positionierung kann 0x8400-03 geändert werden. Es wird unmittelbar auf den neuen Zielwert beschleunigt oder abgebremst, sofern es der verbleibende Weg zur Ausführung der Positionierung zulässt.

0x8400-04 - Positionsprofil Zielbeschleunigung

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung			
0x8400-04*	S32	R/W**	10000	300 100000000	[user]	Positionsprofil Zielbeschleunigung			
⊄ "Frläuterun	& "Frläuterung der Flemente" Seite 110								

Dieses Objekt legt die Beschleunig zum Anfahren der Zielposition fest und wird als Betrag verrechnet. Dieses Objekt finden Sie auch im Ein-/Ausgabe-Bereich und darf nicht über den azyklischen Kanal beschrieben werden. Während einer laufenden Positionierung kann 0x8400-04 geändert werden und ist unmittelbar aktiv.

Objekte > Positionen und Grenzwerte - 0x8480

0x8400-05 - Positionsprofil Zielverzögerung

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung			
0x8400-05*	S32	R/W**	10000	300 100000000	[user]	Positionsprofil Zielverzögerung			
♥ "Erläuterun	∜ "Erläuterung der Elemente" Seite 110								

Dieses Objekt legt die Verzögerung zum Anfahren der Zielposition fest und wird als Betrag verrechnet. Dieses Objekt finden Sie auch im Ein-/Ausgabe-Bereich und darf nicht über den azyklischen Kanal beschrieben werden. Während einer laufenden Positionierung kann 8400-05 geändert werden und ist unmittelbar aktiv.

5.2.13 Positionen und Grenzwerte - 0x8480

0x8480-00 - Positionen und Grenzwerte - Anzahl der Einträge

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung			
0x8480-00	U08	R	16	16		Positionen und Grenzwerte - Anzahl der Einträge			
🧇 "Erläuterur	∜ "Erläuterung der Elemente" Seite 110								

0x8480-02 - Istposition

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung			
0x8480-02*	U32	R	0	-8388608 8388607	[user]	Istposition			
∜ "Frläuterun	∾ "Frläuterung der Flemente" Seite 110								

Dieses Objekt gibt den Wert der Istposition an. Dieses Objekt finden Sie auch im Ein-/ Ausgabe-Bereich und darf nicht über den azyklischen Kanal beschrieben werden. Im Open-Loop-Betrieb enthält das Objekt einen intern berechneten Wert und nicht den Encoder-Istwert.

0x8480-03 - Sollposition

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8480-03	S32	R	0	-8388608 8388607	[user]	Sollposition		
∜ "Erläuterun	∜ "Erläuterung der Elemente" Seite 110							

Dieses Objekt gibt den internen Wert der Sollposition am Eingang des Lagereglers an. Es wird von den übergeordneten Modulen (z.B. PtP Rampengenerator) generiert.

Obiekte > Positionen und Grenzwerte - 0x8480

0x8480-05 - Software Positionsgrenze positiv

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8480-05	S32	R/W**	8388607	-8388608 8388607	[user]	Software Positionsgrenze positiv		
♥ "Erläuterung der Elemente" Seite 110								

Dieses Objekt gibt den positiven Grenzwert für die Zielposition an. Jede Zielposition wird mit diesem Grenzwert abgeglichen. Vor dem Abgleich wird jeweils der Referenzoffset % "0x8300-10 - Referenzfahrt Offset" Seite 135 abgezogen.

- Liegt eine vorgegebene Zielposition oberhalb des positiven Grenzwertes, wird:
 - der Positioniervorgang nicht durchgeführt
 - Bit 11: "Interne Begrenzung aktiv" in ♥ "0x8100-02 Statuswort" Seite 123 wird gesetzt
 - Bit 10: "Ziel erreicht" in ♥ "0x8100-02 Statuswort" Seite 123 nicht gesetzt
 - Bit 9: in ♥ "0x8100-04 Bitleiste Begrenzungen" Seite 125 ist gesetzt
- Liegt eine gemessene Istposition oberhalb des positiven Grenzwertes, wird:
 - Bit 8: in ♥ "0x8100-04 Bitleiste Begrenzungen" Seite 125 ist gesetzt

0x8480-06 - Software Positionsgrenze negativ

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8480-06	S32	R/W**	-8388608	-8388608 8388607	[user]	Software Positionsgrenze negativ		
∜ "Erläuterung der Elemente" Seite 110								

Dieses Objekt gibt den negativen Grenzwert für die Zielposition an. Jede Zielposition wird mit diesem Grenzwert abgeglichen. Vor dem Abgleich wird jeweils der Referenzpositions Offset (0x8300-10) abgezogen.

- Liegt eine vorgegebene Zielposition unterhalb des negativen Grenzwertes, wird:
 - der Positioniervorgang nicht durchgeführt
 - Bit 11: "Interne Begrenzung aktiv" in ♥ "0x8100-02 Statuswort" Seite 123 gesetzt
 - Bit 10: "Ziel erreicht" in ♥ "0x8100-02 Statuswort" Seite 123 nicht gesetzt
 - Bit 9: in ♥ "0x8100-04 Bitleiste Begrenzungen" Seite 125 gesetzt
- Liegt eine gemessene Istposition unterhalb des negativen Grenzwertes, wird:
 - Bit 8: in ♥ "0x8100-04 Bitleiste Begrenzungen" Seite 125 gesetzt

Objekte > Positionen und Grenzwerte - 0x8480

0x8480-07 - Bereichsgrenze positive Richtung

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8480-07	S32	R/W	8000000	10000 8388607	[user]	Bereichsgrenze positive Richtung		
♥ "Erläuterung der Elemente" Seite 110								

Dieses Objekt definiert die positive Überlaufgrenze bei der Verarbeitung von Positionswerten. Bei Überschreitung dieses Wertes werden Positionswerte auf & "0x8480-08 - Bereichsgrenze negative Richtung" Seite 139 gesetzt. Zusammen mit dem Objekt 0x8480-07 können Sie so einen Positionsbereich definieren. Beispielsweise durch Legen von <math>& "0x8480-05 - Software Positionsgrenze positiv" Seite 138 und <math>& "0x8480-06 - Software Positionsgrenze negativ" Seite 138 außerhalb der Bereichsgrenzen erhalten Sie eine Endlosbewegung, da während der Bewegung die Software Positionsgrenzen nie erreicht werden können.

0x8480-08 - Bereichsgrenze negative Richtung

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung			
0x8480-08	S32	R/W	-8000000	-8388608 -10000	[user]	Bereichsgrenze negative Richtung			
♥ "Erläuterun	∜ "Erläuterung der Elemente" Seite 110								

Dieses Objekt definiert die negative Überlaufgrenze bei der Verarbeitung von Positionswerten. Bei Überschreitung dieses Wertes werden Positionswerte auf $\mbox{\congo}$ "0x8480-07 - Bereichsgrenze positive Richtung" Seite 139 gesetzt. Zusammen mit dem Objekt 0x8480-08 können Sie so einen Positionsbereich definieren. Beispielsweise durch Legen von $\mbox{\congo}$ "0x8480-05 - Software Positionsgrenze positiv" Seite 138 und $\mbox{\congo}$ "0x8480-06 - Software Positionsgrenze negativ" Seite 138 außerhalb der Bereichsgrenzen erhalten Sie eine Endlosbewegung, da während der Bewegung die Software Positionsgrenzen nie erreicht werden können.

0x8480-09 - Zielfenster

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8480-09	S32	R/W**	10	-8388608 8388607	[user]	Zielfenster		
♥ "Erläuterung der Elemente" Seite 110								

Dieses Objekt gibt relativ zur Zielposition einen symmetrischen Bereich an, innerhalb dem das Ziel als erreicht gilt.

0x8480-10 - Schleppfehler

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung			
0x8480-10*	S32	R	0	-8388608 8388607	[user]	Schleppfehler			
♥ "Erläuterun	∜ "Erläuterung der Elemente" Seite 110								

Dieses Objekt enthält die aktuelle Regeldifferenz als Abweichung zwischen Positionssollund Positionsistwert. Diese Abweichung bezeichnet man als *Schleppfehler*. Dieses Objekt finden Sie auch im Ein-/Ausgabe-Bereich.

Objekte > Positionen und Grenzwerte - 0x8480

0x8480-11 - Schleppfehlergrenze Warnung

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8480-11	S32	R/W**	100	-8388608 8388607	[user]	Schleppfehlergrenze Warnung		
∜ "Erläuterung der Elemente" Seite 110								

Dieses Objekt legt ein Limit der Positionsdifferenz (Schleppfehler) fest. Wird das Limit erreicht, wird dies als Warnung rückgemeldet. % "0x8100-02 - Statuswort" Seite 123 % "0x8100-05 - Bitleiste Warnungen" Seite 126

0x8480-12 - Schleppfehlergrenze Fehler

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung			
0x8480-12	S32	R/W**	1000	-8388608 8388607	[user]	Schleppfehlergrenze Fehler			
🥸 "Erläuterur	∜ "Erläuterung der Elemente" Seite 110								

Dieses Objekt legt ein Limit der Positionsdifferenz (Schleppfehler) fest. Wird das Limit erreicht, wird dies als Fehler rückgemeldet und das Motion-Modul geht in den Fehlerzustand über. § "0x8100-02 - Statuswort" Seite 123 § "0x8100-06 - Bitleiste Fehler" Seite 127

0x8480-13 - Lageregelung P-Anteil

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung	
0x8480-13	U16	R/W**	500	0 32000		Lageregelung P-Anteil	
∜ "Erläuterung der Elemente" Seite 110							

P-Anteil des Lagereglers.

0x8480-14 - Lageregelung I-Anteil

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung	
0x8480-14	U16	R/W**	10	0 32000		Lageregelung I-Anteil	
♥ "Erläuterung der Elemente" Seite 110							

I-Anteil des Lagereglers.

0x8480-15 - Lageregelung D-Anteil

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung	
0x8480-15	U16	R/W**	10	0 32000		Lageregelung D-Anteil	
♥ "Erläuterung der Elemente" Seite 110							

D-Anteil des Lagereglers.

Objekte > Geschwindigkeiten und Grenzwerte - 0x8500

0x8480-16 - Lageregelung Verschiebungsfaktor

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8480-16	U16	R/W	12	0 24		Lageregelung Verschiebungsfaktor		
♥ "Erläuterung der Elemente" Seite 110								

Dieser Parameter dient zur Limitierung der bei der Positionierung generierten Geschwindigkeit. Je kleiner der Wert, desto größer die Limitierung.

5.2.14 Geschwindigkeiten und Grenzwerte - 0x8500

0x8500-00 - Drehzahlregelung - Anzahl der Einträge

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8500-00	U08	R	13	13		Drehzahlregelung - Anzahl der Einträge		
♥ "Erläuterung der Elemente" Seite 110								

0x8500-01 - Drehzahlregelung Konfiguration

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8500-01	U32	R/W	0	0 0xFFFFFFF		Drehzahlregelung Konfiguration		
♥ "Erläuterung der Elemente" Seite 110								

Mit diesem Objekt können Sie das PtP-Positions- bzw. das Geschwindigkeitsprofil für die Drehzahlregelung deaktivieren. Hierbei erfolgt die Solldrehzahlvorgabe mit den nachfolgend aufgeführten Objekten:

- 0: Drehzahlregelung über das PtP-Positions- und Geschwindigkeitsprofil mit Vorgabe der Solldrehzahl über ∜ "0x8400-03 Positionsprofil Zielgeschwindigkeit" Seite 136. Dies ist die Defaulteinstellung.
- 1: Drehzahlregelung ausschließlich über das Geschwindigkeitsprofil mit Vorgabe der Solldrehzahl über ∜ "0x8500-03 Drehzahlregelung Sollwert" Seite 142.
- 2: Für die Drehzahlregelung sind PtP-Positions- und Geschwindigkeitsprofil deaktiviert mit Vorgabe der Solldrehzahl als Sollfrequenz an die PWM-Stufe.

0x8500-02 - Drehzahlregelung lstgeschwindigkeit

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8500-02*	S32	R	0	-10000000 10000000	[user]	Drehzahlregelung Istgeschwindigkeit		
∜ "Erläuterung der Elemente" Seite 110								

Dieses Objekt gibt den Wert der Istgeschwindigkeit an. Dieses Objekt finden Sie auch im Ein-/Ausgabe-Bereich und darf nicht über den azyklischen Kanal beschrieben werden. Im Open-Loop-Betrieb enthält das Objekt einen intern berechneten Wert und nicht den vom Encoder-Istwert abgeleiteten.

Objekte > Geschwindigkeiten und Grenzwerte - 0x8500

0x8500-03 - Drehzahlregelung Sollwert

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8500-03	S32	R/W**	0	-10000000 10000000	[user]	Drehzahlregelung Sollwert		
∜ "Frläuterung der Flemente" Seite 110								

Dieses Objekt gibt den internen Wert der Sollgeschwindigkeit am Eingang des Drehzahlreglers an. Es wird von den übergeordneten Modulen (z.B. PtP Rampengenerator) generiert.

0x8500-04 - Drehzahlregelung Grenze positiv

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8500-04	S32	R/W**	100000	0 10000000	[user]	Drehzahlregelung Grenze positiv		
♥ "Erläuterung der Elemente" Seite 110								

Dieses Objekt gibt den positiven Grenzwert für den Geschwindigkeitssollwert an. Jede Zielgeschwindigkeit wird mit diesem Grenzwert abgeglichen.

0x8500-05 - Drehzahlregelung Grenze negativ

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8500-05	S32	R/W**	-100000	-10000000 0	[user]	Drehzahlregelung Grenze negativ		
♥ "Erläuterung der Elemente" Seite 110								

Dieses Objekt gibt den negativen Grenzwert für den Geschwindigkeitssollwert an. Jede Zielgeschwindigkeit wird mit diesem Grenzwert abgeglichen.

0x8500-06 - Drehzahlregelung Grenze Drehmoment

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8500-06	S32	R/W**	-20000	-1000000 1000000	[user]	Drehzahlregelung Grenze Drehmoment		
♥ "Erläuterung der Elemente" Seite 110								

Objekte > Geschwindigkeiten und Grenzwerte - 0x8500

0x8500-07 - Drehzahlregelung Grenze für Drehmomentregelung

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8500-07	U32	R/W**	0	0 0xFFFFFFF		Drehzahlregelung Grenze für Drehmomentregelung		
∜ "Erläuterung der Elemente" Seite 110								

0: Weiche Geschwindigkeitsbegrenzung

- Die voreingestellte Geschwindigkeitsbegrenzung § "0x8500-04 Drehzahlregelung Grenze positiv" Seite 142 bzw. § "0x8500-05 Drehzahlregelung Grenze negativ" Seite 142 wird immer erreicht. Bei Überschreiten der Grenze erfolgt kein abruptes Abbremsen. Ein leichtes Überschwingen ist zulässig. Hierbei wird der Stromsollwert abhängig von der Differenz zwischen Istgeschwindigkeit und zulässigem Begrenzungsbereich § "0x8500-06 Drehzahlregelung Grenze Drehmoment" Seite 142 linear bis "0" reduziert.
- 1: Harte Geschwindigkeitsbegrenzung
 - Die voreingestellte Geschwindigkeitsbegrenzung
 \$\psi\$ "0x8500-04 Drehzahlregelung Grenze positiv" Seite 142 bzw.
 \$\psi\$ "0x8500-05 Drehzahlregelung Grenze negativ" Seite 142 wird mit maximal zulässigem Strom angefahren. Bei Überschreiten der Grenze erfolgt ein abruptes Abbremsen.

0x8500-11 - Drehzahlregelung P-Anteil

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8500-11	U16	R/W**	0	0 65535		Drehzahlregelung P-Anteil		
♥ "Erläuterung der Elemente" Seite 110								

P-Anteil des Drehzahlreglers.

0x8500-12 - Drehzahlregelung I-Anteil

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8500-12	U16	R/W**	0	0 65535		Drehzahlregelung I-Anteil		
♥ "Erläuterung der Elemente" Seite 110								

I-Anteil des Drehzahlreglers.

0x8500-13 - Drehzahlregelung D-Anteil

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8500-13	U16	R/W**	0	0 65535		Drehzahlregelung D-Anteil		
♥ "Erläuterung der Elemente" Seite 110								

D-Anteil des Drehzahlreglers.

Objekte > Beschleunigung und Verzögerung - 0x8580

5.2.15 Beschleunigung und Verzögerung - 0x8580

0x8580-00 - Beschleunigung und Verzögerung - Anzahl der Einträge

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung	
0x8580-00	U08	R	6	6		Beschleunigung und Verzögerung - Anzahl der Einträge	
∜ "Erläuterung der Elemente" Seite 110							

0x8580-02 - Istbeschleunigung bzw. Istverzögerung

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung
0x8580-02*	S32	R	0	-100000000 100000000	[user]	Istbeschleunigung bzw. Istverzögerung
∜ "Erläuterung der Elemente" Seite 110						

Dieses Objekt gibt den Wert der Ist-Beschleunigung (positives Vorzeichen) bzw. Ist-Verzögerung (negatives Vorzeichen) an. Dieses Objekt finden Sie auch im Ein-/Ausgabe-Bereich und darf nicht über den azyklischen Kanal beschrieben werden. Im Open-Loop-Betrieb enthält das Objekt einen intern berechneten Wert und nicht den vom Encoder-Istwert abgeleiteten.

0x8580-03 - Schnellhalt-Verzögerung

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung
0x8580-03	S32	R/W**	10000	10 100000000	[user]	Schnellhalt-Verzögerung
♥ "Erläuterung der Elemente" Seite 110						

Dieses Objekt gibt den Wert der Soll-Verzögerung im Falle eines Schnellhalts an.

0x8580-04 - Beschleunigungsgrenze

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung	
0x8580-04	S32	R/W**	10000	10 100000000	[user]	Beschleunigungsgrenze	
♥ "Erläuterung der Elemente" Seite 110							

Dieses Objekt gibt den bidirektionalen Grenzwert für den Beschleunigungs-Sollwert an. Jeder Beschleunigungs-Sollwert wird mit diesem Grenzwert abgeglichen. Beachten Sie, dass die untere Grenze ungleich 0 ist. Damit stellt sich Bewegung ein, sobald ein Geschwindigkeits-Sollwert aktiv wird, obwohl der Beschleunigungs-Sollwert 0 ist.

Objekte > Ströme - 0x8600

0x8580-06 - Verzögerungsgrenze

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung			
0x8580-06	S32	R/W**	10000	10 100000000	[user]	Verzögerungsgrenze			
♥ "Erläuterun	∜ "Erläuterung der Elemente" Seite 110								

Dieses Objekt gibt den bidirektionalen Grenzwert für den Verzögerungs-Sollwert an. Jeder Verzögerungs-Sollwert wird mit diesem Grenzwert abgeglichen. Beachten Sie, dass die untere Grenze ungleich 0 ist. Damit stellt sich Bewegung ein, sobald ein Geschwindigkeits-Sollwert aktiv wird, obwohl der Verzögerungs-Sollwert 0 ist.

5.2.16 Ströme - 0x8600

0x8600-00 - Ströme - Anzahl der Einträge

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung			
0x8600-00	U08	R	21	21		Ströme - Anzahl der Einträge			
♥ "Erläuterur	∜ "Erläuterung der Elemente" Seite 110								

0x8600-02 - Stromistwert

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung			
0x8600-02*	S16	R	0	-15000 15000	[mA]	Stromistwert			
♥ "Erläuterun	∜ "Erläuterung der Elemente" Seite 110								

Effektivwert des Stromistwerts der Wicklung in mA.

0x8600-03 - Stromsollwert

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung			
0x8600-03*	S16	R/W**	0	-15000 15000	[mA]	Stromsollwert			
ŭ "Frläuterun	₾ "Erläuterung der Elemente" Seite 110								

Für die Betriebsart *Drehmomentregelung & "0x8280-01 - Sollbetriebsart" Seite 130* können Sie hier den Effektivwert des Sollstroms definieren. Für alle anderen Betriebsarten können Sie mit diesem Objekt eine dynamische Stromgrenze definieren, welche nur durch *& "0x8C00-04 - Motor Strom max." Seite 154* eingeschränkt wird. Hierbei sind *& "0x8600-04 - Stromgrenze positiv" Seite 146* und *& "0x8600-05 - Stromgrenze negativ" Seite 146* wirkungslos.

Objekte > Ströme - 0x8600

0x8600-04 - Stromgrenze positiv

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung				
0x8600-04*	S16	R/W**	200	0 15000	[mA]	Stromgrenze positiv				
♥ "Erläuterur	♥ "Erläuterung der Elemente" Seite 110									

Für die Betriebsart *Drehmomentregelung & "0x8280-01 - Sollbetriebsart" Seite 130* können Sie hier die positive Stromgrenze für den Sollstrom definieren. In allen anderen Betriebsarten wird dieses Objekt nicht berücksichtigt.

Bitte beachten Sie, dass dieser Wert symmetrisch zu ♥ "0x8600-05 - Stromgrenze negativ " Seite 146 sein muss!

0x8600-05 - Stromgrenze negativ

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung			
0x8600-05*	S16	R/W**	-200	-15000 0	[mA]	Stromgrenze negativ			
♥ "Erläuterun	∜ "Erläuterung der Elemente" Seite 110								

Dieses Objekt gibt für alle Betriebsarten den Grenzwert für den Sollstrom in negativer Richtung an.

Stromgrenze positiv/negativ: beide Werte müssen betragsmäßig gleich sein, z.B. 0x8600-04 = 2000mA, 0x8600-05 = -2000mA. Eine asymmetrische Einstellung wird aktuell nicht unterstützt.

0x8600-06 - Stromregelung P-Anteil

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8600-06	U16	R/W**	1000	0 65535		Stromregelung P-Anteil		
∜ "Erläuterung der Elemente" Seite 110								

P-Anteil des Stromreglers.

0x8600-07 - Stromregelung I-Anteil

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8600-07	U16	R/W**	4000	0 65535		Stromregelung I-Anteil		
∜ "Erläuterung der Elemente" Seite 110								

I-Anteil des Stromreglers.

Objekte > Ströme - 0x8600

0x8600-09 - Stromregelung Filter Faktor

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung			
0x8600-09	U16	R/W**	1	0 7		Stromregelung Filter Faktor			
🧇 "Erläuterun	∜ "Erläuterung der Elemente" Seite 110								

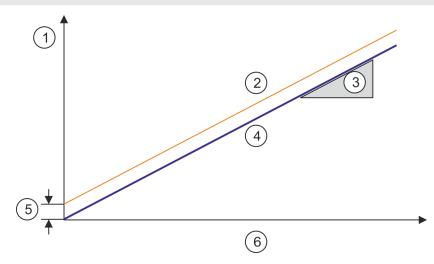
Zur Minderung hochfrequenter Störungen am Stromsensor können Sie hier den Filterfaktor des Tiefpassfilters für den Stromsensor vorgeben.

0x8600-10 - Stromistwert Wicklung A

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung
0x8600-10	S16	R	0	-15000 15000	[mA]	Stromistwert in Wicklung
♥ "Erläuterun	g der Ele	mente" S	eite 110			

Effektivwert des Stromistwerts in der Wicklung in mA.

0x8600-12 - Stromsollwert Wicklung A

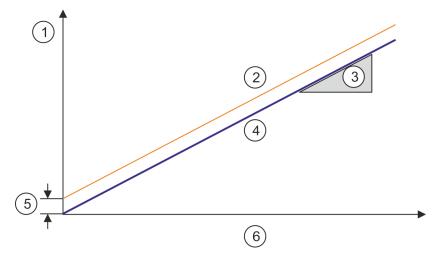

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung			
0x8600-12	S16	R	0	-15000 15000	[mA]	Stromsollwert in Wicklung			
♥ "Erläuterun	∜ "Erläuterung der Elemente" Seite 110								

Effektivwert des Stromsollwerts in Wicklung in mA.

Objekte > Ströme - 0x8600

0x8600-14 - Stromversatz Wicklung A

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung			
0x8600-14	S16	R/W**	0	-500 500	[mA]	Stromversatz in Wicklung			
۳ "Erläuterur	¼ "Erläuterung der Elemente" Seite 110								



- 1 Ausgabe-Spannung
- 2 Istwert
- 3 Verhältnis zwischen Stromstärke und Spannung (I/U)
- 4 Sollwert
- 5 Offset
- 6 Ausgabe-Stromstärke
- 0x8600-14 Dieses Objekt gibt den Offset der analogen Stromistwert-Erfassung zu 0 in Wicklung an.
- 0x8600-16 Dieses Objekt gibt das Verhältnis zwischen Stromstärke und Spannung (I/U) der analogen Stromistwert-Erfassung in Wicklung an.

Objekte > Spannungen - 0x8680

0x8600-16 - Strom-Spannungsverhältnis Wicklung A

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung			
0x8600-16	S16	R/W**	4724	2000 6000		Strom-Spannungsverhältnis in Wicklung			
♥ "Erläuterun	☼ "Erläuterung der Elemente" Seite 110								

- 1 Ausgabe-Spannung
- 2 Istwert
- 3 Verhältnis zwischen Stromstärke und Spannung (I/U)
- 4 Sollwert
- 5 Offset
- 6 Ausgabe-Stromstärke
- 0x8600-14 Dieses Objekt gibt den Offset der analogen Stromistwert-Erfassung zu 0 in Wicklung an.
- 0x8600-16 Dieses Objekt gibt das Verhältnis zwischen Stromstärke und Spannung (I/U) der analogen Stromistwert-Erfassung in Wicklung an.

Eine Änderung ist in der Regel nicht erforderlich. Sollte dieser Wert geändert werden, sollte zunächst zur Vermeidung einer Fehlermeldung des Motion Moduls % "0x8C00-04 - Motor Strom max." Seite 154 gesetzt werden.

5.2.17 Spannungen - 0x8680

0x8680-00 - Spannungen -Anzahl der Einträge

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8680-00	U08	R	7	7		Spannungen - Anzahl der Einträge		
∜ "Erläuterung der Elemente" Seite 110								

Objekte > Spannungen - 0x8680

0x8680-02 - Leistungsversorgung Spannung Istwert

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung			
0x8680-02	U16	R	0	0 6000	[0.01V]	Leistungsversorgung Spannung Istwert			
	♥ "Erläuterung der Elemente" Seite 110								

Dieses Objekt gibt die Höhe der anliegenden Versorgungsspannung an.

0x8680-04 - Leistungsversorgung Spannung Warnung Untergrenze

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung			
0x8680-04	U16	R/W	4100	0 6000	[0.01V]	Leistungsversorgung Spannung Warnung Untergrenze			
ŭ "Frläuterun	₩ "Frläuterung der Flemente" Seite 110								

Dieses Objekt legt ein unteres Limit für die Versorgungsspannung der Baugruppe fest. Wird das Limit unterschritten, wird über *∜* "0x8100-02 - Statuswort" Seite 123 bzw. über *∜* "0x8100-05 - Bitleiste Warnungen" Seite 126 eine Warnung ausgegeben.

0x8680-05 - Leistungsversorgung Spannung Warnung Obergrenze

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung
0x8680-05	U16	R/W	5500	0 6000	[0.01V]	Leistungsversorgung Spannung Warnung Obergrenze
♥ "Erläuterun	ng der Ele	mente" S	eite 110			

Dieses Objekt legt ein oberes Limit für die Versorgungsspannung der Baugruppe fest. Wird das Limit überschritten, wird über *∜ "0x8100-02 - Statuswort" Seite 123* bzw. über *∜ "0x8100-05 - Bitleiste Warnungen" Seite 126* eine Warnung ausgegeben.

0x8680-06 - Leistungsversorgung Spannung Fehler Untergrenze

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung				
0x8680-06	U16	R/W	3800	0 6000	[0.01V]	Leistungsversorgung Spannung Fehler Untergrenze				
♥ "Erläuterun	∜ "Erläuterung der Elemente" Seite 110									

Dieses Objekt legt ein unteres Limit für die Versorgungsspannung der Baugruppe fest. Wird das Limit unterschritten, wird über % "0x8100-02 - Statuswort" Seite 123 bzw. über % "0x8100-06 - Bitleiste Fehler" Seite 127 ein Fehler ausgegeben.

Objekte > Spannungen - 0x8680

0x8680-07 - Leistungsversorgung Spannung Fehler Obergrenze

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung				
0x8680-07	U16	R/W	5800	0 6000	[0.01V]	Leistungsversorgung Spannung Fehler Oberergrenze				
♥ "Erläuterur	∜ "Erläuterung der Elemente" Seite 110									

Dieses Objekt legt ein oberes Limit für die Versorgungsspannung der Baugruppe fest. Wird das Limit überschritten, wird über *∜ "0x8100-02 - Statuswort" Seite 123* bzw. über *∜ "0x8100-06 - Bitleiste Fehler" Seite 127* ein Fehler ausgegeben.

0x8680-08 - Steuerspannung Leistungsendstufe Istwert

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung			
0x8680-08	U16	R	0	0 4000	[0.01V]	Steuerspannung Leistungsendstufe Istwert			
♥ "Erläuterur.	∜ "Erläuterung der Elemente" Seite 110								

Dieses Objekt gibt die Höhe der anliegenden Steuerspannung der Leistungsendstufe an.

0x8680-10 - Steuerspannung Leistungsendstufe Warnung Untergrenze

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung				
0x8680-10	U16	R/W	850	0 4000	[0.01V]	Steuerspannung Leistungsendstufe Warnung Untergrenze				
♥ "Erläuterun	g der Ele	∜ "Erläuterung der Elemente" Seite 110								

Dieses Objekt legt ein unteres Limit für die Steuerspannung der Leistungsendstufe fest. Wird das Limit unterschritten, wird über $\mbox{\ensuremath{\e$

0x8680-11 - Steuerspannung Leistungsendstufe Warnung Obergrenze

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung			
0x8680-11	U16	R/W	1200	0 4000	[0.01V]	Steuerspannung Leistungsendstufe Warnung Obergrenze			
∜ "Erläuterur	☼ "Erläuterung der Elemente" Seite 110								

Dieses Objekt legt ein oberes Limit für die Steuerspannung der Leistungsendstufe fest. Wird das Limit überschritten, wird über % "0x8100-02 - Statuswort" Seite 123 bzw. über % "0x8100-05 - Bitleiste Warnungen" Seite 126 eine Warnung ausgegeben.

Objekte > Temperaturen - 0x8780

0x8680-12 - Steuerspannung Leistungsendstufe Fehler Untergrenze

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung			
0x8680-12	U16	R/W	800	0 4000	[0.01V]	Steuerspannung Leistungsendstufe Fehler Untergrenze			
♥ "Erläuterun	♥ "Erläuterung der Elemente" Seite 110								

Dieses Objekt legt ein unteres Limit für die Steuerspannung der Leistungsendstufe fest. Wird das Limit unterschritten, wird über $\mbox{\ensuremath{\e$

0x8680-13 - Steuerspannung Leistungsendstufe Fehler Obergrenze

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung
0x8680-13	U16	R/W	1400	0 4000	[0.01V]	Steuerspannung Leistungsendstufe Fehler Obergrenze
♥ "Erläuterur	ng der Ele	mente" S	eite 110			

Dieses Objekt legt ein oberes Limit für die Steuerspannung der Leistungsendstufe fest. Wird das Limit überschritten, wird über *∜ "0x8100-02 - Statuswort" Seite 123* bzw. über *∜ "0x8100-06 - Bitleiste Fehler" Seite 127* ein Fehler ausgegeben.

5.2.18 Temperaturen - 0x8780

0x8780-00 - Temperaturen

- Anzahl der Einträge

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8780-00	U08	R	12	12		Temperaturen - Anzahl der Einträge		
♥ "Erläuterung der Elemente" Seite 110								

0x8780-02 - Temperatur μ-Controller Istwert

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8780-02	S16	R	0	-50 120	[degC]	Temperatur μ-Controller Istwert		
♥ "Erläuterung der Elemente" Seite 110								

Dieses Objekt gibt die Höhe der gemessenen Temperatur des μ -Controller des Motion-Moduls an.

Objekte > Temperaturen - 0x8780

0x8780-03 - Temperatur µ-Controller Warnung Obergrenze

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung				
0x8780-03	S16	R/W	90	-50 120	[degC]	Temperatur µ-Controller Warnung Obergrenze				
♥ "Erläuterun	☼ "Erläuterung der Elemente" Seite 110									

Dieses Objekt legt ein Temperaturlimit des μ-Controller des Motion-Moduls fest. Wird das Temperaturlimit erreicht, wird über *∜ "0x8100-02 - Statuswort" Seite 123* bzw. über *∜ "0x8100-05 - Bitleiste Warnungen" Seite 126* eine Warnung ausgegeben.

0x8780-04 - Temperatur μ-Controller Fehler Obergrenze

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8780-04	S16	R/W	105	-50 120	[degC]	Temperatur μ -Controller Fehler Obergrenze		
⇔ "Erläuterung der Elemente" Seite 110								

0x8780-07 - Temperatur Leistungsendstufe Istwert

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8780-07	S16	R	0	-50 120	[degC]	Temperatur Leistungsendstufe Istwert		

Dieses Objekt gibt die Höhe der gemessenen Temperatur an der internen Leistungsendstufe an.

0x8780-08 - Temperatur Leistungsendstufe Warnung Obergrenze

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8780-08	S16	R/W	90	-50 120	[degC]	Temperatur Leistungsendstufe Warnung Obergrenze		
♥ "Erläuterung der Elemente" Seite 110								

Dieses Objekt legt ein Temperaturlimit für die interne Leistungsendstufe fest. Wird das Temperaturlimit erreicht, wird über % "0x8100-02 - Statuswort" Seite 123 bzw. über % "0x8100-05 - Bitleiste Warnungen" Seite 126 eine Warnung ausgegeben.

Objekte > Motordaten - 0x8C00

0x8780-09 - Temperatur Leistungsendstufe Fehler Obergrenze

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8780-09	S16	R/W	105	-50 120	[degC]	Temperatur Leistungsendstufe Fehler Obergrenze		
⇔ "Erläuterung der Elemente" Seite 110								

Dieses Objekt legt ein Temperaturlimit für die interne Leistungsendstufe fest. Wird das Temperaturlimit erreicht, wird über § "0x8100-02 - Statuswort" Seite 123 bzw. über § "0x8100-06 - Bitleiste Fehler" Seite 127 ein Fehler ausgegeben und das Motion-Modul geht in den Zustand "Fehlerreaktion aktiv" über.

5.2.19 Motordaten - 0x8C00

0x8C00-00 - Motorparameter - Anzahl der Einträge

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8C00-00	U08	R	10	10		Motorparameter - Anzahl der Einträge		
🤟 "Erläuterung der Elemente" Seite 110								

0x8C00-04 - Motor Strom max.

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung			
0x8C00-04	U16	R/W	500	0 15000	[mA]	Motor Strom max.			
⇔ "Erläuterung der Elemente" Seite 110									

Dieses Objekt gibt den maximalen Effektivwert des Motorstroms an und ist zu konfigurieren. Überschreitet der Stromistwert im Betrieb diesen Wert, kommt es zu einer Fehlerreaktion des Motion-Moduls, welche im % "0x8100-02 - Statuswort" Seite 123 bzw. über % "0x8100-06 - Bitleiste Fehler" Seite 127 Bit 0 angezeigt wird.

0x8C00-06 - Motor Nenndrehzahl

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8C00-06	U16	R/W	0	0 32000	[rpm]	Motor Nenndrehzahl		
🤟 "Erläuterung der Elemente" Seite 110								

Angaben hierzu finden Sie im Datenblatt zu Ihrem Motor.

Objekte > Encoder-Auflösung - 0x8F00

0x8C00-07 - Motor Geschwindigkeit max.

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung			
0x8C00-07	U16	R/W	3000	0 32000	[rpm]	Motor Geschwindigkeit max.			
♥ "Erläuterung der Elemente" Seite 110									

Dieses Objekt gibt die maximale Drehzahl des Motors an und ist zu konfigurieren. Auf diese Drehzahl wird der Ausgang des Lagereglers begrenzt und wird nicht zur Überwachung der Istdrehzahl herangezogen.

0x8C00-09 - Motor Geschwindigkeitskonstante

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung			
0x8C00-09	U16	R/W	1000	0 65535	[0.1rpm/V]	Motor Geschwindigkeitskonstante			
♥ "Erläuterung der Elemente" Seite 110									

Angaben hierzu finden Sie im Datenblatt zu Ihrem Motor.

0x8C00-10 - Motor Phasenwiderstand

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8C00-10	U16	R/W	0	0 65535	$[m\Omega]$	Motor Phasenwiderstand		
🤝 "Erläuterung der Elemente" Seite 110								

Angaben hierzu finden Sie im Datenblatt zu Ihrem Motor.

5.2.20 Encoder-Auflösung - 0x8F00

0x8F00-00 - Encoder -Anzahl der Einträge

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung	
0x8F00-00	U08	R	3	3		Encoder - Anzahl der Einträge	
♥ "Erläuterung der Elemente" Seite 110							

Objekte > Encoder-Auflösung - 0x8F00

0x8F00-01 - Encoder Rückführung Konfiguration

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8F00-01	U32	R/W	0	0 1		Encoder Rückführung Antrieb 1		
						Konfiguration I/O1 und I/O3		
∜ "Erläuterung der Elemente" Seite 110								

Mit diesem Objekt werden die digitalen Ein-/Ausgänge I/O1 und I/O3 physikalisch als Encoder-Eingang konfiguriert.

- 0: Encoder-Funktionalität für I/O1 und I/O3 ist deaktiviert
- 1: Encoder-Funktionalität für I/O1 und I/O3 ist aktiviert
 - 24V HTL-Signal
 - Phase A und B
 - 100 kHz
 - 4-fach-Auswertung

Sofern kein weiterer Encoder angeschlossen ist, stehen die nicht benutzten digitalen Ein-/Ausgänge I/O2 und I/O4 weiter zur freien Verfügung.

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x9F00-01	U32	R/W	0	0 1		Encoder Rückführung Antrieb 2 Konfiguration I/O2 und I/O4		
♥ "Erläuterung der Elemente" Seite 110								

Mit diesem Objekt werden die digitalen Ein-/Ausgänge I/O2 und I/O4 physikalisch als Encoder-Eingang konfiguriert.

- 0: Encoder-Funktionalität für I/O2 und I/O4 ist deaktiviert
- 1: Encoder-Funktionalität für I/O2 und I/O4 ist aktiviert
 - 24V HTL-Signal
 - Phase A und B
 - 100 kHz
 - 4-fach-Auswertung

0x8F00-02 - Encoder Istwert

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8F00-02	U16	R	0	0 65535	[inc]	Encoder Istwert		
♥ "Erläuterung der Elemente" Seite 110								

Mit diesem Objekt können Sie den Istwert eines eventuell angeschlossenen Encoders ausgeben. Bei Einsatz des *Skap. 4.6 "PtP-Positionsprofil" Seite 73* können Sie über *"0x8F00-01 - Encoder Rückführung Konfiguration" Seite 156* die Verwendung des Encoder-Signals definieren

Objekte > Encoder-Auflösung - 0x8F00

0x8F00-03 - Encoder Auflösung

Index-Sub	Тур	RW	Default	Wertebereich	Einheit	Beschreibung		
0x8F00-03	U16	R/W	4000	0 65535	[inc/rot]	Encoder Auflösung		
∜ "Erläuterung der Elemente" Seite 110								

Über dieses Objekt können Sie die Encoder-Auflösung des angeschlossenen Encoders konfigurieren. Die Encoder-Auflösung gibt die Anzahl der Impulse pro Umdrehung an.